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Abstract

The mathematical modelling of disease dynamics is now well-established, which

allows us to better understand the processes affecting diseases in communities.

Most of this work has focused on epidemic dynamics, in which we see a large out-

break of a disease but also its extinction within a short time-frame. Of interest

in this thesis will be furthering the study of endemic diseases, which persist in

populations over much longer time scales. This increased time scale means that

it is important to account for demography, and in particular the replenishment of

susceptible individuals through births and possibly waning immunity. Another

feature that has been shown to be important for modelling disease dynamics

is heterogeneity in the population, and in particular household structure. This

is likely to be important for endemic diseases because of the close relationship

between demography and household composition as these types of diseases per-

sist in communities for periods long enough that assuming a static population

structure is not realistic.

Hence we model both the disease and population dynamics as a continuous-

time Markov chain, where the population of individuals is split into adults and

children. These adults and children are assigned a household type, and within

each household the number of adults is at most two, and the number of chil-

dren is at most four. These households change through time as a consequence

of demographic events such as births, deaths, children moving out of home, cou-

ples forming, separating, and migration. This demographic model is overlaid

xiii
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with SEIR disease dynamics, where the rate of disease transmission is strongest

within households, as opposed to between. We also develop a seasonally-forced

model. The so-called Gillespie algorithm is used to simulate realisations of this

process but simulation can be computationally expensive. Hence we also derive

a deterministic approximation, valid in the limit of a large number of households.

We use this deterministic approximation extensively to analyse the models dy-

namics.

For measles-like disease parameters, the period of the non-seasonally forced

model is approximately two years, which agrees closely to the established bi-

ennial periodicity. In the model with seasonal forcing, the periodicity is more

complicated, with annual periodicity in the deterministic approximation, and

approximately 2-3 year periods for individual stochastic realisations.

The household model without seasonal forcing is used to investigate the case

of a flu-like disease suddenly becoming fatal in children, adults, and both. We

found that when the population has only a small proportion of susceptible indi-

viduals there is a higher chance of the disease being persistent when compared

to the population with larger proportions of susceptible individuals. Significant

change in household proportions are recorded initially during the first outbreak

of the disease when the mortality rate increases during the infectious period of

individuals.

In both the models with and without seasonal forcing, a measles-like disease fades

out with higher probability in the household models compared to the homoge-

neous models. In each of the household models, within the first five years, we see

periods of approximately 2-3 years where the proportion of realisations that fade

out stay essentially constant for populations of greater than 225 thousand house-

holds in the seasonally-forced model, and above 250 thousand in the non-forced

model. During these periods, the proportion of realisations that have not faded

out is above 0.5, which is suggestive of a critical community size between 375-500
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thousand individuals in both household models. However, the household model

shows greater variability than the homogeneous models as a larger proportion of

realisations fadeout over the course of 15 years.

The household models presented in this thesis allow a great deal of flexibility

in parameterisation which means that many problems can be studied. However,

as a consequence of the flexibility, the model’s dynamics are evaluated at large

computational expense, meaning approximations are necessary.
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