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Abstract

Breast cancer is considered to be one of the major contemporary problems affecting the lives

of thousands of women worldwide. One of the most effective tools in the fight against this

disease is early detection based on the manual analysis of X-ray mammograms. This manual

process of interpretation of mammograms involves the detection of breast lesions (e.g., masses),

the segmentation of lesions boundaries and the classification of lesions based on their shape,

appearance and texture features. This manual analysis of breast lesions from mammograms

presents large interpretation variability amongst radiologists. This variability can be reduced

with the aid of computer aided diagnosis (CAD) systems that can act as a second reader in the

analysis of breast lesions. However, for a CAD system to be useful in a clinical setting, it must

effectively classify lesions as benign or malignant.

Detection, segmentation and classification of breast lesions are the main three steps involved

in fully automated CAD systems that can work in the analysis of mammograms. Building a

CAD system is difficult because mammograms are marred by low signal to noise ratio for the

visualisation of breast lesions. In addition, breast lesions present a large variation in terms

of shape, size and appearance. A large number of methods have been applied for building

automated CAD systems for both types of lesions, namely mass and micro-calcification, but in

this work we focus only on the analysis of masses. The major drawback of current approaches

is that they generate a large number of false positives and miss a fair amount of true positive

regions during the mass detection stage. Furthermore, mass segmentation is generally based

on active contour models and graph-based approaches that rarely capture the large shape and

appearance variations of breast masses. Finally, mass classification is generally implemented

using sub-optimal hand-crafted features and machine learning classifiers such as support vector

machines (SVM), linear discriminant analysis (LDA), artificial neural net (ANN), etc. One

major limitation of the majority of existing CAD systems is that most of them require manual

intervention to obtain mass candidates for segmentation and classification.

This thesis presents a new approach based on recently developed deep learning models to de-

velop a fully automated CAD system for automated detection, segmentation and classification

of masses from mammograms. Our proposed solution to the mass detection problem consists

of three stages: 1) mass candidate generation using multi-scale deep learning and Gaussian

mixture models, 2) false positive reduction with a cascade of deep learning and random forests

classifiers, 3) candidate refinement with a local search algorithm based on Bayesian optimi-

sation. Our proposed mas segmentation methods are based on two kinds of structured output

learning methods, namely: 1) structured support vector machine for parameter estimation and
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graph cut for inferring the segmentation labels, and 2) truncated fitting for parameter learning

and tree re-weighted belief propagation for inference. The resulting segmentation is then re-

fined using an active contour model. Our proposed mass classification deep learning method

is modelled with a two-step training procedure, where the first step is based on a pre-training

stage that estimates a large set of hand-crafted features, which is followed by a fine-tuning step

that learns a classifier (that classifies masses into benign and malignant). Finally, we integrate

our mass detection, mass segmentation and mass classification methods into a fully automated

CAD system for the analysis of masses in mammograms. We validate our methodology on two

publicly available datasets (INbreast and DDSM-BCRP) using different performance measures

such as average Dice index for segmentation, free receiver operating curve (FROC) and aver-

age precision curve for detection, receiver operating curve (ROC), area under curve (AUC) and

accuracy for classification. The experiments show that our methodology for detection, segmen-

tation and classification of breast masses achieves competitive results with respect to the current

state-of-the-art techniques in terms of all performance measures mentioned above.
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Chapter 1

Introduction

Breast cancer is regarded to be one of the major health issues worldwide. Nowadays, breast

cancer accounts for 23% of all diagnosed cancers and 14% of cancer related deaths [1]. Over

the past decade, the adoption of breast screening techniques based on X-ray mammography

has contributed to the early detection of the disease, which has helped in the reduction of the

mortality rate [2, 3] because women can receive proper treatment in the early stages of the

disease.

Breast screening using X-ray mammograms is performed by taking images of the same breast

from two different viewpoints, namely: mediolateral oblique (MLO) view and craniocaudal

(CC) view, as shown in the Fig. 1.1. These images are then used for the detection and segmen-

tation of breast lesions, such as masses and calcifications, in order to help radiologists assess

the risk of breast cancer, where particular shape and appearance features of such lesions repre-

sent markers that the lesions are either malignant or benign. Masses are usually grey to white

in pixel intensity, and geometrically they can have the oval, irregular or lobulated shapes with

spiculated, circumscribed, obscured or ill defined margin [4, 5], whereas micro-calcifications

are smaller rounded bright regions in the breast [4, 5] as shown in Fig. 1.2. In general, a breast

mass is considered to be malignant if its shape is irregular or spiculated, and the classification

of micro-calcifications are based on their size, shape, number and distribution [4, 5]. Although

both types of lesions are important, in this thesis we focus only on the analysis of breast masses.

Detection, segmentation and classification of masses in mammograms is mostly done manually

(see Fig. 1.3), which is a time consuming and subjective task that depends on the radiologist’s

expertise and fatigue level [4]. For instance, the sensitivity of the manual mass detection and

classification fluctuates between 80% and 90% with specificity around 91% [6]. One way of

increasing such specificity and sensitivity is with the double reading of mammograms, which

has been found to increase sensitivity by 9% and to decrease the number of women recalled for

further exams by 45% [7].
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Chapter 1. Introduction

INbreast dataset DDSM dataset

Figure 1.1: Some examples of mammogram images.

Figure 1.2: Types of lesions in mammograms from the INbreast dataset, where we denote masses using
red contours and calcifications using green contours.

Given the benefits of double reading in mammograms, a natural question that arises is if a CAD

system can work as a second reader [8]. Evidently, a CAD system to be used as a second reader

has to perform effectively in terms of having high sensitivity and specificity [8]. It has already

been demonstrated by several studies [9–11] that radiologist’s sensitivity in the detection and

classification of masses improved by almost 10% with specificity at the same level with the use

of a CAD system as second reader. A CAD system can be semi-automatic, requiring intervention

by an expert at some stage, or fully-automatic, which requires no expert assistance. Similarly

to the manual analysis of masses described above, a CAD system for the automated analysis

of masses works in general in three steps: detection, segmentation and classification of masses.

These three steps are challenging because of the variability of shape, size, appearance and lo-

cation of masses in mammograms, low signal to noise ratio of the visual appearance of masses

and lack of publicly available, precisely annotated datasets with full field digital mammograms

(FFDM), which is currently the main imaging modality used in breast screening programs.

Over the years, a number of works have been proposed for the automated detection, segmen-

tation and classification of masses from mammograms. Generally, mass detection from mam-

mograms is carried out by detecting mass candidate regions, which is followed by false positive

2



Chapter 1. Introduction

Figure 1.3: Mass detection, segmentation and classification.

reduction with different types of machine learning classifiers [4, 12]. Mass candidate detection is

usually performed with techniques such as thresholding [13–17], edge detection using different

types of filters [18–24], deformable models based on active contour models [25–30] and sta-

tistical methods such as region growing [31–33], region clustering using k-means [34–36], and

Markov random field (MRF) [37–39]. In general, the mass candidate detection stage produces a

high rate of false positives per image and requires another stage of false positive reduction with

the extraction and classification of hand-crafted features [17, 40–46]. The main disadvantage of

these systems is that they tend to produce high false positive rates [46] mostly because the mass

candidate detection and hand-crafted features are sub-optimally designed to represent a human

expert knowledge about the appearance and geometry of masses.

Mass classification into benign/malignant is a two-stage process where the first stage is the seg-

mentation of mass and second stage is the mass classification. Segmentation is usually done

in order to extract the geometrical features from the segmented mass contour. Traditional ac-

tive contour [30, 42, 47–50] and graph based methods [51–55] are the two most successful

algorithms for the mass segmentation. The main problem with these mass segmentation ap-

proaches is that they rely on manually defined shape and appearance terms and generally use a

sub-optimal cross validation method to learn the parameters of the segmentation model. Mass

classification is usually carried out with the extraction of hand-crafted features that are used by

machine learning classifiers, such as linear discriminant analysis (LDA),artificial neural network

(ANN), support vector machines (SVM), and etc [17, 40–45, 47, 56–58]. The major drawbacks

of these mass classification methods is the sub-optimality in the design of features (similar to the

problem of mass candidate detection) and these systems are generally semi-automated requiring

the manual selection of mass candidates [48, 50, 59].
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Chapter 1. Introduction

Deep learning models with its hierarchical feature representation have produced better classifica-

tion accuracy compared to other machine learning techniques that use hand-crafted features [60–

64]. Deep learning models are trained, such that the features automatically learned at each level

of the model hierarchy are optimised in order to minimise a loss function based on detection,

segmentation or classification results. This means that deep learning models can have features

that are optimal for detection, segmentation or classification tasks, which is a tremendous im-

provement compared to the aforementioned hand-crafted features that are designed without min-

imising any loss function. However, training deep learning models is difficult because of their

high capacity and the fact that in medical image analysis problems (e.g. breast mass analysis

from mammograms), it is hard to find annotated datasets containing large amounts of training

samples that would allow for a robust training. In spite of that, deep learning models have been

explored for solving various medical image analysis problems, such as mitosis detection [65],

lymph node detection, [66] and high-level classification of multi-modal input [67]. Thus, a nat-

ural question that arises is if deep learning models can perform better than the state-of-the-art

methods in CAD systems that analyse mammograms. This question has been our main drive

to test deep learning as the underlying framework for solving the problem of mass detection,

segmentation and classification in mammograms.

1.1 Motivation

This thesis proposes a combination of several machine learning techniques and deep learning

models [60, 61, 68, 69] for the detection, segmentation and classification of breast masses from

mammograms. The primary motivation for using deep learning as our main underlying frame-

work lies in its capability of learning a rich hierarchy of features by minimising a loss function

that directly optimises the detection, segmentation and classification tasks. This is a great ad-

vantage over the use of hand-crafted features, which as explained above, is sub-optimal for the

sought detection, segmentation and classification tasks. The motivation for combining other

machine learning techniques with deep learning models lies in the need to regularise the train-

ing process given the large capacity of deep learning models, which can overfit the training set,

particularly when this set does not contain large amounts of annotated samples. The fact that

fully automated systems for mass detection, segmentation and classification in mammograms

are rarely reported in the literature is another motivating factor for developing such system in

this thesis.

Our mass detection methodology consists of several cascades of deep learning [60, 61, 68, 69]

and random forest (RF) [70] classifiers, which is followed by a detection refinement process

using a local search algorithm based on Bayesian optimisation [64]. The motivation of using

the cascades of deep learning and random forests is the fact that the ability of deep learning

4



Chapter 1. Introduction

method to reduce the false positive saturates after a certain number of cascade levels, so we

extract hand-crafted features from the remaining candidates and input them to a cascade of RF

classifiers that reduces the false positive rate per image. A recent study by Fernandez et al. [71]

that shows that the performance of RF classifiers with hand-crafted features is better than other

machine learning classifiers motivated us to use them for this final false positive reduction stage.

In addition to this, we perform the detection refinement using a local search based on Bayesian

optimisation [64], which has recently produced state-of-the art results in object localisation in

computer vision.

We also propose a mass segmentation algorithm using a combination of several deep learning

methods [60, 61, 68, 69] that form the unary potential functions in two different probabilistic

graphical models [72–75] that solve a structured output learning problem. The primary moti-

vation of combining probabilistic graphical models with deep learning models is that they have

produced the current state-of-the-art results in semantic segmentation [62–64] and our method

aims to produce similar results for the mass segmentation problem. The final segmentation is

refined using an active contour model [76] as it helps to improve the segmentation accuracy.

Finally, we use a two-stage transfer learning approach for training our proposed mass clas-

sification system based on a deep learning model [60, 61], which uses the mass detection and

segmentation results as its input. The first stage consists of pre-training the deep learning model,

which is trained to regress the hand-crafted features and the second stage comprises a fine-tuning

of the pre-trained model by minimising the classification loss. The extensive use of hand-crafted

features in mass classification [36, 42, 44, 47, 48, 50, 52, 53] motivated us to pre-train our deep

learning models with such features. Finally, we integrate our proposed mass detection, segmen-

tation and classification methods to build the fully automated CAD system. We call our system

“fully automated” because our proposed methodologies for mass segmentation and classifica-

tion do not require any manual intervention during inference. However, it is important to note

that in a real clinical setting, some manual intervention would be necessary to prune out the false

positive detections. Furthermore, it is important to acknowledge that during the training stage,

there is an amount of effort required to setup, tune and validate the model.

We test our methodologies on two datasets: INbreast [77] and DDSM-BCRP [78]. The mo-

tivation for using these two datasets is that they are available publicly and our results can be

used as baseline by other researchers. The INbreast [77] dataset consists of 115 cases contain-

ing 410 images with all types of lesions including malignant, benign and normal, whereas the

DDSM-BCRP [78] dataset contains 79 cases for training and 80 cases for testing containing

only malignant lesions. The INbreast [77] dataset has accurately annotated full-field digital

mammograms (FFDM), whereas DDSM-BCRP [78] contains digitised mammogram films with

rough annotations [79].

5



Chapter 1. Introduction

1.2 Contributions of This Thesis

The main contributions of this thesis are as follows:

1. We develop two new methodologies for the segmentation of masses based on two types of

structured output prediction models, which differ in the way they are trained and tested.

One of the models uses truncated fitting [72] whereas the other uses the structured support

vector machine (SSVM) [74, 75] for learning the parameters. Inference in one of the

models is done with the tree re-weighted belief propagation (TRW) algorithm [72, 73]

and the other model uses graph cuts [75, 80]. These two structured output prediction

models use shape models from the following deep learning models: deep convolutional

neural network (CNN) [60, 61] and deep belief network (DBN) [68, 69]. Both models

produce state-of-the-art results in INbreast and DDSM-BCRP datasets. We explain our

segmentation methodologies in Chapters 4, 5 and 6,

2. We present a novel machine learning approach for the detection of masses in mammo-

gram, which combines cascades of CNN and RF classifiers. Our proposed mass detection

method produces competitive results compared to the state-of-the-art work in mass detec-

tion [46]. Our methodology for mass detection is explained in Chapter 7,

3. We introduce a new classification methodology based on a two-step transfer learning ap-

proach using deep convolutional neural network (CNN) [60, 61], where the first step re-

gresses the value of hand-crafted features, followed by a second step consisting of fine

tuning based on breast mass classification [81]. Our proposed two-step transfer learning

approach for mass classification produces better results compared to the state-of-the-art

methods that use hand-crafted features [81] in automated and manual settings . We explain

our classification methodology in Chapter 8,

4. Finally, we present a fully automated system for the detection, segmentation and classi-

fication of masses from mammograms. We add a refinement step to our mass detection

methodology [46] using a local search based on Bayesian optimisation [64], which in-

creases the precision of mass detection process. We also propose a segmentation refine-

ment using an active contour model that increases the segmentation accuracy. The detail

of our fully automated system for detection, segmentation and classification is explained

in Chapter 9.
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Chapter 1. Introduction

1.3 Thesis Outline

In Chapter 2, we review mass detection, segmentation and classification algorithms. Our pro-

posed methodologies for the detection, segmentation and classification of masses from mam-

mograms are explained in Chapter 3. We show the applications of our methodologies in Chap-

ters 4, 5, 6, 7, 8 and 9 for the problem of mass detection, segmentation and classification in

mammograms. We start with the problem of mass segmentation in Chapters 4, 5 and 6 using two

structured output prediction models. In Chapter 7, we explain our mass detection methodology

using cascades of CNN and RF. In Chapter 8, we introduce a mass classification methodology

based on a two-stage transfer learning [60, 61]. In Chapter 9, we propose a fully automated

system for mass detection, segmentation and classification, where mass detection is refined us-

ing a local search algorithm based on Bayesian optimisation and mass segmentation is refined

using an active contour model. Finally, we conclude the thesis summarising our contributions

and possible future work for mammogram analysis in Chapter. 10.
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Chapter 2

Literature Review

A fully automated CAD system for the analysis of breast masses from mammograms involves

three crucial steps: detection, segmentation and classification, which can be schematically rep-

resented in Fig. 2.1 [82]. In this chapter, we review the main techniques that are used for the

detection, segmentation and classification of masses from mammograms. We start with mam-

mogram pre-processing techniques in Sec. 2.1 followed by breast mass detection in Sec. 2.2,

segmentation in Sec. 2.3, classification in Sec. 2.4 along with some commercially available CAD

systems for analysis of mammograms in Sec. 2.5 so as to motivate our proposed methodology.

2.1 Mammogram Pre-processing

The goal of the pre-processing stage is to enhance the signal to noise ratio between masses and

normal breast tissue structures in mammograms using image processing techniques, such as

multi-scale wavelet transform, histogram equalisation and contrast limited adaptive histogram

equalisation (CLAHE) [4, 12, 83, 84]. The pre-processing using wavelet transform is done

by first transforming the mammogram in to the wavelet space by choosing a specific type of

mother wavelet, where the resulting wavelet coefficients from the transformation are modified to

enhance the mass features [4, 12]. Finally, the pre-processed mammogram using wavelet based

methods is obtained by performing the inverse wavelet transformation [4, 12]. Similarly, we

describe the other two widely used pre-processing techniques based on histogram equalisation

for the analysis of mammogram [83, 85] in upcoming paragraphs.

Histogram equalisation [83] is a method for adjusting image intensities in order to enhance the

contrast of an image. The objective of the histogram equalisation is to transform the image his-

togram to more uniform. Let us assume that we are given a grey value mammogram represented

by x : Ω → R, with Ω ∈ R2 denoting the image coordinate space. Let x(q) denote the grey
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Figure 2.1: Main steps of a CAD system that analyses breast masses from mammograms.

level value of the pixel, quantised to be in the setM = {0, 1, ..., L}, at the image grid location

q ∈ R2. Let ni be the number of pixels at level i ∈ M, such that the total number of pixels is

N =
∑L

i=0 ni. The histogram equalised image xhist at grid location q can be represented as:

xhist(q) = T (x(q); θhist), (2.1)

where T (.) is the transformation mapping, θhist is the size of the bins for histogram and this

transformation function is a monotonically increasing function in the interval 0 ≤ i ≤ L − 1

such that 0 ≤ T (.) ≤ L − 1. The transformation function T (x(q); θhist) is defined in terms of

cumulative distribution function (CDF) as:

xhist(q) = b(L− 1)

x(q)∑

i=0

pi(x)c, (2.2)

where pi = ni/N is the probability of occurrence of intensity level i in image x, and b(.)c
rounds the value down to the nearest integer.

The transformation function which defines the histogram equalisation is based on intensity dis-

tribution of the entire image and is suitable for the global enhancement of the image. The local

regions in the images may not be enhanced meaningfully by such histogram equalisation as

these regions may have negligible impact on the computation of a global transformation func-

tion. Adaptive histogram equalisation [84] alleviates this problem by applying the operation in

the neighbourhood regions surrounding the pixel in the image grid instead of using the whole

image. Because adaptive histogram equalisation works over a local region, the contrast of the

local region is enhanced, but this can also amplify the noise in that local region. Contrast limited
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adaptive histogram enhancement (CLAHE) [85] improves over the adaptive histogram equalisa-

tion by clipping the histogram at a certain threshold depending upon the size of the local region

and normalisation. Variations of CLAHE have also been used for the detection of masses in

dense breast [86] and as a preprocessing step for mass segmentation [30]. We also use CLAHE

as a pre-processing step for our mass detection, segmentation and classification methodologies

that we describe in Chapters 4, 5, 6, 7, 8.

2.2 Breast Mass Detection

2.2.1 Problem Definition

A breast mass is defined by a lump within the breast tissue, which may be benign (e.g. fibroade-

noma, fibrocystic disease, breast abscess, and fat necrosis) or malignant (cancer). Breast masses

are usually characterised by their geometrical location, shape and margin characteristics, and

have brighter intensity compared to the surrounding breast tissue. The automated detection of

masses in mammogram is challenging because of the large variation in terms of their geomet-

rical structure (e.g. location, shape and margin characteristics) and low signal to noise ratio

in relation to the surrounding breast tissues. Breast mass detection is the first stage (after pre-

processing) of a CAD system for classifying suspicious breast masses; as a result, the accuracy

of the CAD system depends upon a high sensitivity and specificity this detection step. However,

current methodologies for mass detection still have high false positive rate per image. We be-

lieve that the main reason for that high false positive rate per image is that these methodologies

use hand-crafted features that have not been optimally designed for breast mass detection. In

addition to this, the ensuing segmentation stage usually requires the breast mass to be precisely

detected in terms of position and scale. Below, we review different approaches for the detec-

tion of the breast masses in mammograms, describe their advantages and disadvantages, and

motivate our methodology for mass detection that is described in Chapters 3 and 7.

2.2.2 Background

There are two main strategies for detecting masses in mammograms, namely: 1) mass detection

using a single view image and 2) mass detection using multiple view images (CC and MLO) [4,

11, 82]. Both strategies work in two stages: the first stage consists of the detection of a high

number of the mass candidates and the second stage comprises of the removal of false positives.

Mass detection using multiple views is different based on the fact that this multi-view approach

fuses information from both views to remove the false positives detected during the first stage [4,

11, 82]. Below, we start with the explanation of mass candidate detection techniques that are
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used in both the single and multiple view systems and then proceed to explain various techniques

for false positive reduction.

The first stage of mass candidate detection is carried out with standard techniques, such as

thresholding [13–17], gradient-based image segmentation [18–24], deformable models based

on active contours [25–30], statistical methods such as region growing [31–33], region cluster-

ing with k-means [34–36], and Markov random field (MRF) [37–39]. Mass candidate detection

based on thresholding, can rely on global [13–15] or local methods [16, 17]. The major draw-

back of thresholding methods is that they are not able to capture all the variations of intensity,

texture and structure of masses in mammograms [4]. Gradient based methods such as Lapla-

cian of Gaussian (LoG) [87, 88] and difference of Gaussian (DoG) [87, 88] are used for finding

image regions in mammograms [18–23, 89]. The main issue with such methods is that the ma-

jority of regions found consists of regions that are visually salient in the sense that they are

either brighter or darker than their neighbours. This is a necessary, but not a sufficient condition

for a breast mass. Consequently, gradient-based methods are often followed by rounds of false

positive reduction using machine learning classifiers.

Mass candidate detection using techniques, such as region growing [31–33], region clustering

with k-means, [34–36] and Markov random field (MRF) [37, 38] use the statistical properties

of the pixels and their neighbours in the image grid [31–33, 37, 38]. Region growing iteratively

aggregates the pixels that have similar appearance characteristics [31–33] starting from a set of

seed points in an image. Therefore, region growing requires a good selection of these seeds

points, which is generally a hard task. The k-means clustering separates one or more regions

based on the mean and variance of the intensity values of the pixels [34–36]. This characterisa-

tion based only on local appearance is generally too limited to represent the true complexity of a

breast mass, and for this reason k-means clustering approaches tend to produce a large number

of false positive candidates. Markov random field (MRF) introduces a spatial prior based on the

idea that pixels that represents mass are likely to be clustered around a compact image region

that have similar appearance. The main problem with MRF models is their large running time

complexity, which makes the analysis of high-resolution images a hard task.

Deformable models, such as level set methods, and active contours are based on an energy

minimisation problem [25–30] that depends on internal forces such as shape and curvature, and

external forces such as image gradient for the mass candidate detection. The major problems

with deformable models are that they require good initialisation (i.e., the initial contour must

be close enough to the true mass candidates) and they also need an appropriate selection of a

good set of weights for the energy terms in order to produce accurate detection results [39].

Template matching techniques [90–92] aim to match a mass template with candidates using

simple matching criteria, such as least square distance or cross correlation. Template matching
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is also susceptible to high false positive rates and requires rounds of false positive reduction

using machine learning classifiers [12].

Mass candidate detection is usually followed by a false positive reduction using different types

of machine learning classifiers such as linear discriminant analysis (LDA), artificial neural net-

work (ANN) and support vector machines (SVM) [4, 35, 44, 48, 50, 59, 82, 93, 94]. Most of

the existing methodologies for false positive reduction using machine learning classifiers also

employ feature extraction and selection [4, 35, 44, 48, 50, 59, 82, 93, 94]. The features that are

used for this false positive reduction are usually hand-crafted and can be divided into morpho-

logical features, intensity features and texture features [4, 35, 44, 48, 50, 93]. Morphological

features are computed based on the segmentation contour and they usually represent the geo-

metrical properties of segmentation, such as margin spiculation and sharpness, area, circularity,

rectangularity, perimeter, perimeter to area ratio, and normalised area length (NRL) features,

such as boundary roughness, mean, entropy, standard deviation and area ratio zero crossing

count. Mean contrast feature is computed as the ratio of grey scale values inside and in the

vicinity of the segmented object. In addition to morphological and intensity features, global

and local texture features are computed based on spatial grey level dependence (SGLD) matrix.

SGLD matrix is defined as a distribution of occurrence of pixel intensity i with respect to a pixel

intensity j, which varies with inter-pixel separation and direction. The local and global texture

features that are based on SGLD matrix are energy, correlation, inertia, entropy, difference of

moment, inverse difference of moment, sum average, sum entropy, difference entropy, sum vari-

ance, difference variance, difference average, information measure of correlation. An important

point to note here is the fact that these features have been hand-crafted, which means that they

cannot operate optimally for this classification of breast mass candidates. Consequently, even

after this false positive reduction stage, it is likely that there are still false positives present in

the set of mass candidates.

Mass detection using the multiple mammographic views are common practice in clinical envi-

ronment. Radiologists often compare the asymmetry in terms of breast tissue by considering the

density, size and shape differences between the left and right breasts, between different views

of the same breast (CC and MLO), and also from mammograms of same patient over time.

Bilateral subtraction measures the difference from normal symmetry between the left and right

mammograms by subtracting the left and right mammograms at various intensity levels [95, 96] .

Although bilateral subtraction is simple and does not produce a large number of false positives, it

requires accurate registration between different mammograms (CC vs MLO, left vs right breast,

and over time), which is a difficult task [12]. The multi-view approach using the CC and MLO

images of the same patient usually starts by detecting the masses in each view independently and

then comparing pair of masses from two different views. The distance of the mass candidates in

the CC and MLO views from the nipple position in polar coordinate system is used as a measure

to register the true positive regions that can be used to filter out false positives [97, 98]. Velikova
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et al. [99] proposed a Bayesian framework that estimates the links between the lesions detected

in CC and MLO views. More recently, Amit et al. [100] proposed a frame work that combines

unsupervised thresholding to generate mass candidates in both CC and MLO views and then

estimate the correspondence between such candidates using hand-crafted features and a random

forest [70] classifier. Radiologists have used mammograms of the same breast over a period of

time to evaluate how suspicious lesions evolve within a specific timeframe. The detection of

suspicious lesions within the particular timeframe is performed by identifying potential control

points, such as junctions of curvilinear structures generated by the tissue, vessels and ducts, and

estimating the correspondence between these landmarks in temporal images [101–103].

Recently, deep learning methods, such as deep convolutional neural nets (CNN), have produced

state-of-the-art results in object detection [63, 64], and a natural question that arises in the con-

text of mammogram analysis is if such methods can be applied for detecting breast mass can-

didates. Deep learning models automatically learn a complex hierarchy of features, eliminating

the process of hand-crafting features. The main issue with the use of deep learning models in the

analysis of mammograms is the fact that these models have quite large capacities, which means

that they need large amounts of annotated training images in order to produce robust classi-

fiers. Unfortunately, such large annotated training sets are usually unavailable for the problem

of mammogram analysis, and one of the main challenges in medical image analysis is how to

adapt deep learning models in this adversarial scenario. In this thesis, we propose a combination

of several deep learning models using a cascade classifier [46, 104] for the problem of breast

mass detection [46]. For the final false positive reduction, we rely on hand-crafted features and

a random forest classifier [46, 70].

2.3 Breast Mass Segmentation

2.3.1 Problem Definition

Breast mass segmentation is the stage that commonly follows the mass detection step. The im-

portance of this stage lies in the need to produce geometric features that characterise the shape,

size, and boundary of a breast mass [11]. There exists numerous breast mass segmentation tech-

niques, but CAD systems that depend on accurate breast mass segmentation methods, are rarely

used in clinical practice because of the relatively low segmentation accuracy [105].

One of the reasons for this low segmentation accuracy is the reliance on traditional image pro-

cessing and segmentation models, such as active contour models, based on the energy terms

that do not characterise well the range of possible segmentation samples and the non-convex

cost functions which produce sub-optimal segmentation results [39]. Another related problem

with most of the existing breast mass segmentation methodologies is that they are generally
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semi-automatic, requiring radiologists to provide a region of interest (ROI). Moreover, most of

these models are tested with private datasets that do not allow competing methods to be fairly

compared [39, 106, 107]. In this section, we discuss the advantages and disadvantages of ex-

isting methods that are used for breast mass segmentation in order to motivate our proposed

segmentation methodologies described in Chapters 4, 5 and 6.

2.3.2 Background

The majority of methodologies developed for the problem of segmenting breast masses are based

on statistical thresholding, dynamic programming models, morphological operators, and active

contour models. A statistical thresholding method, proposed by Catarious et al. [108], distin-

guishes pixels inside the mass area from those outside with an iterative thresholding algorithm,

based on Fisher’s linear discriminant analysis (FLDA). Even though this algorithm is successful

to some extent, its major disadvantage is that it is prone to over-segmentation, which means that

it classifies false positive pixels as true positive pixels and it is not robust to imaging conditions

[30].

Song et al. [53] improved the model based on statistical thresholding [108] for breast mass seg-

mentation with the use of dynamic programming based on hand-crafted shape and appearance

models. The shape model is based on edge gradient, whereas appearance model is based on

image grey values and the segmentation is found by estimating the minimum cut of a graph

representing the image using dynamic programming. Similar graph-based methods have been

explored by Timp et al. [54], Dominguez et al. [52] and Yu et al. [55], but with the use of

various kinds of hand-crafted shape and appearance models. Compared to these methods, the

main advantage of our approach is that our model automatically learns the shape and appearance

features for this segmentation problem.

Morphological operators, such as the watershed method [109] and region growing [33, 110, 111]

have been used for the breast mass segmentation problem. Watershed segmentation works by

simulating the flooding process by considering the grey level images as topographic reliefs,

where each relief is flooded from its minima and a dam is built when the two lakes meet. The

set of all dams is regarded as watershed and in image segmentation, these dams represent the

closed contours of the segmentation. Although, methods based on watershed segmentation are

computationally very efficient, they suffer from over-segmentation, requiring post-processing

by other techniques such as active contours [4, 112]. Similarly, region growing is an iterative

method that assembles the pixels that have similar characteristics [33, 111, 113] given the set of

seed points in an image. However, region growing is limited in providing sufficiently accurate

segmentation because they only use semi-local grey level distributions without taking higher

level information (e.g., shape model) into account.
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Active contour models are one of the most explored methodologies for breast mass segmenta-

tion [42, 47–50], where the model proposed by Rahmati et al. [30] produces the state-of-the-art

breast mass segmentation results. Rahmati et al.’s model is a level set method based on the

maximum likelihood segmentation without edges that is particularly well suited to noisy images

with weak boundaries. The main disadvantage of this method is that it is based on the minimisa-

tion of non-convex energy function that requires a good initialisation for the inference process.

Moreover, the weights of the terms forming the energy function of the active contour models

are usually arbitrarily defined, or estimated via a cross-validation process that usually do not

produce an optimal estimation of these weights.

Deep learning models have produced state-of-the-art results in the field of semantic segmenta-

tion in computer vision [62, 114, 115]. Therefore, it is expected that such methods can replicate

such outstanding results for the problem of breast mass segmentation from mammograms. How-

ever, these deep learning models face the same problems as described above for the problem of

mass detection. In general, these approaches use a fully connected layer at the last layer of the

CNN, which means that this layer has the same number of nodes as the input size, and these

models can perform fast inference [62, 114, 115]. However, it has been observed that CNNs

with such fully connected layer are unable to capture the fine details of the segmentation con-

tour [114, 115]. Therefore, these CNNs are combined with other machine learning approaches,

such as conditional random field (CRF), to make fine adjustments to edge boundaries [114].

Similarly defined deep learning models have been used in medical image segmentation prob-

lems, such as pancreas segmentation [116] and left-ventrical segmentation [117]. We alleviate

the problem of having a limited number of annotated training samples by using a pre-trained

model [67], by artificially increasing a number of training data [39, 67, 116], or by combining

the deep learning model with other machine learning techniques [39, 117]. We describe our

automated mass segmentation methodologies in Chapters 4, 5, 6, and 9.

2.4 Breast Mass Classification

2.4.1 Problem Definition

The final stage of the analysis process consists of classifying the breast masses into malignant

or benign.

Breast mass classification systems presently depend upon hand-crafted features extracted from

breast mass candidate regions and segmentations that are used by traditional machine learning

classifiers in such classification [36, 42, 44, 47, 48, 50, 52, 53]. The main issue with these

approaches is the process of hand-crafting features, which is sub-optimal given that such features

are produced based on experts’ biases. The other issue with these classification techniques is
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that mass candidates are usually selected manually [36, 42, 47, 48, 50, 52, 53], which is not

acceptable if one aims to produce a fully automatic method. In the following section, we review

current methodologies in order to motivate our mass classification system.

2.4.2 Background

The majority of current classification methods still relies on the manual localisation of masses

as the automated mass detection is considered to be a challenging problem [44]. In addition,

this classification usually depends on hand-crafted features, extracted from the detected im-

age patches and their segmentation map, which are fed into the classifiers that try to classify

masses into benign or malignant [44, 45, 47]. Such hand-crafted features include morphological

features, intensity features and texture features (already discussed for breast mass detection in

Sec. 2.2). These features are then used in a classification process based on traditional machine

learning classifiers such as support vector machines (SVM), linear discriminant analysis (LDA)

or multi-layer perceptron (MLP) [36, 42, 44, 47, 48, 50, 52, 53]. These methods also depend

on feature extraction and selection processes, which are sub-optimal and can produce inaccurate

classification results. Mass classification problems also present the issue of having limited avail-

ability of datasets, but it is important to notice that the INbreast dataset [77], which is publicly

available, has been used to alleviate this issue [45].

Deep learning models have produced more accurate classification results compared to mod-

els based on hand-crafted features and traditional machine learning classifiers [61, 62]. One

of the reasons behind the superior performance of deep learning models lies in their ability

to automatically learn hierarchical features by minimising a classification loss function [67].

Our proposed methodology for breast mass classification uses deep convolutional neural net-

work (CNN), where we apply a two-stage training process with the first stage comprising a

pre-training step that regresses the values of hand-crafted features commonly used for breast

mass classification. Our pre-training stage not only acknowledges the importance of these hand-

crafted features, but also regularises the deep learning model training. The second stage is the

actual breast mass classification, where we fine tune the pre-trained model from above with the

minimisation of a classification loss. We explain our mass classification system in Chapters 3

and 8.

2.5 Mammogram Analysis Systems

According to Giger et al. [11], CAD systems can be broadly divided into two categories: com-

puter aided detection (CADe) and computer aided diagnosis (CADx). CADe systems are mainly

used for the detection of lesions and they help radiologists locate the suspicious regions in the
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breast area, whereas CADx systems focus on the classification (into malignant or benign) of sus-

picious lesions located by radiologists. CADx systems also assign a probability of malignancy

of suspicious regions, leaving the final decision for radiologists. The risk of developing breast

cancer is assigned in terms of Breast Imaging-Reporting and Data System (BI-RADS) [118],

which ranges from 0 to 6, where BI-RADS scores between 0 and 3 are generally considered to

be benign and BI-RADS scores between 4 and 6 are considered to be malignant.

The first reported CADe system was developed by Giger et al. [11, 82] for analysing mam-

mograms. This system scanned film mammograms that were analysed in order to output the

location of suspicious lesions (e.g., masses and micro-calcifications). In 1998, the first commer-

cial CADe system was approved by the Food and Drug Administration (FDA), and since then

several manufacturers such as R2 Technology, iCAD Medical Systems and Kodak have been

working on the development of commercial breast CAD systems.

The latest version of commercial CADe systems report a mass detection sensitivity of 90% at

a false positive rate of two candidates per case [119, 120], which means that current CADe

systems exhibit comparable sensitivity with respect to experienced radiologists. However, the

specificity of CADe system is far lower than that of experienced radiologists [82], and current

CADe systems fail to provide the quality and accurate marks (in terms of localisation) as pro-

vided by experienced radiologists in the detection of breast masses [120].

The earliest CADx system were based on an expert system [11, 121, 122] for retrieving sim-

ilar cases of a given lesion from a dataset containing malignant and benign cases. Giger et

al. [11, 82, 123] developed a CADx system that could output a probability estimate of whether

a suspected lesion, provided by a radiologist, was benign or malignant, and displayed the hand-

crafted features based on the geometrical description of the lesions. In addition to this, this

system could retrieve and display a specific number of similar cases for a given lesion. There

have been independent studies [124–127] that have shown the benefits of using CADx systems.

More specifically, these studies have shown that the performance of radiologists is significantly

improved with the use of CADx systems. CADx systems have also been shown to reduce the

variability of interpretation amongst radiologists. However, most of these CADx systems use

hand-crafted features, which is sub-optimal, as explained above. Another issue with these CADx

system is that they are not usually fully automated. In this thesis, we develop a fully automated

CAD system for the detection, segmentation and classification of masses from mammograms.

We address the issues mentioned above with the use of a cascade of deep learning and RF clas-

sifiers that improves the accuracy of mass detection results. We also address the problem of

manual mass candidate selection, present in current CADx systems, by refining mass detection

with a local search algorithm based on Bayesian optimisation. We also fix the problem of sub-

optimality present in the hand-crafted features with the use of automatically learned features

from deep learning models in detection and classification. Our fully automated CAD system
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detects 90% of masses at one false positive per image, has a segmentation accuracy of around

0.85 (Dice index), and classifies masses as malignant or benign with sensitivity (Se) of 0.98 and

specificity (Sp) of 0.7.

2.6 Conclusions

The methodologies described above have been successfully applied for the automated detection,

segmentation and classification of masses in mammogram. However, each methodology has

some advantages and disadvantages, as discussed above. In a nutshell, mass detection models

in mammogram produce high false positive rate per image [11] due to the low capacity of these

models that are not capable of modelling the shape, size and intensity variations of the masses

robustly. The main issue with the majority of mass segmentation methods is that they are based

on methodologies that use sub-optimal training and inference algorithms. Similarly, current

mass classification methodologies rely on hand-crafted features that are not optimised for breast

mass classification. Another issue with current mass classification methodologies is that they

usually depend on manually selected ROIs. In addition to this, most of the current detection,

segmentation and classification methodologies are tested in private datasets, which make the

comparison of such methodologies a difficult task.

Our proposed methodologies for mass detection, segmentation and classification addresses the

issues outlined above by combining various machine learning techniques with deep learning

models using publicly available mammogram datasets. This combination of deep learning with

other machine learning approaches produces comparable or more accurate results than current

state-of-the-art models for the detection, segmentation and classification of breast masses in

these datasets. We show the results of our segmentation methodologies which use a combination

of deep learning models and structured output prediction models in Chapters 4, 5 and 6. In

Chapter 7, we show the results of automated mass detection using a cascade of deep learning

and random forests classifiers. The results of our classification algorithm, which uses a transfer

learning approach with a deep learning model, is shown in Chapter 8. Finally, we show the

results of our proposed fully-automated CAD system in Chapter. 9.
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Chapter 3

Methodology

3.1 Overview of the method

We have devoted this chapter for the explanation of the techniques that we use for the automated

detection, segmentation and classification of masses in mammograms. Our methodologies are

based on the combination of several machine learning techniques. We propose a cascade of

deep learning [63] and random forest [70] classifiers for the detection of masses and Bayesian

optimisation [64, 128] for the refinement of the masses’ location and scale. For the problem of

breast mass segmentation, we propose two structured output learning models [72–74] that use

several deep learning shape models as their potential functions [60, 61]. This segmentation is

then refined using an active contour model [29, 76]. Our mass classification approach is based

on a transfer learning approach in which we pre-train our deep learning model [60, 61] using

hand-crafted features. We then fine-tune this pre-trained deep learning model for breast mass

classification. In the following sections, we describe these methods in detail.

3.2 Dataset Definiton

Let us represent the annotated dataset by D = {(x,A)i}|D|i=1, where x : Ω → R with Ω ∈ R2

represents a mammogram, and Ai = {(d,y, c)j}|Ai|
j=1 denotes the annotation of Ai masses for

mammogram i, where d(i)j = [x, y, w, h] ∈ R4 represents the left-top position (x, y) with

width w and height h of the bounding box of the jth mass of the ith mammogram. Similarly,

y(i)j : Ω → {0, 1} denotes the segmentation map of the mass within the mammogram defined

by the bounding box d(i)j , and c(i)j ∈ {0, 1} represents the class label of the mass that can be

either benign, i.e., BI-RADS ∈ {1, 2, 3} or malignant, i.e., BI-RADS ∈ {4, 5, 6}.

19



Chapter 3. Methodology

Figure 3.1: Breast profile segmentation using Otsu’s thresholding.

3.3 Image Enhancement

3.3.1 Otsu’s Thresholding

Otsu’s thresholding [129] uses the intensity of the image for separating the object from the

background. Assume that the mammogram x has quantised grey values ranging from 0 to L in

M = {0, 1, .., L}, and nk represents the number of pixels at level k ∈ M such that the total

number of pixels N =
∑L

k=0 nk. Let C1 = {1, 2, ...,m} and C2 = {m + 1,m + 2, ..., L}
represent the grey values of the foreground and background, respectively using a threshold m.

The probability distribution of pixels at a grey level k is pk = nk
N , where pk ≥ 0 and

∑L
k=1 pk =

1. The probability of occurrence of two classes (ω1, ω2) with threshold m is:

ω1(m) =
m∑

k=1

pk and ω2(m) =
L∑

m+1

pk. (3.1)

Similarly, we can define the class variance σ1 of foreground and class variance σ2 of background

as:

σ1(m) =
m∑

k=1

(k − µ1(m))2pk
ω1(m)

, σ2(m) =

L∑

k=m+1

(k − µ2(m))2pk
ω2(m)

, (3.2)

where µ1(m) =
∑m

k=1
kpk
ω1(m) denotes the mean of the foreground and µ2(m) =

∑L
k=m+1

kpk
ω2(m)

represents the mean of the background.
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Figure 3.2: Our methodology for mass detection with refinement.

We, now define the inter-class variance σA and intra-class variance σB in terms of class variance

of foreground and background:

σA(m) = ω1(m)σ1(m) + ω2(m)σ2(m),

σB(m) = ω1(m)(µ1(m)− µ)2 + ω2(m)(µ2(m)− µ)2

= ω1(m)ω2(m)(µ2(m)− µ1(m))2,

(3.3)

where µ =
∑L

k=1 kpk is the mean of the image x. The optimal threshold m∗ that clusters

the image pixel values into foreground and background is obtained by maximising the criterion

λ(m) [129] as:

m∗ = arg max
1≥m≥L

λ(m), (3.4)

where λ(m) = σB(m)/σA(m).

In this thesis, we use the Otsu’s thresholding for breast profile segmentation as shown in the

Fig. 3.1.

3.4 Mass Detection

Our mass detection system [46] consists of four modules: 1) mass candidate generation, 2) false

positives reduction with region based convolutional neural network (R-CNN) [63], 3) candidate

selection using random forest (RF) [70], and 4) detection refinement using Bayesian optimisa-

tion [64]. The first module combines multi-scale deep belief network (m-DBN) [46, 68, 69]

with Gaussian mixture model (GMM) [46, 130] to generate the mass candidate regions. These

regions form the input to the second module, which consists of a two-stage cascade of R-CNNs

for false positive rate reduction. The selection of the final mass candidates is performed using

a two stage cascade of RF classifiers. In the fourth module, we refine mass candidates location

and scale using a local search algorithm based on Bayesian optimisation [64]. In the following

sections, we describe each of these modules in detail.
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Figure 3.3: Mass candidate generation using m-DBN.

3.4.1 Mass Candidate Generation

The mass candidates generation using m-DBN [46, 68, 69, 106, 107], as shown in Fig. 3.3,

consists of producing a set of NMDBN bounding boxes {d̃n}NMDBN
n=1 , and coarse segmentation

masks {ỹn}NMDBN
n=1 for a mammogram x, represented by

{d̃n, ỹn}NMDBN
n=1 = fMDBN(x, θMDBN), (3.5)

where fMDBN is the mass candidate generation model defined by the parameters θMDBN. The m-

DBN model is a cascade of deep belief network (DBN) at several image resolutions, which uses

a grid search on a coarse resolution of image x (using the mask created by Otsu’s segmentation[129]

as described in Sec. 3.3.1), where each grid location is classified into positive or negative based

on a patch of fixed size S × S extracted around that grid location. The inference in the DBN

model is based on the maximisation of the conditional probability function that is represented

as:

PDBN(y(v)|xS(v), θDBN) ∝
∑

h1

...
∑

hQ

P (xS(v),y(v),h1, ...,hQ), (3.6)

where xS(v) denotes the patch extracted from image x, around the grid position v of size S×S
pixels and parameter θDBN (Please note that θMDBN represents the set of parameters of several

DBNs at various image scales, whereas θDBN represents the parameter of single DBN) with the

DBN model consisting of a network with Q layers denoted by (below, we drop the dependence

on θDBN for notation simplicity):

P (xS(v),y(v),h1, ...,hQ) = P (hQ,hQ−1,y(v))



Q−2∏

q=1

P (hq+1|hq)


P (h1|xS(v)),

(3.7)
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where hq ∈ R|q| represents the hidden variables at layer q containing |q| nodes. The first term

in Eq. 3.7 is defined by:

− log (P (hQ,hQ−1,y(v))) ∝ −b>QhQ− a>Q−1hQ−1− a>y y(v)−h>QWhQ−1−h>QWyy(v),

(3.8)

where a, b,W are the network parameters, and the conditional probabilities are factorized as

P (hq+1|hq) =
∏|q+1|
i=1 P (hq+1(i)|hq) because the nodes in layer q + 1 are independent from

each other given hq, which is a consequence of the DBN structure (P (h1|xS(v)) is similarly

defined). Furthermore, each node is activated by a sigmoid function σ(t) = 1
1+exp (−t) , which

means that P (hq+1(i)|hq) = σ(bq+1(i) + Wihq). The learning of the DBN parameters θDBN

in Eq. 3.6 is achieved with an iterative layer by layer training of auto-encoders using contrastive

divergence [68, 131]. The inference is run at every position of the grid (i.e., every discrete

position that falls within the breast mask of the respective image resolution) using the mean

field approximation of the values in all DBN layers, which is followed by the computation of

the free energy on the top layer [69]. All the points that are classified as positives on the first

stage of the m-DBN are passed to the next finer resolution stage to be classified in a similar

manner and this process is repeated for three coarse to fine stages, where the image resolution

increases steadily at each new stage. The training of this m-DBN model at each resolution uses

a training set of positive patches extracted from the grid locations that contain a pixel belonging

to a mass, and negative patches from the false positive detections of previous stages, where the

first coarse stage uses randomly sampled negative patches at grid locations that do not contain

annotated masses. All the points that are classified as positive in each stage are combined using

connected component analysis (CCA), where the similarity measure is based on the distance

between the detected pixels [46].

In addition to m-DBN, we use a GMM model [130] for the generation ofNGMM mass candidates,

represented by the bounding boxes {d̃n}NGMM
n=1 bounding boxes and coarse segmentation masks

{ỹn}NGMM
n=1 for mammogram x as follows

{d̃n, ỹn}NGMM
n=1 = fGMM(x, θGMM), (3.9)

where fGMM is the GMM model defined by the parameters θGMM. This GMM model works

on mammogram x as a pixel-wise classifier, followed by CCA. During inference, the GMM

model estimates the conditional probability PGMM(y(v) = 1|x(v), θGMM) that a pixel grey

value represents part of a breast mass:

PGMM(y(v) = 1|x(v), θGMM) =
1

Z

M∑

m=1

πmN (x(v);y(v) = 1, µm, σm)P (y(v) = 1), (3.10)

whereN (.) is the normal distribution with mean value µm, variance Σm and weight πm for each
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m = {1, 2, ..,M} mixture component, Z is the normaliser that requires the computation of the

conditional background probability PGMM(y(v) = 0|x(v), θGMM) and P (y(v) = 1) = 0.5.

The parameters of GMM are learned with the Expectation-Maximization (EM) algorithm [130]

from the annotated training samples. The EM algorithm [130] estimates the parameter θGMM =

[µm,Σm, πm] of the GMM model by maximising the log likelihood function using the training

data. The maximum likelihood estimation for GMM using EM algorithm is carried out in two

steps, namely expectation (E) step and maximization (M) step [130]. In E-step, the current

values of parameters are used to determine the posterior probability of each mixture model

which is subsequently used to estimate the new values of parameters in M-step. In particular,

the number of components M of GMM is set at two, where we use random sampling to initialise

the EM and run the algorithm for 100.

Finally, we join the candidates detected by m-DBN and GMM using the union operator to form

a set of mass candidate regions {d̃n, ỹn}NCAN
n=1 , represented by

{d̃n, ỹn}NCAN
n=1 = {d̃n, ỹn}NMDBN

n=1 ∪ {d̃n, ỹn}NGMM
n=1 . (3.11)

3.4.2 False Positives Reduction with R-CNN

The set of mass candidates {d̃n, ỹn}NCAN
n=1 from Eq. 3.11 typically contains a large number of

false positives that are then removed by the second stage of the mass detection method com-

prising two cascade stages of region based convolutional neural networks (R-CNN) [46, 63].

R-CNN extracts the features from the last layer of a CNN and these features are classified using

linear support vector machine (SVM) [46, 63]. The false positive reduction using a cascade of

R-CNN detectors is represented by

{d̃n, ỹn}NRCNN
n=1 = fRCNN(x, {d̃n, ỹn}NCAN

n=1 , θRCNN), (3.12)

where, fRCNN(.) denotes the function that defines the R-CNN model with parameters θRCNN

(i.e., weights and biases for CNN and linear SVM), and NRCNN ≤ NCAN (i.e., the number of

detections tends to reduce after this stage). A CNN [60, 61] model for a input x̂ is a feedforward

neural network and consists of multiple processing stages, represented by the following function:

fCNN(x̂, θCNN) = fout ◦ gL ◦ hL ◦ fL ◦ . . . g1 ◦ h1 ◦ f1(x̂), (3.13)

where fl(.) represents the pre-activation stage that linearly transforms the input, θCNN is the

parameter set formed by the set of K linear filters {w(i)
l }Ki=1, and biases {b(i)l }Ki=1 for each

layer l ∈ {1, ..., L}, hl denotes the non-linear activation function (e.g., sigmoid defined as in

Sec. 3.4.1, or rectified linear unit [132]), gl represents a non-linear sub-sampling function that

pools (using either the mean or max functions) the values from a region from the input data, and

24



Chapter 3. Methodology

fout represents the fully connected layer that is defined with a linear filter that uses all the inputs

to produce one of the output values. Inference consists of the application of this process in a

feed-forward manner by computing the output from Eq. 3.13, and training is carried out with

stochastic gradient descent to minimise the cross entropy loss over the training set (via back

propagation) [60, 61], represented by

`CNN(θCNN) =

|D|∑

i=1

NCAN∑

n=1

c(i,n) log c̃cnn(i,n), (3.14)

where θCNN is the parameter of the CNN model c̃cnn(i,n) is the class label predicted by this model

(defined as c = 1 for mass and c = 0 for background).

The training of SVM in R-CNN in Eq. 3.12 proceeds by first cropping the mass candidate with

a bounding box around the candidate region in Eq. 3.11 from the input image x (note that these

bounding boxes are loosely localised with intersection over union ratio (IoU) =0.3 with respect

to the annotated mass), resizing the cropped patch to a fixed size ofM×M pixels using bi-cubic

interpolation and preprocessing it with the contrast enhancement using CLAHE (described in

Sec. 2.1 [47]). We use features from the final fully connected layer of the CNN model with

its learned parameter θCNN in a linear SVM that is trained by minimising the following hinge

loss [46, 63]

`SVM(θSVM) =

|D|∑

i=1

NCAN∑

n=1

max
(
0, 1− c(i,n)c̃svm(i,n)

)
, (3.15)

where θSVM is the parameter of the linear SVM model and c̃svm(i,n) is the class label predicted

by this model. All candidates surviving the first cascade of the R-CNN are then passed through

to a second stage of R-CNN to further reduce the false positive rate as shown in Fig. 3.2. The

hyper-parameters of the learning process, such as learning rate , number of filters and sizes of

filters for the R-CNN are cross-validated using the validation set, where the filter weights are

initialised randomly.

3.4.3 Candidate Selection using RF

The cascade of R-CNN models described in Sec. 3.4.2 still produces a large false positive rate, so

we need to apply another round of false positive reduction methods. Therefore, we first extract

a large number of hand-crafted features from the mass candidate regions detected by the meth-

ods described in Sec. 3.4.2, and feed them to a cascade of random forest (RF) classifiers [70],

represented by

{d̃n, ỹn}Nn=1 = fRF(x, {d̃n, ỹn}NRCNN
n=1 , θRF), (3.16)
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where fRF(.) is the function that defines the RF classifier model with parameters θRF (i.e., num-

ber of trees, number of leaves, and feature/threshold per tree node), and N ≤ NRCNN (i.e.,

the number of candidates tend to reduce after this stage). The hand-crafted features that are

used at this stage can be divided into morphological features, appearance features and texture

features [4, 35, 44, 48, 50, 59, 82, 93, 94]. The morphological features are based on the segmen-

tation contour and they represent the geometrical properties of segmentation, such as margin

spiculation and sharpness, area, circularity, rectangularity, perimeter, perimeter to area ratio,

and normalised area length (NRL) features, such as boundary roughness, mean, entropy, stan-

dard deviation and area ratio zero crossing count. The appearance features include the ratio of

grey scale values inside and in the vicinity of the segmented object. The texture features are

based on spatial grey level dependence (SGLD) matrix, which is defined as a distribution of

occurrence of pixel intensity i with respect to a pixel intensity j, which varies with inter-pixel

separation and direction. The texture features that are based on SGLD matrix are the following:

energy, correlation, inertia, entropy, difference of moment, inverse difference of moment, sum

average, sum entropy, difference entropy, sum variance, difference variance, difference average,

and information measure of correlation.

3.4.4 Mass Detection Refinement using Bayesian Optimisation

The final module of our mass detection system is the detection refinement step using Bayesian

optimisation [64]. The primary motivation of using Bayesian optimisation in this work is that it

presented superior performance compared to other local search algorithms such as hill climbing,

local random search and selective search [64]. In this step, our objective is to fit the bounding

boxes detected from the cascade of RF classifiers {d̃n, ỹn}Nn=1 more precisely around the breast

masses. Let us assume that we have some scoring function, represented by a CNN model defined

as :

f̃n = fscore(d̃n,x, θscore), (3.17)

which takes the bounding box d̃n, mammogram x, and parameter θscore and outputs a score

f̃n. We can then build a current observation set BN = {(d̃n, f̃n)}Nn=1 with the objective of

finding a new bounding box d̃N+1 that maximises score fN+1, in which f is sampled from the

distribution p(f |BN ) ∝ p(BN |f)p(f). This new bounding box and score value are then used to

update the hypotheses set as follows:

BN+1 = BN ∪ (d̃N+1, fN+1). (3.18)
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The objective function that we maximise under the Bayesian optimisation is called expected

improvement (aei) and is defined as [64]:

aei(d̃N+1|BN , θGP) =

∫ ∞

f̂N

(fN+1 − f̂N ).PGP(fN+1|d̃N+1,BN ; θGP)df, (3.19)

where PGP(fN+1|d̃N+1,BN ; θGP) is a Gaussian Process (GP) [64, 128] prior with parame-

ter θGP, and f̂N = maxn∈{1,..,N} fn. The parameter θGP in Eq. 3.19 denotes the mean ker-

nel m : R4 → R, a positive definite covariance kernel k : R4 × R4 → R and small Gaussian

noise β that is added to fn for numerical stability. The value of mean kernel m0 in GP is fixed,

but the covariance kernel is updated as follows [64, 128]:

k(d̃(v), d̃(q); z) = η exp (
1

2
(Φ(d̃(v))− Φ(d̃(q)))TΛ(Φ(d̃(v))− Φ(d̃(q)))), (3.20)

where Λ is a 4 × 4 diagonal matrix whose diagonal entries, λ2
i=1,..,4 along with m, η forms

a seven dimensional hyper-parameter of GP (θGP = [β,m0, η, λ
2
1, λ

2
2, λ

2
3, λ

2
4]) that is learned

from the training data, d̃(v), d̃(q) are the v, q elements of bounding box d̃, and Φ : R4 → R4

parametrises the bounding box coordinates d̃ into a form given by [64]:

Φ(d̃) =

[
x+ w

2 exp (z)
;
y + h

2 exp (z)
; log w; log h

]
, (3.21)

where x+h
2 , y+w

2 denotes the centre coordinates of the given bounding box, w, h are the width,

height of the bounding box, and z is the latent variable that has been introduced to make the

covariance kernel scale invariant [64]. We obtain the hyper-parameter z in a data-driven way by

maximising the marginal likelihood PML of BN as [64]:

z̃ = arg max
z
PML({f̃}Ni=1|{d̃}Ni=1; θGP). (3.22)

The estimation of the parameter θscore for the scoring function in Eq. 3.17 is done by training a

CNN model using manually annotated bounding boxes d from training dataset D. The ground

truth bounding boxes are artificially augmented (with random translation and scale) such that

these artificial positive bounding boxes have intersection over union (IoU) ratio above a pre-

defined threshold ρwith respect to the manual annotation, and the negative samples have IoU be-

low that same threshold. The bounding boxes are cropped, resized toM ×M and pre-processed

with contrast enhancement technique [47] (described in Chapter 2, Sec 2.1). Similarly, the esti-

mation of the parameter θGP of the GP model is done using ground truth bounding boxes d and

their scores f using Eq. 3.17 from the training set D by maximising the joint likelihood of such

observations [128] as:
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Algorithm 3.1: Local Search for Detection Refinement

Input: Mammogram x, the set of detected bounding boxes, and scores BN = {(d̃n, f̃n)}Nn=1,
parameters θscore for the scoring function in Eq. 3.17, acquisition function parameters θGP
in Eq. 3.19, maximum number of iterations tmax, and the threshold fprune to prune the
bounding boxes.

1: Bnew ← transformations(BN )
2: for t = 1, ..., tmax do
3: Bproposal = ∅
4: Bprune = {(d, f) ∈ Bnew : f ≥ fprune}
5: Bnms = NMS(Bprune)
6: for (dbest, fbest) ∈ Bnms do
7: for ρ ∈ {0.3, 0.5, 0.7} do
8: Blocal = {(d, f) ∈ Bnew : IoU(d,dbest) > ρ}
9: z̃ = arg maxz PML(Blocal; θGP)

10: dN+1 = arg maxd aei(d|Blocal, θGP, z̃)
11: fN+1 = fscore(dN+1,x; θscore)
12: Bproposal ← Bproposal ∪ (dN+1, fN+1)
13: end for
14: end for
15: Bnew ← Bproposal ∪ Bnew
16: end for
17: Bprune = {(d, f) ∈ Bnew : f ≥ fprune}
18: Bref = NMS(Bprune)

θ∗GP = arg max
θGP

|D|∑

i=1

|A|i∑

j=1

log PGP(d(i,j), f(i,j); θGP). (3.23)

The detection refinement runs according to the steps in Algorithm 3.1, where the transforma-

tions(.) function translates and scales the samples in BN to form the set Bnew and non-max

suppression (NMS) is a function that takes a set of bounding boxes with their scores and clas-

sify them by suppressing all the bounding boxes with similar IoU ratio based on their scores (i.e.,

bounding boxes with the low scores are removed). The detection refinement in Algorithm 3.1

continues for fixed number of iterations tmax, the algorithm prunes candidates with low scores

using the threshold fprune, and cluster the remaining candidates using NMS. For each bounding

box (dbest, fbest) that has been considered to be a local optimum using NMS, the algorithm con-

siders the range of IoU values (ρ ∈ {0.3, 0.5, 0.7}) to build the local bounding box set Blocal.

The newly formed local observation set Blocal is used in the GP to sample the new bounding box

dN+1, which integrates the new set of proposals. This process outputs the set Bref of final mass

candidates. In practice, we set tmax = 10, resulting in an average running time of 10s for the

local search Algorithm 3.1.

In Chapter 9, we present the results of bounding box refinement based on the local search in

Algorithm 3.1 using Bayesian optimisation.
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3.5 Mass Segmentation

In this section, we describe the structured output prediction models for breast mass segmenta-

tion, which is one of the main contribution of this thesis. We start this section with an expla-

nation of the learning process in our two structured output prediction models [133], namely: 1)

conditional random field (CRF) which uses truncated fitting [72] for learning the model param-

eters and tree re-weighted belief propagation (TRW) [72, 73] for inference, and 2) structured

support vector machines (SSVM) [74, 75] which uses SSVM for learning the model parameters

and graph cuts [75, 80] for inference (see Fig. 3.4 [39]). The segmentation using these struc-

tured output models is obtained in low resolution sub-image x̃ containing a mass candidate. In

the automated set-up, we use each bounding box dn ∈ Bref estimated from the hypothesis re-

finement in Alg. 3.1 (Chapter 9), whereas in the manual set-up, we obtain dn by extracting a

bounding box from around the centre of the manual annotation of the test/train image, where

the size for each dimension of the rectangle is obtained using the size of the annotation plus two

pixels [39, 106, 107] (Chapters 4, 5, and 6). The image patch extracted from this bounding box

is then resized to an image of size M ×M pixels with the function x̃n = fcrop(x,dn) using

bi-cubic interpolation and pre-processed using the contrast enhancement technique described

in Sec. 2.1 [47]. Both of these structured output prediction models are represented in terms of

graph G = (V, E), where V denotes the nodes and E represents the edges of the graph. The

learning of the parameter θSP of the structured prediction models is carried out by minimising a

continuous convex loss function ` as [133]:

θ∗SP = arg min
θSP

|D|∑

i=1

|Bref(i)|∑

n=1

`(x̃i,n, ỹi,n, θSP), (3.24)

where i indexes the training images from set D and n indexes the masses in the set of refined

detections Bref (with cardinality |Bref|), ỹn,i denotes the cropped segmentation map obtained

with fcrop(yi,dn), defined above, and `(x̃i,n, ỹi,n, θSP) is a continuous and convex loss function,

defined below. The optimisation problem in Eq. 3.24 can be solved in many different ways, but

in this thesis we make use of two methods, described in Sec. 3.5.1 and Sec. 3.5.2. Hereafter, we

drop the indices n for notation simplicity.

3.5.1 Conditional Random Field (CRF)

In the CRF setup , the loss function in Eq. 3.24 is defined with the energy term E(ỹ, x̃; θSP) and

log-partition function A(x̃; θSP):

`(x̃, ỹ, θSP) = A(x̃, θSP)− E(ỹ, x̃; θSP), (3.25)
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Figure 3.4: Structured Prediction Model for segmentation of masses.

where A(x̃; θSP) = log
∑

ỹ∈{−1,+1}M×M exp {E(ỹ, x̃; θSP)} is the normalizer, and

E(x̃, ỹ; θSP) =
K∑

k=1

∑

v∈V
θ1,kψ

(1,k)(ỹ(v), x̃) +
L∑

l=1

∑

v,q∈E
θ2,lψ

(2,l)(ỹ(v), ỹ(q), x̃), (3.26)

where ψ(1,k)(., .) denotes one of theK potential functions between label and pixel nodes (please

refer to Fig. 3.4), ψ(2,l)(., ., .) represents one of the L potential functions on the edges between

label nodes, θSP = [θ1,1, ..., θ1,K , θ2,1, ..., θ2,L]> ∈ RK+L, and ỹ(v), ỹ(q) are the vth and qth

components of vector ỹ. We minimise the loss function in Eq. 3.24 using tree re-weighted

belief propagation, which provides the upper bound to the log partition function A(x̃; θSP) in

Eq. 3.25 [73]:

A(x̃; θSP) = max
µ∈M

θTSPµ+H(µ), (3.27)

whereM = {µ′ : ∃θSP, µ
′ = µ} is the marginal polytope, µ =

∑
ỹ∈m∈{−1,+1}M×M P (ỹ|x̃, θSP)

f(ỹ), f(ỹ) is the set of indicator functions of possible configurations of each clique and variable

in the graph [134] (as in Eq. 3.26), P (ỹ|x̃,θSP) = exp {E(ỹ, x̃; θSP)−A(x̃; θSP)} indicates the

conditional probability of the annotation ỹ given the image x̃ and parameters θSP (assuming

P (ỹ|x̃; θSP) belongs to the exponential family), and entropy H(µ) is given by:

H(µ) = −
∑

ỹ∈m∈{−1,+1}M×M

P (ỹ|x̃; θSP) log P (ỹ|x̃, θSP). (3.28)

The marginal polytope M is difficult to define and the entropy H(µ) is not tractable [72] for

the general cyclic graph, which we use for the breast mass segmentation in this thesis. We solve
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Figure 3.5: Examples of unary potentials for few training images from DBN, CNN and GMM .

these problems using tree re-weighted belief propagation (TRW), which replaces the marginal

polytope with a superset L ⊃ M that only considers the local constraints of the marginals, and

then approximates the entropy calculation with an upper bound. The learning process involves

the estimation of θSP by gradient descent that minimises the loss in Eq. 3.25, which is defined

by the change rate of θSP between successive gradient descent iterations. However, as noted

by Domke [72], there are problems with this approach, where large thresholds in this change

rate can lead to suboptimal estimations, and tight thresholds result in slow convergence. These

issues are circumvented by the truncated fitting algorithm [72], which uses a fixed number of

iterations (i.e., no threshold is used in this training algorithm).

3.5.2 Structured Support Vector Machine (SSVM)

In the SSVM setup, we use the following loss function:

`(x̃i, ỹi, θSP) = max
ỹ∈Y

(∆(ỹi, ỹ) + E(ỹ, x̃i; θSP)− E(ỹi, x̃i; θSP)) , (3.29)

where ∆(ỹi, ỹ) represents the dissimilarity between ỹi and ỹ, which satistfies the conditions

∆(ỹi, ỹ) ≥ 0 for ỹi 6= ỹ and ∆(ỹi, ỹi) = 0.

The estimation of θSP using SSVM optimisation proceeds by formulating a regularised loss min-

imisation problem, which can be represented by: θ∗SP = minθSP ‖θSP‖2 + λ
∑

i `(x̃i, ỹi, θSP),
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with `(.) defined in Eq. 3.29. The introduction of slack variables leads to the following opti-

mization problem [74, 75]:

minimizeθSP
1
2‖θSP‖2 + C

|D|
∑

i ξi

subject to E(ỹi, x̃i; θSP)− E(ŷi, x̃i; θSP) ≥ ∆(ỹi, ŷi)− ξi, ∀ŷi 6= ỹi

ξi ≥ 0.

(3.30)

This optimisation is a quadratic programming problem involving an intractably large number of

constraints. In order to keep the number of constraints manageable, we use the cutting plane

method that keeps a relatively small subset of the constraints by solving the maximisation prob-

lem:
ˆ̃yi = arg max

ỹ
∆(ỹi, ỹ) + E(ỹ, x̃i; θSP)− E(ỹi, x̃i; θSP)− ξi, (3.31)

which finds the most violated constraint for the ith training sample given the parameter θSP.

Then if the right hand side is strictly larger than zero, the most violated constraint is included in

the constraint set and Eq. 3.30 is re-solved. This iterative process runs until no more constraints

are found. Note that if we remove the constants from Eq. 3.31, the optimization problem is

simply: ˆ̃yi = arg maxỹ ∆(ỹi, ỹ) + E(ỹ, x̃i; θSP), which can be efficiently solved using graph

cuts [80], if the function ∆(., .) can be properly decomposed in the label space. A simple

example that works with graph cuts is ∆(ỹ, ỹi) =
∑

i 1 − δ(ỹ(v) − ỹi(v)), which represents

the Hamming distance and can be decomposed in the label space. Therefore, we use it in our

methodology.

The label inference for a test mammogram x, given the learned parameters θSP from Eq. 3.30,

is based on the following inference:

ỹ∗ = arg max
ỹ

E(ỹ, x̃; θSP), (3.32)

which can be efficiently and optimally solved for binary problems with graph cuts [80].

3.5.3 Potential Functions

In this section we define the unary ψ(1,k) and pairwise potential functions ψ(2,l) to be used in

Eq. 3.25. The unary potential function ψ(1,1) is represented by a shape prior [39, 106, 107],

which is estimated from the training set at each image lattice position v, as follows:

ψ(1,1)(ỹ(v), x̃) = − log Pprior(ỹ(v) = 1|θprior), (3.33)

where Pprior(ỹ(v) = 1|θprior) = 1/|D|∑i δ(ỹi(v) − 1) and δ(.) represents the Dirac delta

function.
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Figure 3.6: DBN model that takes the mass candidate as input and outputs a unary potential (probability
map) for our segmentation algorithm (Chapters 4, 5, 6).

Figure 3.7: The CNN model that takes mass candidate as input and outputs a unary potential (probability
map) for our segmentation algorithm (Chapter 6).

The unary potential function ψ(1,2) in Eq. 3.26 is based on GMM [39, 106, 107, 130] shape

model represented as:

ψ(1,2)(ỹ(v), x̃) = − log PGS(ỹ(v) = 1|x̃(v), θGS), (3.34)

where θGS is the parameter of GMM model, PGS(ỹ(v) = 1|x̃(v), θGS) is the conditional prob-

ability distribution. The training and inference processes using a GMM model have been de-

scribed using Eq. 3.10 in Sec. 3.4.1.

The potential function ψ(1,3) in Eq. 3.26, based on DBN [39, 69, 106, 107] shape model, is

represented as:

ψ(1,3)(ỹ(v), x̃) = − log PDS(ỹ(v)|x̃S(v), θDS), (3.35)

where x̃S(v) denotes the patch extracted from the sub-image x̃, around the lattice position v

of size S × S pixels, θDS is the parameter of the DBN model, PDS(ỹ(v)|x̃S(v), θDS) is the

conditional probability distribution. The training and inference processes using the DBN model

have been described using Eq. 3.6 in Sec. 3.4.1. In the experiment, we tried the patches of

different sizes (3× 3, 5× 5 and 7× 7).
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The potential function ψ(1,4) in Eq. 3.26, based on CNN [39, 61] shape model (as shown in the

Fig. 3.7), is represented by:

ψ(1,4)(ỹ(v), x̃) = − log PCS(ỹ(v) = 1|x̃, θCS), (3.36)

where, PCS(ỹ(v) = 1|x̃, θCS) represents the probability of labelling pixel v as mass or back-

ground and θCS represents the parameter of CNN model. The training and inference processes

using the CNN model have been described using Eq. 3.13 in Sec. 3.4.1.

Generally, the last layer of CNN is modified to fit the particular problem of segmentation, clas-

sification or regression. For the problem of breast mass segmentation, we use the CNN (as

depicted in Fig. 3.7), which has the number of nodes in last layer equal to the number of pix-

els in the input image and we minimise the binary segmentation error using a pixel-wise cross

entropy loss, defined as

`CS(θCS) =

|D|∑

i=1

|Ai|∑

j

∑

v∈M×M
ỹ(i,j)(v) log ỹ∗(i,j)(v), (3.37)

where ỹ∗(i,j)(v) is the pixel-wise label predicted by this model. Fig. 3.5 shows some examples

of the results from the various unary potential functions (i.e., DBN, GMM and CNN) that we

use with our structured output prediction models.

The pairwise binary functions between label nodes in Eq. 3.26 represent label and contrast

related labelling homogeneities: ψ(2,1)(ỹ(v), ỹ(q), x̃) and ψ(2,1+n) (ỹ(v), ỹ(q), x̃), respec-

tively [72, 107, 133]. We define the labelling homogeneity as:

ψ(2,1)(ỹ(v), ỹ(q), x̃) = 1− δ(ỹ(v)− ỹ(q)), (3.38)

where δ(.) represents the Dirac delta function. In addition to the labelling homogeneity, we

define contrast dependent labelling homogeneity by:

ψ(2,1+n)(ỹ(v), ỹ(q), x̃) = (1− δ(ỹ(v)− ỹ(q))δ(||bx̃(v)cτn − bx̃(q)cτn ||2)),

bx̃(v)cτn =




x̃(v) if x̃(v) ≥ τn
0, otherwise,

(3.39)

where x̃(v), x̃(q) represents the grey value of the pixel at location v, q in image grid, and τn ∈
{τ1, τ2, ..., τ10} is a set of ten thresholds [72, 107].

In Chapters 4, 5, and 6, we compare the performance of the CRF and SSVM models with the

combination of the unary and pairwise potential functions described in this chapter and report

the results in terms of Dice index and running time.
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Algorithm 3.2: Mass Segmentation with Active Contour Refinement
Input: Mammogram x, refined bounding box dn ∈ BN , sub-image size Msub, number of

iterations tmax for the Chan-Vese optimisation, the unary and pairwise model parameters
θCNN, θDBN, θGMM, θprior, and structured output model θCRF

1: Obtain sub-image x̃ = fcrop(dn,x,M ×M)
2: Contrast enhance sub-image x̃ ([39, 47])
3: Compute unary potential function results ψ(1,k) for k ∈ {1, ..., 4} using Eq. 3.33-3.35
4: Compute pairwise potentials ψ(2,l) for k ∈ {1, 2} using ([134])
5: Infer segmentation label ŷ∗ using TRW ([39, 73]) or graph cuts [39, 80]
6: Restore ỹ∗ to ŷ∗ = frestore(ỹ

∗,dn)
7: Compute initial distance function φ0 = fφ(ŷ∗)
8: Estimate φtmax using active contour ([29])
9: Infer final segmentation y∗n = φtmax ≥ 0

3.5.4 Mass Segmentation Refinement using Active Contour Model

The main issue of segmentation ỹ∗ using our structured output prediction models described in

Sec. 3.5.1, and Sec. 3.5.2 is the fact that they are performed in a low resolution sub-image of

size M × M . If we restore the segmentation ỹ∗ to the original image resolution, using the

bounding box dn ∈ Bref with a function ŷ∗ = frestore(ỹ
∗,dn) that uses nearest neighbour

interpolation, then the segmentation ŷ∗ would result in a coarse edge boundary, which needs

refinement (please see the pink contour in Fig. 3.8). We solve this problem with the use of

Chan-Vese active contour model [29], which is initialised using the coarse segmentation ŷ∗.

The active contour model is represented by a level set function φ(.) using the signed distance

function and we use ŷ∗n to initialise the level set function φ0 = fφ(ŷ∗), and minimise the

following the energy functional ([29]):

EAC(φ, ŷ∗,x) = γ

∫

Ω
|(x− c2)|2(1−H(φ)dx+λ

∫

Ω
|(x− c1)|2H(φ)dx+µ

∫

Ω
δ(φ)|5φ|dx,

(3.40)

where µ, λ, γ are the hyper-parameters, c1, c2 are the average of the image x in the regions

where φ(.) ≥ 0 and φ(.) < 0 (respectively), δ(.) is the Dirac delta function, and H(.) is the

heavyside step function, defined as:

H(φ) =





1 φ ≥ 0

0 Otherwise.
(3.41)

We minimise the energy in Eq. 3.40 by finding the steady state solution of the gradient flow

equation ∂φ
∂t = −∂EAC

∂φ , where ∂EAC
∂φ is the Gâteaux derivative of the functional EAC(.) ([29]).

The final segmentation y∗n is defined by the binary map from the positive region of the level

set function, i.e., φ ≥ 0, produced by active contour refinement (notice the green contour in

Fig. 3.8). The fully automated breast mass segmentation algorithm is shown in Algorithm. 3.2.
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Figure 3.8: Example of fully automated mass detection, segmentation and classification of mass from
mammograms using the proposed methodology.

Figure 3.9: Two stage CNN model for mass classification in mammograms (Chapter 8).

In Chapter 9, we show the results of fully automated segmentation with active contour refine-

ment and compare these results with the state-of-the-art methods in the field.

3.6 Mass Classification

The final stage of our fully automated system for the analysis of breast masses is the classifi-

cation of such masses into malignant/benign. Our classification is based on a transfer learning

approach using deep learning [61, 81], consisting of two stages, as shown in the Fig 3.9, namely:

1) pre-training a CNN regressor with hand-crafted features, and 2) fine tuning the pre-trained

CNN regressor from stage 1 to classify breast masses. The first stage pre-trains the CNN model,

which works as a regressor that approximates the values of hand-crafted features from the input
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image patch and segmentation mask. The idea behind this pre-training step with hand-crafted

features lies with the fact that hand-crafted features have produced the state-of-the-art result

in breast mass classification [4, 35, 44, 48, 50, 59, 82, 93, 94] and we want to integrate their

importance in our classification model.

The hand-crafted features from a mammogram x, given a bounding box d and segmentation

mask y, are extracted by applying the function

fHF(x,y,d) = z ∈ RH , (3.42)

where fHF(.) extracts a set of morphological, texture and intensity features as described in

Sec. 3.4.3. We compute the texture and intensity features from the image patch localised by

the bounding box d and morphological features from the segmentation mask y.The pre-training

of the CNN with hand-crafted features can be represented by the function

z∗ = fCNNHF(x,y,d, θCNNHF), (3.43)

where, fCNNHF represents the CNN model with L−1 stages of convolutional, non-linear activa-

tion, max pooling and fully connected layer containing H nodes at the Lth stage, which outputs

the approximated hand-crafted features, represented by z∗. The training of this CNN regressor

is done by minimising the following loss function:

`HF(θCNNHF) =

|D|∑

i=1

|Ai|∑

j

||z∗(i,j) − z(i,j)||2, (3.44)

where i is the index of the training images, j is the index for the mass in each training image

i, z(i,j) represents the vector of hand-crafted features from mass j and image i and z∗(i,j) is the

approximated hand-crafted features from the last layer of pre-trained CNN model. The second

step of breast mass classification system, as shown in Fig. 3.9, adds another fully connected

layer L + 1 with softmax activation. We fine tune this CNN model by minimising the cross

entropy loss using the class labels (benign or malignant) as:

`FCNN(θFCNN) =

|D|∑

i=1

|Ai|∑

j

c(i,j) log c̃(i,j) (3.45)

where, θFCNN is the parameter of the fine tuned CNN model and c̃ is the class label predicted by

this model.
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3.7 Conclusions

In this chapter, we presented the general methodologies proposed in this thesis for the problem

of breast mass detection, segmentation and classification. These methodologies are combined to

form a fully automated CAD system for the analysis of breast masses in mammograms. These

methodologies have been adapted for each problem being dealt in this thesis, which will be

discussed in subsequent chapters.
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Abstract. The classification of breast masses from mammograms into
benign or malignant has been commonly addressed with machine learn-
ing classifiers that use as input a large set of hand-crafted features, usu-
ally based on general geometrical and texture information. In this paper,
we propose a novel deep learning method that automatically learns fea-
tures based directly on the optmisation of breast mass classification from
mammograms, where we target an improved classification performance
compared to the approach described above. The novelty of our approach
lies in the two-step training process that involves a pre-training based on
the learning of a regressor that estimates the values of a large set of hand-
crafted features, followed by a fine-tuning stage that learns the breast
mass classifier. Using the publicly available INbreast dataset, we show
that the proposed method produces better classification results, com-
pared with the machine learning model using hand-crafted features and
with deep learning method trained directly for the classification stage
without the pre-training stage. We also show that the proposed method
produces the current state-of-the-art breast mass classification results for
the INbreast dataset. Finally, we integrate the proposed classifier into a
fully automated breast mass detection and segmentation, which shows
promising results.

Keywords: deep learning, breast mass classification, mammograms

1 Introduction

Mammography represents the main imaging technique used for breast cancer
screening [1] that uses the (mostly manual) analysis of lesions (i.e., masses and
micro-calcifications) [2]. Although effective, this manual analysis has a trade-off
between sensitivity (84%) and specificity (91%) that results in a relatively large
number of unnecessary biopsies [3]. The main objective of computer aided diag-
nosis (CAD) systems in this problem is to act as a second reader with the goal of
increasing the breast screening sensitivity and specificity [1]. Current automated
mass classification approaches extract hand-crafted features from an image patch
containing a breast mass, and subsequently use them in a classification process
based on traditional machine learning methodologies, such as support vector ma-
chines (SVM) or multi-layer perceptron (MLP) [4]. One issue with this approach

? This work was partially supported by the Australian Research Council’s Discovery
Projects funding scheme (project DP140102794). Prof. Bradley is the recipient of an
Australian Research Council Future Fellowship(FT110100623).
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Fig. 1: Four classification models explored in this paper, where our main contri-
bution consists of the last two models (highlighted in red and green).

is that the hand-crafted features are not optimised to work specifically for the
breast mass classification problem. Another limitation of these methods is that
the detection of image patches containing breast masses is typically a manual
process [4, 5] that guarantees the presence of a mass for the segmentation and
classification stages.

In this paper, we propose a new deep learning model [6, 7] which addresses
the issue of producing features that are automatically learned for the breast
mass classification problem. The main novelty of this model lies in the training
stage that comprises two main steps: first stage acknowledges the importance of
the aforementioned hand-crafted features by using them to pre-train our model,
and the second stage fine-tunes the features learned in the first stage to become
more specialised for the classification problem. We also propose a fully auto-
mated CAD system for analysing breast masses from mammograms, comprising
a detection [8] and a segmentation [9] steps, followed by the proposed deep learn-
ing models that classify breast masses. We show that the features learned by
our proposed models produce accurate classification results compared with the
hand-crafted features [4, 5] and the features produced by a deep learning model
without the pre-training stage [6, 7] (Fig. 1) using the INbreast [10] dataset.
Also, our fully automated system is able to detect 90% of the masses at a 1 false
positive per image, where the final classification accuracy reduces only by 5%.

2 Literature Review

Breast mass classification systems from mammograms comprise three steps: mass
detection, segmentation and classification.The majority of classification methods
still relies on the manual localisation of masses as their automated detection is
still considered a challenging problem [4]. The segmentation is mostly an au-
tomated process generally based on active contour [11] or dynamic program-
ming [4]. The classification usually relies on hand-crafted features, extracted
from the detected image patches and their segmentation,which are fed into clas-
sifiers that classify masses into benign or malignant [4, 11, 5]. A common issue
with these approaches is that they are tested on private datasets, preventing fair
comparisons. A notable exception is the work by Domingues et al. [5] that uses
the publicly available INbreast dataset [10]. Another issue is that the results from
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fully automated detection, segmentation and classification CAD systems are not
(often) published in the open literature, which makes comparisons difficult.

Deep learning models have consistently shown to produce more accurate
classification results compared to models based on hand-crafted features [6, 12].
Recently, these models have been successfully applied in mammogram classifi-
cation [13], breast mass detection [8] and segmentation [9]. Carneiro et al. [13]
have proposed a semi-automated mammogram classification using a deep learn-
ing model pre-trained with computer vision datasets, which differs from our
proposal given that ours is fully automated and that we process each mass in-
dependently. Finally, for the fully automated CAD system, we use the deep
learning models of detection [8] and segmentation [9] that produce the current
state-of-the-art results on INbreast [10].

3 Methodology

Dataset The dataset is represented by D = {(x,A)i}|D|i=1, where mammograms
are denoted by x : Ω → R with Ω ∈ R2, and the annotation for the |Ai|
masses for mammogram i is represented by Ai = {(d, s, c)j}|Ai|

j=1 , where d(i)j =

[x, y, w, h] ∈ R4 represents the left-top position (x, y) and the width w and height
h of the bounding box of the jth mass of the ith mammogram, s(i)j : Ω → {0, 1}
represents the segmentation map of the mass within the image patch defined
by the bounding box d(i)j , and c(i)j ∈ {0, 1} denotes the class label of the
mass that can be either benign (i.e., BI-RADS ∈ {1, 2, 3}) or malignant (i.e.,
BI-RADS ∈ {4, 5, 6}).

Classification Features The features are obtained by a function that takes a
mammogram, the mass bounding box and segmentation, defined by:

f(x,d, s) = z ∈ RN . (1)

In the case of hand-crafted features, the function f(.) in (1) extracts a vector
of morphological and texture features [4]. The morphological features are com-
puted from the segmentation map s and consist of geometric information, such
as area, perimeter, ratio of perimeter to area, circularity, rectangularity, etc. The
texture features are computed from the image patch limited by the bounding
box d and use the spatial gray level dependence (SGLD) matrix [4] in order
to produce energy, correlation, entropy, inertia, inverse difference moment, sum
average, sum variance, sum entropy, difference of average, difference of entropy,
difference variance, etc. The hand-crafted features are denoted by z(H) ∈ RN .

The classification features from the deep learning model are obtained using
a convolutional neural network (CNN) [7], which consists of multiple processing
layers containing a convolution layer followed by a non-linear activation and
a sub-sampling layer, where the last layers are represented by fully connected
layers and a final regression/classification layer [7, 6]. Each convolution layer
l ∈ {1, ..., L} computes the output at location j from input at i using the filter

W
(l)
m and bias b

(l)
m , where m ∈ {1, ...,M(l)} denotes the number of features in

layer l, as follows: x̃(l+1)(j) = σ(
∑
i∈Ω x(l)(i) ∗W

(l)
m (i, j) + b

(l)
m (j)), where σ(.) is
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Fig. 2: Two steps of the proposed model with the pre-training of the CNN with
the regression to the hand-crafted features (step 1), followed by the fine-tuning
using the mass classification problem (step 2).

the activation function [7, 6], x(1) is the original image, and ∗ is the convolution
operator. The sub-sampling layer is computed by x(l)(j) =↓ (x̃(l)(j)), where ↓ (.)
is the subsampling function that pools the values (i.e., a max pooling operator)
in the region j ∈ Ω of the input data x̃(l)(j). The fully connected layer is
determined by the convolution equation above using a separate filter for each
output location, using the whole input from the previous layer.

In general, the last layer of a CNN consists of a classification layer, repre-
sented by a softmax activation function. For our particular problem of mass
classification, recall that we have a binary classification problem, defined by
c ∈ {0, 1} (Sec. 3), so the last layer contains two nodes (benign or malignant
mass classification), with a softmax activation function [6]. The training of such
a CNN is based on the minimisation of the regularised cross-entropy loss [6],
where the regularisation is generally based on the `2 norm of the parameters θ
of the CNN. In order to have a fair comparison between the hand-crafted and
CNN features, the number of nodes in layer L − 1 must be N , which is the
number of hand-crafted features in (1). It is well known that CNN can overfit
the training data even with the regularisation of the weights and biases based
on `2 norm, so a current topic of investigation is how to regularise the training
more effectively [14].

One of the contributions of this paper is an experimental investigation of
how to regularise the training for problems in medical image analysis that have
traditionally used hand-crafted features. Our proposal is a two-step training
process, where the first stage consists of training a regressor (see step1 in Fig. 2),
where the output x̃(L) approximates the values of the hand-crafted features z(H)

using the following loss function:

J =

|D|∑

i=1

|Ai|∑

j=1

‖z(H)
(i,j) − x̃

(L)
(i,j)‖2, (2)

where i indexes the training images, j indexes the masses in each training image,

and z
(H)
(i,j) denotes the vector of hand-crafted features from mass j and image i.

This first step acts as a regulariser for the classifier that is sub-sequentially
fine-tuned (see step 2 in Fig. 2).

76



Title Suppressed Due to Excessive Length 5

Fully Automated Mass Detection, Segmentation and Classification
The mass detection and segmentation methods are based on deep learning meth-
ods recently proposed by Dhungel et al. [8, 9]. More specifically, the detection
consists of a cascade of increasingly more complex deep learning models, while
the segmentation comprises a structured output model, containing deep learn-
ing potential functions. We use these particular methods given their use of deep
learning methods (which facilitates the integration with the proposed classifica-
tion), and their state-of-art performance on both problems.

4 Materials and Methods
We use the publicly available INbreast dataset [10] that contains 115 cases with
410 images, where 116 images contain benign or malignant masses. Experiments
are run using five fold cross validation by randomly dividing the 116 cases in
a mutually exclusive manner, with 60% of the cases for training, 20% for vali-
dation and 20% for testing. We test our classification methods using a manual
and an automated set-up, where the manual set-up uses the manual annotations
for the mass bounding box and segmentation. The automated set-up first de-
tects the mass bounding boxes [8] (we select a detection score threshold based
on the training results that produces a TPR = 0.93 ± 0.05 and FPI = 0.8 on
training data - this same threshold produces TPR of 0.90± 0.02 and FPI = 1.3
on testing data, where a detection is positive if the intersection over union ratio
(IoU)>= 0.5 [8]). The resulting bounding boxes and segmentation maps are re-
sized to 40 x 40 pixels using bicubic interpolation, where the image patches are
contrast enhanced, as described in [11]. Then the bounding boxes are automati-
cally segmented [9], where the segmentation results using only the TP detections
has a Dice coefficient of 0.85± 0.01 in training and 0.85± 0.02 in testing. From
these patches and segmentation maps, we extract 781 hand-crafted features [4]
used to pre-train the CNN model and to train and test the baseline model using
the random forest (RF) classifier [15].

The CNN model for step 1 (pre-training in Fig. 2) has an input with two
channels containing the image patch with a mass and respective segmentation
mask; layer 1 has 20 filters of size 5×5, followed by a max-pooling layer (sub-
samples by 2); layer 2 contains 50 filters of size 5×5 and a max-pooling that
subsamples by 2; layer 3 has 100 filters of size 4×4 followed by a rectified linear
unit (ReLU) [16]; layer 4 has 781 filters of size 4x4 followed by a ReLU unit; layer
5 comprises a fully-connected layer of 781 nodes that is trained to approximate
the hand-crafted features, as in (2). The CNN model for step 2 (fine-tuning in
Fig. 2) uses the pre-trained model from step 1, where a softmax layer containing
two nodes (representing the benign versus malignant classification) is added,
and the fully-connected layers are trained with drop-out of 0.3 [14]. Note that
for comparison purposes, we also train a CNN model without the pre-training
step to show its influence in the classification accuracy. In order to improve the
regularisation of the CNN models, we artificially augment by 10-fold the training
data using geometric transformations (rotation, translation and scale). Moreover,
using the hand-crafted features, we train an RF classifier [15], where model
selection is performed using the validation set of each cross validation training
set. We also train a RF classifier using the 781 features from the second last fully-
connected layer of the fine-tuned CNN model. We carried out all our experiments
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(a) Manual set-up (b) Automated set-up

Fig. 3: Accuracy on test data of the methodologies explored in this paper.

(a) Manual set-up (b) Automated set-up

Fig. 4: ROC curves of various methodologies explored in this paper on test data.

using a computer with the following configuration: Intel(R) Core(TM) i5-2500k
3.30GHz CPU with 8GB RAM and graphics card NVIDIA GeForce GTX 460
SE 4045 MB. We compare the results of the methods explored in this paper
with receiver operating characteristic (ROC) curve and classification accuracy
(ACC).

5 Results

Figures 3(a-b) show a comparison amongst the models explored in this paper
using classification accuracy for both manual and automated set-ups. The most
accurate model in both set-ups is the RF on features from the CNN with pre-
training with ACC of 0.95±0.05 on manual and 0.91±0.02 on automated set-up
(results obtained on test set). Similarly, Fig. 4(a-b) display the ROC curves that
also show that RF on features from the CNN with pre-training produces the
best overall result with the area under curve (AUC) value of 0.91 ± 0.12 for
manual and 0.76 ± 0.23 for automated set-up on test sets. In Tab. 1, we com-
pare our results with the current state-of-the-art techniques in terms of accuracy
(ACC), where the second column describes the dataset used and whether it can
be reproduced (‘Rep’) because it uses a publicly available dataset, and the third
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Table 1: Comparison of the proposed and state-of-the-art methods on test sets.
Methodology Dataset (Rep?) set-up ACC

Proposed RF on CNN with pre-training INbreast (Yes) Manual 0.95± 0.05
Proposed CNN with pre-training INbreast (Yes) Manual 0.91± 0.06

Proposed RF on CNN with pre-training INbreast(Yes) Fully automated 0.91± 0.02
Proposed CNN with pre-training INbreast (Yes) Fully automated 0.84± 0.04

Domingues et. al [5] INbreast (Yes) Manual 0.89
Varela et. al [4] DDSM (No) Semi-automated 0.81
Ball et. al [11] DDSM (No) Semi-automated 0.87

Fig. 5: Results of RF on features from the CNN with pre-training on test set.
Red and blue lines denote manual detection and segmentation whereas yellow
and green lines are the automated detection and segmentation.

column, denoted by ‘set-up’, describes the method of mass detection and seg-
mentation (semi-automated means that detection is manual, but segmentation
is automated). The running time for the fully automated system is 41 s, divided
into 39 s for the detection, 0.2 s for the segmentation and 0.8 s for classification.
The training time for classification is 6 h for pre-training, 3 h for fine-tuning and
30 m for the RF classifier training.

6 Discussion and Conclusions

The results from Figures 3 and 4 (both manual and automated set-ups) show
that the CNN model with pre-training and RF on features from the CNN with
pre-training are better than the RF on hand-crafted features and CNN without
pre-training. Another important observation from Fig. 3 is that the RF classifier
performs better than CNN classifier on features from CNN with pre-training.
The results for the CNN model without pre-training in automated set-up are
not shown because they are not competitive, which is expected given its rela-
tively worse performance in the manual set-up. In order to verify the statistical
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significance of these results, we perform the Wilcoxon paired signed-rank test
between the RF on hand-crafted features and RF on features from the CNN
with pre-training, where the p-value obtained is 0.02, which indicates that the
result is significant (assuming 5% significance level). In addition, both the pro-
posed CNN with pre-training and RF on features from CNN with pre-training
generalise well, where the training accuracy in the manual set-up for the former
is 0.93± 0.06 and the latter is 0.94± 0.03.

In this paper we show that the proposed two-step training process involving
a pre-training based on the learning of a regressor that estimates the values of a
large set of hand-crafted features, followed by a fine-tuning stage that learns the
breast mass classifier produces the current state-of-the-art breast mass classifi-
cation results on INbreast. Finally, we also show promising results from a fully
automated breast mass detection, segmentation and classification system.
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Abstract

We present a fully automated method for the problem of detecting, segment-

ing and classifying breast masses from mammograms. This is a long standing

problem due to low signal-to-noise ratio in the visualisation of breast masses,

combined with their large variability in terms of shape, size, appearance and

location. We break the problem down into three stages: mass detection, mass

segmentation, and mass classification. For the detection, we propose a cascade

of deep learning methods to select hypotheses that are refined based on Bayesian

optimisation. For the segmentation, we propose the use of deep structured out-

put learning that is subsequently refined by a level set method. Finally, for

the classification, we propose the use of a deep learning classifier, which is pre-

trained with a regression to hand-crafted feature values and fine-tuned based on

the annotations of the breast mass classification dataset. We test our proposed

system on the publicly available INbreast dataset and compare the results with

the current state-of-the-art methodologies. This evaluation shows that our fully

automated system detects 90% of masses at 1 false positive per image, has a

segmentation accuracy of around 0.85 (Dice index), and overall classifies masses

as malignant or benign with sensitivity (Se) of 0.98 and specificity (Sp) of 0.7.
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1. Introduction

Breast cancer is one of the major diseases affecting the lives of many women

worldwide. Statistical data published by the World Health Organisation (WHO)

show that 23% of all cancer related cases and 14% of cancer related deaths

amongst women are due to breast cancer (Jemal et al. (2008)). One of the5

most effective ways to reduce breast cancer mortality and morbidity is with

breast screening programs that use mammograms as the main imaging modal-

ity (AIHW (2012)) (see Fig. 1). In these programs, the analysis of breast masses

from mammograms represents an important task in the diagnosis of breast can-

cer, which is mostly a manual process that is susceptible to the subjective assess-10

ment of a clinical expert. Recent studies by Dromain et al. (2013) and Elmore

et al. (2009) show that this manual analysis has a sensitivity of 84% and a speci-

ficity of 91% in the diagnosis of breast cancer (Giger and Pritzker (2014)). The

classification accuracy of this manual interpretation can be improved with the

use of a second reading of the mammogram by another clinical expert or by a15

computer-aided diagnosis (CAD) system (Giger and Pritzker (2014)). However,

such CAD systems must be robust to false positives and false negatives to be

useful in a clinical setting.

One of the main tasks performed by a CAD system is the detection, segmen-

tation and classification of breast masses. This is challenging task due to the low20

signal-to-noise ratio of the mass visualisation, combined with the lack of consis-

tent patterns of shape, size, appearance and location of breast masses (Oliver

et al. (2010); Tang et al. (2009)). Furthermore, the relatively low availability

of annotated datasets containing full field digital mammograms (FFDM), the

most common type of breast imaging used in the field (see Fig. 1), hinders the25

development and evaluation of CAD systems. Current methodologies for mass

2
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(a) Malignant mass (b) Benign mass

Figure 1: Two types of breast mass of a full field digital mammogram (FFDM) from the
INbreast dataset (Moreira et al. (2012)): a) benign and b) malignant.

detection usually rely on a candidate region detection that uses several filters

such as morphological, difference of Gaussian, Laplacian of Gaussian, etc. (Koze-

gar et al. (2013); Beller et al. (2005); te Brake et al. (2000); Campanini et al.

(2004); Eltonsy et al. (2007); Sampat et al. (2008); Bellotti et al. (2006); Wei30

et al. (2005)). The detected candidates are then pruned using the responses

of different types of classifiers, such as support vector machines (SVM), linear

discriminant analysis (LDA) or artificial neural network (ANN) (Kozegar et al.

(2013); Beller et al. (2005); te Brake et al. (2000); Campanini et al. (2004);

Eltonsy et al. (2007); Sampat et al. (2008); Bellotti et al. (2006); Wei et al.35

(2005)). The main drawbacks of such mass detection methods are that they

can generate a large number of false positives, while missing a good proportion

of true positives (Oliver et al. (2010)), and the detected bounding boxes are

often not accurately aligned with the mass, which can have a negative impact

on the subsequent segmentation and classification stages. Segmentation meth-40

ods generally work by taking the bounding boxes from the detection stage and

segmenting them based on shape and appearance models using graph-based or

level set methods (Rahmati et al. (2012); Cardoso et al. (2015)). Here the main

challenges are related to the robustness of these shape and appearance models,

3
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the optimality of the proposed solution and the run-time/memory complexity45

of the method. Finally, mass classification typically uses hand-crafted features,

extracted from the bounding boxes and segmentation maps, with traditional

classification approaches, based on SVM or ANN (Varela et al. (2006); Shi et al.

(2008); Domingues et al. (2012)). The main limitation of these mass classifica-

tion approaches lies in the lack of optimality and complex design and selection50

of discriminatory hand-crafted features.

This paper is an extension of our previous works on mass detection (Dhungel

et al. (2015a)), segmentation (Dhungel et al. (2015b)), and classification (Dhun-

gel et al. (2016)) (see Fig. 2). Our previous work on mass detection (Dhungel

et al. (2015a)) is based on multi-scale deep belief nets (m-DBN) and Gaussian55

mixture model (GMM), which is followed by a false positive reduction step based

on the classification results provided by a convolutional neural network (CNN)

and a random forest classifier (RF). In this paper, we extend our previous mass

detection approach (Dhungel et al. (2015a)) with a more precise alignment of

the bounding box with respect to the breast mass based on Bayesian optimisa-60

tion (Zhang et al. (2015)). Moreover, our proposed mass segmentation method-

ology (Dhungel et al. (2015b)) is represented by a graph-based model that relies

on unary potential functions based on deep learning methods (Dhungel et al.

(2015b,c,d)). Parameter learning in the proposed graph-based approach is based

on truncated fitting (Domke (2013)), while inference is performed with tree re-65

weighted belief propagation (TRW) (Wainwright et al. (2003); Domke (2013)).

The main novelties introduced in this paper, compared to our previous works

on segmentation (Dhungel et al. (2015b,a)), is the use of the automated mass

detection (Dhungel et al. (2015a)), replacing the manual mass detection, and a

refinement stage based on level set methods (Chan et al. (2001)). Finally, the70

classification stage, based on deep learning methods, takes the appearance and

shape from the automatically detected and segmented bounding boxes and pro-

duces the final mass classification (Dhungel et al. (2016)). The interesting aspect

of this classification stage lies in our transfer learning approach: we pre-train

a deep learning regressor to approximate the values produced by hand-crafted75

4
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Figure 2: Our proposed methodology of breast mass detection, segmentation and classification.
Mass detection is done using mass candidate generation and false positive reduction (Dhungel
et al. (2015a)) with a new detection refinement. Segmentation is carried out using our previ-
ously proposed work on deep structured learning (Dhungel et al. (2015b)), which is followed
by a segmentation refinement step. Finally, classification is reached by training a CNN in two
steps, where the first step is a regressor that estimates hand-crafted features followed by a
second step that fine-tunes the model based on the mass classification problem.

features (Varela et al. (2006)), the network is then fine-tuned based on the mass

classification problem to improve overall classification accuracy.

The detection, segmentation and classification accuracy produced by our

fully automated breast analysis are measured on the publicly available INbreast

dataset (Moreira et al. (2012)), which is the largest publicly available dataset of80

annotated FFDM mammograms in the field. This dataset contains 410 FFDM

mammograms of the left and right breasts from 115 patients from two views:

cranio-caudal (CC) and medio-lateral oblique (MLO). The accuracy of the au-

tomated mass detection, segmentation and classification system is compared to

the manual annotations using the following measures: the free response oper-85

ating characteristic (FROC) curve, average precision curve, pixel based true

positive rate, Dice index, classification accuracy, the receiver operating charac-

teristic (ROC) curve and the area under the ROC curve (AUC). The results

show that our system for automated detection, segmentation and classification

of breast masses correlates well with the ground truth annotations. The results90

also show that our approach has results for each stage that are better than the

current state-of-the-art methods. The final results from our fully automated

system show that it is able to detect 90% of masses at one false positive rate per

image, with segmentation accuracy of 85%, where the final classification (into

benign or malignant) for the detected masses reaches sensitivity (Se) of 0.98 and95

5

87



specificity (Sp) of 0.7.

2. Literature Review

In this section, we review the literature for the problems of mass detection,

segmentation and classification in mammograms. We also discuss the current

deep learning methods that are relevant to our work.100

Systems that can analyse mammograms depend heavily on the detection

of breast masses, which is a challenging problem that, to a large extent, has

not been fully solved (Fenton et al. (2007)). Several methodologies have been

proposed for this problem, usually consisting of two stages: candidate mass de-

tection by relatively simple image filters, followed by a false positive pruning105

stage (Kozegar et al. (2013); Beller et al. (2005); te Brake et al. (2000); Cam-

panini et al. (2004); Eltonsy et al. (2007); Sampat et al. (2008); Bellotti et al.

(2006); Wei et al. (2005)). The detection accuracy of these methods tends to

be relatively poor due to the low capacity of the proposed models that does not

allow a robust modelling of the shape, size and intensity variations of masses. In110

addition, most of the previously proposed methods have been tested on datasets

that are not publicly available, which makes the comparison between methods

an impossible task. Therefore, we propose the use of high capacity deep learning

models (Girshick et al. (2014)) with the INbreast dataset (Moreira et al. (2012))

that is publicly available and contains high quality FFDM mammograms and115

precise expert annotations. We also propose the use of a detection refinement

step (Zhang et al. (2015)) that improves the precision of the mass detection - a

step that is not generally found in previous works.

The mass segmentation step is generally present in breast mass analysis

systems because of the association between mass shape irregularities and the120

probability of cancer (Giger and Pritzker (2014)). It is important to note that

mass segmentation is a step that is not explicitly undertaken in regular man-

ual breast screening exams, and for that reason, it is difficult to acquire expert

annotations. This means that annotated datasets tend to have a limited num-

6
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ber of a training samples for that particular problem, which makes the design125

of a robust mass segmentation algorithm a challenging task. In spite of that,

there have been a large number of methods proposed, such as the ones based on

Markov random field models, with optimal inference but sub-optimal training

(Cardoso et al. (2015); Rojas Domı́nguez and Nandi (2009); Song et al. (2009);

Timp and Karssemeijer (2004); Yu et al. (2012)), level set methods with sub-130

optimal training and inference with strong shape priors (Ball and Bruce (2007);

Rahmati et al. (2012); Sahiner et al. (2001); Sethian (1999); Shi et al. (2007);

te Brake et al. (2000)). The main issues with the majority of mass segmentation

methods are that they are evaluated on manually detected masses, are based on

sub-optimal training or inference algorithms, and use training/testing datasets135

that are not publicly available. Our proposed mass segmentation methodol-

ogy (Dhungel et al. (2015b)) uses structured prediction models based on hi-

erarchical deep learning potential functions, producing optimal training and

inference procedures (Dhungel et al. (2015b)). It also uses the results from our

proposed automated mass detection method introduced above and relies on the140

publicly available INbreast dataset (Moreira et al. (2012)). Furthermore, we

propose a segmentation refinement stage, based on a level set method (Chan

et al. (2001)), that adjusts the delineation to the high-resolution input image -

this stage is also not generally found in previous papers.

Breast mass classification is usually a semi-automated process that uses a145

set of hand-crafted features based on morphological features describing the ge-

ometrical structure of mass, and texture features computed from the intensity

distribution of mass (Varela et al. (2006); Ball and Bruce (2007); Domingues

et al. (2012)). These features are then used as the input to traditional machine

learning classifiers, such as support vector machine (SVM) and artificial neural150

network (ANN), to classify masses into malignant or benign (Varela et al. (2006);

Ball and Bruce (2007); Domingues et al. (2012)). Similarly to the mass seg-

mentation problem presented above, mass classification methods (Varela et al.

(2006); Ball and Bruce (2007)) usually use datasets that are not publicly avail-

able and depend on manually detected and segmented masses. In contrast, our155
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proposed mass classification relies on automatically detected and segmented

masses and uses the publicly available INbreast dataset (Moreira et al. (2012)).

Furthermore, we explore deep learning models for this task which in principle

can learn features directly from the input mass image and segmentation, but

the robustness of this learning process is related to the size of the annotated160

training set. Given that the INbreast dataset does not contain a large anno-

tated training set, we explore a pre-training process that regresses the results of

hand-crafted features (Varela et al. (2006)), which is followed by a fine-tuning

process that trains a classifier using the INbreast dataset annotations.

In computer vision, deep learning models have consistently been shown to165

produce more accurate classification results (e.g., object detection, semantic seg-

mentation and classification) compared to previously proposed machine learn-

ing models (LeCun and Bengio (1995); Krizhevsky et al. (2012); Farabet et al.

(2013); Girshick et al. (2014); Zhang et al. (2015)). A particularly interest-

ing advantage of deep learning models is their ability to automatically learn a170

rich hierarchy of features for complex classification problems, avoiding problems

associated with the hand-crafting of features: feature set sub-optimality, and

complexity of the feature designing and selection process. This motivated us

to explore deep learning as underlying framework for fully automated analysis

(detection, segmentation and classification) of masses from mammograms. Also,175

the detected and segmented masses can be displayed to aid expert interpreta-

tion of our CAD system’s decisions. Nevertheless, the deep learning models

proposed in computer vision, containing several large annotated datasets, must

be adapted to the medical imaging domain that has much smaller annotated

datasets. This adaptation includes the use of pre-trained models (Carneiro et al.180

(2015)), an increase in the number of training images (Cireşan et al. (2013)), or

a combination with other machine learning techniques (Dhungel et al. (2015a,b);

Ngo and Carneiro (2014)). In this paper, we explore the first and the last ideas

above, i.e., pre-trained models and the combination with other machine learning

methods (Dhungel et al. (2016)).185
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Figure 3: The proposed mass detection consists of two stages of mass ROI detection followed
by hypothesis refinement. The Mass ROI detection is based on the results of m-DBN and
GMM to generate candidates, followed by a false positive reduction using cascades of CNN
and RF; and the hypothesis refinement is based on Bayesian optimisation.

3. Methodology

In this section, we first define the dataset used to train and test the pro-

posed system, then we explain each stage of mass detection, segmentation and

classification.

3.1. Dataset190

The annotated dataset is represented by D = {(x,A)i}|D|i=1, where mammo-

grams are denoted by x : Ω → R with Ω ∈ R2, and the annotation for the

|Ai| masses for mammogram i is represented by Ai = {(d,y, c)j}|Ai|
j=1 , where

di,j = [x, y, w, h] ∈ R4 represents the left-top position (x, y) and the width

w and height h of the bounding box of the jth mass of the ith mammogram,195

yi,j : Ω→ {0, 1} represents the segmentation map of the mass within the image

patch defined by the bounding box di,j and ci,j ∈ {0, 1} denotes the class label

of the mass that can be either benign( i.e., BI-RADS ∈ {1, 2, 3}) or malignant

(i.e., BI-RADS ∈ {4, 5, 6}).

3.2. Mass Detection200

As depicted in Figure 3, our mass detection algorithm (Dhungel et al. (2015a))

consists of a cascade of classifiers, where the main goal of each stage is to keep

the true positive detections while reducing the proportion of false positive detec-

tions and then improve the precision of bounding box detection. This requires

classifiers with relative small memory and run-time complexities in the first205

stages to eliminate the “obvious” false positives. Then the later stage classifiers
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increase in complexity in order to be able to handle the more difficult candidates

containing the true positives and not so obvious false positives. After finding

the mass candidates, their localisation and scale still need to be refined in order

to help the next stages of the system: the mass segmentation and classification.210

3.2.1. Mass ROI Detection

The first stage of the detection consists of the generation of a set of NRGH

mass candidates, comprising their bounding boxes {d∗n}NRGH
n=1 and rough seg-

mentation masks {ỹ∗n}NRGH
n=1 for a mammogram x, defined by

{d∗n, ỹ∗n}NRGH
n=1 = fRGH(x, θROI), (1)

where fRGH(.) is a model defined by parameters θRGH. This function works by

combining the detection results of a coarse-to-fine deep belief network (m-DBN)

model and of a Gaussian mixture model (GMM). The m-DBN model uses a grid

search on a coarse resolution of image x, where each grid point is classified into215

positive or negative based on a square input of fixed size S × S extracted from

around that grid point, and the output is represented by a softmax activation

function. Then all points classified as positives are passed on to the next finer

resolution stage to be classified in a similar manner - this process repeats for

three coarse to fine stages, where the image resolution increases steadily between220

each stage. The training of this DBN (Hinton et al. (2006)) at each resolution

level uses a training set of positive patches extracted from the grid points (a

positive patch is defined by the central point that belongs to an annotated

mass) and negative patches from the detection of previous stage, where the first

stage uses randomly sampled negative patches (a negative patch is defined by a225

central point that does not belong to an annotated mass). The GMM (Dhungel

et al. (2015a)) model works only on the finest image resolution with a pixel-wise

classification, and this model is trained from the annotated training samples

in order to estimate the likelihood that a pixel grey value represents part of a

breast mass, or background. Note that this GMM model will produce a posterior230
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probability that needs to be thresholded to produce the final estimated positive

and negative labels, where this threshold varies from 0.3 to 0.9. The pixel-wise

classification from m-DBN and GMM are then joined with a union operator,

where a connected component analysis identifies the NRGH mass candidates in

(1).235

False positives amongst the generated mass candidates in {d∗n, ỹ∗n}NRGH
n=1 are

then pruned by a cascade of R-CNNs (Girshick et al. (2014); Dhungel et al.

(2015a)), which extracts the features from the last layer of a CNN model and

classifies it using a linear SVM (Cortes and Vapnik (1995)). A CNN (LeCun and

Bengio (1995); Krizhevsky et al. (2012)) model consists of multiple processing

stages, with each stage comprising two layers: linear filtering from the convo-

lutional layer that generates responses, which are transformed via a non-linear

activation function, and the pooling and sub-sampling layer that reduces the

data size for the next stage. The CNN model has a final stage that consists of

a fully connected layer (LeCun and Bengio (1995); Krizhevsky et al. (2012)).

Each R-CNN stage is represented by:

{d∗n, ỹ∗n}NRCNN
n=1 = fRCNN(x, {d∗n, ỹ∗n}NRGH

n=1 , θRCNN), (2)

where fRCNN(.) is a model defined by parameters θRCNN (the weights and biases

of the CNN and the linear SVM parameters), and NRCNN ≤ NRGH (i.e., the

number of candidates tends to reduce after the R-CNN stage). The input for

the R-CNN model in (2) is defined by taking each bounding box d∗n and ex-

tracting an image patch from x, which is then resized to M ×M using bi-cubic240

interpolation and contrast enhanced (Ball and Bruce (2007)). The training of

the CNN involves taking the NRGH candidates and define a set of positive and

negative samples, by looking at the overlap between the estimated and anno-

tated bounding boxes, and the objective of this training is to minimise a softmax

classification loss. Specifically, if the overlap is bigger than 0.2, then it repre-245

sents a positive sample, otherwise, it is a negative sample. Instead of using this

classification result from the CNN, we notice that by taking a feature vector
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built from the last fully-connected layer (before the the softmax layer), and use

it in a linear SVM classifier, we are able to produce more accurate classification

results. All candidates that survived the first cascade of the R-CNN are then250

passed through to the second cascade of R-CNN to further reduce the number

of false positive detections (Dhungel et al. (2015a)).

After the R-CNN stage, we still have a relatively high false positive rate

and as a result a new round of classifiers needs to be introduced. Note that

at this stage, the classification problem is complex, so we need a high capacity

model that can learn to represent this classification problem. Therefore, we

first extract a large number of hand-crafted features extracted from the masses

candidate of the second stage {d∗n, ỹ∗n}JRCNN
n=1 and feed them to a cascade of ran-

dom forest (RF) classifiers (Breiman (2001)). In particular, we use object based

morphological features such as number of perimeter pixels, area, perimeter-to-

area ratio, circularity, rectangularity, and five normalised radial length (NRL)

features (Wei et al. (2005); Dhungel et al. (2015a)), in addition to the texture

features from grey level co-occurrence matrix (GLCM) (Wei et al. (2005); Dhun-

gel et al. (2015a)). In total, we have 781 hand-crafted features available at this

stage. The RF classifier is defined by

{d∗n, ỹ∗n}Nn=1 = fRF(x, {d∗n, ỹ∗n}NRCNN
n=1 , θRF), (3)

where fRF(.) represents a random forest classifier defined by parameters θRF

(number of trees, number of leaves in each tree, etc.), and N ≤ NRCNN (i.e.,

the number of candidates tends to be smaller after the RF stage).255

3.3. Hypothesis Refinement

This hypothesis refinement step is one of the novel contributions of this

paper, where the objective is the adjustment of the bounding boxes in the set

{d∗n, ỹ∗n}Nn=1, produced by the RF classifier in (3), such that they fit more tightly

around the detected breast masses. Assuming that we have a scoring function
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defined by

f∗n = fSC(x,d∗n, θSC), (4)

which weights the relevance of bounding box d∗n, we can use the Bayesian opti-

misation proposed in (Zhang et al. (2015)), which is an effective way to improve

the detection accuracy when fSC(.) is a computationally expensive function.

The main goal of this hypothesis refinement is to improve the scale and lo-260

calisation of the bounding boxes coming from (3) that can have small overlap

ratios (in [0.2, 1.0]) with respect to the ground truth annotation. Hence, we

need the scoring function defined in (4), where positive training samples are

defined by an overlap≥ 0.6 and negative samples have overlap≤ 0.3. With the

scoring function in (4), we can form a set BN = {(d∗n, f∗n)}Nn=1, and the goal265

is to find a new bounding box d∗N+1 that maximises the probability of im-

proving the score wN+1, where f is assumed to be sampled from P (f |BN ) ∝
P (BN |f)P (f). This represents a recursive algorithm that samples a new bound-

ing box d∗N+t based on BN+t−1, and forms a new hypothesis set BN+t =

{(d∗n, fn)}N+t−1
n=1

⋃
(d∗N+t, f

∗
N+t).270

The idea behind this optimisation process is to define a prior distribution

P (f), defined by a Gaussian process GP(m(.), k(., .)), from where we can draw

samples with f ∼ GP(m(.), k(., .)) (Zhang et al. (2015)). This idea is realised

with the formulation of this problem as a Gaussian regression that estimates

new bounding boxes d∗N+t given observations BN+t−1 in order to maximise the

following acquisition function:

aEI(d
∗
N+t|BN+t−1, θEI) =

∫ ∞

f̂N

(fN+t − f̂).P (fN+t|d∗N+t,BN+t−1, θEI)df, (5)

where f̂N = maxn∈{1,...,N} fn, θEI represents the parameters of model aEI(.),

and P (fN+t|d∗N+t,BN+t−1, θEI) follows a Gaussian distribution (Zhang et al.

(2015)). The refinement algorithm proceeds according to the steps in Algo-

rithm 1, where non-max suppresion (NMS) is a function that takes a set of

bounding boxes and clusters them based on their overlap and scores, and in-275
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Algorithm 1 Local search for Hypothesis Refinement

Require: Mammogram x, the set of detected bounding boxes and scores BN =
{(d∗n, f∗n)}Nn=1, parameters θSC for the scoring function in (4), acquisition
function parameters θEI in (5), and maximum number of iterations tmax, a
threshold fprune to prune the bounding boxes.

1: Bnew ← transformations(BN )
2: for t = 1, ..., tmax do
3: Bproposal = ∅
4: Bprune = {(d, f) ∈ Bj : f ≥ fprune}
5: Bnms = NMS(Bprune)
6: for (dbest, fbest) ∈ Bnms do
7: for ρ ∈ {0.3, 0.5, 0.7} do
8: Blocal = {(d, f) ∈ Bj : IoU(d,dbest) > ρ}
9: dN+1 = arg maxd aEI(d|Blocal, θEI)

10: fN+1 = fSC(dN+1,x; θSC)
11: Bproposal ← Bproposal ∪ (dN+1, fN+1)
12: end for
13: end for
14: Bnew ← Bproposal ∪ Bnew

15: end for
16: Bprune = {(d, f) ∈ Bnew : f ≥ fprune}
17: Bref = NMS(Bprune)

tersection over union (IoU) measures the ratio between the intersection and

the union between the two bounding boxes in the argument. In essence, Al-

gorithm 1 runs for tmax steps, where we first augment the set BN with the

transformations(.) function that translates (in the range of [−20,+20] pixels in

horizontal and vertical directions, with step size 4) and scales (in the range of280

[0.8, 1.2], with step size 0.2) the samples in BN to form the set Bnew. Then, at

each step, we first prune all candidates with low scores, and cluster the remain-

ing ones via non-max suppression (NMS), where the assumption is that each

cluster represents one particular mass candidate. For each bounding box that

has been considered to be a local optimum, we consider different IoU values285

(ρ ∈ {0.3, 0.5, 0.7}) to build the local bounding box set Blocal that is used in

the GP to form dN+1 that is then included in the new set of proposals. This

process returns the set Bref of final mass candidates.

The estimation of the parameters θSC of the model in (5) uses the manu-
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Figure 4: The proposed mass segmentation is carried out with the segmentation produced
by a CRF on a low resolution image patch that is then scaled to the original image size and
refined with the Chan-Vese active contour method (Chan et al. (2001)).

ally annotated bounding boxes d from the training data D, which are randomly290

scaled and translated with positive samples comprising the bounding boxes with

IoU ratio above a pre-defined threshold ρ (with respect to the manual annota-

tion), and negative samples have IoU below that same threshold. We use the

same pre-processing (contrast enhancement) (Ball and Bruce (2007)) and scal-

ing (to an image patch of size M ×M) as used in Sec. 3.2.1. Finally, the model295

in (4) is represented by a CNN that is trained with the same samples as the

ones used for training the model in (5).

4. Mass Segmentation

The mass segmentation algorithm (Dhungel et al. (2015b)) uses deep struc-

tured output learning to produce a segmentation on a low resolution input image

patch. The contribution of this paper comprises a refinement step based on the

Chan-Vese active contour model (Jorstad and Fua (2014)) that improves the

segmentation precision in the original image resolution (see Fig. 4). Once each

bounding box dn ∈ Bref is estimated from the hypothesis refinement in Alg. 1,

we use it to crop the image patch that is resized to a low resolution patch of size

M ×M with the function x̂n = fcrop(x,dn) (this function uses bi-cubic interpo-

lation). The segmentation map is estimated in this low resolution image patch.

The model used for segmenting the image is based on a Conditional Random

Field (CRF), where the underlying graph G has nodes V (representing pixel

grey values and labels) and edges E between the label nodes. The CRF model
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is parametrised by θCRF, where the learning minimises the following empirical

loss (Nowozin and Lampert (2011)):

θ̂CRF = arg min
θ

|D|∑

i=1

|Bref(i)|∑

n=1

`(x̂i,n, ŷi,n, θ), (6)

where i indexes the training images from set D and n indexes the masses in the

set of refined detections Bref (with cardinality |Bref|), ŷn,i denotes the cropped

segmentation map obtained with fcrop(yi,dn), defined above, `(x̂i,n, ŷi,n, θ) is

a continuous and convex loss function that defines the structured output model.

Our segmentation model in (Dhungel et al. (2015b)) explores CRF and SSVM

formulations for solving (6), but in this paper we only consider the CRF model

given its superior results. The loss function for the CRF model is described

as (Dhungel et al. (2015b)):

`(x̂i,n, ŷi,n, θCRF) = A(x̂i,n, θCRF)− E(x̂i,n, ŷi,n, θCRF), (7)

where A(x̂i,n, θCRF) = log
∑

ŷ∈m∈{−1,+1}M×M exp {E(x̂i,n, ŷ, θCRF)} is the log-

partition function that ensures normalisation, and

E(x̂i,n, ŷi,n, θCRF) =

K∑

k=1

∑

v∈V
θ1,kψ

(1,k)(ŷi,n(v), x̂i,n)+

L∑

l=1

∑

(v,q)∈E
θ2,lψ

(2,l)(ŷi,n(v), ŷi,n(q), x̂i,n),

(8)

with ψ(1,k)(., .) representing one of the K unary potential functions between la-

bel and pixel nodes, ψ(2,l)(., ., .) denoting one of the L binary potential functions300

on the edges between label nodes, and θCRF = [θ1,1, ..., θ1,K , θ2,1, ..., θ2,L]> ∈
RK+L with ŷi,n(v) being the node v of graph G.

4.1. Training and Inference Procedure

The solution of optimisation in (6) involves the computation of the log-

partition function A(x̂i,n, θCRF) that can be bounded from above using the tree

16

98



re-weighted (TRW) belief propagation, as follows (Wainwright et al. (2003)):

A(x̂i,n; θCRF) = max
µ∈M

θTCRFµ+H(µ), (9)

where M = {µ′ : ∃w, µ′ = µ} is the marginal polytope, µ =
∑

ŷ∈{−1,+1}M×M

P (ŷ|x̂, θCRF)fI(ŷ), with fI(ŷ) denoting the set of indicator functions of possible305

configurations of each clique and variable in the graph (Meltzer et al. (2009)), as

denoted in (8), P (ŷ|x̂, θCRF) = exp {E(ŷ, x̂; θCRF)−A(ŷ; θCRF)} indicating the

conditional probability of the annotation ŷ given the sub-image x̂ and parame-

ters θCRF (Assuming that this conditional probability function belongs to the ex-

ponential family) and H(µ) = −∑
ŷ∈{−1,+1}M×M P (ŷ|x̂; θCRF) logP (ŷ|x̂, θCRF)310

is the entropy. Note that for general graphs with cycles, the marginal polytope

M is difficult to characterise and the entropy H(µ) is not tractable (Domke

(2013)). TRW solves these issues by first replacing the marginal polytope with

a superset L ⊃M that only accounts for the local constraints of the marginals,

and then approximating the entropy calculation with an upper bound (Domke315

(2013)). The estimation of θCRF in (7) is achieved via gradient descent via

truncated fitting (Domke (2013)), and the inference to find the label ŷ∗ for a

sub-image x̂ is based on TRW.

4.1.1. Potential Functions

The model in (8) can incorporate K unary and L binary potential functions.

For the unary functions, we use the results from the pixel-wise segmentation

produced by CNN, DBN, GMM and shape prior models. The CNN unary po-

tential function is defined by (LeCun and Bengio (1995); Dhungel et al. (2015b))

ψ(1,1)(ŷ(v), x̂) = − logPCNNSEG(ŷ(v)|x̂, θCNNSEG), (10)

where PCNNSEG(.) denotes the probability of labelling the node v ∈ V with mass320

or background (given the input sub-image x̂) and θCNNSEG denotes the CNN

parameters (LeCun and Bengio (1995)).

The DBN unary potential function is defined as (Hinton and Salakhutdinov
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(2006); Dhungel et al. (2015b)):

ψ(1,2)(ŷ(v), x̂S) = − logPDBNSEG,S(ŷ(v)|x̂S , θDBNSEG,S), (11)

where θDBNSEG,S represents the DBN parameters of the DBN model that re-

ceives as input an image patch of variable size centred at the node v position.

The inference is based on the mean field approximation of the values in all DBN

layers, followed by the computation of free energy on the top layer (Hinton and

Salakhutdinov (2006)). In addition to the CNN and DBN patch-based poten-

tial functions, we also use a pixel-wise GMM unary potential function (Dhungel

et al. (2015b)) defined by:

ψ(1,3)(ŷ(v), x̂) = − logPGMMSEG(ŷ(v)|x̂(v), θGMMSEG), (12)

where P (.) is computed from the GMM class dependent probability model,

learned from the training set; and the shape prior unary potential function (Dhun-

gel et al. (2015b)) is represented by

ψ(1,4)(ŷ(v), x̂) = − logP (ŷ(v)|θPRIORSEG), (13)

which computes the probability that node v is part of a mass based only on

the patch position (this prior is estimated from the training annotations). Fi-

nally, the pairwise potential functions between label nodes in (8) encode la-325

bel and contrast dependent labelling homogeneity as ψ(2,1)(ŷ(v), ŷ(q), x̂) and

ψ(2,1+n)(ŷ(v), ŷ(q), x̂) respectively (Nowozin and Lampert (2011); Domke (2013);

Dhungel et al. (2015d)). The labelling homogeneity is defined by:

ψ(2,1)(ŷ(v), ŷ(q), x̂) = 1− δ(ŷ(v)− ŷ(q)), (14)

where, δ(.) represents the Dirac delta function. Similarly, contrast dependent

labelling homogeneity is represented by 11 pairwise potential functions and is
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defined by:

ψ(2,1+n)(ŷ(v), ŷ(q), x̂) = (1− δ(ŷ(v)− ŷ(q))δ(||bx̂(v)cτn − bx̂(q)cτn ||2)),

bx̂(v)cτn =





x̂(v) if x̂(v) ≥ τn

0, otherwise,

(15)

where x̂(v), x̂(q) represents the value of the pixel at grid location v, q, and

τn ∈ {τ1, τ2, ..., τ10} is a set of ten thresholds (Domke (2013); Dhungel et al.330

(2015d)).

4.2. Segmentation Refinement

We map the segmentation ŷ∗, obtained from the inference described in

Sec. 4.1, from the M ×M lattice to the original image size, using the bounding

box dn ∈ Bref with the function ỹ∗n = frestore(ŷ∗,dn) that uses nearest neigh-

bour interpolation. The issue here is that the resulting segmentation ỹ∗n is quite

coarse and needs to be refined, and our solution involves the use of the Chan-

Vese active contour (Chan et al. (2001)) with ỹ∗n. The active contour function

φ(.) to represent the segmentation is the signed distance function and ỹ∗n is used

to initialise this function with φ0 = fφ(ỹ∗), where the energy functional to be

minimised is defined by (Chan et al. (2001)):

ECV(φ, ỹ∗,x) = γ

∫

Ω

|(x− c2)|2(1−H(φ)dx+

λ

∫

Ω

|(x− c1)|2H(φ)dx+ µ

∫

Ω

δ(φ)| 5 φ|dx,
(16)

where H(.) is the heaviside step function, µ, λ, γ are tunable parameters, c1, c2

are the average of the image x in the regions where φ(.) >= 0 and φ(.) < 0

(respectively), and δ(.) is the Dirac delta function. The minimisation of the335

energy in (16) is solved by finding the steady state solution of the gradient

flow equation ∂φ
∂t = −∂E∂φ , where ∂E

∂φ is the Gâteaux derivative of the functional

E(.) (Chan et al. (2001)). The final segmentation is produced by y∗n = φ ≥ 0.

The full segmentation algorithm is displayed in Algorithm. 2, and depicted in
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Figure 5: The proposed classification methodology consists of two steps: 1) pre-training of
the CNN for regressing the values of hand-crafted features, and 2) fine-tuning the pre-trained
CNN model for the mass classification problem.

Fig. 4.

Algorithm 2 Mass Segmentation with Refinement

Require: Mammogram x, refined bounding box dn ∈ BN , sub-image sizeMsub,
number of iterations tmax for the Chan-Vese optimisation, the unary and
pairwise model parameters θCNNSEG, θDBNSEG, θGMMSEG, θPRIORSEG, and
structured output model θCRF

1: Extract sub-image x̂ = fs(dn,x,Msub)
2: Constrast enhance sub-image x̂ (Ball and Bruce (2007))
3: Compute unary potential function results ψ(1,k) for k ∈ {1, ..., 4} using (10)-

(13)
4: Compute pairwise potentials ψ(2,l) for k ∈ {1, 2} using (Meltzer et al. (2009))

5: Infer segmentation label ŷ∗ using TRW (Wainwright et al. (2003); Dhungel
et al. (2015b))

6: Map ŷ∗ to ỹ∗ = frestore(ŷ∗,dn)
7: Compute initial distance function φ0 = fφ(ỹ∗)
8: Estimate φtmax

using Chan-Vese minimization (Chan et al. (2001))
9: Infer final segmentation y∗n = φtmax

≥ 0

340

5. Mass Classification

The main idea explored in the implementation of the mass classification

system is to leverage the functionality of previously proposed hand-crafted fea-

tures (Varela et al. (2006)) in the training of the CNN model (LeCun and Ben-

gio (1995); Krizhevsky et al. (2012)), particularly considering that such features345

have been shown to be effective for tumour classification. Specifically, the CNN
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mass classification model is trained in two stages. The first stage pre-trains the

CNN model to work as a regressor from the input image patch and respective

segmentation against the values of a large set of hand-crafted features as per

Sec. 3.2.1. The second stage fine-tunes the pre-trained CNN model to improve350

the accuracy of breast mass classification.

The hand-crafted features are extracted from a mammogram x, bounding

box d and segmentation map y as follows:

z = fhcf(x,d,y), (17)

where z ∈ RH denotes the vector containing the values of the hand-crafted fea-

tures, consisting of morphological and texture features (Varela et al. (2006)).

The morphological features are computed using the segmentation mask y, and

the texture features are computed from the image patch contained by the bound-

ing box d as in Sec. 3.2.1. In order to pre-train the CNN model with the features

z, we build a model with L−2 stages of convolutional plus non-linear activation

and max pooling, followed by a fully connected layer with H nodes, which is

the same number of features as in z in (17). This regressor is defined by

z∗ = fCNNRG(x,d,y, θCNNRG), (18)

where fCNNRG(.) represents the CNN model that outputs the estimated hand-

crafted feature vector z ∈ RH , where the loss function used to train such model is

denoted by `(θCNNRG) =
∑|D|
i=1

∑|Ai|
j ‖zi,j − z∗i,j‖2, with i indexing the training

images, j indexing the masses in each training image, zi,j denotes the vector of355

hand-crafted features from mass j and image i, and z∗i,j is the output from (18)

- see step 1 in Fig. 5. The mass classification model takes the CNN from (18)

and adds another fully connected layer (i.e., the L + 1st layer) with softmax

activation, which is trained with cross enropy loss minimisation - see step 2 in

Fig. 5.360
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6. Experimental Methodology

We evaluate the performance of our detection, segmentation and classifica-

tion methodologies on the publicly available INbreast dataset (Moreira et al.

(2012)), containing 115 cases and 410 images, out of which 116 images have

benign or malignant masses and the remaining ones do not contain any masses.365

For the experiments, the 115 cases of the dataset are randomly divided into

60% for training, 20% for validation and 20% for testing, which allows us to

run a five-fold cross validation. All experiments are carried out on a standard

computer with the following specification: Intel(R) Core(TM) i5-2500k 3.30GHz

CPU with 8GB RAM and graphics card NVIDIA GeForce GTX 460 SE 4045370

MB.

6.1. Detection Experimental Setup

For the detection experiment, we use the average precision curve, which is

a function of true positive rate against the Intersection over Union (IoU), and

free response operating characteristic (FROC) curve that is a function of true375

positive rate (TPR) with respect to false positive detections per image (FPI).

For the mass ROI detection problem in Sec. 3.2.1, the mass is considered to be

detected if the IoU between the bounding box of the candidate region and ground

truth is greater than or equal to 0.2 (Kozegar et al. (2013); Beller et al. (2005);

te Brake et al. (2000); Campanini et al. (2004); Eltonsy et al. (2007); Sampat380

et al. (2008); Bellotti et al. (2006); Wei et al. (2005)). The model selection for the

DBN, R-CNN and RF models in mass ROI detection (Sec. 3.2.1) is performed

with the training and validation sets. The network structure for the m-DBN in

Sec. 3.2.1 has two layers containing 200 and 500 nodes and the input patch has

a fixed size of 7×7 (i.e., S = 7) for all resolutions of the input image, where the385

coarsest resolution is represented by an image of size 80× 80 (pixels), the next

finer resolutions have images of sizes 120×120, 160×160 and 264×264. We use

the LeNet network structure (LeCun and Bengio (1995)) for both CNN models

in the cascade of R-CNN models in Sec. 3.2.1, where the input image has a fixed
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size of 40× 40 pixels (i.e., M = 40). The LeNet network structure has 20 filters390

of size 5 × 5 followed by a max pooling layer that sub-samples the input by a

factor of two, then the second convolutional stage has 50 filters of size 5×5 and

a max-pooling layer that again sub-samples the input by two, the convolutional

stage three has 500 filters of size 4×4 followed by a rectified linear unit (ReLU)

activation function (Nair and Hinton (2010)), the fourth convolutional stage395

has 500 filters with size 4 × 4 followed by another ReLU unit, and stage five

is a fully connected layer with 2 nodes. For the R-CNN models, we artificially

augment the number of positive training samples from the mass ROI detection

stage using geometric transformations such as translation and rotation around

the positive candidates. The augmented dataset contains 10 times the initial400

number of positive samples, but the original number of negative samples. The

samples are considered positive if the respective bounding boxes have IoU ≥ 0.2,

otherwise they are regarded as negative. The RF classifier is trained without

data augmentation. The operating point for the cascaded module in mass ROI

detection is fixed by setting a threshold on classifiers scores using the training405

and validation set which ensures that TPR >= 0.9 while gradually reducing

the FPI in each stage of the cascade (see Fig. 3). The parameters for the RF

classifiers are estimated with the validation set of each one of the five folds of

the N-fold cross validation with search range from [1,1000]. On average, the first

cascade stage of RF has 37 trees, with each tree containing 27 leaves, whereas410

the second cascade stage has 56 trees, each containing 17 leaves. The definition

of positive and negative samples is the same as above for the R-CNN models,

but we do not use the augmented training data.

For the hypothesis refinement, we use a separate CNN model represented by

θSC defined in (4), which has the LeNet network structure (LeCun and Bengio415

(1995)). This new classifier in (4) is important because the RF model above

has a relatively low precision in terms of the detection of the position and

scale of the mass, where a positive sample is defined by IoU≥ 0.3. This new

CNN classifier defines a positive sample by IoU≥ 0.6 and a negative sample

by IoU< 0.6. These samples are obtained by augmenting the ground truth420
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bounding box (translation and scale) using training data followed by cropping,

re-sizing with bi-cubic interpolation to 40× 40 and contrast enhancement (Ball

and Bruce (2007)).

6.2. Segmentation Experimental Setup

The model selection for the DBN (θDBNSEG) and CNN (θCNNSEG) unary425

potential functions in Algorithm. 2 is performed via cross validation using the

training and validation sets. The DBN model has two layers with 200 and 500

nodes, which are trained with image patch sizes of 3×3, 5×5, and 7×7. The CNN

model has two convolutional stages with 12 filters of sizes 5×5 that are followed

by ReLU activation and max-pooling that reduces the input size by a factor of430

two. The final stage of the CNN model has a fully connected layer containing 588

nodes and an output layer of 40× 40 (i.e., the same size as the input). Finally,

the parameter values for the Chan-Vese model in (16) are also estimated via

cross validation, producing the following values: µ = 0.2, λ = 1, γ = 1 and

number of iterations t = 10.435

6.3. Classification Experimental Setup

We explore both a manual and fully automated setup for classification where

manual set-up uses the manual annotations for the ROI and segmentation mask.

We use the refined ROI bounding box obtained from Algorithm 1 (same used

for the mass segmentation) and segmentation mask from Algorithm 2 for the440

fully automated set-up. From the ROI bounding box and segmentation mask,

we extract 781 hand-crafted features, as described in Sec. 3.2.1, for pre-training

the CNN model. The CNN model that is pre-trained with these features has the

first convolutional stage with 20 filters of size 5 × 5 followed by a max pooling

layer that sub-samples the input by factor of two, then the second convolutional445

stage has 50 filters of size 5× 5 and a max-pooling layer that again sub-samples

the input by two, the convolutional stage three has 100 filters of size 4 × 4

followed by a rectified linear unit (ReLU) activation function (Nair and Hinton

(2010)), the fourth convolutional stage has 781 filters with the size 4×4 followed
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(a) FROC - Cascade of R-CNN (b) FROC - Cascade of RF

Figure 6: FROC curve for cascade of R-CNN and RF (Dhungel et al. (2015a)) during the
ROI detection, assuming that a successful detection has IoU of at least 0.2 (Kozegar et al.
(2013); Beller et al. (2005); te Brake et al. (2000); Campanini et al. (2004); Eltonsy et al.
(2007); Sampat et al. (2008); Bellotti et al. (2006); Wei et al. (2005)).

by another ReLU unit, and stage five is a fully connected layer with 781 nodes450

(i.e., the same size as the hand-crafted features). The CNN model used for the

fine-tuning process uses the pre-trained model, where a softmax layer containing

two nodes (representing the benign versus malignant classification) is added,

and the fully-connected layers are trained with drop-out of 0.3 (Srivastava et al.

(2014)). In order to regularise the CNN, we artificially augment by 10 times the455

training data using geometric transformations (rotation, translation and scale)

in the vicinity of the ground truth data. Note that for comparison purposes, we

also train a CNN model without the pre-training step to show its influence in

the classification accuracy. Moreover, using the hand-crafted features, we train

an RF classifier (Breiman (2001)), where model selection is performed using the460

validation set of each cross validation fold. We also train another RF classifier

using the 781 features from the second to last fully-connected layer of the fine-

tuned CNN model. The parameters for the RF classifiers are estimated with the

validation set of each one of the five folds of the N-fold cross validation where

on average, the RFs have 8 trees (search range in [1,1000]), each with 6 leaves465

(search range in [1,1000]).
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(a) Average precision for detection (b) FROC - Mass hypothesis refinement

Figure 7: Performance measures of our proposed mass refinement algorithm: a) True positive
rate of hypothesis refinement as a function of the the minimum IoU ratio, and b) FROC curve
of the hypothesis refinement at IoU ≥ 0.5.

(a) Horizontal Translation (b) Vertical Translation

Figure 8: Plot of the CNN classifier in (5) as a function of the annotated bounding box
horizontal (a) and vertical (b) translation.

7. Experimental Results

Fig. 6-(a-b) shows the FROC curve as a performance measure for the cascade

stages in the ROI detection module. The final mass ROI detection module,

consisting of the RF in Sec. 3.2.1 produces a TPR of 0.95 ± 0.02 at a FPI = 5470

for the testing data and TPR of 0.95 ± 0.02 at FPI = 3 for training data with

an IoU ≥ 0.2 (see FROC curve in Fig. 6-(b)). Figure 7-(a) shows the TPR

as a function of different minimum levels of IoU for the hypothesis refinement

in Algorithm. 1, where it can be noted that for values where IoU ≤ 0.5, TPR

remains stable and above 0.9 and starts to fall with IoU > 0.5 for both training475

and testing. Therefore, we choose an IoU = 0.5 based on the training result as

an optimal point for measuring the performance of our mass detection algorithm
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Figure 9: Effect of adding different potential functions into our CRF model (Dhungel et al.
(2015b)) on the testing set of INbreast taking a manually detected ROI breast mass.

Table 1: Results of our fully automated segmentation algorithm on the INbreast dataset.

Segmentation
Methodology

Input
Size

Dice
Index

(Training
Data)

Dice
Index
(Test
Data)

CRF model with
active contour

refinement

Original image
resolution

0.85± 0.01 0.85± 0.02

CRF model 40x40 0.87± 0.02 0.84± 0.02
CRF model with
nearest neighbor

interpolation

Original image
resolution

0.82± 0.02 0.80± 0.01

Active contour
model

Original image
resolution

0.82± 0.01 0.82± 0.03

with the hypothesis refinement described in Sec. 3.3. From the FROC curve in

Fig. 7-(b), the mass detection algorithm with hypothesis refinement produces

the best result of TPR = 0.93 ± 0.05 at FPI = 0.8 on the training data and480

a TPR = 0.90 ± 0.02 at a FPI = 1.3 on the testing data with an IoU ≥ 0.5.

We also found that our automated mass ROI detection and refinement system

produces a pixel wise TPR of 0.99± 0.01 for training and a TPR of 0.97± 0.02

for the testing data. Fig. 8-(a) and Fig. 8-(b) show the result of the scoring

function, as a function of horizontal and vertical translation of the ground truth,485

in the hypothesis refinement described in Sec. 3.3. The two graphs in Fig. 8

show that the scoring function has high accuracy and precision when a small

translation (< 5 pixels) is applied, and both measures tend to decrease with

larger translations (> 5 pixels).

The performance of the proposed segmentation algorithm is shown in Tab. 1490
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Table 2: Comparison between our proposed segmentation algorithm and the state-of-the-art
methods on test sets.

Methodologies Setup Dataset Rep. Dice Index
Proposed CRF

model with active
contour refinement

Fully automated INbreast yes 0.85± 0.02

te Brake et al.
(2000)

Fully automated Dutch screening program no 0.82

Our previous CRF
model w/o refine-

ment (Dhungel
et al. (2015b))

Semi-automated INbreast yes 0.90 ±0.02

Cardoso et al.
(2015)

Semi-automated INbreast yes 0.88

in terms of the Dice index for training and testing data from the automatically

detected and refined ROIs from Algorithm. 1. The segmentation was carried out

using the combination of several potential functions (CNN+DBN3×3 + DBN5×
5 + GMM + Prior + Pairwise) for the CRF segmentation at resolution of 40×
40 (Dhungel et al. (2015b)). We also show the result in terms of Dice index for495

combining different potential functions to our CRF model for the segmentation

of manually detected ROIs in Fig. 9 (Dhungel et al. (2015b)). The resulting

segmentation in a 40×40 binary image is resized to its original bounding box size

using bicubic-interpolation and then refined using Chan-Vese’s active contour

model (Chan et al. (2001)), as described in Sec. 4.2. For comparison, we show500

the Dice index of the segmentation when the segmentation map is scaled up

to the original image resolution using nearest neighbour interpolation. Also

for comparison, we show the result from Chan-Vese’s active contour (Chan

et al. (2001)) with a general initialisation with an ellipse centred and scaled

according to the position and size of the bounding box. This initial ellipse505

shape is obtained by fitting an ellipse to all aligned training annotations. Table 2

shows a comparison between our proposed segmentation method and the current

state of the art in field, where the column represented by “Rep.” indicates public

availability of datasets to reproduce the result and “Setup” indicates whether the

mass ROI detection is performed in a fully automated way, or semi-automated510

manner (i.e. with a manual mass detection).

For the classification problem we compare the performance of different ver-

sions of the proposed model in order to assess the role of each stage. Figures 10-
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(a) Manual setup (b) fully automated setup

Figure 10: Accuracy of various classifier on features extracted using methodologies described
in this paper in manual and automated system for test data.

Table 3: Comparison between our classification methodology and state-of-the-art methods on
test sets.

Methodology Dataset Setup ACC AUC
Proposed CNN with

pre-training
INbreast Manual 0.91± 0.06 0.87± 0.06

Proposed RF on CNN
with pre-training

INbreast Manual 0.95± 0.05 0.91± 0.12

Proposed CNN with
pre-training

INbreast Fully automated 0.84± 0.04 0.69± 0.10

Proposed RF on CNN
with pre-training

INbreast Fully automated 0.91± 0.02 0.76± 0.23

Domingues et al.
(2012)

INbreast Manual 0.89 NA

Varela et al. (2006) DDSM Semi-automated 0.81 0.76
Ball and Bruce (2007) DDSM Semi-automated 0.87 0.97

Shi et al. (2007) Uni. of Michigan Semi-automated 0.83± 0.02 0.85± 0.02

(a-b) displays the classification accuracy for both manual and automated setups,

from which it is apparent that the RF on the features from the CNN model with515

pre-training produces the best results on the testing set with an accuracy (ACC)

of 0.95± 0.05 on manual and 0.91± 0.02 on the fully automated setup. In ad-

dition, we compare the results between the various models in terms of area

under the ROC curve (AUC) in Figures 11-(a-b), which also shows that RF

on the CNN features with pre-training produces the best overall AUC value520

of 0.91 ± 0.12 for manual and 0.76 ± 0.23 for fully automated setup. We also

compare our classification method with other state-of-the-art methods in Tab. 3

in terms of classification accuracy and AUC where applicable.

The total running time for our fully automated system is 41 seconds per
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(a) Manual setup (b) fully automated setup

Figure 11: ROC curve of various classifier on features extracted using methodologies described
in this paper in manual and automated system for test data.

image, divided into 39 seconds for mass detection, 0.2 seconds for the mass525

segmentation and 0.8 seconds for mass classification. We show some visual

results in Fig. 12 for the fully automated detection and segmentation results

and in Fig. 13 for the fully automated detection, segmentation and classification

system.

8. Discussion530

The results from the Fig. 7-(a-c) show the importance of hypothesis refine-

ment stage of the segmentation algorithm in Algorithm. 1. This improves the

localisation precision of the bounding box, and consequently increases the IoU

ratio with respect to the ground truth annotation from 0.2 to 0.5 while keeping

TPR over 0.9 and FPI around one. The other important observation is that535

our proposed mass detection algorithm retains most of ground truth pixels in

training (99%) as well as testing (97%). The FROC curves in Fig. 6 show the

benefit of the proposed cascade classifier. The TPR from the second cascade

stage of R-CNN saturates when FPI is around 30 without making any further

improvement. We also noticed that it is important to have two stages of R-CNN540

because a single R-CNN module is not enough to reduce the FPI to around 30
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Figure 12: Examples of the fully automated mass detection and segmentation with refinement.
The contour with the blue line represents the ground truth annotation, red line denotes the
manual ROI, yellow is the detected and refined ROI from our methodology, magenta is the
segmentation from the CRF model with nearest neighbor interpolation, and green is the
segmentation refined by the active contour model.

(at a TPR ≥ 0.95). We also found that in order to achieve the best perfor-

mance for the hypothesis refinement module, it is important to reduce the FPI

to around five whilst keeping the TPR above 0.9. In this sense, the proposed

cascade with two RF stages plays an important role as a single stage of RF was545

not able to achieve acceptable results.

The segmentation result in Fig. 9 (Dhungel et al. (2015b)) on manual setup

shows that the combination of all the potential functions (CNN + DBN3x3 +

DBN5x5 + GMM + prior + pairwise) is crucial for producing state-of-the-art

results. Therefore, we use all these potential functions in our CRF segmentation550

model for the fully automated setting. The segmentation results in Table. 1 show

that the proposed model with active contour refinement produces better results

(Dice Index = 0.85± 0.02) on the testing set compared with nearest neighbour

interpolation from the 40×40 CRF result to the original image resolution (Dice
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Figure 13: Examples of mass classification based on the RF model on features from CNN with
pre-training using the fully automated setup and manual setup. Red contours denote manual
detection and blue denotes the manual segmentation whereas yellow contours represent the
automated detection and green is the automated segmentation. Ground truth and automated
classification results are shown below each image.

Index = 0.82 ± 0.02) and the active contour model with a fixed initialisation555

computed from the mean shape of the training set (Dice Index = 0.82±0.01). It

is also important to notice that the proposed segmentation refinement produces

slightly better results on test data when compared with the CRF model on

the 40 × 40 resolution. We also notice that the number of iterations needed

for the active contour model to converge using segmentation from the proposed560

CRF model is smaller (10 iterations) than the number of iterations needed when

using the mean shape from training set (100 iterations). The comparison with

the current state-of-the-art systems for segmentation in Table. 2 shows that

our methodology produces the best result when using automatically generated

mass ROIs (Dice Index = 0.85± 0.02 vs 0.82 (te Brake et al. (2000))) as well in565

manually selected ROIs (Dice Index = 0.90 vs 0.88 (Cardoso et al. (2015))).

For the mass classification problem, the results in Figures 10 and 11 show

32

114



that RF on features from the CNN model with the pre-training and CNN with

pre-training are better than the results using RF on hand-crafted features and

CNN without pre-training. Figures 10 and 11 also show that the RF classifier570

performs better than the CNN classifier in both fully automated and manual

setups. Here, we did not show the classification results of CNN without pre-

training for the fully automated system because of its poor performance on

manual setup. The Wilcoxon paired signed-rank for classification accuracy on

test set between the RF on CNN features with pre-training and the RF on hand-575

crafted features indicates statistically significant results (at 5% level), with a p-

value of 0.02. Another important observation from the Table. 3 is that both the

training accuracy (ACC = 0.94±0.06) and testing accuracy (ACC = 0.95±0.05)

on manual setup correlates well with each other implying good generalisation

of RF on CNN features with pre-training. From the Fig.11 (a-b), we see that580

there is an increase in FPR and decrease in the AUC value in fully automated

system compared to manual setup which is expected due to increase in number

of FPI in fully automated setup. Table. 3 shows that our methodology produces

comparable or better results in terms of classification accuracy in manual, semi-

automated and fully automated setups. The visual results in Fig. 13-(a) shows585

classification results using fully automated set-up and Fig. 13-(b) shows the

results from the manual set-up. The visual results for the fully automated set-

up has quite an accurate automatically generated ROI and segmentation using

our technique. Finally, the classification results on test set, using manual set-up,

display a mean sensitivity of 0.97 and mean specificity of 0.90, while the fully590

automated set-up produces a mean sensitivity of 0.98 and mean specificity of

0.70, which shows that our proposed CAD system is robust to false positives

and false negatives.

9. Conclusion

In this paper, we describe a complete and fully automated CAD system for595

detection, segmentation and classification of masses from mammograms. Our
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mass detection method consists of a cascade of deep learning and random forest

models for the generation of mass candidates and reduction of false positives,

followed by hypothesis (detection) refinement. Segmentation is then carried out

with the sub-image extracted from the detected masses, which is refined by600

typical active contour models to provide more accurate delineation in higher

resolution images. The refined hypothesis and respective refined segmentation

mask are then used in a two-step training process for mass classification using a

CNN model, where pre-training is done in the first step in order to approximate

the values of hand-crafted features, and then it is fine-tuned for the breast mass605

classification problem. In general, our fully automated mass detection, segmen-

tation and classification system produces promising results and can be used as

baseline result. We also believe that our current methodology can be incorpo-

rated in the clinical set-up as a second reader for radiologists. In future, we

would like to build a end-to-end system capable of detection, segmentation and610

classification in a single integrated module similar to that of Fast R-CNN (Gir-

shick (2015)) which has produced state-of-the-art result recently in the field of

object detection.
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Chapter 10

Conclusion and Future Works

Automated detection, segmentation and classification of masses in mammograms represent the

essential steps in a CAD system that can act as a second reader in breast cancer screening

programs. CAD systems can help radiologists increase their sensitivity and specificity in the

screening of breast cancer if those systems detect, segment and classify breast lesions robustly

and accurately. Building a robust and accurate CAD system for the automatic analysis of masses

in mammograms is difficult because of the low signal to noise ratio of masses in comparison with

surrounding tissues, lack of consistent shape and appearance patterns of masses, and limited

availability of annotated public datasets. The methodologies proposed in this thesis addresses

the problem of automated detection, segmentation and classification of masses using public

datasets and we consider that our methodologies achieve state-of-the-art results for all these

three problems. We show the result of detection, segmentation and classification of masses

using five-fold cross validation experiments on INbreast dataset, which proves that our results

are robust. We have also proposed a fully automated CAD system for the analysis of masses in

mammograms, which can also act as a baseline result for future CAD systems.

In this chapter, we discuss the main contributions of our work, its limitations and future works.

10.1 Summary of Contributions

In this thesis, we proposed a combination of several machine learning techniques with deep

learning models to build a fully automated system for the detection, segmentation and classifica-

tion of masses from mammograms. We tested these techniques with manual and fully-automated

settings using two publicly available datasets. We show that we can achieve a state-of-the-art

results using our proposed methodologies. The main contributions of this thesis can be sum-

marised as:
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1. In Chapter 4, 5 and 6, we introduce novel methodologies for the breast mass segmentation

problem using two structured output prediction models, namely SSVM and CRF. These

two models combine several deep learning models. The inference with the SSVM model

is based on graph cuts and the CRF is based on TRW. The parameters of SSVM model are

learned with the cutting plane algorithm whereas CRF uses truncated fitting. Experiments

show that our methodologies for breast mass segmentation produce state-of-the-art results

in the public datasets INbreast [77] and DDSM-BCRP [78];

2. In Chapter 7, we focus on the mass detection problem and formulate it as a mass bounding

box detection problem. The main novelty of our mass detection approach is that we use

several stages of deep learning and random forest classifiers in a cascade model. The

first stage consists of m-DBN and GMM for the detection of mass candidate regions,

where the goal is to have 100% detection at the expense of a large false positive rate per

image. In later stages, we use two stages of R-CNN and two stages of RF classifiers to

reduce the false positive detections, producing a true positive rate of 0.9 with less than

one false positive per image. Our mass detection algorithm produces state-of-the-result

compared to existing methodologies for the breast mass detection problem (see Table 1 in

Chapter 7);

3. In Chapter 8, we propose a transfer learning approach for the classification of masses into

malignant or benign. Our transfer learning approach for breast mass classification com-

prises two stages. The first stage is the pre-training of the CNN model which regresses

the values of hand-crafted features. The pre-trained CNN model is fine tuned using the

class labels in the second stage to produce a mass classification system. We then clas-

sify the features from the fully connected layer of the CNN model using a RF classifier.

Our methodology for breast mass classification produces the state-of-the-art result in the

INbreast [77] dataset (see Table 1 in Chapter 8); and

4. In Chapter 9, we propose a fully automated CAD system for the analysis of masses from

mammograms. Our mass detection refinement uses a local search algorithm based on

Bayesian optimisation to refine the mass detected from the cascade of CNN and RF clas-

sifiers. The refined detection is used by the mass segmentation module. We then refine the

mass segmentation with an active contour model. The refined segmentation and detection

bounding boxes are used as input to the breast mass classification module described in

Chapter 8. These steps form a complete fully automated CAD system for the analysis of

masses from mammograms. We have also shown the results of the detection refinement

step in Fig. 7 and fully automated segmentation and classification results in Table. 2 and 3

of Chapter 9.
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10.2 Future Work

Our method successfully shows how deep learning model can be combined with other machine

learning techniques for the detection, segmentation and classification of masses from mammo-

grams. However, we believe that there are some innovations that could improve our methodol-

ogy, as follows:

1. The results from the experiments concerning mass detection in Chapter 7 show that our

methodology produces a higher number of false positives per image in the dataset con-

taining digitised film samples (DDSM-BCRP) compared to FFDM samples (INbreast).

This might be related to the fact that we use an identical pre-processing method for both

datasets, which seems to work well with the FFDM dataset containing high signal to noise

ratio (SNR), but not with digitised film dataset with low SNR. Therefore, we plan to de-

velop a novel pre-processing methodology that can work with FFDM dataset and digitised

film based datasets;

2. The other issue with our mass detection methodology, presented in Chapter 7 is that it

appears that we are overfitting the training set, which is due to small training sets that

we use in this thesis. This is a common issue with most of medical imaging problem, but

more recently, the Breast Cancer Digital Repository (BCDR) dataset has been made public

containing larger datasets of mammograms [135], which can address this overfitting issue;

3. Similarly, the visual results of segmentation in Chapters 4, 5 and 6 show that our segmen-

tation methodologies produce smoother results compared to the ground truth annotation.

This is due to the fact that the majority of mass annotations in INbreast and DDSM-BCRP

datasets are round and oval shaped. This may have negative effect on segmentation and

classification results of malignant masses characterised by a radiating spiculated shape.

We plan to incorporate star shaped priors and train the model with the BCDR dataset [135]

containing enough such cases in future;

4. Our current methodology for mass detection and classification is based on information

from single view, but we can incorporate multiple view information so as to further reduce

the number of false positives per image during the detection process;

5. Detection of micro-calcifications also plays an important part in the diagnosis of the pa-

tient, so we will build a system that can incorporate the analysis of both masses and

calcifications;

6. We will build an end-to-end system similar to Fast R-CNN [136] for the detection, seg-

mentation and classification tasks, which have been shown to produce more accurate re-

sults in the visual object detection problem;
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7. Finally, we will apply our methodology for other problems in medical image analysis.
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mortality from breast cancer after mass screening with mammography: randomised trial

from the breast cancer screening working group of the swedish national board of health

and welfare,” The Lancet, vol. 325, no. 8433, pp. 829–832, 1985.

[3] Edward A Sickles, “Breast cancer screening outcomes in women ages 40-49: clinical

experience with service screening using modern mammography.,” Journal of the National

Cancer Institute. Monographs, , no. 22, pp. 99–104, 1996.

[4] Arnau Oliver, Jordi Freixenet, Joan Marti, Elsa Perez, Josep Pont, Erika RE Denton, and

Reyer Zwiggelaar, “A review of automatic mass detection and segmentation in mammo-

graphic images,” Medical Image Analysis, vol. 14, no. 2, pp. 87–110, 2010.

[5] Jinshan Tang, Rangaraj M Rangayyan, Jun Xu, Issam El Naqa, and Yongyi Yang,

“Computer-aided detection and diagnosis of breast cancer with mammography: recent

advances,” Information Technology in Biomedicine, IEEE Transactions on, vol. 13, no.

2, pp. 236–251, 2009.

[6] C Dromain, B Boyer, R Ferre, S Canale, S Delaloge, and C Balleyguier, “Computed-

aided diagnosis (cad) in the detection of breast cancer,” European journal of radiology,

vol. 82, no. 3, pp. 417–423, 2013.

[7] I Anttinen, M Pamilo, M Soiva, and M Roiha, “Double reading of mammography screen-

ing films-one radiologist or two?,” Clinical Radiology, vol. 48, no. 6, pp. 414–421, 1993.

[8] Maryellen L Giger and AN Pritzker, “Medical imaging and computers in the diagnosis

of breast cancer,” in SPIE Optical Engineering+ Applications. International Society for

Optics and Photonics, 2014, pp. 918908–918908.

128



Chapter 10. Conclusion and Future Works

[9] Robert M Nishikawa, “Current status and future directions of computer-aided diagnosis

in mammography,” Computerized Medical Imaging and Graphics, vol. 31, no. 4, pp.

224–235, 2007.

[10] Heang-Ping Chan, Kunio Doi, CARL J VYBRONY, Robert A Schmidt, Charles E Metz,

Kwok Leung Lam, Toshihiro Ogura, Yuzheng Wu, and Heber MacMahon, “Improvement

in radiologists’ detection of clustered microcalcifications on mammograms: The potential

of computer-aided diagnosis.,” Investigative radiology, vol. 25, no. 10, pp. 1102–1110,

1990.

[11] ML Giger, JM Boone, and HP Chan, “History and status of cad and quantitative image

analysis,” Medical Physics, 2008.

[12] HD Cheng, XJ Shi, Rui Min, LM Hu, XP Cai, and HN Du, “Approaches for automated

detection and classification of masses in mammograms,” Pattern recognition, vol. 39, no.

4, pp. 646–668, 2006.

[13] Victor G Martinez, Daniel M Gamo, Juan Rios, and Amparo Vilarrasa, “Iterative method

for automatic detection of masses in digital mammograms for computer-aided diagnosis,”

in Medical Imaging’99. International Society for Optics and Photonics, 1999, pp. 1086–

1093.

[14] D Brzakovic, XM Luo, and P Brzakovic, “An approach to automated detection of tumors

in mammograms,” Medical Imaging, IEEE Transactions on, vol. 9, no. 3, pp. 233–241,

1990.

[15] Tomoka Matsubara, Hiroshi Fujita, Satoshi Kasai, Miki Goto, Yoshinobu Tani, Takeshi

Hara, and Tokiko Endo, “Development of new schemes for detection and analysis of

mammographic masses,” in Intelligent Information Systems, 1997. IIS’97. Proceedings.

IEEE, 1997, pp. 63–66.

[16] Maria Kallergi, Kevin Woods, Laurence P Clarke, Wei Qian, and Robert A Clark, “Im-

age segmentation in digital mammography: comparison of local thresholding and region

growing algorithms,” Computerized medical imaging and graphics, vol. 16, no. 5, pp.

323–331, 1992.

[17] Ehsan Kozegar, Mohsen Soryani, Behrouz Minaei, Inês Domingues, et al., “Assessment

of a novel mass detection algorithm in mammograms,” Journal of cancer research and

therapeutics, vol. 9, no. 4, pp. 592, 2013.

[18] Nicholas Petrick, Heang-Ping Chan, Berkman Sahiner, and Datong Wei, “An adaptive

density-weighted contrast enhancement filter for mammographic breast mass detection,”

Medical Imaging, IEEE Transactions on, vol. 15, no. 1, pp. 59–67, 1996.

129



Chapter 10. Conclusion and Future Works

[19] Nicholas Petrick, Heang-Ping Chan, Berkman Sahiner, and Mark A Helvie, “Combined

adaptive enhancement and region-growing segmentation of breast masses on digitized

mammograms,” Medical physics, vol. 26, no. 8, pp. 1642–1654, 1999.

[20] Hidefumi Kobatake and Shigeru Hashimoto, “Convergence index filter for vector fields,”

Image Processing, IEEE Transactions on, vol. 8, no. 8, pp. 1029–1038, 1999.

[21] Hidefumi Kobatake and Yukiyasu Yoshinaga, “Detection of spicules on mammogram

based on skeleton analysis,” Medical Imaging, IEEE Transactions on, vol. 15, no. 3, pp.

235–245, 1996.

[22] Guido M Te Brake and Nico Karssemeijer, “Single and multiscale detection of masses

in digital mammograms,” Medical Imaging, IEEE Transactions on, vol. 18, no. 7, pp.

628–639, 1999.

[23] William E Polakowski, Donald A Cournoyer, Steven K Rogers, Martin P DeSimio, Den-

nis W Ruck, Jeffrey W Hoffmeister, and Richard A Raines, “Computer-aided breast can-

cer detection and diagnosis of masses using difference of gaussians and derivative-based

feature saliency,” Medical Imaging, IEEE Transactions on, vol. 16, no. 6, pp. 811–819,

1997.

[24] Lori M Bruce and Reza R Adhami, “Wavelet-based feature extraction for mammographic

lesion recognition,” in Medical Imaging 1997. International Society for Optics and Pho-

tonics, 1997, pp. 779–789.

[25] Guido M Te Brake and Nico Karssemeijer, “Segmentation of suspicious densities in

digital mammograms,” Medical physics, vol. 28, no. 2, pp. 259–266, 2001.

[26] Wiro J Niessen, Bart M Romeny, and Max A Viergever, “Geodesic deformable models

for medical image analysis,” Medical Imaging, IEEE Transactions on, vol. 17, no. 4, pp.

634–641, 1998.

[27] Michael Kass, Andrew Witkin, and Demetri Terzopoulos, “Snakes: Active contour mod-

els,” International journal of computer vision, vol. 1, no. 4, pp. 321–331, 1988.

[28] Stanley Osher and James A Sethian, “Fronts propagating with curvature-dependent

speed: algorithms based on hamilton-jacobi formulations,” Journal of computational

physics, vol. 79, no. 1, pp. 12–49, 1988.

[29] Tony F Chan, Luminita Vese, et al., “Active contours without edges,” Image processing,

IEEE transactions on, vol. 10, no. 2, pp. 266–277, 2001.

[30] Peyman Rahmati, Andy Adler, and Ghassan Hamarneh, “Mammography segmentation

with maximum likelihood active contours,” Medical image analysis, vol. 16, no. 6, pp.

1167–1186, 2012.

130



Chapter 10. Conclusion and Future Works

[31] Yong Jin Lee, Jeong Mi Park, and Hyun Wook Park, “Mammographic mass detection

by adaptive thresholding and region growing,” International Journal of Imaging Systems

and Technology, vol. 11, no. 5, pp. 340–346, 2000.

[32] Guido M te Brake, Mark J Stoutjesdijk, and Nico Karssemeijer, “Discrete dynamic con-

tour model for mass segmentation in digital mammograms,” in Medical Imaging’99.

International Society for Optics and Photonics, 1999, pp. 911–919.

[33] Matthew A Kupinski and Maryellen L Giger, “Automated seeded lesion segmentation

on digital mammograms,” Medical Imaging, IEEE Transactions on, vol. 17, no. 4, pp.

510–517, 1998.

[34] Berkman Sahiner, Heang-Ping Chan, Nicholas Petrick, Mark A Helvie, Dorit D Adler,

and Mitchell M Goodsitt, “Classification of masses on mammograms using rubber-band

straightening transform and feature analysis,” in Medical Imaging 1996. International

Society for Optics and Photonics, 1996, pp. 44–50.

[35] Zhimin Huo, Maryellen L Giger, Carl J Vyborny, Dulcy E Wolverton, and Charles E

Metz, “Computerized classification of benign and malignant masses on digitized mam-

mograms: a study of robustness,” Academic Radiology, vol. 7, no. 12, pp. 1077–1084,

2000.

[36] Berkman Sahiner, Nicholas Petrick, Heang-Ping Chan, Lubomir M Hadjiiski, Chintana

Paramagul, Mark A Helvie, and Metin N Gurcan, “Computer-aided characterization of

mammographic masses: accuracy of mass segmentation and its effects on characteriza-

tion,” Medical Imaging, IEEE Transactions on, vol. 20, no. 12, pp. 1275–1284, 2001.

[37] Huai-Dong Li, Maria Kallergi, Laurence P Clarke, Vijay K Jain, and Robert A Clark,

“Markov random field for tumor detection in digital mammography,” IEEE transactions

on medical imaging, vol. 14, no. 3, pp. 565–576, 1995.

[38] Mary L Comer, Sheng Liu, and Edward J Delp, “Statistical segmentation of mammo-

grams,” in Proceedings of the 3rd International Workshop on Digital Mammography,

1996, pp. 475–478.

[39] Neeraj Dhungel, Gustavo Carneiro, and Andrew P Bradley, “Deep learning and structured

prediction for the segmentation of mass in mammograms,” in Medical Image Computing

and Computer-Assisted Intervention–MICCAI 2015, pp. 605–612. Springer, 2015.

[40] Michael Beller, Rainer Stotzka, Tim Oliver Müller, and Hartmut Gemmeke, “An

example-based system to support the segmentation of stellate lesions,” in Bildverar-

beitung für die Medizin 2005, pp. 475–479. Springer, 2005.

131



Chapter 10. Conclusion and Future Works

[41] Jun Wei, Berkman Sahiner, Lubomir M Hadjiiski, Heang-Ping Chan, Nicholas Petrick,

Mark A Helvie, Marilyn A Roubidoux, Jun Ge, and Chuan Zhou, “Computer-aided

detection of breast masses on full field digital mammograms,” Medical physics, vol. 32,

no. 9, pp. 2827–2838, 2005.

[42] Guido M te Brake, Nico Karssemeijer, and Jan HCL Hendriks, “An automatic method to

discriminate malignant masses from normal tissue in digital mammograms,” Physics in

Medicine and Biology, vol. 45, no. 10, pp. 2843, 2000.

[43] Nevine H Eltonsy, Georgia D Tourassi, and Adel Said Elmaghraby, “A concentric mor-

phology model for the detection of masses in mammography,” Medical Imaging, IEEE

Transactions on, vol. 26, no. 6, pp. 880–889, 2007.

[44] C Varela, S Timp, and N Karssemeijer, “Use of border information in the classification of

mammographic masses,” Physics in Medicine and Biology, vol. 51, no. 2, pp. 425, 2006.

[45] I Domingues, E Sales, JS Cardoso, and WCA Pereira, “Inbreast-database masses charac-

terization,” XXIII Congresso Brasileiro de Engenlaria Biomedico (CBEB), 2012.

[46] N. Dhungel, G. Carneiro, and A.P. Bradley, “Automated mass detection in mammograms

using cascaded deep learning and random forests,” in Digital Image Computing: Tech-

niques and Applications (DICTA), 2015 International Conference on, Nov 2015, pp. 1–8.

[47] John E Ball and Lori Mann Bruce, “Digital mammographic computer aided diagnosis

(cad) using adaptive level set segmentation,” in Engineering in Medicine and Biology

Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. IEEE,

2007, pp. 4973–4978.

[48] Berkman Sahiner, Heang-Ping Chan, Nicholas Petrick, Mark A Helvie, and Lubomir M

Hadjiiski, “Improvement of mammographic mass characterization using spiculation mea-

sures and morphological features,” Medical Physics, vol. 28, no. 7, pp. 1455–1465, 2001.

[49] James Albert Sethian, Level set methods and fast marching methods: evolving inter-

faces in computational geometry, fluid mechanics, computer vision, and materials sci-

ence, vol. 3, Cambridge university press, 1999.

[50] Jiazheng Shi, Berkman Sahiner, Heang-Ping Chan, et al., “Characterization of mam-

mographic masses based on level set segmentation with new image features and patient

information,” Medical physics, vol. 35, no. 1, pp. 280–290, 2007.

[51] Jaime S Cardoso, Inês Domingues, and Hélder P Oliveira, “Closed shortest path in the
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