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Abstract 30 

Reforestation of agricultural land with mixed-species environmental plantings of native 31 

trees and shrubs contributes to abatement of greenhouse gas emissions through sequestration of 32 

carbon while also contributing to landscape remediation and biodiversity enhancement. Although 33 

accumulation of carbon in biomass is relatively well understood, less is known about associated 34 

changes in soil organic carbon (SOC) following different types of reforestation. Direct 35 

measurement of SOC may not be cost effective where rates of SOC sequestration are relatively 36 

small and/or highly spatially variable, thereby requiring intensive sampling. Hence, our objective 37 

was to develop a verified predictive modelling approach that may be more feasible for determining 38 

changes in SOC, thus allowing the inclusion of SOC in the carbon accounts of reforestation 39 

projects. We measured carbon stocks of biomass, litter and SOC (0–30 cm) in 125 environmental 40 

plantings (often paired to adjacent agricultural sites), representing sites of varying productivity 41 

across the Australian continent. After constraining a full carbon accounting model to observed 42 

measures of growth, allocation of biomass, and rates of litterfall and litter decomposition, the 43 

model was calibrated to maximise the efficiency of prediction of SOC and its fractions. 44 

Uncertainties in both measured and modelled results meant that efficiencies of prediction of SOC 45 

across the 125 contrasting plantings were only moderate, at 39–68%. Data-informed modelling 46 

nonetheless improved confidence in outputs from scenario analyses. These confirmed that: (i) 47 

reforestation on agricultural land highly depleted in SOC (i.e. previously under cropping) had the 48 

highest capacity to sequester SOC, particularly in regions where rainfall was relatively high (> 600 49 

mm yr-1), and; (ii) decreased planting width and increased stand density and the proportion of 50 

eucalypts enhanced rates of SOC sequestration. The results obtained help improve confidence in 51 

predictions of SOC following environmental reforestation under varying conditions. As such, the 52 

calibrated model will be a useful tool for informing land managers and policy makers seeking to 53 

understand the dynamics of SOC following such reforestation. 54 
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 57 

1. Introduction 58 

Reforestation is one of the most cost-effective ways to sequester carbon in agricultural 59 

landscapes (e.g. Nabuurs et al., 2007), and provides valuable opportunities for landscape 60 

remediation and positive environmental outcomes in degraded agricultural regions (e.g. Rhoades 61 

et al., 1998; Nair 2008; Cunningham et al., 2015b). While most studies of carbon sequestration 62 

following reforestation estimate rates of accumulation in biomass and litter, there is relatively little 63 

validated information on associated changes in soil organic carbon (SOC; e.g. Cunningham et al., 64 

2015a), as it is highly spatially variable and hence difficult to measure accurately (Allen et al., 65 

2010). However, soil is the largest terrestrial pool of organic carbon, so small proportional changes 66 

could significantly affect atmospheric carbon concentration (Stockmann et al., 2013). 67 

Recent studies suggest that high sampling intensities are needed at the plot scale to accurately 68 

estimate change in SOC following reforestation due to high spatial variability (e.g. Cunningham 69 

et al., 2017). Minimising SOC sampling errors by ensuring appropriate sample designs with 70 

adequate sampling intensity is particularly important if the relatively small changes in SOC 71 

following reforestation are to be detected. A new equilibrium in 0–30 cm SOC may take > 30 to 72 

200 years to reach, especially when considering inputs from decomposition of coarse tree roots 73 

(e.g. Hibbard et al., 2003; Poeplau et al., 2011; Bárcena et al., 2014). Observed trends in SOC 74 

changes following reforestation tend to be weak and imprecise (e.g. Prior et al., 2015; England et 75 

al., 2016). Because most reforestation of agricultural land is in lower productivity regions (where 76 

the opportunity costs of land use change are relatively small) the amounts of carbon sequestration 77 

are relatively low (e.g. Paul et al., 2016a). Consequently, conventional direct measurement 78 

approaches may be cost-prohibitive even under relatively high carbon prices. Thus, a modelling 79 
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approach to SOC accounting may provide a practical alternative (Paul and Polglase 2004b; Paul 80 

et al., 2013a).  81 

SOC is a diverse mix of organic materials with different susceptibilities to biological 82 

decomposition (Baldock et al., 2013a). Conceptual pools of C that turnover at different rates are 83 

required to model complex SOC dynamics (e.g. RothC, CENTURY; Jenkinson, 1990; Parton et 84 

al., 1993), including following reforestation (e.g. Del Galdo et al., 2003; Cunningham et al., 85 

2015a). Recent advances in mid-infrared reflectance spectroscopy (MIRS) have allowed accurate 86 

and cost-effective measurement of SOC fractions (particulate, humic, resistant) across a large 87 

range of agricultural soils (Baldock et al., 2013a, b) and following reforestation (Madhavan et al., 88 

2017). These methodologically-defined fractions can be used as surrogates for the conceptual 89 

pools of the RothC soil carbon model (Skjemstad et al., 2004).  90 

Simulating SOC dynamics requires estimation of the transfer of carbon from above- and 91 

below-ground biomass to the debris pool (litter, coarse woody debris and dead roots) and then to 92 

SOC. This has been achieved through integration of RothC into the Full Carbon Accounting 93 

Model, FullCAM (Richards and Brack 2004). FullCAM is currently applied in Australia for both 94 

national greenhouse gas accounting, and for project-scale accounting in the regulated carbon 95 

market (Australian Government 2014, 2017). Simulations of reforestation have shown that 96 

sequestration in the 0–30 cm soil and debris contribute ca 5–20% of the total carbon sequestered 97 

(Paul et al., 2013a). However, to date, carbon market regulators in Australia have considered 98 

uncertainty in estimations of change in SOC to be too high to enable proponents of reforestation 99 

projects to gain carbon credits for sequestration of carbon in soil in addition to that sequestered in 100 

biomass and debris (Australian Government 2014).  101 

In Australia, mixed-species environmental plantings of native trees and shrubs are 102 

increasingly being established on agricultural land for both sequestration of carbon and other 103 

ecosystem services (e.g. Mitchell et al., 2012). Accurate estimates of biomass accumulation by a 104 
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representative range of environmental plantings are now possible through recent calibration of 105 

FullCAM yield functions (Paul et al., 2015). Previous work has measured litter and SOC 106 

(including its fractions) under environmental plantings compared with agricultural land (paired 107 

sites or with baseline sampling, England et al., 2016; Madhavan et al., 2017) representing much 108 

of the temperate and Mediterranean-type, and part of the tropical and sub-tropical, climates across 109 

the continent. Further, typical rates of litterfall and decomposition of litter in eucalypt-dominated 110 

forest ecosystems, the dominant genus in environmental plantings, have been previously reviewed 111 

(Paul and Polglase 2004a). Assuming that the reforested sites were originally like the current 112 

pasture or cropping sites at the time of reforestation, these data sets facilitated calibration of 113 

FullCAM (Fig. 1) to extend confidence in estimation of carbon sequestration following 114 

reforestation to include the SOC pool in addition to the biomass and debris pools.  115 

If well-calibrated, a wide range of scenarios of climate and soil conditions may be applied to 116 

simulate the short- and long-term impacts on SOC in environmental plantings under alternative 117 

designs known to impact biomass productivity (e.g. planting width, stand density, and the 118 

proportion of eucalypts). This will improve our understanding of the dynamics of SOC following 119 

reforestation, including the longer-term resilience of SOC under a changing climate. To achieve 120 

this, our objectives were to: (i) constrain FullCAM with measured data on biomass and litter 121 

carbon, (ii) maximise the efficiency of prediction of SOC by calibrating FullCAM parameters that 122 

cannot be estimated from measured values or the literature, and (iii) apply this calibrated model 123 

undertake scenario analyses.  124 

 125 

2. Methods 126 

2.1 Model description 127 

The carbon accounting model FullCAM (Fig. 1) calculates carbon sequestration in biomass, 128 

debris and soil pools following reforestation in Australia’s national greenhouse gas accounts (e.g. 129 
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Richards and Brack 2004, Fig. 1). In FullCAM, growth of above-ground biomass (AG biomass) 130 

is predicted by the empirical Tree Yield Formula (TYF), with the CAMFor sub-model tracking 131 

the flow of carbon turnover to the soil via pools of debris (Paul and Polglase 2004a), and the RothC 132 

sub-model tracking the turnover of the fractions of SOC (Paul and Polglase 2004b). Values for 133 

weights of biomass and necromass listed in this work refer to dry matter (DM). 134 

 135 

 136 

Fig. 1. Overview of the FullCAM model configuration using RothC v 263 including Biomass, Debris and RothC Soil 137 

sub-models. In the Debris sub-model of litter decomposition, tree components (Dwd = dead wood, and CRoots and 138 

FRoots = coarse and fine roots, respectively) and pools of debris (Res = resistant pools of debris, and De = 139 

decomposable pools of debris) are represented in the boxes. In the Soil sub-model of soil carbon, the pools are RPM 140 

Stems Branches Bark Foliage CRoot FRoots

Influenced by climate

CO2 loss

DPMRPM

BIO-F

HUM

BIO-S

IOM

Soil
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Biomass
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(year of growth)
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Allocation of biomass

Influenced by stand age

Influenced by planting category

Influenced by soil texture
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ReDwd ReBark ReFoliage ReCRoot ReFRoot
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= resistant plant material (0.17 yr-1, Chappell and Baldock 2013), DPM = decomposable plant material (10 yr-1), Bio-141 

S and Bio-F = slow microbial biomass (both 0.66 yr-1), HUM = humified organic matter (0.02 yr-1) and IOM = inert 142 

organic matter (0 yr-1).  143 

 144 

Details of the steps to calculate biomass accumulation via the TYF have been previously 145 

documented (Paul et al., 2015). Here, we provide a brief description of subsequent model 146 

calculations to predict SOC change, with more detail in Richards and Brack (2004) and Australian 147 

Government (2017). Based on the age of the stand, the annual increment in growth is allocated to 148 

the various stand components; wood, branches, bark, foliage and coarse- and fine-root biomass. 149 

Once biomass has been allocated, rates of litterfall and root turnover are calculated from default 150 

turnover constants. Foliage and fine root debris are allocated to both decomposable and resistant 151 

pools, while wood, bark and coarse root components of debris only have a resistant pool (Fig. 1). 152 

The model assumes decomposition rates of debris pools is modified by climate only. During the 153 

decomposition of debris, some carbon enters the soil, with the remainder emitted as a range of 154 

gaseous carbon compounds, with an end product assumed to be mainly CO2. ‘Microbial efficiency’ 155 

is defined by the ratio of carbon respired during decomposition of debris to carbon transformed to 156 

dead organic matter of a form that is subsequently transferred to soil, e.g. microbial biomass 157 

(Cotrufo et al., 2013). Microbial efficiency parameters were assumed to differ between 158 

decomposable (DeDebris) and resistant (ReDebris) pools of debris (Paul and Polglase 2004b, Fig. 159 

1).  160 

Five pools of carbon are simulated by the RothC sub-model (Fig. 1, Jenkinson 1990): (i) 161 

decomposable plant material (DPM); (ii) resistant plant material (RPM); (iii) microbial biomass 162 

(BIO); (iv) humified organic matter (HUM), and (v) inert organic matter resistant to biological 163 

decomposition (IOM). All of the carbon entering the soil through decomposition of the 164 

decomposable debris pools (DeFoliage and DeFineRoot) is assumed to enter the fast-turnover 165 

DPM soil pool (Jenkinson 1990). All other carbon from debris decomposition enters the slow-166 
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turnover RPM pool. The DPM and RPM pools decompose to, in effect, produce CO2, and pools 167 

of BIO and HUM, with these pools decomposing to yield more CO2. All pools (except IOM) in 168 

RothC decompose at defined rates modified by temperature, soil moisture deficit and the presence 169 

of plant cover factor.  170 

 171 

2.2 Data set collated 172 

Data were collated from 125 environmental planting sites (England et al., 2016); 104 of these 173 

were paired with adjacent agricultural land, and the remaining 21 had baseline sampling with 174 

repeated measurements at different stand ages (Table 1). Methods of planting establishment varied 175 

and included use of tube-stock (68%), direct seeding (22%), a combination of tube-stock and direct 176 

seeding (8%), and broadcast seeding/natural regeneration (2%). The sites were distributed 177 

predominantly across temperate southern Australia (Fig. 2). Mean planting age was 13.6 ± 6.9 178 

years old. Plantings were generally sampled from regions where the mean annual rainfall (MAR) 179 

ranged from 352–1,474 mm yr-1, with a mean of 670 ± 204 mm yr-1. Note, average values are 180 

reported with their standard deviation (SD) unless otherwise stated.  181 

 182 
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  183 

Fig. 2. Location of environmental planting sites: (i) from which data on AG biomass were previously collated for 184 

calibration of growth (Paul et al., 2015) (●), and; (ii) from which soils were collected (●). Coloured regions indicate 185 

the regions of application of calibrations for growth, with colours providing an indication of spatial variation in 186 

prediction of AG biomass 15 years after environmental planting reforestation under the scenario of belt plantings (< 187 

40 m wide).  188 

Predicted above-ground biomass at age 15 years
Mg DM ha-1
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Table 1 Details of the data sets collated, including region of Australia from which sites were located (SE= south east; NE= north-east, and; SW= south-west of Australia), number 189 

of sites (N), and the between-site range in stand age, previous land use (PLU; G = grazing, C = cropping or rotational cropping/grazing), mean annual rainfall (MAR), planting 190 

width (Belt ≤ 40 m wide, Block > 40 m wide), stand density (number of trees or shrubs per hectare, ha-1), the proportion of trees that were eucalypts (PropEuc), measures of AG 191 

tree and shrub biomass dry matter (AGB, Mg ha-1), litter mass, and sampling intensity (N, where first, second and third numbers are the number of: soil cores sampled from the 192 

agricultural pairs (AG), 0–30 cm soil cores sampled from the environmental plantings (EP), and litter (L) quadrats sampled from the environmental plantings, respectively). 193 

Region of 

Australia 
N 

 

Age 

(yrs) 
PLU 

MAR 

(mm yr-1) 

Planting width 

 

Stand 

density 

(ha-1) 

PropEuc 
AGB  

(Mg ha-1) 

Litter  

(Mg ha-1) 

Sampling intensity 

(N; AG, EP, L) 

 

Existing studies 

SE1 36 5–46 G 448–794 Block, Belt 241–1122 0.34–1.00 14–211 0.9–23.3 5–10, 5–10, 10 

SE2 20 1–19 G 550–884 Belt 1438–20768 0.05–1.00 1–166 6.0–15.0 9–24, 18–24, 3 

SE3 7 8–16 G, C 352–1112 Block, Belt 838–6344 0.06–0.82 15–130 5.5–26.7 6, 12, 6–12 

This study 

SE, Intensive 3 5 G 427–965 Block 255–1231 0.18–.87 18–114 4.5–24.5 56, 120, 120 

SE, Repeat4 21 5–20 G, C 509–696 Block 124–1268 0.08–0.62 6–66 5.7–19.1 NA, 9–40, 3–40 

SE, Riparian 10 9–23 G, C 407–774 Block, Belt 299–8741 0.00–0.94 28–260 3.8–14.4 40, 40, 40 

SE 19 9–20 G, C 365–1423 Block, Belt 152–1604 0.19–0.79 4–110 2.4–15.5 40, 40, 40 

SE 4 6–29 C 372–652 Block 200–1490 0.38–1.00 17–67 11.6–13.0 10–40, 40, 0–40  

NE 3 5–19 G 852–1474 Block 281–1583 0.02–0.97 7–185 4.5–16.1 40, 40, 40 

SW 2 15–16 C 370–422 Belt 567–768 0.72–0.86 66–82 19.5–26.9 40, 40, 40 

Range  1–46  352–1423  124–20768 0.00–1.00 1–260 0.9–30.6  
1Cunningham et al., (2015a); 194 
2Read (2016); Using weighted mean of inter-trees and between row sampling, and with SOC measured using Heanes (1984) method. 195 
3Baker, T., unpublished data; 196 
4Sites were measured two or three times. 197 
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The data set included measurements of AG biomass, litter and SOC and its fractions, with 198 

details of the methodology described previously (England et al., 2016; Madhavan et al., 2017). In 199 

brief, biomass was determined from measurements of stem diameters and species at each site, with 200 

the application of allometric equations to predict above-ground (Paul et al., 2013b) and below-201 

ground (Paul et al., 2014) biomass of trees and shrubs. Between 26 and 2,487 (mean 428 ± 489) 202 

trees (or shrubs) per site were measured from plots (N = 1–51 per planting, area = 0.01–3.37 ha) 203 

or transects (N = 2–8 per planting, area = 0.001–0.010 ha). 204 

Generally, litter (ca 0.1 m2 quadrats) and soil (from ca. 42 mm diameter cores) were sampled 205 

from 0.4 ha plots (located within the larger biomass inventory plots) divided into 40 sampling units 206 

(each 10 m × 10 m). For both litter and soil, one sample was taken from a random location within 207 

each of the 40 sampling units. From among the 40 samples, sets of five were randomly selected 208 

for bulking to make eight large composite samples for each litter component (< 2 mm and > 2 mm) 209 

and soil layer, generally 0–10 cm (or 0–5 and 5–10 cm) and 10–30 cm. Each soil sample was air-210 

dried, crushed and sieved (< 2 mm), and the proportion of gravel (> 2 mm) measured. SOC 211 

generally was measured with a CNS analyser (LECO Corporation, St. Joseph, MI, USA). Fractions 212 

of SOC were particulate (POC or RPM), humus (HOC or HUM), and resistant (ROC or IOM) 213 

organic carbon. These fractions were measured using calibrated mid-infrared spectroscopy 214 

(MIRS) Partial Least Squares Regression (PLSR) models (Madhavan et al., 2017). Litter and SOC 215 

results were subsequently reported on an oven-dry basis (i.e. 70oC for litter and 105oC for < 2 mm 216 

soil). SOC stocks in the fast-turnover DMP and BIO pools were assumed to be negligible. To 217 

estimate SOC contents from SOC concentrations, bulk density (g cm-3) of the 0–10, 10–30 and 0–218 

30 cm soil depths was calculated from the mass of the fine (<2 mm) fraction adjusted for oven-dry 219 

(105ºC) moisture content and volume of the bulked samples. The carbon concentration in biomass 220 

was 46.1–52.9% (or g kg-1), while the carbon concentration in litter (and hence, assumed for coarse 221 

woody debris) was 46.3 1.99% (mean SD, N = 43, from 15 different sites). 222 
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Stocks of SOC and their fractions were calculated based on fixed depths of soil rather than on 223 

equivalent soil mass, as RothC was developed for simulation of fixed depths, not equivalent soil 224 

mass (Jenkinson, 1990). Further, it was found that for this data set, statistical analysis of the drivers 225 

of SOC stocks estimated using equivalent soil mass gave similar results, albeit with lower 226 

explained variation, when compared with those using SOC stocks based on fixed depths (England 227 

et al., 2016).  228 

 229 

2.3 General approach used to predict soil carbon 230 

FullCAM simulations were run for each of the 125 sites (Table 1), each with specific inputs 231 

of planting attributes (i.e. planting width, stand density and species-mix; Table 1), climate (i.e. 232 

monthly rainfall, temperature and evaporation observed during the years of simulation, BoM 2015) 233 

and 0–30 cm soil clay contents (Paul and Polglase 2004b; Paul et al., 2015). Monthly time-steps 234 

were simulated between plantings until the time of measurement.  235 

Initial pools of carbon in biomass and debris were assumed to be zero prior to reforestation, 236 

while initial pools of POC and HOC were those measured either at the baseline (for re-measured 237 

sites), or from the paired agricultural site. In contrast, initial pools of ROC prior to reforestation 238 

were taken as the mean measured among the paired sites (or among the repeat measures). We 239 

assumed that ROC was stable within the < 50 year timeframe of the simulations as there was no 240 

statistical difference in ROC among the different land uses across all paired-measurement plots (N 241 

= 252).  242 

RothC was originally developed and parameterised to model turnover of organic carbon in 243 

arable soils (0–30 cm, Jenkinson 1990) and later applied to soils under forests (e.g. Romanyà et 244 

al., 2000; Paul and Polglase 2004b; Paul et al., 2013b). Predictions of change in SOC are very 245 

sensitive to pool turnover rates, particularly for the RPM (or POC) pool (Janik et al., 2002; Paul 246 

and Polglase 2004b). We used values for POC turnover of 0.17 yr-1 from a recent comprehensive 247 
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calibration (Chappell and Baldock 2013). All other RothC parameters were maintained as per 248 

Jenkinson (1990). Inputs of climate, soil clay content, and initial pools of carbon varied among 249 

sites. Most inputs and parameters in FullCAM were modelled based on observed data. The only 250 

parameters that remained to be calibrated in this study were turnover and decomposition of dead 251 

roots, and microbial efficiency during decomposition of debris pools (Fig. 1). These parameters 252 

are highly uncertain due to a lack of constraining data (Paul and Polglase 2004b).  253 

 254 

2.4 Constraining the model with observations 255 

2.4.1 Growth rates 256 

Environmental plantings can be grouped into different planting types according to planting 257 

width, stand density, and species mix, each categorised with different biomass yield formula (TYF) 258 

calibrations in FullCAM (Paul et al., 2015). To allow application of these calibrations, plantings 259 

sampled here were in similar categories. Planting width was categorised as block (> 40 m width), 260 

wide belt (20–40 m width) or narrow belt (< 20 m width). Stand density (number of trees and 261 

shrubs per hectare) was categorised as either low (< 500 ha-1), medium (500–1500 ha-1), or high 262 

(> 1500 ha-1). Species mix was defined as the proportion of individuals in the planting that were 263 

Eucalyptus species (PropEuc); the dominant tree genus in these plantings. Plantings were 264 

categorised as either eucalypt dominant (PropEuc ≥ 0.75) or mixed (PropEuc < 0.75 i.e. having a 265 

more diverse mix of trees and shrubs). These categories were used to classify each of the 125 sites 266 

(Table 2) and the TYF for this planting type was selected to predict default rates of accumulation 267 

of AG biomass. As found by Paul et al. (2015), this enabled predictions of enhanced rates of 268 

growth with narrower planting widths, higher tree densities, and an increased proportion of over-269 

storey trees (PropEuc). 270 

Prior to any fitting of AG biomass to observed values, we compared observed AG biomass 271 

with that predicted using default values for TYF calibrations for the different planting types (Paul 272 
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et al., 2015). To test the assumption that the default TYF calibrations for environmental plantings 273 

can be applied to plantings with access to more water (than rainfall alone), AG biomass estimates 274 

from 90 dryland plantings were compared to that estimated from: (i) 10 sites selected from riparian 275 

or floodplain landscape positions, and; (ii) 25 plantings with greater access to surface or ground 276 

water, e.g. sites located near dams, in gullies, or with access to urban or road run-off.  277 

 278 

Table 2 Types of environmental plantings with statistically different (P < 0.05) rates of accumulation of AG biomass 279 

(Paul et al., 2015, Table 1). Initial rates of growth are inversly related to the parameter G (yr, or age of maximum rates 280 

of accumulation of AG biomass). The parameter y represents the multiplier defining the maximum potential 281 

accumulation in AG biomass, given site-based productivity constraints (e.g. climate and soil fertility). NA, found by 282 

Paul et al., 2015 not to be statistically important variables for these planting types. 283 

Region  Planting width 
Stand density 

(trees ha-1) 
PropEuc 

% 

of 

dataset 

G 

(yr) 
y 

  < 1500 < 0.75 15 5.504 1.4 

 Narrow belt  ≥ 0.75 3 3.627 1.5 

  > 1500 < 0.75 14 3.380 1.4 

   ≥ 0.75 2 2.667 1.5 

  < 1500 < 0.75 10 6.063 1.2 

Temperate Wide belt  ≥ 0.75 4 3.893 1.3 

&  > 1500 < 0.75 2 4.633 1.2 

Mediterranean   ≥ 0.75 1 2.746 1.3 

  < 500 < 0.75 16 8.534 1.2 

   ≥ 0.75 8 7.365 1.3 

 Block 500–1500 < 0.75 14 5.460 1.2 

   ≥ 0.75 3 4.828 1.3 

  > 1500 NA 6 5.187 1.3 

Tropical and sub-tropical  NA NA 2 8.489 0.9 

 284 

There were then two further steps to model biomass production. For the 35 plantings that were 285 

likely to have had access to water other than rainfall, AG biomass was significantly under-286 

predicted based on rainfall alone. Therefore, the TYF growth parameter for the maximum possible 287 

AG biomass was increased to 300 Mg ha-1 for these plantings, to replace the much lower default 288 

value based on an empirical relationship using climate and soil properties for any given location 289 
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across Australia (Kesteven et al., 2004). Then, for all 125 sites, parameter rates for accumulation 290 

of AG biomass were varied until predicted AG biomass matched that observed. Predicted biomass 291 

was adjusted on a site-by-site basis by applying a multiplier to modelled annual yield. These 292 

multipliers were required to obtain accurate site-based estimates of AG biomass accumulation 293 

because, although existing growth TYF defaults are unbiased on regional or national-scales, they 294 

are imprecise for a specific site (Paul et al., 2015). 295 

 296 

2.4.2 Allocation of biomass 297 

Parameters defining the allocation of biomass were based on recently revised defaults for 298 

environmental plantings (Paul and Waterworth 2015), whereby allocation was based on stand age, 299 

MAR, and the initial rates of growth (G parameter value in the TYF, Table 2). In brief, the stand 300 

AG biomass could be divided into crown (foliage, twigs < 5 cm diameter) and bole. The proportion 301 

of AG biomass that was crown decreased with stand age and the initial rates of yield, and was 302 

particularly low for tree-dominant plantings (PropEuc > 0.75) growing in regions of relatively low 303 

rainfall (MAR < 500 mm yr-1). The ratio of coarse roots to AG biomass decreased with initial rates 304 

of growth, and with increasing stand age for tree-dominant plantings. Biomass of fine roots was 305 

estimated using an empirical relationship based on total AG biomass (Mokany and Raison, 2004).  306 

 307 

2.4.3 Litterfall 308 

Two factors were used to constrain the model parameters for litterfall rates. Default rates of 309 

turnover (% of biomass yr-1) for branches, bark and foliage were fine-tuned to ensure that; (i) 310 

predicted rates of litterfall in each stand were similar to those reported in reviews of litterfall rates 311 

for branches, bark and foliage of eucalypt-dominated forest ecosystems (Paul and Polglase 2004b; 312 

England et al., 2017), and; (ii) predicted rates of litterfall of woody and non-woody components 313 

matched those measured at four contrasting 13–20 year old environmental planting sites in the 314 
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present study.  315 

The four litterfall sites included: (i) Wyoming Springs (35.11o S, 149.10o E), high stocked (> 316 

1500 ha-1), block planting with PropEuc < 0.75; (ii) Castlesteads (34.50o S, 148.74o E), low density 317 

(< 1,500 ha-1) wide belt planting, with PropEuc ≥ 0.75, (iii) Hawk Hill (34.53o S, 148.65o E), 318 

moderate density (500 – 1,500 ha-1), block planting with PropEuc < 0.75, and; (iv) Allendale 319 

(34.38o S, 148.71o E), high density (> 1500 ha-1) block planting with PropEuc < 0.75. At each of 320 

these sites litterfall was sampled every 23–73 days over a 12-month period using six randomly-321 

placed litterfall traps (0.18 m2) located in each of two plots (approx. 0.04 ha), avoiding edge rows 322 

and large gaps in the stand. Woody and non-woody components collected from the traps were 323 

separated and oven-dried (70oC).  324 

 325 

2.4.4 Decomposition of litter 326 

Decomposition rates of foliage debris in eucalypts are well predicted by a double exponential 327 

relationship (representing both decomposable and resistant components), whereas a single 328 

exponential relationship describes decomposition rates of dead wood and bark debris (Paul and 329 

Polglase 2004b). The decomposable fraction, together with assumed rates of decomposition of 330 

each pool of debris, was modelled to match those reported from reviews of eucalypt-dominant 331 

forest ecosystems (Paul and Polglase 2004b; England et al., In prep.).  332 

To test the assumed, generic, defaults of rates of litterfall and litter decomposition, we 333 

compared the predicted and measured mass of litter with measurements available at 109 of the 125 334 

sites (Table 1). At a sub-set (N = 21 sites) of these sites, litter mass was further divided into 335 

components (twig, bark and foliage debris pools), thereby providing a more refined verification of 336 

predicted litter mass. 337 

Although there were measurements of litter mass, coarse woody debris (CWD, > 25 mm 338 

diameter) was not measured. In mixed-species plantings with comparable AG biomass to those 339 
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measured here (i.e. < 250 Mg ha-1), CWD averaged 24 Mg ha-1, which represented approximately 340 

70% of the mass of dead wood (Prior et al., 2015). Therefore, in the absence of any other 341 

information, it was assumed that the dead wood and bark litter measured in the litter quadrats 342 

represented only about 30% of the total debris of these components. 343 

 344 

2.5 Calibrating the model for maximum prediction efficiency of SOC 345 

Parameters of turnover and decomposition of dead roots, and microbial efficiency during 346 

decomposition of debris pools (Fig. 1), required calibration because of their high uncertainty 347 

arising from a lack of constraining data (Paul and Polglase 2004b). Across all 125 sites, each of 348 

these calibration parameters was adjusted to maximise the efficiency of prediction of SOC and 349 

each of its pools (Table 1). This index of model performance, model efficiency (Soares et al., 350 

1995) is expressed as;  351 

𝐸𝐹 = [1 − 𝑒2̅̅ ̅ 𝑜2̅̅ ̅⁄ ]        (1) 352 

where 𝑜2̅̅ ̅ is the mean square deviation of each observation from the mean of the observations and 353 

𝑒2̅̅ ̅ is the mean squared residual. When expressed as a percentage, an EF of 100% indicates perfect 354 

match between observations and predictions; 0% indicates the predictions are no better than simply 355 

using the mean of the observations; and < 0% indicates that residual variation is higher than the 356 

variation in the data.  357 

 358 

2.6 Scenario analysis 359 

For scenario analyses, the 125 sites were categorised into eight groupings of soil-climate 360 

conditions. Across all sites, the median values of SOC stock, mean annual temperature (MAT) and 361 

MAR observed were 45 Mg ha-1, 16oC and 600 mm yr-1, respectively. Using these median values, 362 

the eight soil-climatic categories were derived using different combinations of bi-variate (high or 363 

low) factors of initial stocks of SOC, MAT and MAR. There were between 8 and 30 sites 364 
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represented in each category.  365 

We anticipated that much of the observed variability in SOC sequestration rates within soil-366 

climatic categories may be attributable to variation in planting type. This is because we know 367 

planting types influence biomass productivity (Paul et al., 2015). To explore this, FullCAM 368 

simulations were run for contrasting planting types (Table 2) under scenarios where initial SOC 369 

was either low (36 Mg ha-1) or high (62 Mg ha-1), and where there were four different climatic 370 

conditions simulated: (i) warm-wet, MAT ca 20oC, MAR ca 900 mm yr-1; (ii) cool-wet, MAT ca 371 

14oC, MAR ca 700 mm yr-1; (iii) cool-dry, MAT ca 15oC, MAR ca 450 mm yr-1; and (iv) warm-372 

dry, MAT ca 20oC, MAR ca 450 mm yr-1. The scenarios for the initial SOC and climate were 373 

based on typical ranges of conditions found in our sampling. Clay soils generally have a larger 374 

capacity to accumulate SOC than those with lower clay content (Oades 1988; Solins et al., 1995; 375 

Laganière et al., 2010). In all scenarios, soil clay content was assumed to be 20–26%. For each 376 

simulation, mean annual rates of carbon sequestration 15 years after reforestation were predicted 377 

for each pool – AG biomass, debris and SOC. The mean (and standard deviation) of these predicted 378 

sequestration rates were calculated for each of the 13 planting types simulated for all eight 379 

scenarios of soil-climatic conditions (two soil conditions × four climate conditions).  380 

 381 

3. Results and Discussion 382 

3.1 Constraining the model with observations 383 

3.1.1 Growth rates 384 

For planting sites that were solely rain-fed (N = 90), AG biomass was predicted with a 385 

model efficiency of 46% (Fig. 3a), which was within the range of efficiencies observed previously 386 

for environmental plantings (Paul et al., 2015). Although the precision of prediction was low for a 387 

particular site, across a number sites there was no bias in the predictions. Hence, in national or 388 

regional carbon accounting, and in project-level accounting across aggregated sites, estimates will 389 
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be un-biased on average, despite low precision at the site-scale. These results provide confidence 390 

that application of the default TYF parameters is appropriate for national and regional-scale carbon 391 

accounting of solely rain-fed environmental plantings.  392 

In contrast to Paul et al. (2015), the new datasets obtained here showed that for plantings 393 

accessing additional water to rainfall, default TYF parameters for prediction of AG biomass are 394 

inappropriate. Among the 35 plantings assumed to be accessing additional water, AG biomass was 395 

underestimated by an average of 47%, with this significant prediction bias resulting in a model 396 

efficiency of prediction of only 9% (Fig. 3b). Thus, further work is required to develop TYF 397 

modifications for plantings accessing additional water. This was not an issue for this calibration 398 

study because modelled biomass yields, where growth multipliers were applied to ensure predicted 399 

AG biomass matched that observed, were used (Fig. 3a and b).  400 

 401 

 402 

Fig. 3. Relationships between predicted and observed AG biomass (Mg ha-1) for: (a) 90 plantings that were solely 403 

rain-fed, and also the four rain-fed plantings where litter fall was monitored (open squares) prior to fitting of AG 404 

yields; and (b) 35 plantings that were either plantings along streams and floodplains (circled) or otherwise accessing 405 

additional water, prior to fitting of AG yields. Dashed line is 1:1. 406 
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3.1.2 Allocation of biomass 408 

Overall, there was no substantial bias in predicted allocation of biomass when compared with 409 

that expected based on the empirical modelling of environmental plantings (Paul and Waterworth 410 

2015; Fig 4). There were some individual plantings where biomass components were predicted 411 

poorly, but overall model efficiencies varied from 66–93% among components (Fig. 4).  412 

 Total AG biomass was adjusted to fit the measured value. However, due to the imperfect 413 

prediction of allocation of this biomass to tree components, some errors will be introduced when 414 

simulating inputs of carbon into the SOC pools. Because turnover rates are particularly high for 415 

foliage and fine roots, they have a relatively strong influence on SOC. The relative efficiencies of 416 

prediction of these pools of biomass were only 73% for foliage and 66% for fine roots. This is 417 

likely to introduce uncertainty when calibrating SOC models.  418 

 419 

 420 

Fig. 4. Relationships between predicted and observed components of biomass (Mg ha-1) in stands of environmental 421 

plantings: (a) stem wood; (b) branches; (c) coarse roots; (d) bark; (e) foliage; and (f) fine roots. Dashed line is 1:1. 422 

Note: Data from the four litterfall sites were included here together with the 125 sites measured for pools of SOC.  423 
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 424 

3.1.3 Litterfall 425 

When constraining the model to match data, we found parameters of turnover rates were 8.5 426 

% yr-1 for branches, 4.8 % yr-1 for bark, and 15.7 % yr-1 for foliage. Across all study sites (Table 427 

1), this was equivalent to mean SD rates of turnover of 1.57 , 0.37  and 1.24  428 

Mg ha-1 yr-1 for branch, bark and foliage, respectively. The large ranges in rates of litterfall for the 429 

eucalypt-dominant environmental plantings were consistent with those found in reviews of 430 

eucalypt-dominant forests (Paul and Polglase 2004a; England et al., In prep.). In these reviews, 431 

rates of litterfall for branches, bark and foliage were 0.17–2.67 Mg ha-1 yr-1, 0.04–1.99 Mg ha-1 yr-432 

1, and 0.30–6.34 Mg ha-1 yr-1, respectively.  433 

Comparison of predicted litterfall rates with observations at the four environmental planting 434 

sites (Section 2.4.3) indicated that bias averaged only -0.34 Mg ha-1 yr-1 across all component types 435 

(Fig. 5). Given that rates of litterfall are inherently highly variable (e.g. with climate, stand age, 436 

tree density, species mix), uncertainties in predicted rates of litterfall are inevitable until these 437 

influencing factors are accounted for in the model. Nonetheless, results obtained here provided 438 

confidence that predicted rates of litterfall were well within the expected range. 439 

 440 
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 441 

Fig. 5. Relationship between predicted and observed rates of litterfall and litter mass (in DM) of total, and woody and 442 

non-woody components, under various environmental plantings across Australia. Numbers represent the N, the 443 

number of site-based averages used to calculate the mean observed. Error bars represent the SD of the mean.  444 

 445 

3.1.4 Decomposition of litter 446 

On fitting of the single or double exponential decay models to data obtained from litter bag 447 

studies in eucalypt-dominant stands (Paul and Polglase 2004a), we found that the average observed 448 

parameters for resistant fraction of foliage litter was 0.77, while the decay constants for deadwood, 449 

bark litter and decomposable and resistant foliage litter were 14, 16, 100 and 28% yr-1, 450 

respectively. These parameter values were applied in FullCAM.  451 

Assessment of the amount of litter mass provided further verification of assumed rates of 452 

litterfall and litter decomposition. Litter mass varies widely among forest types and species, partly 453 

reflecting differences in litter quality and climate (Prescott, 2010). Our results also indicated a 454 

wide variation in measured mass of litter among 113 plantings (Fig. 5).  455 

Although we found model predictions of total or components of litter mass to be highly 456 
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imprecise for any given site, across all plantings, the mean predictions were within ± 1 SD of that 457 

observed (Fig. 5). This suggests that although the modelled rates of litterfall and litter 458 

decomposition agree with typical rates observed, site-based factors influence these rates, resulting 459 

in poor precision of litter mass prediction for an individual site (e.g. Russell et al., 2015). For 460 

example, accounting for soil fauna in addition to climatic factors may improve the models 461 

performance in predicting decomposition (Filser et al., 2016). Hence, in the absence of site-462 

specific calibrations, this model is most appropriate for application at regional scales given errors 463 

will be minimised when applied across multiple sites, with site-level errors largely cancelling each 464 

other out. 465 

Intensive sampling (N = 120) of three environmental plantings by Cunningham et al. (2017) 466 

showed that litter mass was more variable than SOC due to much larger spatial variability, and 467 

consequently much higher sampling intensities were required to confidently measure the litter 468 

mass under environmental plantings. Therefore, imprecise predictions of litter mass here were to 469 

be expected since ≤40 replicates per site were sampled (Table 1). Also assumptions were required 470 

to account for CWD components. Further work with higher sampling intensities of litter and CWD 471 

is required to improve estimates of wood, bark and foliage debris under environmental plantings. 472 

Despite their high sampling errors, observations from the specific calibration sites provided the 473 

best available constraint to predictions of litter mass under environmental plantings.  474 

 475 

3.2 Calibrating the model for maximum prediction efficiency of SOC 476 

3.2.1 Root turnover, decomposition of dead roots and microbial efficiency 477 

The highest overall model efficiencies for the various pools of SOC were obtained under the 478 

following combination of parameter settings: (i) rates of root turnover of 10 and 80% yr-1 for coarse 479 

and fine roots respectively; (ii) default decomposition rates of 30 and 100% yr-1 for coarse and fine 480 

root debris respectively; and (iii) microbial efficiencies that varied with stand age, being 40% and 481 
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80% under stands of <12 or ≥ 12 years of age respectively for most debris pools. However, for the 482 

relatively small fraction of foliage litter that was relatively ‘decomposable’, microbial efficiencies 483 

were 77% and 90% under stands of <12 or ≥ 12 years of age, respectively.  484 

In general, most carbon inputs to the soil come from the high turnover pool of fine roots 485 

(Coleman et al., 2000; Rasse et al., 2005; Lewis et al., 2016). Previous estimates of rates of fine-486 

root turnover under forests range from 20–290% yr-1 (e.g. Gill and Jackson 2000; Brunner et al., 487 

2013), with higher rates expected in warmer climates (e.g. McCormack and Guo 2014). A review 488 

of eucalypt-dominant forests by England et al. (In prep.), found that mean rates of fine root (< 3 489 

mm) turnover within the surface soil (< 30 cm depth) were 109% yr-1 (ranging between 58–182% 490 

yr-1; Jourdan et al., 2008; Xu et al., 2013). However, these rates of fine-root turnover would be 491 

expected to be higher, on average, than those in the 125 calibration sites because measurements 492 

were for eucalypt plantations in tropical or sub-tropical sites with relatively high MAR (1360–493 

1534 mm yr-1) compared to those in the present study (Table 1). Hence, our assumed rate of 494 

turnover of fine roots of 95% yr-1 may be suitable, on average, for application to environmental 495 

plantings.  496 

Measurements of rates of coarse root turnover are also rare (Paul and Polglase 2004b). There 497 

are also few data available to guide whether our calibrated rates for decomposition of root debris 498 

pools under eucalypt-dominant environmental plantings were justified. A global review of 499 

decomposition rates of coarse and fine roots (Zhang and Wang 2015) included no observations of 500 

decomposition from eucalypt-dominant forest ecosystems in Australia.  501 

Microbial efficiency is a critical parameter in modelling SOC (Polglase and Paul 2011) but is 502 

also poorly quantified because it is very difficult to measure directly. Studies have begun to explore 503 

this problem (Froberg et al., 2009; Rubino et al., 2010), but to our knowledge there are no estimates 504 

of microbial efficiency for environmental plantings. Moreover, it is possible that the moderation 505 

of carbon inputs to the soil via adjusting a ‘microbial efficiency’ parameter is a simplification of 506 
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the processes occurring within the soil. It is possible that soils become ‘saturated’ with respect of 507 

carbon inputs due to silt and clay protection, soil structure and/or the biochemical complexity of 508 

the organic compounds (Stewart et al., 2007). There is therefore a pressing need to understand how 509 

plant debris are decomposed to form SOC, particularly on the soil surface under woody vegetation 510 

(Cotrufo et al., 2013; Carnovale et al., 2015). 511 

 512 

3.2.2 Efficiency of prediction of pools of SOC 513 

The calibration method used to maximise the prediction efficiency of the various SOC pools 514 

had mixed results (Fig. 6). The ROC pool includes highly-carbonised organic material such as 515 

charcoal (Baldock and Skjemstad, 2000), surviving for >500 years (Lehmann et al., 2008; Baldock 516 

et al., 2007). We assumed this pool was stable, and therefore remained unchanged over the time 517 

of reforestation (data not shown). Because the other pools of SOC were more dynamic, their 518 

prediction was more difficult, with prediction efficiencies of 68% for HOC (Fig. 6c), and only 519 

43% for POC (Fig. 6b). The higher efficiency of prediction for the HOC pool relative to the POC 520 

pool was consistent with previous findings that fluxes of HOC following land use change can be 521 

small relative to POC (e.g. Rabbi et al., 2014). The HOC pool is considered to be more stabilised 522 

against microbial decomposition due to formation of organo-mineral complexes (Baldock and 523 

Skjemstad, 2000).  524 

Largely because of the imprecision in prediction of the POC pool, the overall prediction 525 

efficiency of total SOC was only moderate, at 39% (Fig. 6a). Hence, although predictions were 526 

unbiased, they were imprecise given uncertainties in predictions of carbon inputs into pools of 527 

SOC (allocation of biomass, rates of turnover and decomposition of debris), and in the SOC 528 

observations at each site used for calibration. Indeed, SOC is often highly variable and concurrent 529 

work on sampling intensity (Cunningham et al., 2017) found that a minimum of 30 cores was 530 

required within a hectare to have a 95% probability of estimating SOC within 10% of the 531 
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population mean. This suggests existing sites (N = 5–24 cores, Table 1) may not have been 532 

adequately sampled, potentially reducing the precision of the model.  533 

 534 

 535 

Fig. 6. Relationship between observed and predicted carbon stocks (Mg C ha-1) in surface soil (0–30 cm) for: (a) total 536 

soil organic carbon (SOC); (b) particulate organic carbon (POC), representing the RPM pool in RothC; and (c) humus 537 

organic carbon (HOC), representing the HUM pool in RothC. The ROC pool was not presented as results were on the 538 

1:1 line given the ROC measurements were used to constrain the model estimates of ROC. 539 

 540 

In addition to possible sampling errors at some measurement sites and, as mentioned above, 541 

high uncertainties in data used to constrain models parameters accounting for carbon dynamics in 542 

pools of biomass and debris, other key caveats to our findings included inadequate representation 543 

of all regions across which environmental plantations are commonly established (Fig. 2), and lack 544 

of accounting for changes in SOC in soil deeper than 30 cm.  545 

 546 

3.3 Scenario analyses 547 

As expected, predicted rates of SOC sequestration varied with initial stocks of SOC and 548 

climate (Fig. 7). Previous land use can be an important determinant of sequestration of SOC 549 

following reforestation, with increases in stocks on ex-cropland, and either small increases, or 550 

losses, in stocks on ex-pasture (Paul et al., 2002; Guo and Gifford, 2002; Laganière et al., 2010). 551 

SOC stock is generally higher under improved pasture than cropped soils (e.g. Rabbi et al., 2014; 552 
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England et al., 2016). Climate can also have a strong influence on changes in SOC with 553 

reforestation (Fig. 7), with increases in tropical and sub-tropical regions and often small decreases 554 

in temperate and Mediterranean-type regions (e.g. Paul et al., 2002).  555 

Although initial stocks of SOC and climate are important factors influencing SOC 556 

sequestration following reforestation with environmental plantings in Australia (e.g. England et 557 

al., 2016), other factors that may influence SOC include enhanced rates of sequestration with 558 

narrower planting widths, higher tree densities, and an increased proportion of over-storey trees. 559 

Such factors have been largely overlooked, but could be accounted for in our scenario analyses 560 

given previous calibrations of FullCAM’s growth curves for stands of differing planting width, 561 

density and PropEuc (Paul et al., 2015). These scenario analyses suggested that the use of 562 

alternative planting designs among sites may partly explain previous findings that variation in 563 

changes in SOC among sites, even within a relatively small geographical area, was much higher 564 

than observed changes in SOC with land use change (e.g. Cunningham et al., 2015a; Prior et al., 565 

2015; Lewis et al., 2016).  566 

 567 
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 568 

Fig. 7. Predicted rates of carbon accumulation in biomass, debris and soil in environmental plantings during the first 569 

15 years following reforestation for contrasting categories of initial SOC (low or high, with low being < 45 Mg C ha-570 

1) by four categories of climate (warm-wet, cool-wet, cool-dry and warm-dry). For each category, means are presented 571 

for 13 differing types of temperate environmental plantings, each with differing rates of biomass accumulation based 572 

on planting width, tree density and proportion of eucalypts (Paul et al., 2015). Error bars represent the SD of prediction 573 

among these 13 planting types. Observed rates of SOC accumulation in each initial-SOC x climate category are also 574 

presented for comparison (number of sites and SD bars indicated).  575 

 576 

4. Conclusions 577 

Changes in SOC stocks following establishment of environmental plantings on agricultural 578 

land were modelled by using field measurements to constrain parameters accounting for carbon 579 

dynamics in pools of biomass and debris. To provide the most accurate modelling of carbon inputs 580 

into the soil, microbial efficiencies and rates of turnover and decomposition of roots required 581 

calibration to maximise efficiencies of prediction of SOC. Differences in predicted SOC stocks 582 

between scenarios of differing initial SOC stocks and climate were relatively small. A novel aspect 583 
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of this work was the demonstration of how planting designs such as planting width, tree density, 584 

and proportion of eucalypts, further influence SOC sequestration following reforestation. 585 

Although uncertainties remain in many in many model parameters (e.g. microbial efficiency), this 586 

verified modelling approach provides further improvement to our understanding of the dynamics 587 

of SOC following reforestation.  588 
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