Characterisation of Pathophysiological function of NEDD4-2 in Kidney

A thesis submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy

By
Pranay Goel
Masters of Biotechnology and Bioinformatics

THE UNIVERSITY OF ADELAIDE

School of Medicine, Discipline of Medicine
Faculty of Health Sciences, University of Adelaide
Adelaide, South Australia

April 2016
Table of Contents

Abstract...I

Declaration...IV

Publication, Awards and Conference Attendance...V

Acknowledgements...VI

Abbreviations...IX

List of Figures and Tables...XVII

Thesis Structure...XX

Chapter 1: Introduction..1

1. Ubiquitination ..3

1.1 Ubiquitin activating enzymes (E1) ...4

1.2 Ubiquitin-conjugating enzymes (E2) ..4

1.3 Ubiquitin protein ligases (E3) ...4

1.3.1 HECT E3s..5

1.3.2 RING and RING like E3s..5

1.3.3 Ubiquitination control by DUBs and other mechanisms...6

1.3.4 Degradation by the proteasome...8

1.3.5 Degradation by lysosomes..8

2. The NEDD4 family of Ubiquitin ligases..9

3. NEDD4-2 structure and expression...10

4. NEDD4-2 targets and function..15

4.1 ENaC regulation by NEDD4-2..17

4.2. NEDD4-2 mediated regulation of renal Na⁺-Cl⁻ cotransporter (NCC)................. 20

4.3. NEDD4-2 as a regulator of voltage-gated sodium channels (Naᵥs) 20

4.4. Chloride channels as NEDD4-2 targets ..21
4.5. Potassium channels as putative NEDD4-2 targets ... 23
4.6. Surfactant protein C (SP-C) as a NEDD4-2 substrate 23
4.7. Other channels and transporters .. 24
4.8. Regulation of TGFβ signalling by NEDD4-2 ... 25
4.9. NEDD4-2 in virus budding .. 25
4.10. Other substrates of NEDD4-2 ... 26
4.11. NEDD4-2 substrate interaction through adaptors 26

5. NEDD4-2/NEDD4L in human disease ... 28
 5.1. Hypertension ... 28
 5.2. Cancer .. 29

6. Studies with NEDD4-2 knockout (KO) mice .. 30

7. Kidney structure, function and disease .. 33

8. Project Aims ... 38

Chapter 2: Characterisation of Nedd4-2−/− kidney phenotype 39

2.1 Introduction ... 41

2.2 Materials and methods .. 45
 2.2.1 Nedd4-2−/− mouse colony breeding and genotyping 45
 2.1.1.1 Extraction of genomic DNA for genotyping ... 45
 2.1.1.2 Polymerase chain reaction (PCR) ... 48
 2.1.1.3 Primer reaction preparation .. 48
 2.1.1.4 Gel electrophoresis ... 48
 2.2.2 Nedd4-2 Mouse surgery, weighing and histology 49
 2.2.3 Immunohistochemistry and Immunofluorescence 49
 2.2.4 Nedd4-2−/− nephronal markers .. 50
 2.2.5 Nedd4-2−/− Picrosirius red staining (Collagen) ... 50
2.2.6 Nedd4-2/− Masson trichrome staining (Interstitial Fibrosis) ... 51
2.2.7 Nedd4-2/− periodic acid Schiff (PAS) staining (Polysaccharide) 51
2.2.8 cAMP measurements ... 52
2.2.9 Nedd4-2 mouse embryonic fibroblast (MEF) isolation and culture 52
 2.2.9.1 Cilia formation in MEFs ... 53
2.2.10 Ribonucleic acid (RNA) isolation and Quantitative PCR (qPCR) 53
2.2.11 Processing for Scanning Electron Microscope (SEM) and Transmission Electron
Microscope (TEM) .. 54
 2.2.11.1 Transmission Electron microscopy ... 54
 2.2.11.2 Scanning Electron microscopy .. 55
2.2.12 Quantification and statistical analysis .. 55
2.3 Results .. 56
2.3.1 Nedd4-2/− mice show renal cystic onset .. 56
2.3.2 Nedd4-2/− mice do not show alteration in body weight, kidney weight and cystic
burden .. 57
2.3.3 Nedd4-2/− kidney cysts originate from proximal and distal tubules, collecting ducts,
and the loop of Henle .. 59
2.3.4 Nedd4-2/− kidneys show increased cell proliferation .. 60
2.3.5 Nedd4-2/− cystic kidneys do not show apoptotic difference 71
2.3.6 Nedd4-2/− cystic kidneys show increased renal fibrosis (due to extracellular matrix
modification) and decreased polysaccharide accumulation .. 71
2.3.7 Increase in cAMP levels drives cyst formation .. 85
2.3.8 Role of Nedd4-2 in ciliogenesis .. 85
2.3.9 Nedd4-2/− kidneys show renal dysplasia, not PKD .. 94
2.4 Discussion .. 95
Chapter 3: Role of polycystin in renal cyst development

3.1 Introduction

3.2 Materials and Methods

3.2.1 Nedd4-2−/− mouse colony breeding

3.2.2 Plasmid preparation

3.2.2.1 Preparation and transformation of competent Escherichia coli

3.2.2.2 Plasmid purification

3.2.2.3 Plasmid sequencing

3.2.3 Maintenance of cell culture

3.2.3.1 Human embryonic kidney cells (HEK)

3.2.3.2 Mouse pyruvate kidney collecting duct cells (mpkCCD)

3.2.3.3 Inner medullary cortical collecting duct cells (IMCD)

3.2.4 Isolation of Nedd4-2 kidney collecting duct cells

3.2.5 Ribonucleic acid (RNA) isolation and quantitative PCR (qPCR)

3.2.5.1 Protein concentration and quantification

3.2.5.2 Protein extraction

3.2.5.3 SDS PAGE and electrotransfer

3.2.5.4 Coomassie staining

3.2.6 siRNA in IMCD cells

3.2.6.1 Cell staining of siRNA treated IMCD cells

3.2.6.2 Immunoblotting for Nedd4-2 siRNA treated IMCD cells

3.2.6.3 Isolation of RNA from siRNA treated IMCD cells and qPCR

3.2.7 Polycystin ubiquitination assay

3.2.8 Immunofluorescence
3.2.9 Statistical significance .. 129

3.3 Results .. 130

3.3.1 Polycystin-1 expression and transcript levels in \textit{Nedd4-2}^-/- kidney 130

3.3.2 Polycystin-2 expression and transcript levels in \textit{Nedd4-2}^-/- kidney 131

3.3.3 Isolation and characterisation of cortical collecting duct cells (CCD) 136

3.3.4 Polycystin-1 and polycystin-2 expression and localisation in isolated primary cells. ... 137

3.3.6 Polycystin-1 is ubiquitinated by Nedd4-2 independent of polycystin-2 140

3.3.7 Polycystin-1 over expression in collecting ducts of \textit{Nedd4-2}^-/- kidneys 141

3.4 Discussion .. 156

Chapter 4: Differential gene expression in \textit{Nedd4-2}^-/- kidney .. 162

4.1 Introduction .. 164

4.2 Materials and methods ... 166

4.2.1 \textit{Nedd4-2}^-/- mouse colony breeding ... 166

4.2.2 Total RNA isolation from kidneys ... 166

4.2.3 RNA library preparation .. 166

4.2.5 Generation of heat map for differential gene expression 167

4.2.6 Singular value decomposition (SVD) plot .. 167

4.2.7 Venn diagram .. 168

4.2.8 Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis ... 168

4.2.9 Ingenuity pathway analysis ... 168

4.2.10 Transcription factor regulation ... 169

4.2.11 Quantitative real time PCR for validation .. 169

4.2.12 Statistical analysis ... 170
4.3 Results .. 170

4.3.1 Gene expression variability in the Nedd4-2+/− kidneys ... 170

4.3.2 Renal genes involved in kidney disease and function .. 170

4.3.3 DAVID pathway analysis in Nedd4-2+/− kidneys ... 175

4.3.4 Ingenuity pathway analysis of renal genes in disease and function 188

4.3.5 Transcription control in Nedd4-2+/− dysplastic kidneys .. 198

4.4 Discussion .. 203

Chapter 5: Final Discussion ... 212

Chapter 6: Bibliography ... 219
ABSTRACT

Nedd4-2 (NEDD4L, neural precursor cell expressed, developmentally down regulated 4-like) belongs to the Nedd4 family of ubiquitin ligases. These ligases aid in maintaining cellular homeostasis by binding to, and ubiquitinating a number of membrane proteins to initiate their internalization and turnover. Previous work from our laboratory has suggested that Nedd4-2 plays an essential role in regulating ion channels, especially the epithelial sodium channel and voltage gated sodium channels. The misregulation of these channels has been implicated in multiple channelopathies, including hypertension and cystic fibrosis like disease. This study characterises a previously unknown function of Nedd4-2 in the kidney.

In order to understand this significance of Nedd4-2 in renal homeostasis, the previously generated Nedd4-2−/− (Nedd4-2 knockout) mice (Boase et al., 2011) were characterised. The initial histological examination of postnatal kidneys suggested renal cyst formation in Nedd4-2−/− animals. Further analysis revealed that Nedd4-2 loss results in renal dysplasia. Nedd4-2−/− mice showed variable renal cystic index, onset of cyst formation starting from postnatal day 2 and progressing until the Nedd4-2−/− animals die due to respiratory distress around day 19-21. To investigate the prevalence of the cystic phenotype in other tissues histological analysis was performed in pancreas, liver, spleen, colon, stomach and thymus with no significant pathological differences observed in the knockout mice.

The Nedd4-2−/− kidneys showed increased cell proliferation, with no apoptotic differences in the cells lining the cystic epithelia suggesting an imbalance between cell proliferation and apoptosis in cyst formation. The cyst formation and kidney development disorders are associated with malformation in the kidney tissue leading to extracellular matrix modification with enhanced accumulation of collagens causing increased interstitial fibrosis. The Nedd4-2−/−
kidneys showed increased interstitial fibrosis, collagen-1 accumulation and expression during progression of the disease. The renal tissue membrane is made up of polysaccharides, glycogen and mucin, the *Nedd4-2*+/− kidneys were found to have decreased accumulation of polysaccharides. The cysts in the *Nedd4-2*+/− kidneys originated from different parts within the nephron. The larger cysts originated from loop of Henle and with the smaller cysts from collecting ducts and distal convoluted tubules. The cystic progression is dependent on cAMP flux initiated by fluid secretion within the cyst. The postnatal day 19 cystic kidneys in *Nedd4-2*+/− animals showed increased cAMP levels suggesting cystic disease progression. As renal cystic disorders may arise from abnormal cilia, ciliary anomalies were found in the *Nedd4-2*+/− around the cysts suggesting importance of cilia in kidney cyst formation.

Polycystins are known to be involved in renal cyst development with polycystin-1 and polycystin-2 together known to form calcium ion channel. To investigate the role of Nedd4-2 in the regulation of these polycystins, *in vitro* and *in vivo* studies were conducted. *In vitro* studies suggested that depletion of Nedd4-2 results in increased expression of polycystin-1 on the cell membrane with a decrease in polycystin-2 levels. Further, polycystin-1 was found to be ubiquitinated by Nedd4-2 *in vitro* providing the first evidence of Nedd4-2-mediated regulation of polycystins. *In vivo* Polycystin-1 was up-regulated in the *Nedd4-2*+/− kidneys suggesting an important role of Nedd4-2 in regulation of polycystins in cyst formation.

To analyse the transcriptional signature of the phenotype seen in the knockout kidneys, postnatal day 19 kidneys from wild-type and *Nedd4-2*+/− mice were subjected to RNA sequencing highlighting 537 genes that were differentially expressed between wild-type and knockout kidneys, with 167 genes down-regulated and 370 genes significantly up-regulated in the absence of Nedd4-2. DAVID and Ingenuity pathway analyses was used to highlight the
importance of genes involved in extracellular matrix modification, cell junction formation and cell-cell communication. The work presented in this thesis thus provides new information on the pathophysiological role of Nedd4-2 in kidney and identifies polycystin-1 as a Nedd4-2 target, along with transcriptional changes which may partially explain the cystic phenotype associated with renal dysplasia.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the university of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the university digital research repository, the library search and also through web search engines, unless permission has been granted by the university to restrict access for a period of time.

Pranay Goel

April 2016
Publication, Awards and Conference Attendance: By Year

2012:

IPRS (International postgraduate student research scholarship 2012) from University of Adelaide / Adelaide Postgraduate Award for living allowance.

Poster presentation at Adelaide protein group meeting (2012).

Poster presentation in 2nd Adelaide ANZSCDB Cell and Developmental Biology meeting (Nov 23, 2012).

2013:

Poster presentation at Florey International Postgraduate Research Conference by University of Adelaide (September 2013).

Best student poster in 3rd Adelaide ANZSCDB Cell and Developmental Biology meeting on (November 19, 2013).

2014:

Poster presentation at the Lorne protein conference, 39th Lorne Conference on Protein Structure & Function (February 2014).

3MT thesis competition University of Adelaide (October 2014).

Howard Florey Adelaide student post graduate student conference, Adelaide (October 2014).

EMBL student symposium October 2014 abstract selected for poster presentation.

SPMSSF funding for International Lorne protein conference, Melbourne from SA pathology (1000$).

EMBL AUSTRALIA student travel grant for EMBL student symposium Heidelberg (3000$)

Publications: During PhD Candidature

1. GENE: Invited Review

Acknowledgements

Research is an endeavour, a sojourn with an opportunity for me to realise the realms of the unknown in science. My Principal Supervisor, Prof Sharad Kumar provided me this opportunity which is a life time experience enabling me to realise my untapped potential. I express my heartfelt sincere thanks to Prof Kumar for all his efforts, guidance, his unstinted commitment to my work and the help extended to me from time to time during the entire period without which this work would not have been in the current stage.

I also thank my co-supervisor, Dr. Loretta Dorstyn for her timely feedbacks & insights during the course of this research work and for patiently going through my draft manuscripts from time to time which were followed by useful inputs. I also thank Dr Natasha Boase for her help during the entire tenure of this work. She has been helpful in completion work, critically evaluating the manuscript and enlightening me on occasions when I was stuck up and in generation of Nedd4-2 mouse colony. Dr. Kimberly Mackenzie for the ubiquitination assay blot and reading the manuscript critically. Dr Jantina Manning for the cAMP assay and Nephronal marker staining. Dr Tanya Henshall for aiding in the renal dysplasia annotation along with John Finnie.

I thankfully acknowledge to the fellow past students in the molecular regulation laboratory (Dr. Andrew Fotia, Prof. Natasha Harvey and Prof. Kieran Harvey) who had been a kind of benchmark I always aspired to be as a research student, thanks for inspiring me through your body of work.

I also thankfully acknowledge Dr. Joseph Puccini (Graduate 2014), Swati Dawar, Shannon Nicolson and Cindy Xu current students for making me believe I was part of them. A special thanks to Dr. May Aung-Htut, Dr. Natalie Foot and Dr. Claire Wilson for all the help
rendered by them for final thesis preparation. I also thank the other members of the molecular regulation laboratory Dr. Ian Nicholson, Dr. Donna Denton, Alyshea Collaco, Andrej Nikolic, Dr. Sonia Shalini, and Omri Alfassy along with the other staff members for all the help rendered by them in the laboratory.

Special thanks are due to people at SA pathology anatomical services especially to Mrs Mandy for tissue histology work. A special word of thanks for all the people in Prof. Natasha Harvey’s laboratory especially Dr. Drew Sutton for the antibodies and Dr. Kelly Betterman for help with confocal microscopy. A special thanks to all the Research groups and the facilities at Centre for Cancer Biology for helping me with antibodies and reagents during the work.

I also thank Adelaide microscopy especially Ruth Williams for the help in transmission electron microscopy. My special thanks to Mr. Jim Manavis for all his help. I also thank CCBACRF facility for the help rendered by David Lawrence, bioinformatics expert for RNA sequencing work. I thank the confocal facility for providing me opportunity to utilise their facility. I thank IMVS animal care facility for taking care of the mice. I would also thank University of Adelaide for the IPRS/APA scholarship for aiding in me undertaking my PhD in a place with a history of its own.

I sincerely thank Prof. David Callen who helped me immensely at University through various support systems from time to time during the crisis has helped in concluding this work. Special thanks to my parents Mr. S.M.J.R Goel and Mrs. Poonam Goel for providing me unconditional support and instilling my faith in myself. I express my sincere thanks to my sister Pragya Goel for aiding me in understanding the life beyond science. I thank all my friends and well-wishers who stood by me and reminded that science and life go hand in hand not mutually exclusively, thus making life a bit easier during my tough times.
Last but not the least, I sincerely thank all those who directly or indirectly contributed to this research work in any capacity and their names are missed inadvertently, without your unsung contributions this work would not have taken shape.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCN1</td>
<td>Hyperpolarization activated cyclic nucleotide gated</td>
</tr>
<tr>
<td>P19</td>
<td>Post natal day 19</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>ADAM23</td>
<td>ADAM metallopeptidase domain 23</td>
</tr>
<tr>
<td>ADPKD</td>
<td>Autosomal dominant polycystic kidney disease</td>
</tr>
<tr>
<td>AFF3</td>
<td>AF4/FMR2 family member 3</td>
</tr>
<tr>
<td>AGTR2</td>
<td>Angiotensin receptor 2</td>
</tr>
<tr>
<td>Akt</td>
<td>PKB- protein kinase B</td>
</tr>
<tr>
<td>AP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>APC</td>
<td>Anaphase-promoting complex</td>
</tr>
<tr>
<td>AQP2</td>
<td>Aquaporin 2</td>
</tr>
<tr>
<td>ARID5B</td>
<td>AT rich interactive domain 5B</td>
</tr>
<tr>
<td>ARPKD</td>
<td>Autosomal recessive polycystic kidney disease</td>
</tr>
<tr>
<td>Arrdc5s</td>
<td>Arrestin domain containing proteins</td>
</tr>
<tr>
<td>ATA-2</td>
<td>Amino acid transporter</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine tri phosphate</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninic acid</td>
</tr>
<tr>
<td>BGN</td>
<td>Biglycan</td>
</tr>
<tr>
<td>BMP-4,7</td>
<td>Bone morphogenetic protein 4, 7</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BW</td>
<td>Body weight</td>
</tr>
<tr>
<td>C</td>
<td>Centigrade</td>
</tr>
<tr>
<td>C termini</td>
<td>Carboxyl termini</td>
</tr>
<tr>
<td>C2</td>
<td>Ca²⁺ phospholipid binding domain</td>
</tr>
<tr>
<td>C3AR1</td>
<td>Complement component 3a receptor 1</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>Calcium</td>
</tr>
<tr>
<td>CAKUT</td>
<td>Congential anomalies of the kidney and urinary tract</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
</tbody>
</table>
CAT Catalase
CC coiled–coil
CD Collecting ducts
cDNA complementary Deoxyribonucleic acid
CFTR Cystic fibrosis transmembrane conductance regulator
CI Chloride
CLC-5 H⁺/Cl⁻ exchange transporter 5
ClCka/Barttin chloride channel
cm Centimeters
CO₂ Carbon dioxide
Collα1 Collagen I alpha 1
CSF1 Colony stimulating factor 1
DAB 3, 3’ diaminobenzidine
DAT Dopamine transporter
DAVID Database for Annotation, Visualization and Integrated Discovery
DBA Dolichos Biflorus Agglutinin
DCN Decorin
DCT Distal convoluted tubule
DCTN-5 Dynactin-5
DEPC Diethylpyrocarbonate
Dlg3 Drosophila disc large scaffolding protein
DMEM Dulbeccos modified eagle medium
DMT1 Divalent metal ion transporter
DNA Deoxy ribonucleic acid
DRG Dorsal root ganglion
DTT Dithiothreitol
DTX4 Deltex4 E3 ubiquitin ligase
DUBs Deubiquitinating enzymes
Dvl2 Dishevelled-2
E. coli Escherichia coli
E1 Ubiquitin activating enzyme
E18.5 Embryonic day 18.5 post coitum
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
<td>Ubiquitin-conjugating enzyme</td>
</tr>
<tr>
<td>E3</td>
<td>Ubiquitin protein ligases</td>
</tr>
<tr>
<td>EAAT1/2</td>
<td>The glial excitatory amino acid transporters</td>
</tr>
<tr>
<td>ECF</td>
<td>Enhanced chemifluorescence</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EF2</td>
<td>EF-hand calcium binding motif</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>FBLN1</td>
<td>Fibrillin</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal Bovine Serum</td>
</tr>
<tr>
<td>FGA</td>
<td>Fibrinogen alpha chain</td>
</tr>
<tr>
<td>fr</td>
<td>Firststrand</td>
</tr>
<tr>
<td>FREM1</td>
<td>FRAS1 related extracellular matrix 1</td>
</tr>
<tr>
<td>G</td>
<td>Glomeruli</td>
</tr>
<tr>
<td>GAIN</td>
<td>G protein coupled receptor auto proteolysis inducing regulatory domain</td>
</tr>
<tr>
<td>gDNA</td>
<td>Genomic DNA</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GO</td>
<td>Gene Ontology</td>
</tr>
<tr>
<td>GP78</td>
<td>Glycoprotein 78</td>
</tr>
<tr>
<td>GPC-3</td>
<td>Glypican-3</td>
</tr>
<tr>
<td>GPCR</td>
<td>G protein coupled receptor</td>
</tr>
<tr>
<td>GPS</td>
<td>G-protein coupled receptor motif</td>
</tr>
<tr>
<td>H and E</td>
<td>Haematoxylin and Eosin</td>
</tr>
<tr>
<td>HB-EGF</td>
<td>Heparin binding-EGF</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>Bicarbonate</td>
</tr>
</tbody>
</table>
HECT Homologous to the E6-AP C terminus
HEK Human epithelial kidney
HepG2 Liver hepatocellular carcinoma cell line
HIF3A Hypoxia inducible factor 3 alpha
HRP Horse radish peroxidase
Hrs Hours
IB Immunoblot
ICAM1 Intercellular adhesion molecule 1
ICC Immunocytochemistry
IF Immunofluorescence
IMCD Inner medullary cortical collecting duct cells
IPA Ingenuity pathway analysis
ITGAM Integrin alpha M
iTRAQ Isobaric tags for relative and absolute quantitation
ITS Insulin/ transferrin/selenium
K Lysine
K+ Potassium
KCNQs Potassium voltage-gated channel subfamily
kDa Kilodalton
KEGG Kyoto Encyclopedia for Genes and Genomes
KIF3A Kinesin subunit 3A
KL Klotho
KO Knock out
KW Kidney weight
L Litre
LB Luria- Bertani media
LPxY Leucine-Proline-x-Tyrosine
LTL Lotus Tetragonolobus Lectin
M Molar
mA Milliamperes
mDCT mouse Distal collecting tubule
MEF Mouse embryonic fibroblast
MEKK1 Mitogen associated protein kinase pathway
mg/mL Milligram/Millilitre
Min Minutes
mL Millilitres
mm Millimeters
mM Millimolar
MMP Matrix metallo protease
mpkCCD Mouse pyruvate kinase cortical collecting duct
n.s Not significant
Na⁺ Sodium
Nav Voltage-gated sodium channels
NCC Na⁺-Cl⁻ cotransporter
NCOR2 Nuclear receptor co repressor 2
NDFIP1/2 Nedd4 family interacting protein 1/2
NDRG1 N-myc downstream regulated gene-1
Nedd Neuronally expressed, developmentally down-regulated gene
NEM N-ethylmaleimide
ng Nanogram
NKCC2 Na⁺-K⁺-2Cl⁻ cotransporter
nm Nanometers
NOX4 NADPH oxidase 4
° Degree
OD Optical density
Orai1 Calcium channel
PAGE Polyacrylamide gel electrophoresis
PARP3 Polymerase family member 3
PAS Periodic acid schiff
PAX-2 Paired box gene-2
PBS Phosphate buffered saline
PC-1 Polycystin-1
pCNA Proliferation cell nuclear antigen
PCR Polymerase chain reaction
PDAC Pancreatic ductal adenocarcinoma
PHD Plant Homeo Domain
PIK3CD Bisphosphate 3- kinase catalytic subunit Δ
PIK3R5 Phosphoinositide-3-kinase regulatory subunit 5
PKD Polycystic kidney disease
PKHD1 Fibrocystin
PLAT Polycystin-1 lipooxygenase alpha-toxin
PLCB2 Phospholipase C β2
PP/LPXY Proline rich motifs
PVDF Polyvinylidene fluoride
RD Renal Dysplasia
RING Really interesting new gene
RIPA Radioimmunoprecipitation lysis buffer
RMA/RNF5 RING finger protein 5
RNA Ribonucleic acid
ROMK Renal outer medullary potassium channel
RPMI Roswell Park Memorial Institute media
RT² Real time / Reverse Transcriptase
RTKs Receptor protein tyrosine kinases
RUNX1 Runt-related transcription factor 1
SALL1 SAL-like 1
SCF Skp1- Cullin- F-box complex
SDS Sodium dodecyl sulphate
SEM Scanning Electron Microscope
SEM Standard error mean
Sgk1 Serum glucocorticoid-inducible kinase
SGLT1 Na\(^+\) glucose transporter 1
SILAC Stable isotope labelling of amino acid in cell culture
siRNA small interfering Ribonucleic acid
Six1 Sineoculis homeobox 1
SLC Solute carrier family
SLIT3 Slit homolog 3
SMA Smooth Muscle Actin
SMAD2/3/7 Mothers against decapentaplegic
SMOC2 SPARC related modular calcium binding 2
SNPs Single nucleotide polymorphisms
SMOC2 SPARC related modular calcium binding 2
SNPs Single nucleotide polymorphisms
SP-C Surfactant protein C
Src Non-receptor protein tyrosine kinase
STAT3 Signal transducer and activator of transcription 3
SULF1 Sulfatase 1
SUMO Small Ubiquitin-like Modifier
SVD Singular value decomposition
TAE Tris acetate EDTA
TBST Tris-buffered saline/Tween 20
TCA Trichloro acetic acid
TCF-2 Transcription factor-2
TEM Transmission Electron Microscope
TGFβ Transforming growth factor β
TGFβR1 Transforming growth factor beta receptor 1
THP Tamm horsfall glycoprotein
TINAG Tubulointerstitial nephritis antigen
TrkA Neurotrophin receptor
TRPC6 Transient receptor potential Canonical 6
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRPM6</td>
<td>Transient receptor potential melastatin 6</td>
</tr>
<tr>
<td>TRPP2/PC-2</td>
<td>Transient receptor potential/ polycystin -2</td>
</tr>
<tr>
<td>TSHZ3</td>
<td>Teashirt zinc finger homeobox 3</td>
</tr>
<tr>
<td>TTYH</td>
<td>Tweety chloride channel</td>
</tr>
<tr>
<td>UB</td>
<td>Ubiquitin</td>
</tr>
<tr>
<td>UBC</td>
<td>Ubiquitin-conjugating domain</td>
</tr>
<tr>
<td>UBP</td>
<td>Ubiquitin-specific processing enzymes</td>
</tr>
<tr>
<td>UCH</td>
<td>Ubiquitin carboxyl terminal hydrolases</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>V2R</td>
<td>Vasopressin receptor</td>
</tr>
<tr>
<td>VCB</td>
<td>Von Hippel Lindau-elongin C - elongin B- Cul2- Rbx1 complex</td>
</tr>
<tr>
<td>W</td>
<td>Watts</td>
</tr>
<tr>
<td>WNT4</td>
<td>Wingless gene 4</td>
</tr>
<tr>
<td>WT</td>
<td>Wild type</td>
</tr>
<tr>
<td>WT1</td>
<td>Wilms tumor 1</td>
</tr>
<tr>
<td>WW</td>
<td>Protein-Protein interaction tryptophan domains</td>
</tr>
<tr>
<td>Yeast</td>
<td>Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>μg/ml</td>
<td>Microgram per millitre</td>
</tr>
<tr>
<td>μl</td>
<td>Micro litre</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
</tbody>
</table>
List of Figures and Tables

Chapter 1: Figures and Tables

Fig 1.1 Overview of the ubiquitin system
Fig 1.2 (A) The primary structure of NEDD4-2 protein
Fig 1.2 (B) The phylogenetic relationship between NEDD4-2 proteins from various species
Fig 1.3 NEDD4-2 is a critical regulator of ENaC
Fig 1.4 Structure and nephronal segments of the kidney
Table 1 Potential substrates and/or binding partners of NEDD4-2

Chapter 2: Figures and Tables

Fig 2.1 Overview of cyst formation in the kidneys
Fig 2.2 Morphology, cyst initiation and cyst progression in *Nedd4-2/−* kidney
Fig 2.3 Gross morphology of *Nedd4-2/−* mice kidneys
Fig 2.4 Morphology of tissues from P19 *Nedd4-2/−* mice
Fig 2.5 *Nedd4-2/+* cysts arise from multiple nephronal segments
Fig 2.6 Increased cell proliferation in P19 *Nedd4-2/−* cystic kidneys
Fig 2.7 *Nedd4-2/−* cystic kidneys show wild-type levels of cell death
Fig 2.8 Increased renal fibrosis in *Nedd4-2/−* kidneys
Fig 2.9 *Nedd4-2/−* cystic kidneys show increased collagen-1 expression and collagen-1 accumulation around the cysts and tubules
Fig 2.10 *Nedd4-2/−* cystic kidneys show increased interstitial fibrosis
Fig 2.11 *Nedd4-2/−* cystic kidneys show decreased accumulation of polysaccharides and mucosubstances
Fig 2.12 Increased cAMP levels in *Nedd4-2/−* mice
Fig 2.13 Ciliary abnormalities in *Nedd4-2/−* cystic kidneys
Fig 2.14 Role of Nedd4-2 in cilia formation
Fig 2.15 *Nedd4-2/−* cystic kidneys show renal dysplasia
Fig 2.16 Transmission electron microscopy of *Nedd4-2/−* cystic kidneys
Fig 2.17 Scanning electron microscopy (SEM) of *Nedd4-2/−* cystic kidneys
Table 2.1 Forward (F) and reverse (R) primer sequences for used for genotyping
Table 2.2 Primer sequences used for qPCR analysis of mouse genes
Table 2.3 Cystic onset and frequency in *Nedd4-2/−* survivor mice
Table 2.4 Summary of cyst formation and fibrosis in organs of *Nedd4-2/−* mice
Chapter 3: Figures and Tables

Fig 3.1 Structure and domain architecture of polycystin-1 and polycystin-2
Fig 3.2 Potential non-canonical Nedd4-2 WW domain binding motifs in polycystin-1 and polycystin-2
Fig 3.3 Polycystin-1 protein expression and transcript levels in Nedd4-2\(^{-/-}\) kidneys
Fig 3.4 Polycystin-2 protein expression and transcript levels in Nedd4-2\(^{-/-}\) kidneys
Fig 3.5 Isolated kidney collecting duct cells from Nedd4-2\(^{-/-}\) mice
Fig 3.6 Polycystin-1 and polycystin-2 expression and localisation in isolated kidney cells
Fig 3.7 Increased expression of polycystin-1 upon Nedd4-2 knock down
Fig 3.8 Decreased expression of polycystin-2 upon Nedd4-2 knock down
Fig 3.9 Polycystin-1 over expression upon Nedd4-2 depletion
Fig 3.10 Nedd4-2 mediated polycystin-1 ubiquitination is independent of polycystin-2
Fig 3.11 Polycystin-1 over expression in Nedd4-2\(^{-/-}\) kidneys

Table 3.1 qPCR analysis of mouse genes: primer sequences

Chapter 4: Figures and Tables

Fig 4.1 SVD plotting for differentially expressed genes in Nedd4-2\(^{+/+}\) and Nedd4-2\(^{-/-}\) kidneys
Fig 4.2 Hierarchical clustering of differentially expressed genes in Nedd4-2\(^{-/-}\) kidneys
Fig 4.3 Venn diagram of differential expressed genes in Nedd4-2\(^{+/+}\) and Nedd4-2\(^{-/-}\) kidneys
Fig 4.4 DAVID analyses for up-regulated and down-regulated canonical pathways in Nedd4-2\(^{-/-}\) kidneys
Fig 4.5 DAVID component analysis for biological processes, cellular component and molecular function in Nedd4-2\(^{-/-}\) kidneys
Fig 4.6 Hierarchical clustering heat map of quantitative real time PCR genes in Nedd4-2\(^{+/+}\) and Nedd4-2\(^{-/-}\) kidneys selected for validation
Fig 4.7 Quantitative real time PCR validation of genes in Nedd4-2\(^{-/-}\) kidneys
Fig 4.8 Hierarchical clustering of differential expressed renal genes up-regulated in Nedd4-2\(^{-/-}\) kidneys involved in disease and function
Fig 4.9 Differentially expressed renal genes up-regulated in Nedd4-2\(^{-/-}\) kidneys involved in disease and function
Fig 4.10 Differentially expressed renal gene potential pathways up-regulated in Nedd4-2\(^{-/-}\) kidneys involved in disease and function
Fig 4.11 Hierarchical clustering of differential expressed renal genes down-regulated in Nedd4-2\(^{-/-}\) kidneys involved in disease and function
Fig 4.12 Differentially expressed renal genes down-regulated in *Nedd4-2*−/− kidneys involved in disease and function

Fig 4.13 Differentially expressed renal gene potential pathways down-regulated in *Nedd4-2*−/− kidneys involved in disease and function

Fig 4.14 Potential transcription factors activated in *Nedd4-2*−/− kidneys

Fig 4.15 Hierarchical clustering of differential expressed transcription factors up-regulated in *Nedd4-2*−/− kidneys involved in disease and function

Fig 4.16 Differentially expressed transcription factors in *Nedd4-2*−/− kidneys involved in disease and function

Supplementary Fig 1 Hierarchical clustering of differentially expressed genes in *Nedd4-2*−/− kidneys

Table 4.1 List of primer sets used for validation of genes identified by RNA sequencing

Supplementary Table 1 List of all annotated genes

Supplementary Table 2A Pathways up-regulated DAVID analysis

Supplementary Table 2B Pathways down-regulated DAVID analysis

Supplementary Table 3A Biological process up-regulated genes DAVID

Supplementary Table 3B Biological process down-regulated genes DAVID

Supplementary Table 3C Cellular component up-regulated genes DAVID

Supplementary Table 3D Cellular component down-regulated genes DAVID

Supplementary Table 3E Molecular function up-regulated genes DAVID

Supplementary Table 3F Molecular function down-regulated genes DAVID

Supplementary Table 4 List of qPCR genes for verification and heatmap

Supplementary Table 5 Renal genes up-regulated in the kidney

Supplementary Table 6 Renal genes down-regulated in the kidney

Supplementary Table 7 Transcription factors in kidney
Thesis Structure

This thesis contains already published work and unpublished work in the structure described below:

Chapter-1: Section 1.3.2, 1.3.3 (part), 1.3.4- 1.3.5, 7 and 8 are unpublished and provide the initial review of the literature and the context of the study related to the topic of the thesis. Sections 1 (1-1.1, 1.2-1.3, 1.3.3-1.3.4, 2-7 are part of the published review providing insights on the study on Nedd4-2.

Chapter-2: This chapter consists of the characterisation of the Nedd4-2 knock out kidney phenotype, with introduction consisting of relevant literature on the renal disorder, materials and methods described in detail the methodology of the chapter results, the results on the kidney phenotype characterisation and discussion summarising the major findings with their relevance and limitations

Chapter-3: This chapter consists of the role of polycystins and their potential regulation by Nedd4-2 and its physiological relevance in context to Nedd4-2 knock out kidneys, with introduction consisting of relevant literature on the polycystin structure and function, materials and methods described in detail the methodology of the chapter results, the results describing the potential role of polycystin in context to Nedd4-2 mediated regulation and discussion summarising the major findings and limitations with their relevance to the given study.

Chapter-4: This chapter consists of differential gene expression analysis of Nedd4-2 knock out kidneys and their relevance in context to renal dysplasia (Nedd4-2 kidney phenotype), with introduction consisting of relevant literature on the next generation sequencing used prior to understand the disease as a model system, materials and methods described in detail the methodology of the chapter results through bioinformatics approaches, the results describing the potential role of genes and the pathways in context to Nedd4-2 mediated regulation and discussion summarising the major findings and limitations with their relevance to the given study.

Chapter-5: This chapter comprises of the overall summary of the major findings of the thesis and the linkage between the chapter 2, 3 and 4. This further discusses the limitations of the study and the future perspective in relevance to the given study undertaken.