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The NJL model for the octet baryons, using proper time regularisation to simulate some of the features of 
confinement, is solved self-consistently in nuclear matter. This provides an alternative framework to the 
MIT bag model which has been used in the quark–meson coupling model. After fitting the parameters 
of the model to the saturation properties of symmetric nuclear matter the model is used to explore the 
equation of state of pure neutron matter as well as nuclear matter at densities relevant to heavy ion 
collisions. With a view to future studies of high mass neutron stars, the binding of hyperons is also 
explored.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

There is little doubt that Quantum Chromodynamics (QCD) is 
the correct theory of the strong interaction. However, the issue 
of connecting this more fundamental theory to traditional nuclear 
physics is extremely challenging. Of course, we have hints of what 
might be involved through phenomena such as the EMC effect [1,
2] but we are far from a full understanding of the influence of 
quark degrees of freedom and their implications for the complex 
phenomena emerging from QCD.

The Quark–Meson Coupling (QMC) model goes beyond the ma-
jority of nuclear models by explicitly treating baryons as extended 
objects. It is a relativistic quark level model which has been ex-
tensively used to study nuclear matter [3], finite nuclei [4] and 
neutron stars [5]. The model has recently been shown to provide 
a remarkably accurate description of the ground-state properties 
of atomic nuclei across the periodic table, in terms of a derived, 
density-dependent effective NN potential [6]. Within QMC the MIT 
bag model is used as the model of hadron structure, although one 
need not restrict oneself to this. Indeed, it is clearly of interest 
to extend the approach to other models of hadron structure. For 
example, Bentz and Thomas [7] were the first to develop such a 
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theory by hadronising the NJL model, which embodies different as-
pects of QCD, notably spontaneous chiral symmetry breaking. The 
aim of this letter is to consider the effect of hadron structure on 
nuclear matter properties within this complementary model.

Within the QMC model the in-medium changes of the baryon 
properties, such as masses, scalar couplings and so on, are calcu-
lated by self-consistently solving the bag equations, including the 
effect of the mean fields generated by other nucleons. The masses 
are then parametrised as functions of the mean scalar field as

M∗
B = MB − w B gσ N σ̄ + d

2
w̃ B (gσ N σ̄ )2 , (1)

where the weightings wσ B and w̃σ B simply allow us to express 
the density dependent couplings of the mean scalar field to each 
hadron in terms of the unique coupling to the nucleon in free 
space, gσ N . Using this parametrisation and the corresponding den-
sity dependent coupling, we can solve for the equation of state in 
a manner analogous to the Walecka model [8–11], that is at the 
hadronic level. In this way the sub-structure of the baryons is en-
tirely contained in the mass parametrisation. In Refs. [12–14], we 
used the bag model parametrisation given in Ref. [15], which in-
cludes the effects of one gluon exchange. Here we present a new 
variation of the QMC model with a mass parametrisation obtained 
by solving the Faddeev equation derived from the proper time reg-
ularised NJL model. Then, using this new mass parametrisation, 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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we calculate the equations of state of Symmetric Nuclear Matter 
(SNM) and Pure Neutron Matter (PNM) in a Hartree–Fock approxi-
mation.

In Ref. [13] we extended the QMC model by performing a 
Hartree–Fock calculation including the full vertex structure for the 
vector mesons. This extension only alters the exchange contribu-
tion, including not only the Dirac vector term, as was done in 
Ref. [5], but also the Pauli tensor term. These terms were already 
included within the QMC model by Krein et al. [16] for symmetric 
nuclear matter and more recently by Miyatsu et al. [17]. We gener-
alised the work of Krein et al. [16] by evaluating the full exchange 
terms for all octet baryons and adding them, as additional con-
tributions, to the energy density. A consequence of this increased 
level of sophistication is that, if we insist on using the hyperon 
couplings predicted in the simple QMC model, with no meson cou-
pling to the strange quarks, the � hyperon is no longer bound. 
Addressing the under-binding of the � hyperons in nuclear matter 
and accounting for the known existence of �-hypernuclei without 
the need to phenomenologically rescale couplings is a pressing is-
sue. As the scalar couplings are dependent on the model of hadron 
structure through Eq. (1), it is interesting to consider an alternative 
to the conventionally used bag models.

The present line of research complements our recent work by 
changing the model for hadron structure and this, in turn, may in-
fluence nuclear matter properties and hyperon optical potentials. 
Throughout we use the same notation and methods as in our ear-
lier works [12–14,18,19].

2. QMC model for nuclear matter

In our calculations we consider only the spin-1/2 octet baryons. 
These interact via the exchange of mesons which couple di-
rectly to the quarks. The exchanged mesons included are the 
scalar–isoscalar (σ ), vector–isoscalar (ω), vector–isovector (ρ) and 
pseudo-scalar–isovector (π ). These mesons only couple with the 
light quarks by the phenomenological OZI rule. We include the full 
vertex structure for the vector mesons, that is, both the Dirac and 
Pauli terms.

The QMC Lagrangian density used in this work is given by a 
combination of baryon and meson components

L =
∑

B

LB +
∑

m

Lm , (2)

for the octet of baryons B ∈ {N, �, �, �} and selected mesons m ∈
{σ , ω, ρ, π} with the individual Lagrangian densities

LB = 	̄B

(
iγμ∂μ − MB + gσ B(σ )σ

− gωBγ
μωμ − fωB

2MN
σμν∂μων

− gρBγ
μt · ρμ − fρB

2MN
σμνt · ∂μρν

− gA

2 fπ
χB Bγ

μγ 5τ · ∂μπ

)
	B , (3)

∑
m

Lm = 1

2
(∂μσ∂μσ − m2

σ σ 2)

− 1

4
�μν�μν + 1

2
m2

ωωμωμ

− 1

4
Rμν · Rμν + 1

2
m2

ρρμ · ρμ

+ 1
(∂μπ · ∂μπ − m2

ππ · π) , (4)

2

for which the vector meson field strength tensors are �μν =
∂μων −∂νωμ and Rμν = ∂μρν −∂νρμ . giB , f iB denote the meson–
baryon coupling constants for the i ∈ {σ ,ω,ρ} mesons. The quan-
tities in bold are vectors in isospin space, with isospin matrices 
denoted by t and isospin Pauli matrices by τ . For nucleons and 
cascade particles t = 1

2 τ . The pion–baryon interaction used here 
is assumed to be described by an SU(3) invariant Lagrangian with 
the mixing parameter α = 2/5 [5] from which the hyperon–pion 
coupling constants can be given in terms of the pion nucleon cou-
pling [20,5,21].

From the Lagrangian given in Eq. (2), we use the Euler–Lagrange 
equations to obtain a system of coupled, non-linear partial differ-
ential equations for the quantum fields. This is a difficult system 
of equations to solve and to make the problem tractable a number 
of approximations are usually applied, including static, no sea and 
mean field approximations, which are implemented here. Follow-
ing Refs. [22,5,21,23], we decompose each meson field into two 
parts, a mean field part 〈φ〉 and a fluctuation part δφ, such that 
φ = 〈φ〉 + δφ. The equations of motion are then solved order by 
order. The fluctuation terms are small with respect to the mean 
field contribution, with the exceptions being the π and ρ meson 
fluctuations.

In the Fock terms a dipole form factor is used with a cut-
off �. The same cut-off is used for all mesons. We consider several 
model variations, taking the cut-off � = 0.9 GeV as our “Standard” 
or baseline scenario, which includes both Dirac (vector) and Pauli 
(tensor) interactions for the vector mesons. The other scenarios, 
which involve variations on the baseline are “Hartree”, which only 
includes the Hartree contribution; “� = 1.3 GeV”, which has an 
increased cut-off; “Dirac Only” which neglects the tensor contribu-
tion; and finally “Fσ (�k) = 1”, where we take a hard form factor for 
the sigma meson, leaving the density dependence as determined 
within the model.

The σ , ω, and ρ couplings to the quarks are constrained to re-
produce the standard empirical properties of symmetric (N = Z ) 
nuclear matter; the saturation density ρ0 = 0.16 fm−3, the bind-
ing energy per nucleon at saturation of E(ρ = ρ0) = −15.865 MeV
as well as the asymmetry energy coefficient aasym ≡ S0 ≡ S(ρ0) =
32.5 MeV [5].

3. Baryon structure in the NJL model

The NJL model [24,25] has been extensively studied, including 
a large number of reviews [26–31]. Recently various phenomena 
related to hadron structure have been investigated using the NJL 
model with Schwinger’s proper time regularisation modified in a 
manner that forbids the quarks to propagate on-mass shell [32,33]. 
This was done in order to crudely simulate a key feature of quark 
confinement [34,19,35,18,36]. It has also been implemented using 
dimensional regularisation in Ref. [37]. In particular, the work of 
Carrillo-Serrano et al. [19] is followed closely in the present calcu-
lation and subsequent parametrisation of the octet baryon masses.

We work with just the local (contact) four Fermi interaction be-
tween quarks, which is parametrised by a coupling constant Gπ in 
the SU(3)-flavour NJL Lagrangian density. It is common to include 
a six-fermion term to describe phenomenologically the breaking of 
U (1)-axial symmetry, but as the η and η′ mesons play no role 
in the current work, we omit this term. The dynamic breaking 
of chiral symmetry is evident in the spontaneous generation of 
constituent quark masses (Mu = Md = M� or Ms), which are de-
termined by the so-called gap equation [26–31], see Table 1. The 
application of Fierz transformations to the NJL Lagrangian rear-
ranges the fermion fields into meson and diquark channels. The 
resulting diquark Lagrangian density reads [38]
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Table 1
Values of the proper time regularised NJL model parameters. Tabulated are the current and constituent quark masses, infra-red 
and ultra-violet cut-offs, and scalar and pion effective couplings (dimensionless) evaluated at q2 = m2

π and q2 = 0. The param-
eter set used M� , �IR , fπ = 93 MeV and mπ = 140 MeV as input to obtain remaining parameters in the usual manner.

m�

[MeV]
ms

[MeV]
M�

[MeV]
Ms

[MeV]
�IR

[MeV]
�UV

[MeV]
Gπ

[GeV−2]
Zπ Zπ (0)

16.43 324.32 400 592.17 240 644.87 19.044 17.853 18.500
Table 2
Diquark couplings determined by fitting MN and g A .

GS

[GeV−2]
Ga

[GeV−2]
Z[��] Z[�s] Z{��} Z{�s} Z{ss}

7.65 2.61 14.81 16.42 3.56 3.93 4.28

Fig. 1. (Colour online.) Inhomogeneous Bethe–Salpeter equation for diquark correla-
tions.

Lqq
I = GS

[
ψ̄ γ5 C λa βA ψ̄ T

][
ψ T C−1γ5 λa βA ψ

]
+ Ga

[
ψ̄ γμ C λs βA ψ̄ T

][
ψ T C−1γ μ λs βA ψ

]
, (5)

where C corresponds to the charge conjugation matrix, which in 
our notation is C = iγ2γ0. Flavour is described by the usual SU(3) 
matrices λa , with (a = 2, 5, 7), and λs , with (s = 0, 1, 3, 4, 6, 8), 
while the colour 3̄ states are represented by βA = √

3/2λA , with 
(A = 2, 5, 7) [38–40]. This allows the description of effective qq
interactions in the scalar and axial-vector diquark channels, with 
strengths given by the coupling constants GS and Ga, respectively, 
see Table 2.

Diquarks are then described as qq bound states through the 
solution of the Bethe–Salpeter equation depicted in Fig. 1. These 
solutions are given by the following reduced t-matrices1

τ[q1q2](q) = 4i GS

1 + 2 GS �[q1q2](q2)
, (6)

τ
μν
{q1q2}(q) = 4 i Ga

1 + 2 Ga �T{q1q2}(q2)

(
gμν − qμqν

q2

)

+ 4 i Ga

1 + 2 Ga �L{q1q2}(q2)

qμqν

q2
, (7)

where the bubble diagrams read [18,19]

�[q1q2]
(

q2
)

= 6i

∫
d4k

(2π)4
Tr

[
γ5 Sq1(k)γ5 Sq2(k + q)

]
, (8)

�T{q1q2}(q2)

(
gμν − qμqν

q2

)
+ �L{q1q2}

qμqν

q2
=

6i

∫
d4k

(2π)4
Tr

[
γ μ Sq1(k)γ ν Sq2(k + q)

]
. (9)

The traces are taken over Dirac indices only and Sq(k) is the 
Feynman constituent quark propagator. The pole positions of the 
t-matrices are the masses of the different scalar and axial-vector 
diquarks, M[q1q2] and M{q1q2} , respectively, see Table 3. In addition, 
in the solution of the Faddeev equations we use the following pole 
approximations for the reduced t-matrices

1 We follow the notation of Refs. [18,19] where square brackets, [q1q2], represent 
a scalar diquark with quark content q1 and q2, while {q1q2} is the corresponding 
axial-vector diquark.
Table 3
Diquark masses determined by pole condition.

M[��]
[MeV]

M[�s]
[MeV]

M{��}
[MeV]

M{�s}
[MeV]

M{ss}
[MeV]

679.18 848.71 1038.54 1170.67 1301.00

Fig. 2. Homogeneous Faddeev equation for the each member of the baryon octet. 
The masses and vertices are found from its solution.

τ[q1q2](q) → −i Z[q1q2]
q2 − M2[q1q2] + iε

, (10)

τ
μν
{q1q2}(q) → −i Z{q1q2}

q2 − M2{q1q2} + iε

(
gμν − qμqν

M2{q1q2}

)
. (11)

The residues at the poles define the effective couplings Z[q1q2] and 
Z{q1q2} [18,34,19], see Table 2.

For each member of the baryon octet we solve the Faddeev 
equations [41] in the quark–diquark picture, depicted graphically 
in Fig. 2. The formalism and the solution of the Faddeev equations 
in the present NJL model is detailed in Refs. [18,19]. The analytic 
form of the homogeneous Faddeev equations is given by

�B(p, s) = Z B�B(p)�B(p, s), (12)

which amounts to a homogeneous Fredholm equation of the sec-
ond kind for each baryon, B . Following Ishii et al. we employ the 
static approximation [39,42] for the Feynman propagator of the 
exchanged quark. The formulation of the Faddeev kernel for each 
member of the octet (B) uses the quark–diquark bubble diagrams, 
�B(p), and the normalised Faddeev vertices, �B (p, s). The explicit 
form of the Faddeev vertices, bubble matrices and quark exchange 
kernels are explained in detail in Refs. [18,19]. By solving the Fad-
deev equations we obtained the masses of the octet baryons. Note 
that the nucleon and cascade masses in vacuum (MN and M�) 
were used as input to constrain Ga and Ms [18,19].

The free parameters of our model are the infra-red cut-off and 
the light constituent quark mass, which we take to be �I R =
240 MeV and M� = 400 MeV respectively. The infra-red cut-off 
is of the order of �Q C D , because it crudely simulates quark con-
finement [32,33,7]. For the other parameters we fit them in the 
following way: �U V and Gπ are fit to reproduce the experimental 
values of the pion’s decay constant and its mass, while GS is cho-
sen to obtain the experimental axial charge g A of the nucleon. The 
computation of g A is done following the formalism of Refs. [18,19].

The values of the baryon octet masses obtained are summarised 
in Table 4. Following the work of Bentz and Thomas [7], to ac-
count for the lack of agreement between the static approximation 
and the exact result of the Faddeev equations in nuclear matter, 
the exchange quark propagator is replaced by the following inter-
polating function
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Table 4
Mass parametrisations for the spin-1/2 baryon octet obtained by quadratic fits to NJL model nuclear matter calculation. Tabulated quantities are the c parameter used in the 
static approximation, free baryon masses, the σ–N coupling, scalar polarisability, and weights.

c
[GeV]

Gω

[GeV−2]
MN

[GeV]
M�

[GeV]
M�

[GeV]
M�

[GeV]
gNJL
σ N d

[GeV−1]
ω� ω� ω� ω̃� ω̃� ω̃�

1.141 6.279 0.94 1.23222 1.32 1.118 12.9852 1.39786 0.528979 0.38203 0.769547 0.571791 0.415508 0.752602
Fig. 3. (Colour online.) Baryon octet masses vs scalar field. The data from the solu-
tion of the Faddeev equation is shown as a continuous line and the fit from Eq. (1).

1

M∗
�

→ 1

M�

M� + c

M∗
� + c

, (13)

where M∗
� is the value of the constituent quark mass for a baryon 

in nuclear matter and M� is its value inside a free baryon. c is 
set to 1.141 GeV and with the ωN coupling, Gω , set as in Ta-
ble 4, we reproduce the saturation properties of symmetric nuclear 
matter in the NJL model. We check that a variation of c from 
0.5 GeV to 2.5 GeV makes no significant change in the results 
quoted here.

In the NJL model, the scalar field is related to the scalar poten-
tial � = M∗

� − M� by

σ̄ = �√
Zπ (0)

, (14)

where Zπ (0) is defined, in analogy to Eqs. (10) and (11), as the 
residue at the pole in the pion t-matrix, see Table 1. Changes in 
the scalar field are linked to variations of the constituent quark 
masses (inside the baryons and diquarks) in nuclear matter. Con-
sequently, the Faddeev equations were solved as a function of the 
in-medium constituent quark masses. The baryon masses were 
then parametrised as functions of mean scalar field, σ̄ , using 
Eqs. (1) and (14). These parametrisations are given in Table 4. In 
Fig. 3 we show the calculated baryon masses as a function of the 
mean scalar field, together with the fits obtained assuming the 
form given by Eq. (1). The range of field strength has been cho-
sen to correspond to the range of densities explored in Fig. 4. It 
is self-evident that the fits are in very good agreement with the 
calculated solution of the Faddeev equations.

At a later stage of development one could include heavier 
mesons which would couple to the strange quark. Those mesons 
would have masses in excess of a GeV and correspond to very 
short-range interactions. Furthermore the Zweig rule tells us that 
the coupling of ss̄ mesons to non-strange quarks is highly sup-
pressed. Experience with the QMC model, in which the MIT bag 
Fig. 4. Pressure as a function of density in (a) SNM and (b) PNM. The constraints 
come from heavy-ion collision experiments deduced in Ref. [43].

model was used instead of the NJL model, has shown that one 
can describe the properties of hypernuclei very well with just the 
sigma, omega and rho mean fields. Our aim in this initial ex-
ploration is to see how well the same assumptions work in this 
case.

4. Nuclear matter

We now present the numerical results for the properties of nu-
clear matter obtained using the self-consistent solution of the NJL 
model described earlier. To be definite, what we actually use from 
the mass parametrisations is the value of the scalar polarisabil-
ity, d, and the weights, ωB and ω̃B . The vacuum contribution that 
would normally be included in a quark matter calculation of the 
EoS [12,14] is omitted for hadronic matter.

Table 5 contains coupling constants, nuclear matter properties 
(incompressibility K0 and slope of the symmetry energy L0 at sat-
uration) and hyperon optical potentials. The pressure as a function 
of density for SNM and PNM are shown in Fig. 4 in compari-
son with constraints from heavy-ion collisions. We find a slightly 
softer EoS when using the NJL mass parametrisations, than what 



D.L. Whittenbury et al. / Physics Letters B 762 (2016) 467–472 471
Table 5
Couplings, nuclear matter properties, and hyperon optical potentials determined for our standard case (for which � = 0.9 GeV) 
and variations thereof. The symmetric nuclear matter quantities evaluated at saturation, K0 and L0, are the incompressibility 
and slope of the symmetry energy, respectively. The hyperon optical potentials are evaluated as in Refs. [12,13].

Model/
Scenario

gσ N gωN gρ K0

[MeV]
L0

[MeV]
U�

[MeV]
U�−
[MeV]

U�−
[MeV]

Hartree 9.65 6.8 8.54 261 87 −55 −17 −26
Standard 8.29 8.36 4.92 263 81 −5 27 −5
� = 1.3 8.55 9.48 5.24 278 84 16 49 5
Dirac Only 9.41 7.95 7.66 277 82 −33 5 −19
Fσ (�k) = 1 8.86 8.11 4.24 259 75 −22 14 −14
we found using the bag model parametrisations in Refs. [12,13]. 
This is clearly illustrated, for example, by the value of the incom-
pressibility at saturation and in the behaviour of the pressure as a 
function of density, shown in Fig. 4.

The incompressibility and hyperon optical potentials show only 
a minor dependence on the c parameter, which was introduced 
to handle the quark exchange in a simplified manner. The incom-
pressibility reduces by just 8–18 MeV when c is increased from 
0.5 to 2.5 GeV. The �− optical potential is the most sensitive of 
the optical potentials to a variation of c, exhibiting a reduction of 
11–16 MeV, over the same range.

As the hyperon optical potentials are determined within the 
model without readjustment to empirically determined values, we 
find it encouraging to discover a reasonable level of agreement 
between several model variations and the empirically determined 
values. Of particular interest is the scenario which deviates from 
our standard scenario by the use of a hard scalar form factor. 
The motivation for taking the hard form factor only for the sigma 
meson is that its coupling already includes a density dependence 
obtained through our model of hadron structure, which naturally 
acts to reduce the scalar Fock term at high density.

5. Summary

We have self-consistently solved for the structure of the octet 
baryons imbedded in nuclear matter, using the NJL model as the 
underlying model of hadron structure. Using those solutions we 
have presented numerical results for Symmetric Nuclear Matter 
(SNM), Pure Neutron Matter (PNM) and the hyperon optical poten-
tials. Overall the results are very reasonable, with the properties 
of both SNM and PNM in good agreement with heavy ion con-
straints over the entire range up to five times nuclear matter den-
sity. For most of the scenarios explored the � and � are bound 
by reasonable amounts, while the � is unbound, as suggested by 
phenomenological studies.

With a view to future applications to neutron star structure, we 
observe that the EoS is softer than what we obtained with the bag 
model parametrisations in our earlier work. This may well lead to 
a somewhat lower maximum mass, unless there is a transition to 
quark matter. In the near future we will explore the consequences 
of this model for neutron star properties, with and without such 
a transition. In terms of theoretical improvements it would clearly 
be valuable to move beyond the static approximation, making an 
exact solution with the full exchanged-quark propagator.
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