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SUMMARY

To design rational therapies for JAK2-driven hema-
tological malignancies, we functionally dissected
the key survival pathways downstream of hyperac-
tive JAK2. In tumors driven by mutant JAK2, Stat1,
Stat3, Stat5, and the Pi3k and Mek/Erk path-
ways were constitutively active, and gene expres-
sion profiling of TEL-JAK2 T-ALL cells revealed
the upregulation of prosurvival Bcl-2 family genes.
Combining the Bcl-2/Bcl-xL inhibitor ABT-737 with
JAK2 inhibitors mediated prolonged disease regres-
sions and cures in mice bearing primary human
and mouse JAK2 mutant tumors. Moreover, com-
bined targeting of JAK2 and Bcl-2/Bcl-xL was
able to circumvent and overcome acquired resis-
tance to single-agent JAK2 inhibitor treatment.
Thus, inhibiting the oncogenic JAK2 signaling
network at two nodal points, at the initiating stage
(JAK2) and the effector stage (Bcl-2/Bcl-xL), is highly
effective and provides a clearly superior therapeutic
benefit than targeting just one node. Therefore, we
have defined a potentially curative treatment for
hematological malignancies expressing constitu-
tively active JAK2.

INTRODUCTION

The JAK tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) are

activated by cytokine receptor ligation leading to the sub-

sequent phosphorylation and activation of STAT transcrip-

tion factors (Ghoreschi et al., 2009). Activating JAK mutations

have been identified in a range of human lymphoid and myeloid

malignancies including pediatric and Down-syndrome-

associated precursor-B-ALL (James et al., 2005; Mullighan

et al., 2009b; Van Roosbroeck et al., 2011), and these

JAK2 mutations are strong drivers of cellular transformation

(Carron et al., 2000; Marty et al., 2010; Mullally et al., 2010).

JAK2 fusion proteins, such as TEL-JAK2 detected in T- and

B-ALL and BCR-ABL-negative chronic myeloid leukemia

(CML), are another class of oncogenic gain-of-function JAK2

mutants (Van Roosbroeck et al., 2011). Mice expressing

a TEL-JAK2 transgene under the control of the immu-

noglobulin heavy chain enhancer (EmTEL-JAK2) develop

leukemia that is phenotypically similar to human T-ALL (Carron

et al., 2000).

Small molecule JAK inhibitors (JAKi), such as the FDA-

approved drug ruxolitinib (Pardanani, 2012), have been

modestly successful in treating JAK2V617F-driven myeloprolifer-

ative neoplasms (MPNs) (Atallah and Verstovsek, 2009; Santos

and Verstovsek, 2011; Stein et al., 2011), whereas targeting

JAK2 in ALL is still in experimental stages (Roberts et al.,

2012; Sayyah and Sayeski, 2009), and responses of JAK2
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mutant ALL xenografts to ruxolitinib alone were variable

(Maude et al., 2012). Furthermore, chronic exposure of mutant

JAK2-expressing tumor cells to JAKi including ruxolitinib

resulted in the outgrowth of drug-resistant cells with sustained

JAK-STAT signaling through heterodimerization between acti-

vated JAK2 and JAK1 or TYK2 (Koppikar et al., 2012). A prom-

ising concept to reduce the evolution of tumors with acquired

resistance to monotherapies and to improve therapeutic effi-

cacy is by combining targeted therapies to concurrently inhibit

two (or more) critical molecules within a single oncogenic

network (Cragg et al., 2009; Knight et al., 2010; Maude et al.,

2012).

With a view to designing effective therapeutic strategies for

JAK2-driven hematological diseases, we examined the func-

tional importance of various signaling pathways activated by

oncogenic JAK2. We identified the key survival pathways

downstream of active JAK2 and demonstrated that concurrent

inhibition of aberrant JAK2 activity and the main effector

molecules, Bcl-2 and Bcl-xL, induced prolonged disease re-

gressions and cures in mice bearing established TEL-JAK2

T-ALL tumors. Furthermore, this combination was effective

against xenotransplanted human JAK2 mutant precursor-B-

ALL cells grown in immunocompromised mice. Moreover,

our combination approach was effective against JAK2-driven

tumor cells that had previously developed resistance to

JAK2 inhibition. Given that BH3-mimetics and small molecule

JAKi are in clinical development, our results argue for the initi-

ation of clinical trials using a combination of these agents for

the treatment of hematological malignancies driven by mutant

JAK2.

RESULTS

Elevated Bcl-2 and Bcl-xL Levels in T-ALL Expressing
the Constitutively Active TEL-JAK2 Fusion Protein
We previously developed the EmTEL-JAK2 mouse model of

T-ALL (Carron et al., 2000), and comparative transcript profiling

of TEL-JAK2 leukemia cells and normal C57BL/6 thymocytes re-

vealed that expression of TEL-JAK2 was associated with a

strong transcriptional upregulation of Bcl-2 and Bim (Figure 1A).

Furthermore, comparative analysis with intracellular Notch-1

(ICN1)–driven T cell leukemia showed that increased expression

of Bcl-2, Bcl-x, and Bim was specific for TEL-JAK2-expressing

leukemic T cells (Figure 1B). TEL-JAK2 leukemias showed

constitutive phosphorylation of Stat5 as previously observed

(Carron et al., 2000; Lacronique et al., 1997) and elevated levels

of Bcl-2, Bcl-xL, and Bim, compared to untransformed T cells

(Figure 1C). Examination of independently arising EmTEL-JAK2

T-ALLs showed that all expressed relatively higher levels of

Bcl-2 and Bcl-xL compared to untransformed C57BL/6 T cells

(Figure 1D).

To determine if EmTEL-JAK2 T-ALLs were dependent on Bcl-2

or Bcl-xL for their survival in vitro, we treated the cells with

varying concentrations of the BH3-mimetic, ABT-737 (Kono-

pleva et al., 2006; Oltersdorf et al., 2005; Whitecross et al.,

2009), or its less active enantiomer, ABT-737e. ABT-737 rapidly

induced cell death in a dose- and caspase-dependent manner in

different independently arising EmTEL-JAK2 T-ALLs (Figures 2A,

S1A, and S1B). Consistent with the results shown in Figure 1B,

EmTEL-JAK2 T-ALL cells were more sensitive to Bcl-2/Bcl-xL

inhibition than ICN1-expressing T-ALL cells (Figure S1C), and

Figure 1. EmTEL-JAK2 Expression Is Asso-

ciated with Elevated RNA and Protein

Levels of Bcl-2, Bcl-x, and Bim

(A) Selected probe sets of transcript levels from

thymocytes from four individual wild-type C57Bl/6

mice and eight EmTEL-JAK2 transgenic mice

(>90% leukemic cells), analyzed using Affymetrix

U74Av2 array. p % 0.008, false discovery rate

6.02%.

(B) Pangenomic Affymetrix 430 2.0 array

was used to compare transcript levels in bone

marrow cells from three independent ICN1

and TEL-JAK2 leukemic mice. Selected probe

sets of differentially expressed Bcl-2 family

members with a fold change of >0.5 or < �0.5

are shown. p % 0.008, false discovery rate

6.52%.

(C) Western blot analysis of C57Bl/6

thymocytes (Bl6) and EmTEL-JAK2 T-ALL cells

(TJ2) to assess expression of JAK2, TEL-JAK2,

P-Stat5, Stat5, Bcl-2, Bcl-xL, Bim, and the loading

control b-actin.

(D) Western blot analysis of Bcl-2 and Bcl-xL in 6

independent TEL-JAK2 T-ALLs (two mice per

tumor) compared to Bl6 thymocytes.
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B cell tumor cell lines expressing constitutively active mutant

JAK2 were more sensitive to ABT-737 than cells expressing

wild-type JAK2 (Figure S1D). Treatment of EmTEL-JAK2 T-ALL

cells with the JAK2-selective inhibitor TG101209 (Pardanani

et al., 2007) resulted in dose- and caspase-dependent apoptosis

(Figures 2B and S1E). Selective killing of cells expressing mutant

JAK2 by TG101209 was demonstrated by treating TEL-JAK2-

and BCR-ABL1-expressing myeloid FDCP1 cells with

TG101209, or a BCR-ABL1 kinase-specific inhibitor, Imatinib.

FDCP1-TEL-JAK2 cells were highly sensitive to TG101209, but

not to Imatinib, and, conversely, FDCP1-BCR-ABL1 cells were

efficiently killed by Imatinib, whereas TG101209 treatment only

had a minor effect with the highest concentrations used

(Figure S1F).

We hypothesized that combining ABT-737 with TG101209

would be more potent than treatment with the single inhibitors.

Treatment of EmTEL-JAK2 T-ALL cells with the combination re-

sulted in enhanced killing of cells relative to either agent alone

Figure 2. TEL-JAK2 T-ALL Cells Are Sensitive to the BH3 Mimetic ABT-737 and the JAK2 Inhibitor TG101209 and Show Constitutive

Phosphorylation of Stat 1, Stat 3, Stat 5, and Mek/Erk and Pi3k/Akt Signaling

(A) TEL-JAK2 T-ALL cells were treated for 24 hr ex vivo with ABT-737 or enantiomer (ABT-737e), and cells with less than 2N DNA (% sub G1) were identified by

flow cytometry.

(B) TEL-JAK2 T-ALL cells were treated for 24 hr ex vivo with increasing concentrations of TG101209. Cells with less than 2N DNA (% sub G1) were identified by

flow cytometry.

(C) TEL-JAK2 T-ALL cells were treated for 24 hr ex vivo with increasing concentrations of ABT-737, ± 0.5 mMTG101209. Cell survival was measured by PI uptake

(*for CI values, see Table S1).

(D) TEL-JAK2 T-ALL cells were treatedwith DMSO, ABT-737 (0.5 mM), TG101209 (1.5 mM), BEZ235 (1 mM), or PD0325901 (1 mM) for 1 hr, andwestern blot analysis

was performed in order to detect phosphorylated and total Stat5, Stat1, Stat3, S6 ribosomal protein, and Erk1/2.

(E) TEL-JAK2 T-ALL cells were treated for 48 hr ex vivo with BEZ235 or PD0325901. Cell survival was measured by PI uptake.

(F) TEL-JAK2 T-ALL cells were treated for 24 hr ex vivo with PD0325901 (0.1–5 mM) ± BEZ235 (1–5 mM). Cell survival was measured by PI uptake.

Results in (A–C), (E), and (F) show mean ± SD of triplicates from one representative of at least three individual experiments. See also Figure S1.
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Figure 3. Inhibiting Constitutive JAK2 Activity Decreases mRNA and Protein Levels of Bcl-2 and Bcl-xL, while Increasing Bim Transcription

and Protein Expression

(A) TEL-JAK2 T-ALL cells were treated with 0.5 or 2.5 mM TG101209 ± 50 mM QVD for 24 hr. mRNA levels for bcl-2, bcl-xl, and bim were determined by QPCR.

Results shown are mean ± SD of triplicates from one representative of three independent experiments. See also Figure S2.

(B) TEL-JAK2 T-ALL cells were treated with DMSO, QVD (50 mM), TG101209 (2.5 mM), or TG101209 + QVD over 48 hr, and western blot analysis was performed to

detect PARP, P-Stat5, Stat5, Bcl-2, Bcl-xL, and Bim. Expression levels relative to DMSO-treated controls are indicated by numbers beneath. Results shown are

representative of three independent experiments.

(C) Western blot analysis of TEL-JAK2 T-ALL cells (two independent tumors per construct) expressing MSCV-IRES-GFP (Control), LMP-shBim.966 (shBim.966),

LMP-shBim.428 (shBim.428), or MSCV-IRES-GFP-Bcl-w (Bcl-w) was performed to detect Bim, Bcl-w, and the loading control b-actin.

(legend continued on next page)
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(Figure 2C; for confidence interval [CI] values, see Table S1).

Similarly, this combined treatment resulted in a synergistic loss

of cell viability in FDCP1-TEL-JAK2 cells, whereas FDCP1-

BCR-ABL1 cells responded to a combination of Imatinib and

ABT-737 (Figure S1G).

Identification of Signaling Pathways Important for
Survival of TEL-JAK2 T-ALL Cells
To identify the key functional pathways downstream of acti-

vated JAK2, we assessed activation of Stat1, 3, and 5, Pi3k/

Akt, and Mek/Erk in the presence and absence of TG101209.

These pathways had been proposed to be important for the

oncogenic effects of constitutively active JAK2 (Ho et al.,

2002; Nguyen et al., 2001; Schwaller et al., 1998). TG101209

reduced the phosphorylation of TEL-JAK2, Stats 1, 3, and 5,

S6 ribosomal protein, which is a marker of Pi3k pathway

activity, and Erk1/2, which is a marker of Mek activation (Fig-

ure 2D). ABT-737 did not appreciably alter the expression or

phosphorylation of any of these molecules. Treatment with

the PI3K/mTOR inhibitor NVP-BEZ235 reduced phosphoryla-

tion of S6 and Stats 1 and 3, whereas the MEK inhibitor

PD0325901 caused a reduction in Erk1/2 and Stat3 phosphor-

ylation (Figure 2D). These data provide biochemical evidence

that the Pi3k and Mek/Erk pathways are constitutively active

in EmTEL-JAK2 T-ALL cells. However, NVP-BEZ235 caused

only a slight loss of viability of EmTEL-JAK2 T-ALL cells at

the on-target concentration of 1 mM (Figure 2E). Similarly,

PD0325901 did not affect cell survival at concentrations that

abrogated Erk1/2 phosphorylation (Figure 2E). Importantly,

combining NVP-BEZ235 and PD0325901 did not result in a

more substantial loss of cell viability than seen with the PI3K/

mTOR inhibitor alone (Figure 2F).

Inhibition of TEL-JAK2 Regulates Bcl-2, Bcl-xL, and Bim
Transcription and Protein Expression
TEL-JAK2 expression was associated with elevated levels

of Bcl-2, Bcl-xL, and Bim, and recent studies indicated an

important functional role for Bim in JAK2V617F-expressing

myeloid cell lines (Will et al., 2010). Treatment of EmTEL-JAK2

T-ALL cells with TG101209 reduced bcl-2 and bcl-xL mRNA

and protein levels but promoted the expression of bim (Figures

3A, 3B, and S2). To show the functional role of Bim in ABT-

737- and TG101209-induced cell death, we knocked down

Bim resulting in very good (shBim.966) and intermediate

(shBim.428) depletion in EmTEL-JAK2 T-ALL tumors (Figure 3C).

Bim knockdown modestly affected sensitivity to ABT-737,

whereas TEL-JAK2-shBim cells showed significantly reduced

sensitivity to TG101209 (Figure 3D) or the combination of ABT-

737 and TG101209 (Figure 3E; for CI values, see Table S2).

Bcl-w levels were decreased in EmTEL-JAK2 T-ALL cells

compared to wild-type T cells (Figure 1A), and we and others

have shown that ABT-737 is a relatively weak inhibitor of Bcl-w

(Mérino et al., 2012; Whitecross et al., 2009). Overexpression

of Bcl-w (Figure 3C) led to significantly reduced sensitivity to

ABT-737 (Figure 3D), had a minor effect on the responsiveness

to TG101209 (Figure 3D), and substantially inhibited the com-

bined effects of Bcl-2/Bcl-xL and JAK2 inhibition (Figure 3E;

Table S2). Together, these results indicate that inhibition of

JAK2 activity promotes the death of EmTEL-JAK2 T-ALL cells

by reducing the levels of antiapoptotic proteins Bcl-2 andBcl-xL,

and promoting the accumulation of the potent proapoptotic pro-

tein, Bim.

Bcl-2/Bcl-xL and JAK2Activity Is Critical for the Survival
of EmTEL-JAK2 T-ALL Cells In Vivo
Mice bearing transplanted EmTEL-JAK2 T-ALL cells were treated

with ABT-737, andwithin 8 hr this resulted in a substantial reduc-

tion in tumor cells in the peripheral blood concomitant with

induction of tumor cell apoptosis and a significant reduction in

spleen weight (Figures 4A, S3A, and S3C). These in vivo

apoptotic effects of ABT-737 correlated with a significant

increase in the survival of tumor-bearing mice (Figure 4B; *see

Table S3 for statistical analysis). Similar results were observed

using cohorts of mice transplanted with independently derived

EmTEL-JAK2 T-ALL tumors (Figures S3B and S3D). Treatment

of mice bearing EmTEL-JAK2 T-ALL tumors with ABT-737 and

etoposide or cyclophosphamide resulted in significantly

enhanced survival compared to mice treated with single agents

(Figure 4C; *for p values, see Table S4). Importantly, a small

number of tumor-bearing mice treated with chemotherapy plus

ABT-737 showed complete therapeutic responses.

Wenext tested the response of EmTEL-JAK2T-ALL cells in vivo

to TG101209. Mice transplanted with EmTEL-JAK2 T-ALL cells

demonstrated a substantial reduction in tumor cells in the

peripheral blood and spleen after 4 days of treatment with

TG101209 (Figure 4D). TG101209 also showed long-term thera-

peutic efficacy against EmTEL-JAK2 T-ALL cells in vivo, with

treated mice demonstrating a significant increase in survival

(median survival of 62 days) compared to the vehicle-treated

group (median survival of 28 days, * p = 0.0005) (Figure 4E).

The Antileukemic Activity of JAK2 Inhibitors Is Greatly
Enhanced by Concurrent Inhibition of Bcl-2/Bcl-xL
Next, the in vivo effects of combined abrogation of JAK2 activity

by TG101209 and Bcl-2/Bcl-xL by ABT-737 were assessed.

After adjusting the concentration of ABT-737 to achieve a well-

tolerated combination dose, we treated tumor-bearing mice

with TG101209 (100 mg/kg bid) and ABT-737 (25 mg/kg). This

combination regimen rapidly and robustly reduced tumor cell

counts in peripheral blood (Figure 5A). Importantly the combina-

tion of TG101209 and ABT-737 dramatically enhanced the

survival of tumor-bearing mice with greater than 70% of treated

(D) TEL-JAK2 T-ALL cells expressing MSCV-IRES-GFP (Control), shBim.966, shBim.428, or Bcl-w were treated with TG101209 (0.125–4 mM) or ABT-737

(10–2,000 nM), and cell survival of GFP-expressing cells wasmeasured by PI uptake. Results shown aremean ±SEM of three individual tumors eachmeasured in

duplicate (*p < 0.05 compared to TG101209 or ABT-737-treated control [MSCV vector] cells, respectively).

(E) TEL-JAK2-MSCV, -shBim.966, or -Bcl-w cells were treated with TG101209 (250 or 500 nM), ABT-737 (100 or 500 nM), or combinations of both, and cell

survival of GFP-expressing cells was measured by PI uptake. Results show are mean ± SEM of three individual tumors each measured in duplicate; for com-

bination treatment of Bcl-w-expressing cells, the mean of two individual tumors is shown (*for CI values, see Table S2).
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mice remaining healthy more than 250 days after commence-

ment of the dual therapy (Figure 5B; Table S5). Similar results

were obtained using the structurally unrelated JAK2i NVP-

BSK805 in combination with ABT-737 (Figure S4). These results

clearly demonstrate that combined inhibition of oncogenic JAK2

and Bcl-2/Bcl-xL provides robust and sustained therapeutic

responses in JAK2-driven malignancies resulting in mice cured

of disease.

Combined Inhibition of JAK2 and Bcl-2/Bcl-xL Is
Effective in Primary Human JAK2 Mutant B-ALL Cells
We next examined the effect of combined inhibition of JAK2

and Bcl-2/Bcl-xL in xenotransplanted human pre-B ALL cells

expressing JAK2R683G or JAK2T875N. Ex vivo, JAK2 mutant

(Figures S5A and S5B) B-ALL cells were more sensitive to

TG101209 alone, or TG101209 and ABT-737, compared to

B-ALL cells with wild-type JAK2 (JAK2wt) (Figure S5C). Further-

more, the combination of ABT-737 and TG101209 synergisti-

cally induced cell death in a panel of different JAK2 mutant

pre-B-ALL xenografts cultured ex vivo (Figure S5D; Table S6),

but not in various other primary ALL samples without known

JAK2 mutations (Figure S5E). Similar to the results using Em

TEL-JAK2 T-ALL cells (Figure 2D), treatment with the JAK2i

TG101209 abrogated STAT5 phosphorylation and reduced

levels of P-ERK in JAK2R683G and JAK2T875N pre-B-ALL sam-

ples, whereas P-STAT5 and P-ERK were not detectable in

either untreated or treated JAK2wt cells (Figures S5A–S5C).

Finally, we transplanted primary human pre-B-ALLs expressing

JAK2R683G or JAK2T875N into NOD/Scid IL-2Rg�/� mice. Treat-

ment of tumor-bearing mice with the combination of ABT-737

and TG101209 resulted in delayed tumor progression, and at

the end of a 3 week treatment cycle tumor burden was signif-

icantly reduced with the combination compared to single-agent

treatment (Figure 5C). Furthermore, only mice treated with

TG101209 (100 mg/kg bid) and ABT-737 (25 mg/kg) showed

a sustained therapeutic response (Figure 5D). This was also

reflected in the survival of mice transplanted with JAK2R867Q

B-ALL cells (also see Figure S5D for ex vivo dose response).

TG101209 alone prolonged the survival of mice compared to

control or ABT-737-treated mice, which was significantly

enhanced by combining TG101209 and ABT-737 (Figure 5E;

Table S7).

Figure 4. Therapeutic Effects of ABT-737 or

of the JAK2 Inhibitor TG101209 in Mice

Bearing EmTEL-JAK2 Leukemias

(A) Cohorts of mice (n = 6) bearing established

EmTEL-JAK2 tumors were injected with a single

dose of ABT-737 (75 mg/kg), sacrificed 8 hr after

treatment, and analyzed for final white blood cell

count (WBC), spleen weight, and induction of

apoptosis (sub G1).

(B) Cohorts of mice (n = 6) transplanted with Em

TEL-JAK2 cells were treated on day 4 posttrans-

plant with ABT-737 (75 mg/kg) or diluent for 2 3

7 days separated by 7 days. Kaplan-Meier survival

curves of mice treated with diluent (black line with

squares) or ABT-737 (black dashed line with

diamonds) are shown. See also Table S3 and

Figure S3.

(C) Cohorts of mice (n = 6) transplanted with Em

TEL-JAK2 cells were treated with two injections of

etoposide (30 mg/kg) or cyclophosphamide

(50 mg/kg) (days 4 and 18, dashed lines), alone or

in combination with ABT-737 (75 mg/kg, 2 3

7 days). Kaplan-Meier survival curves of mice

treated with diluent (black line with squares), ABT-

737 (black line with open diamonds), etoposide

(gray line with circles), cyclophosphamide (black

line with triangles), ABT-737 + cyclophosphamide

(gray line with open triangles), and ABT-737 +

etoposide (black line with open circles) are shown.

For statistical analysis, see Table S4.

(D) Cohorts of mice with secondary EmTEL-JAK2

ALL were treated with TG101209 (100 mg/kg bid

PO) (n = 11) or vehicle control (n = 9) for 4 days.

Peripheral blood was taken daily, and on day 4

mice were sacrificed and spleen weights were

measured.

(E) Kaplan-Meier survival curves of cohorts of mice

(n = 6) treated for 4 3 5 days with TG101209

(100 mg/kg bid PO) or vehicle control.

See also Figure S3.
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Dependence on Bcl-2/Bcl-xL Is a Feature of
JAK2V617F-Driven Malignancies
Oncogenic mutations in JAK2, particularly JAK2V617F, are

most prevalent in MPNs (Baxter et al., 2005; James et al.,

2005; Kralovics et al., 2005; Levine et al., 2005). The human

megakaryoblastic JAK2V617F SET-2 cell line had constitutive

phosphorylation of STATs1, 3, 5, ERK 1/2, and S6 that

was abrogated by treatment with TG101209 (Figure 6A).

Treatment with NVP-BEZ235 caused a substantial decrease

in phospho-S6, a minor decrease in phospho-STAT3, and

no change in phospho-ERK (Figure 6A). In contrast,

PD0325901 strongly suppressed phospho-ERK but had little

or no effect on the phosphorylation of other proteins analyzed

(Figure 6A).

Figure 5. Therapeutic Effects of Combined

Treatment with TG101209 and ABT-737 in

Mice Bearing EmTEL-JAK2 Leukemias or

Xenotransplanted with Human CRLF2

Rearranged/JAK2 Mutant Pre-B ALL

(A) Peripheral blood from cohorts of EmTEL-JAK2

leukemic mice treated with vehicle (n = 7),

TG101209 (100 mg/kg bid PO) (n = 5), ABT-737

(25 mg/kg daily ip) (n = 6), or a combination of

TG101209 and ABT-737 (n = 3) was taken and

analyzed after 3 days of therapy.

(B) The survival curves of cohorts of mice (n = 6 per

group) treated for 3 3 5 days separated by 2 days

with the treatment regimen used under (A). See

also Figure S4; *see Table S5 for statistical

analysis.

(C) Cohorts of tumor bearing NOD/Scid IL-2Rg�/�

transplanted with primary human JAK2T875N pre-B

ALL cells were treatedwith diluent (n = 6), ABT-737

(12.5 and 25 mg/kg ip, n = 6), TG101209

(100 mg/kg bid PO, n = 6), or a combination of

12.5 mg/kg ABT-737 and TG101209 (combo 1)

or 25 mg/kg ABT-737 and TG101209 (n = 6)

(combo 2) for 3 3 5 days separated by 2 days.

Peripheral bloodwas analyzed 2days after therapy

was ceased for hCD45 and hCD19 (*p < 0.005).

(D) Cohorts of NOD/Scid IL-2Rg�/� transplanted

with primary human JAK2R683G pre-B ALL cells

were treated with diluent (n = 5), ABT-737

(25 mg/kg ip, n = 4), TG101209 (100 mg/kg bid

PO, n = 4), or a combination of both inhibitors (n =

4) for 3 3 5 days separated by 2 days. Peripheral

blood was analyzed for hCD45- and hCD19-pos-

itive cells before and up to 2 weeks after therapy.

(E) The survival curves of cohorts of NOD/Scid

IL-2Rg�/� transplanted with primary human

JAK2R687Q pre-B ALL cells and treated as under

(D) (n = 8 per group; * see Table S7 for statistical

analysis).

See also Figure S4.

Treatment of SET-2 cells with

TG101209 induced apoptosis in a dose-

dependent manner (Figure 6B) con-

comitant with decreased levels of Bcl-2

and Bcl-xL, and an accumulation of Bim

(Figures 6C and 6D). Furthermore, inhibit-

ing JAK2 activity for 4 hr using TG101209 strongly decreased

STAT5 bound to the Bcl-xL locus (Figure 6E), demonstrating a

direct connection between JAK2 activity, STAT5 and tran-

scriptional regulation of Bcl-xL. The viability of SET-2 cells was

dependent on Bcl-2/Bcl-xL because treatment with ABT-737

induced a robust apoptotic response (Figure 6F). In contrast,

treatment with on-target concentrations of NVP-BEZ235 or

PD0325901 resulted in minimal death of SET-2 cells (Figure 6G),

although ERK phosphorylation was completely blocked with

the concentrations used here, and Bim levels were increased

following MEK/ERK inhibition (data not shown). As with TEL-

JAK2 T-ALL cells, combining TG101209 and ABT-737 was

more effective in inducing apoptosis of SET-2 cells than

either agent alone (Figure 6H; for CI values, see Table S8),
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emphasizing the potential for combined inhibition of JAK2 and

Bcl-2/Bcl-xL activity in the treatment of JAK2V617F-expressing

malignancies.

Acquired Resistance to JAK Inhibitors in
JAK2V617F-Driven MPN Cells Can Be Overcome by
Combined Inhibition of JAK2 and Bcl-2/Bcl-xL
Chronic exposure of JAK2V617F MPN cells to JAKi results in the

outgrowth of drug-resistant cells, and we generated SET-2 cells

with acquired resistance to TG101209 (SET-2-TGR) or ruxolitinib

(SET-2-RuxR) as previously described (Koppikar et al., 2012)

(Figure S6A). SET-2-TGR and SET-2-RuxR cells were clearly

less sensitive to the both JAK2i compared to SET-2 cells grown

for an equivalent period in vehicle alone (SET-2-Veh) (Figure 7A).

SET-2 cells were effectively killed using relatively low concen-

trations of TG101209 and ABT-737 or ruxolitinib and ABT-737

for 48 hr (Figure S6B), and we were not able to obtain any pro-

liferating cells from these cultures in the days following. SET-

2-TGR and SET-2-RuxR cells were highly sensitive to combined

treatment with TG101209 + ABT-737 or ruxolitinib + ABT-737

(Figure 7B). This effect was reproduced in a second, indepen-

dently derived series of ruxolitinib-resistant SET-2 cells over a

wide dose range of ruxolitinib + ABT-737 (Figure S6C). Taken

together, these data indicate that combined inhibition of JAK2

and Bcl-2/Bcl-xL can overcome acquired resistance to single-

agent JAK2i treatment.

SET-2-TGR and SET-2-RuxR cells demonstrated hyperphos-

phorylated JAK2, JAK1, TYK2, and STAT5 (Figure S6D),

concomitant with elevated expression of Bcl-xL mRNA and

protein (Figures 7C and 7D). Bim levels remained relatively

unchanged, and remarkably the expression of Bcl-2 was

decreased in SET-2-TGR and SET-2-RuxR cells compared to

SET-2-Veh cells (Figures 7C and 7D). Based on these findings,

we treated SET-2-TGR and SET-2-RuxR cells with ABT-737,

the Bcl-2-specific inhibitor ABT-199 (Souers et al., 2013), or

the Bcl-xL specific inhibitor WEHI-539 (Lessene et al., 2013)

alone and in combination with TG101209 or ruxolitinib.

Apoptosis of SET-2-TGR and SET-2-RuxR cells treated with

TG101209 or ruxolitinib was strongly enhanced by ABT-737

and WEHI-539, but not ABT-199 (Figure 7E). The target selec-

tivity of ABT-199 and WEHI-539 was demonstrated by treating

Em-myc lymphomas overexpressing Bcl-2 or Bcl-xL with the

BH3 mimetic drugs (Figures S6E and S6F).

The dynamic activation of the JAK2-STAT5-Bcl-xL axis

through constant exposure to JAK2i was evident in SET-2-TGR

and SET-2-RuxR cells 3 weeks after drug withdrawal (SET-2-

TGRR and SET-2-RuxRR cells). Concomitant with the resen-

sitization to JAK2i (Figure 7F), SET-2-TGRR and SET-2-RuxRR

cells showed restoration of phospho-JAK2, -JAK1, -TYK2

and -STAT5, and Bcl-2 and Bcl-xL expression back to basal

levels seen in SET-2-Veh cells (Figures S6G and S6H).

DISCUSSION

Chromosomal translocations or point mutations leading to

expression of constitutively active JAK2 including TEL-JAK2

and JAK2V617F have been identified in a range of human tumors

(James et al., 2005; Mullighan et al., 2009b; Van Roosbroeck

et al., 2011), and recently JAK2 point mutations (e.g., JAK2R683G)

and overexpression of the CRLF2 cytokine receptor have been

identified as important factors in pre-B ALL (Harvey et al.,

2010; Hertzberg et al., 2010; Mullighan et al., 2009a, 2009b).

Ruxolitinib was the first JAKi approved by the FDA for the treat-

ment of myelofibrosis (Pardanani, 2012), and others are currently

in clinical trials for JAK2V617F-driven MPNs (Santos and Verstov-

sek, 2011; Stein et al., 2011). Although JAKi therapy is able to

reduce disease burden, it does not eradicate the disease-initi-

ating malignant cell clone (Santos and Verstovsek, 2011; Stein

et al., 2011), and single-agent ruxolitinib treatment in CRLF2

rearranged/JAK mutant xenograft models shows variable re-

sponses (Maude et al., 2012). Moreover, we have recently shown

that continuous exposure of JAK2V617F+ SET-2 cells to JAKi

results in acquired resistance through re-establishment of JAK-

STAT signaling mediated by heterodimerization of JAK2 with

JAK1 or TYK2 (Koppikar et al., 2012). This indicates that

single-agent treatment with JAKi may only provide a transient

therapeutic response and that additional treatment regimens

designed to more effectively target hyperactivated JAK2

signaling may be required.

Our functional analysis of TEL-JAK2- and JAK2V617F-express-

ing cells revealed constitutive activation of JAK-STAT, PI3K, and

MEK/ERK signaling pathways consistent with other studies (Dai

Figure 6. SET-2V617F Cells Show Constitutive Phosphorylation of STAT1, STAT3, STAT5, and MEK/ERK and PI3K Signaling and Are Sensitive

to TG101209 and ABT-737

(A) SET-2V617F cells were treated with DMSO, TG101209 (1 mM), BEZ235 (5 mM), or PD0325901 (5 mM) for 1 or 3 hr, and lysates were used for western blot analysis

of phosphorylated STAT5, STAT1, STAT3, S6 ribosomal protein, and ERK1/2.

(B) Induction of cell death in SET-2V617F cells treated with increasing concentrations of TG101209 (AnxV/PI staining 24 hr posttreatment, DNA fragmentation after

48 hr).

(C) SET-2V617F cells were treated with 0.5 or 2.5 mM TG101209 ± 50 mM QVD for 24 hr, and mRNA levels for bcl-2, bcl-xL, and bim were determined by QPCR.

Results shown are mean ± SD of triplicates from one representative of three individual experiments.

(D) SET-2V617F cells were treated with DMSO (69 hr), QVD (20 mM, 69 hr), TG101209 (2.5 mM), or TG101209 + QVD for up to 69 hr and subjected to western blot

analysis to detect PARP, P-, and total STAT5, Bcl-2, Bcl-xL, and Bim. Expression levels relative to DMSO-treated controls are indicated by numbers beneath.

Results shown are representative of two independent experiments.

(E) SET-2V617F cells were treated for 4 hr with 1 mM TG101209 or DMSO (vehicle). Chromatin from these cells was used in ChIP assays followed by QPCR. Data

from biological replicate experiments are represented as the bound over input percentage. Results shown are mean ± SD of replicate experiments.

(F and G) (F) SET-2V617F cells treated with ABT-737 or Enantiomer (ABT-737e) were analyzed for 2N DNA content (% sub G1) and (G) cell death 48 hr

posttreatment with BEZ235 (0.1–10 mM) or PD0325901 (0.1–10 mM) determined by PI exclusion.

(H) Cell death induced by cotreatment of SET-2V617F cells with increasing concentrations of TG101209 ± 0.5 or 1 mM ABT-737 after 48 hr was determined by

AnxV/PI staining. (***synergism/**moderate synergism; for CI values, see Table S8).

Results shown in (F)–(H) are mean ± SD from triplicates of one representative of three individual experiments. See also Figure S5.
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et al., 2005; Ho et al., 2002; Röder et al., 2001). Using TG101209,

we demonstrated the addiction of JAK2mutant cells to activated

JAK2 for survival both in vitro and in vivo; however, inhibiting

PI3K/mTOR or MEK activity alone or in combination did not sub-

stantially affect tumor cell viability. This indicates that although

multiple oncogenic pathways are regulated by JAK2 activity,

not all are essential for malignant cell survival. We demonstrated

JAK2-driven expression of Bcl-2 and Bcl-xL in EmTEL-JAK2

Figure 7. JAK Inhibitor Resistance in SET-2V617F Cells Can Be Overcome by Combinations of ABT-737 and TG101209 or Ruxolitinib and Is

Predominantly Bcl-xL Dependent

(A) DMSO-treated control cells (SET-2-Veh) and TG101209- or ruxolitinib-resistant SET-2 cells (SET-2-TGR, -RuxR) were treated with increasing concentrations

of TG101209 (0.125–2 mM) or ruxolitinib (0.125–2 mM), and cell death was measured by AnnexinV/PI staining after 48 hr. Graphs shown are mean ± SD from

triplicates of one of three independent experiments.

(B) Vehicle controls and TG101209- and ruxolitinib-resistant SET-2 cells were treated with either 1.6 mM ABT-737, 0.6 mM TG101209, 0.3 mM ruxolitinib, ABT-

737 + TG101209, or ABT-737 + ruxolitinib, and cell death wasmeasured after 48 hr by staining with AnnexinV/PI. Graphs shown are mean ± SD of triplicates from

one of three individual experiments.

(C) Lysates from SET-2-Veh, -TGR, and -RuxR cells were used for western blot analysis of Bcl-2, Bcl-xL, and Bim. b-actin was used as a loading control.

(D) mRNA levels of bcl-2, bcl-xL, and bim in SET-2-Veh, -TGR, or -RuxR were determined by QPCR. Results shown are mean ± SD of triplicates from one

representative of two individual experiments.

(E) Vehicle controls and TG101209 and ruxolitinib-resistant SET-2 cells were treated with 1.6 mM ABT-737 or ABT-199, 0.8 mMWEHI-539, 0.6 mM TG101209, or

0.3 mM ruxolitinib or combinations of ABT-737, ABT-199, or WEHI-539 with TG101209 or ruxolitinib, and cell death was measured after 48 hr by AnnexinV/PI

staining. Graphs shown are mean ± SD of triplicates from one of two individual experiments.

(F) Vehicle-treated and resensitized SET-2 cells (3 weeks after JAKi withdrawal) were treated with increasing concentrations of TG101209 (0.125–2 mM) or

ruxolitinib (0.125–2 mM), and cell death was measured by AnnexinV/PI staining after 48 hr. Graphs shown are mean ± SD from triplicates of one of two inde-

pendent experiments.

See also Figure S6.
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T-ALL and SET-2 cells consistent with elevated levels of these

prosurvival proteins in samples from patients with JAK2V617F-

drivenMPNs (Silva et al., 1998; Zeuner et al., 2009). JAK2mutant

cells were sensitive to ABT-737, and this effect was suppressed

by overexpression of Bcl-w, in accordance with studies by us

and others showing that ABT-737 is a relatively weak inhibitor

of Bcl-w (Mérino et al., 2012; Whitecross et al., 2009). Bim levels

were elevated in EmTEL-JAK2 T-ALL and SET-2 cells treated

with JAK2i and consistent with the proposed functional role of

Bim in mediating cell death following JAK2V617F inhibition (Will

et al., 2010); depletion of Bim in EmTEL-JAK2 T-ALL cells

reduced their sensitivity to TG101209. Although treatment with

a MEK/ERK inhibitor also led to increased Bim protein levels,

neither MEK/ERK nor PI3K inhibition alone or in combination

induced substantial death of cells expressing mutant JAK2.

Thus, upregulation of Bim was necessary, yet not sufficient to

induce death of tumors expressing mutant JAK2. We posit that

Bcl-2 and Bcl-xL are important downstream targets of onco-

genic JAK2 and speculate that the ratio of Bcl-2/Bcl-xL and

Bim is decisive for cell survival or death in tumors addicted to

mutant JAK2.

By using a JAK2i, which decreases Bcl-2/Bcl-xL and

increases Bim levels, and adding ABT-737, the canonical JAK/

STAT–Bcl-2/Bcl-xL axis was specifically targeted at two levels

resulting in remarkable therapeutic effects in vivo and minimal

toxicity. Other recently suggested therapeutic approaches

include combining JAKi with inhibitors of HSP90 or the PI3K/

mTOR inhibitor BEZ235 (Fiskus et al., 2013; Weigert et al.,

2012). These combinations achieved promising results in vitro,

and in our hands TG101209 in combination with either BEZ235

or the HSP90 inhibitors 17-AAG and Radicicol induced a moder-

ate and mostly additive loss of cell viability (data not shown).

HSP90 inhibition destabilizes various HSP90-client proteins,

including JAK2 (Weigert et al., 2012; data not shown), therefore

potentially negatively regulating JAK-STAT signaling. However,

treatment of mice xenotransplanted with human CRLF2 rear-

ranged pre-B ALL-expressing mutant or wild-type JAK2 with a

JAK2i in combination with the HSP90 inhibitor AUY922 did not

lead to an improved survival of these mice compared to the

single inhibitor groups (Weigert et al., 2012). Moreover,

combining BEZ235 with TG101209 was not able to enhance

BEZ235-induced cell death in TG101209-resistant MPN cells

(Fiskus et al., 2013), indicating that this combination would

be less effective than the ABT-737/JAK2i treatment. This

furthermore emphasizes the potential of coordinated inhibition

of JAK2 and prosurvival Bcl-2 proteins in JAK2-driven MPN

and ALL.

An important finding from our study was that the combination

of JAK2i and ABT-737 prevented the outgrowth of JAK2V617F-

expressing MPN cells with acquired resistance to single agents.

Moreover, as we have recently described (Koppikar et al., 2012),

cells chronically treated with JAK2i reversibly hyperactivated the

JAK2/STAT5 signaling axis. Our data extend these studies

showing that this resulted in increased expression of Bcl-xL

and surprisingly decreased levels of Bcl-2. We demonstrated

that SET-2-TGR and SET-2-RuxR remained sensitive to com-

bination treatment with JAK2i and ABT-737 or the Bcl-xL

specific inhibitor WEHI-539; however, the Bcl-2-specific

inhibitor ABT-199 was ineffective in combination with JAK2

inhibition. We therefore posit that the JAK2/STAT5/Bcl-xL axis

is an important survival pathway for JAK2V617F-driven MPN cells

and that combined targeting of the JAK2 oncogenic signaling

pathway at two critical nodes—one being JAK2 activity itself,

the other being Bcl-xL—is clearly superior to treatment with

single inhibitors alone. Our data provide evidence that this com-

bined approach will have strong efficacy in the treatment of ALL

driven by mutated JAK2 and the potential to circumvent and

overcome acquired resistance to single-agent JAK inhibitor

therapy.

EXPERIMENTAL PROCEDURES

Microarray

Gene expression analysis was performed using the Murine Genome U74Av2

GeneChip (TEL-JAK2 versus wild-type thymocytes), and the Murine Genome

430 2.0 GeneChip (TEL-JAK2 versus ICN1 bone marrow cells, >50% leukemic

cells in all samples) (Affymetrix). Total RNA was isolated using the RNeasy kit

(Qiagen) and cRNA synthesis, labeling, hybridization, washing, and scanning

were performed according to the manufacturer’s protocol (Affymetrix).

Student’s t test was used to select significant genes (p % 0.008), and Cluster

and Treeview software were used to cluster tumor samples according to their

Bcl-2 gene expression pattern as assessed by hierarchical clustering using the

complete linkage mode.

In Vivo Assays

All animal work was conducted under the current ‘‘Australian Code of Practice

for the Care and Use of Animals for Scientific Purposes’’ and approved by the

Peter MacCallum Animal Experimental Ethics Committee. TEL-JAK2 T-ALL

cells from spleen, lymph node, or thymus of C57Bl/6:Em-TEL-JAK2 transgenic

mice were transplanted by intravenous injection into 6- to 8-week-old C57Bl/

6:Ly5.2 and C75Bl/6:Ly5.1 mice. Blood was taken by retroorbital or tail bleed,

and white blood cell counts were analyzed using the Advia 120 Hematology

System (Siemens Healthcare Diagnostics). Xenotransplantation experiments

were performed by intravenous injection of human pre-B ALL cells into 6- to

10-week-old NOD/Scid IL-2Rg�/� mice. Engraftment was monitored by

staining blood samples with antihuman CD45-APC-H7 and CD19-PE-Cy7

antibodies (BD Biosciences). Therapy was commenced when tumor burden

in peripheral blood wasR5%. For detailed description of drug administration,

statistical analysis, and retroviral transduction of TEL-JAK2 tumor cells, see

the Supplemental Experimental Procedures.

Cell Viability Assays

Detailed descriptions of cell growth conditions are included in the supple-

mental experimental procedures. Cells were either stained in PBS + 1 mg/ml

propidium iodide (PI) (Sigma-Aldrich) or in 10 mM HEPES/NaOH [pH 7.4],

140 mM NaCl, 5 mM CaCl2x2H2O using 1 mg/ml propidium iodide and

fluorescein-isothiocyanate- or APC-conjugated AnnexinV (BD Biosciences)

used 1:100. DNA fragmentation was measured by staining cells in hypotonic

0.1% Na-citrate/0.1% Triton X-100 buffer with 50 mg/ml PI. Cell-surface stain-

ing of human pre-B ALL cells was performed using antihuman CD45-APC-H7

and CD19-PE-Cy7 antibodies (BD Biosciences). All experiments were

analyzed on a BD FACS Canto II using the FlowJo analysis software

(Tree Star).

Western Blot

Western blot analysis of whole-cell lysates was performed as previously

described (Whitecross et al., 2009) using primary antibodies against phos-

pho-JAK2 Tyr1007/1008, JAK2 (D2E12), P-STAT5 Tyr694, STAT5 (3H7),

P-STAT3 Tyr705, STAT3, P-STAT1 Tyr701, P-S6 Ser240/244, S6 ribosomal

protein, P-ERK Thr202/Tyr204, ERK, PARP (46D11) (Cell Signaling Tech-

nology), STAT1, Bcl-xL, mouse Bcl-2 (BD Biosciences), human Bcl-2 (Santa

Cruz Biotechnology), Bim/BOD (Enzo Life Sciences), and b-actin (Sigma-

Aldrich).
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RNA Isolation and Quantitative Real-Time PCR

RNA was isolated using the QIAGEN RNeasy Midi Kit, following the manu-

facturers’ instructions. Quality and final concentration of RNA was deter-

mined using a Nanodrop (Thermo Scientific) and cDNA prepared using

MMLV reverse transcriptase and random primers (Promega). Quantitative

real-time PCR (qPCR) was performed by using 150 nM each of forward

and reverse primers, SYBR Green Master Mix including ROX size standard

(Applied Biosystems). Reaction mixtures were prepared in triplicate for each

cDNA sample and incubated in an Applied Biosystems 7900HT Real-Time

instrument according to the following program: 95�C, 10 min; 40 cycles

of 95�C for 30 s, 60�C for 30 s; 95�C for 15 s; 60�C for 15 s; 95�C for

15 s, with a ramp rate of 2% from 60�C to 95�C. Expression levels for

human genes were normalized by comparison with expression of GAPDH,

whereas murine genes were normalized by comparison with expression of

b-actin. For primer sequences, see the Supplemental Experimental

Procedures.

Chromatin Immunoprecipitation Assay

Chromatin immunoprecipitation (ChIP) was performed as previously

described (Dawson et al., 2009). Immunoprecipitated DNA was analyzed on

an ABI 7900 real-time PCRmachine, using TaqMan PCRmastermix according

to the manufacturer’s instructions. The following primers and probes were

used in the analysis. Primer sequences used for human Bcl-xL were forward

50-TGGTATCCTCACAACAAACTtcatg-30; reverse 50-gaggctggcagctgaattg-30;
TaqMan probe 50-[Fam]ttatcttcctccaactctgacctgt[Tam]-30.

ACCESSION NUMBERS

Microarray data were deposited in the NCBI Gene Expression Omnibus

database and are available under accession number GSE51250.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and eight tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2013.10.038.
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