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Structure functions for the three-nucleon system
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The spectral functions and light-cone momentum distributions of protons and neutrons in3He and3H are
given in terms of the three-nucleon wave function for realistic nucleon-nucleon interactions. To reduce com-
putational complexity, separable expansions are employed for the nucleon-nucleon potentials. The results for
the light-cone momentum distributions suggest that they are not very sensitive to the details of the two-body
interaction, as long as it has reasonable short-range repulsion. The unpolarized and polarized structure func-
tions are examined for both3He and3H in order to test the usefulness of3He as a neutron target. It is found
that the measurement of the spin structure function of polarized3H would provide a very clear test of the
predicted change in the polarized parton distributions of a bound proton.
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I. INTRODUCTION

It is well known that a polarized3He target can be used a
a polarized neutron target. The question we would like
address is how good a polarized neutron target it is for
determination of the neutron spin structure function,g1, in
deep inelastic scattering. There are two questions that pl
central role in resolving this problem. The first is the sen
tivity of the light-front momentum distribution to the three
nucleon wave function. For this we need to calculate
spectral function for realistic trinucleon wave functions. T
second question is a consequence of the fact that the ne
structure function is small in comparison with the prot
structure function. This raises the question of the accur
with which one can extract the polarized neutron struct
function from 3He.

To examine these questions we need first to calculate
three-nucleon wave function for a ‘‘realistic’’ nucleon
nucleon potential. To simplify the problem computational
we consider a separable expansion@1# of the Paris potentia
~which we call PEST! @2#, that gives the same three-nucleo
observables as the original Paris potential in a full multich
nel Faddeev calculation@3,4#. For comparison we conside
two other classes of potentials. The first is a rank one uni
pole approximation~UPA! @5# to the Reid soft core potentia
@6#. This has the property that it reproduces the position
residue of the poles in the1S0 and 3S1- 3D1 channels—i.e.,
it reproduces the original potential’s deuteron wave functi
As a result, it incorporates the short range behavior of
original interaction. The second is a Yamaguchi type pot
tial with a D-state probability of 4% and 7%@7#. These po-
tentials do not include the short range repulsion that is co
monly present in nucleon-nucleon interactions.

In Sec. II, we present the procedure used to determine
three-nucleon wave functions for these potentials, as we
the corresponding three nucleon observables. By compa
the results for these three classes of potential, we are ab
determine the importance of short range correlations and
0556-2813/2001/64~2!/024004~15!/$20.00 64 0240
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contribution of higher partial waves to the neutron and p
ton spectral functions and therefore to the light-cone mom
tum distributions. Since we will be considering both3He and
3H, we have chosen to work in an isospin basis and there
neglect the contribution of the Coulomb interaction to t
3He wave function. We do, however, estimate the effect
neglecting the Coulomb correction on the momentum dis
bution and therefore the structure functions.

In order to analyze the deep inelastic structure functio
of A53 nuclei, we need to determine the neutron and pro
spectral functions. This is detailed in Sec. III. Here we co
pare the results for various two-body potentials, finding t
the light-cone momentum distribution is not sensitive to t
details of our three-nucleon wave function. In Sec. IV w
turn to the structure functions and examine the ratio of
structure function in the three-nucleon system to that in
deuteron~the EMC effect! for the different interactions. We
also examine the possible implication of neglecting the C
lomb interaction in3He. This opens the way for us to stud
the sensitivity of the unpolarized and polarized structu
functions to the quark distributions in the proton and neut
and the possibility of extracting the neutron spin structu
function from polarized3He data. Finally, in Sec. IV we
present some concluding remarks.

II. THE THREE NUCLEON WAVE FUNCTION

For the three-nucleon problem we can determine the n
relativistic wave function by solving the Faddeev equatio
exactly for any realistic two-body interaction. However,
simplify the computational aspects of the problem, with
sacrifice in the quality of the wave function, we turn to sep
rable expansions that have been extensively tested@3,4#. This
will result in a three-nucleon wave function that can be us
to calculate the spectral function and the light-cone mom
tum distribution. In the present section we detail the thr
nucleon formalism required to evaluate the wave functio
for 3He and 3H.
©2001 The American Physical Society04-1
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A. Notation

With the extensive literature on the Faddeev equations@8#
and their use in the three-nucleon system, we restrict
selves here to a summary of the notation used in the pre
analysis. The Faddeev decomposition of the three-nuc
wave function is given by

uC&5uw1&1uw2&1uw3&5$e1~123!1~132!%uw3&. ~1!

Here ‘‘e,’’ ‘‘ ~123!,’’ and ‘‘ ~132!’’ are members of the permu
tation group of three objects, withe being the unit elemen
~i.e., euwa&5uwa&) and the other two being cyclic permuta
tions of $1,2,3%. The second equality results from the r
quirement that we have identical particles, the wave funct
is then invariant under any cyclic permutation of our p
ticles. Since we have a system of identical fermions, the t
wave function must be antisymmetric under the exchang
any two particles in the system. This requirement leads to
following conditions:

~ab!uwa&52uwb&,

~ab!uwb&52uwa&, ~2!

~ab!uwg&52uwg&.

In the above equationsa, b andg are indices running from
1 to 3, and always different from each other, and (ab) is
again a member of the permutation group of three obje
which exchange particlesa andb leaving the third one un-
changed. Since we are dealing with a three-body probl
there will be only two independent momenta in the cente
mass frame. All the particles have spin and isospin1

2 and one
must account for their orbital angular momentum. We brie
summarize the quantum numbers and momenta u
throughout this paper:

Na is a set of quantum numbers describing a three b
channel from the point of view of the particlea, which is the
spectator; the set is unique for each channel.

lWa is the orbital angular momentum between particlesb
andg.

LW a is the orbital angular momentum between particlea
and the center of mass of the system consisting of particleb
andg.

Wa , Wb , Wg are the spins of each particle.
ıWa , ıWb , ıWg are the isospins of each particle.
pW a is the momentum of particlea in the center of mass

frame.
qW a is the relative momentum of the pair of particlesb and

g, defined asqW a5(pW g2pW b)/2.
IW andJW are, respectively, the total isospin and total ang

lar momentum of the system.

B. The partial wave expansion

We now turn to the partial wave expansion of our wa
function. To minimize the number of coupled Faddeev eq
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tions, having truncated the interaction to a set of par
waves, we have used the following coupling scheme:

Wb1Wg5sWa , lWa1sWa5 ̄Wa , ̄Wa1Wa5SW a , LW a1SW a5JW ,

ıWb1 ıWg5 ı̄Wa , ı̄Wa1 ıWa5 IW,

which is known as the channel coupling scheme. With t
coupling scheme the complete set of quantum numberNa

describing a three-body channel isNa5$ ı̄ a ,sa ,̄a ,Sa ,La%.
A subset of these quantum number that describe the t
body channels is na5$ ı̄ a ,sa ,̄a%, and therefore Na
5$na ,Sa ,La%. We have not includedl a in the set of quan-
tum numbers since the tensor force mixes values ofl a . This
allows us to define the angular momentum and isospin b
as

uV l aNa

JI &5u$La ,@„l a ,~b ,g!sa…̄a ,a#Sa%J&

3u@~ ıb ,ıg! ı̄ a ,ıa#I &. ~3!

These basis states satisfy the following orthogonality re
tion: ^V l aNa

JI uV l bNb

JI &5d l a ,l b
dNa ,Nb

.

We are now in a position to write the partial wave expa
sion of the total three-nucleon wave function as

uC&5 (
l aNa

uV l aNa

JI &uU l aNa

IJ &, ~4!

whereuU l aNa

IJ & is defined as the radial part of the wave fun

tion corresponding to the partial wave$ l a ,Na%.

C. Separable potential

To reduce the dimensionality of the Faddeev integ
equations from two to one, and in this way simplify th
three-body wave function, we have employed a separa
expansion of the nucleon-nucleon interaction. Our poten
for the interaction of particlesb and g in a given partial
wave is of the form@5#

V
l a ,l

a8

na 5ugl a

na&l
l a l

a8

na ^g
l
a8

nau, ~5!

where ugl a

na& is a ‘‘form factor’’ and l
l a l

a8

na is the strength of

the potential in that partial wave. By takingl aÞ l a8 we can
accommodate a tensor interaction, as in the case of
3S1- 3D1 nucleon-nucleon channel. The above expression
the potential is for a rank one potential. To incorporate hig

rank potentials, we turn the strengthl
l a l

a8

na into a matrix and

as a resultugl a

na& is a row matrix. In resorting to separab

expansions, we have taken the view that the expansion
numerical procedure analogous to the use of quadratu
However, a low order expansion, such as the UPA or the
of a separable potential, is justified on the grounds tha
generates the same analytic structure in the amplitude~i.e.,
bound or anti-bound state poles! as a corresponding realisti
4-2
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STRUCTURE FUNCTIONS FOR THE THREE-NUCLEON SYSTEM PHYSICAL REVIEW C64 024004
potential@9#. The use of a separable potential gives rise t
separablet matrix that satisfies the Lippmann-Schwing
~LS! equation,

ta~E!5Va1VaG0~E!ta~E!5„12G0~E!Va…
21Va ,

~6!

with G0(E)5(E2H0)21 the two-body Green’s function. I
is simple to show that the separablet matrix in a given par-
tial wave, resulting from a solution of the LS equation, is
the form

t
l a ,l

a8

na ~E!5ugl a

na&t
l a l

a8

na ~E!^g
l
a8

nau, ~7!

where the form factorugl a

na& is identical to that used in the

separable potential. The functiont
l a l

a8

na (E), in a given chan-

nel, can be a written in matrix form as

@tna~E!#215@lna#212^gnauG0~E!ugna&. ~8!

This separability of thet matrix will allow us to reduce the
dimensionality of the Faddeev integral equations from two
one after the partial wave expansion described in Eq.~4!.

D. The three-nucleon wave function

Having determined the structure of the two-body amp
tude, we now turn to the wave function for the three-nucle
system. The Schro¨dinger equation for this system is

~E2H0!uC&5VuC&5 (
a51

3

VauC&. ~9!

This can be rewritten in a form that suggests the Fadd
decomposition stated in Eq.~1!, i.e.,

uC&5G0~E!VuC&5 (
a51

3

G0~E!VauC&5 (
a51

3

uwa&.

~10!

Here, G0(E)5(E2H0)21 is the three-body Green’s func
tion. We now can write an equation for the Faddeev com
nents of the wave function as

uwa&5G0~E!VauC&5G0~E!Vauwa&1 (
gÞa

G0~E!Vauwg&.

~11!

With the help of Eq.~6!, the set of coupled integral equation
for the Faddeev components of the wave function,uwa&, be-
comes

uwa&5G0~E!Ta~E!~ uwb&1uwg&). ~12!

Here Ta(E) is the t matrix for particlesb and g in the
three-particle Hilbert space, which is related to the two-bo
amplitude considered in the last section by

Ta~E!5ta~E2ea!, ~13!
02400
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where ea is the energy of the spectator particlea in the
three-body center of mass.1

In Eq. ~12! we have a set of coupled integral equation
known as the Faddeev equations, for the three-body bo
state. For the three-nucleon system, where we have iden
fermions, we take advantage of the antisymmetry, as give
Eq. ~2!, and the fact that (bg)Ta5Ta(bg)52Ta , to re-
duce the Faddeev equations to

uwa&5G0~E!Ta~E!„12~bg!…uwb&52G0~E!Ta~E!uwb&,
~14!

with aÞb. To recast this equation into a form that will adm
numerical solutions, we need to first partial wave decomp
the Faddeev equations and take into consideration the s
rability of the two-body amplitudes. This can all be achiev
by partial wave expanding the two-body amplitude in thre
body Hilbert space in terms of the angular momentum sta
defined in Eq.~3! @10#

Ta~E!5 (
l a l a8
NaJI

E
0

`

dpapa
2 uV l aNa

JI ;pa&t
l a l

a8

na ~E2ea!^pa ;V l
a8Na

JI u

5 (
l a l a8
NaJI

E
0

`

dpapa
2 uV l aNa

JI ;gl a

na&t
l a l

a8

na ~E2ea!

3^g
l
a8

na ;V l
a8Na

JI u, ~15!

whereea5(3/4m)pa
2 and

uV l aNa

JI ;gl a

na&5uV l aNa

JI &ugl a

na;pa&. ~16!

We now can write Eq.~14! as

uwa&52G0~E! (
l a l a8
NaJI

E
0

`

dpapa
2 uV l aNa

JI ;gl a

na&t
l a l

a8

na ~E2ea!

3^g
l
a8

na ;V l
a8Na

JI uwb&

[2G0~E! (
l a l a8
NaJI

E
0

`

dpapa
2 uV l aNa

JI ;gl a

na&t
l a l

a8

na ~E2ea!

3XNa l
a8

JI
~pa!, ~17!

with the spectator function,XNa l a
JI (pa), satisfying the equa-

tion

1For the three-nucleon system in a nonrelativistic formulatio
ea5(3/4m)pa

2 , wherem is the nucleon mass.
4-3
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XNa l a
JI ~pa![^gl a

na;V l aNa

JI uwb&

52(
l b l b8
Nb

E
0

`

dpbpb
2Zl aNa ; l bNb

JI ~pa ,pb ;E!

3t
l b l

b8

nb ~E2eb!XNb l
b8

JI
~pb!, ~18!

where

Zl aNa ; l bNb

JI ~pa ,pb ;E![^gl a

na;V l aNa

JI uG0~E!uV l bNb

JI ;gl b

nb&,

~19!

with aÞb. In Appendix A we give an explicit expression fo
Zl aNa ; l bNb

JI , for the coupling scheme used in the prese

analysis@8,10#. In Eq. ~18! we have a set of coupled, homo
geneous, integral equations for the spectator wave func
XNa l a

JI (pa), which we can use to construct the total wa
function. Here, we note that the spectator wave function
only a function of the momentum of the spectator parti
and the energy of the system, which is the binding energ
3He or 3H. We now turn to the total wave function for th
three-nucleon system. Making use of the orthogonality of
angular functions,uV l aNa

JI &, we can write the total radia

wave function, defined in Eq.~4!, as

uU Na l a
JI &5^V l aNa

JI uC&

5^V l a ,Na

JI uwa&1^V l aNa

JI uwb1wg&

5uh l aNa

JI1 &1uh l aNa

JI2 &, ~20!

where

h l aNa

JI1 ~pa ,qa![^paqauh l aNa

JI1 &

5^paqa ;V l aNa

JI uwa&

52G0~qa ,pa ;E!gl a

na~qa!

3(
l a8

t
l a l

a8

na ~E2ea!XNa l
a8

JI
~pa!, ~21!

with G0(qa ,pa ;E)5@E2(1/m)(qa
21 3

4 pa
2)#21. The second

component of the radial wave function in Eq.~20! is given
by

h l aNa

JI2 ~pa ,qa![^paqauh l aNa

JI2 &

5^paqa ;V l aNa

JI uwb1wg&

5P (
l bNb

E
21

11

dj G l aNa ; l bNb

JI ~pa ,pb8 ;x!

3h l bNb

JI1 ~pb8 ,qb8 !, ~22!

whereP5 1
2 @12(21)l a1sa1 ı̄ a#, and
02400
t
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p8b
25qa

21
1

4
pa

21qapaj, q8b
25

1

4
qa

21
9

16
pa

22
3

4
qapaj,

x52
1

pb8
S 1

2
pa1qaj D . ~23!

The functionG l aNa ; l bNb

JI is given in Appendix A. We only

observe here that the expression forG l aNa ; l bNb

JI differs from

that for Zl aNa ; l bNb

JI by the absence of the separable poten

form factors and the three-body Green’s function. The n
malization of the total wave function is then given by

^CuC&53^wauwa&16^wauwb&

53 (
l aNa

@^h l aNa

JI1 uh l aNa

JI1 &12^h l aNa

JI1 uh l aNa

JI2 &#.

~24!

Here the sum is restricted by the two-body partial wav
included in the Faddeev equations. Since the partial w
expansion of the total wave function involves an infin
sum, we need to truncate this sum such that the norma
tion evaluated by the truncated sum, that is,

^CuC&5 (
l aNa

^U Na l a
JI uU Na l a

JI &, ~25!

agrees with the result of Eq.~24!. In this way we ensure tha
our total wave function includes all the partial waves dicta
by the two-body interaction.

E. Numerical results

As a first step in the determination of our wave functio
we calculate the binding energy of the three-nucleon sys
for the class of potentials being considered. For the UPA
the Reid soft core and the Yamaguchi potentials the inte
tion is restricted to the1S0 and 3S1-3D1 channels. This re-
duces the homogeneous Faddeev equations to five cou
integral equations for the spectator wave function. For
PEST potentials the number of coupled channels depend
the rank of the interaction in a given channel and the num
of partial waves included. To get the optimal representat
of the Paris potential we need to have achieved converge
in the rank. This varies from channel to channel. In all ca
the rank has been chosen in such a way that the bind
energy for a given number of channels has converged an
in agreement with the results of calculations using the P
potential directly@4#. In Table I we present the result for th
binding energy for the three classes of potentials. For
PEST potentials we have taken the 5, 10, and 18 cha
potentials. The 18 channel calculation corresponds to inc
ing all nucleon-nucleon channels withJ<2. This will allow
us to examine the contribution to the spectral function fro
higher partial waves. Here we observe that the Yamagu
potentials overbind the three-nucleon system, while the U
and PEST potentials underbind. Since the binding ene
determines the long range part of the wave function, t
4-4
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STRUCTURE FUNCTIONS FOR THE THREE-NUCLEON SYSTEM PHYSICAL REVIEW C64 024004
difference allows us to examine the sensitivity of the str
ture functions to the binding energy and therefore to the
of the wave function. A comparison of the PEST five chan
and the UPA suggests that the difference between these
models is minimal. In fact, that is the case for most realis
potentials that do not include energy dependence. The hi
partial waves in the PEST potential seem to have a small
significant contribution to the binding energy. Here aga
this potential, in common with all realistic potentials, ten
to underbind the three nucleon system. The solution to
problem may involve the short-range, velocity depende
of the two-nucleon force@11#, as well as a genuine three
body force@12#.

Since we have neglected the Coulomb contribution to
energy of 3He, and our more realistic potentials underbi
the three nucleon system, we have chosen to adjust
strength of the1S0 interaction to reproduce the experimen
binding energy of both3He and3H. This procedure does no
effect the deuteron wave function, but could have some
fluence on the continuum wave function in the1S0. In this
way, we may estimate the error in neglecting the Coulo
energy for3He, and the possible error in the tail of the wa
function due to underbinding of the three nucleon syste
The contribution of this correction will be discussed wh
considering the spectral functions and light-cone momen
distributions.

III. LIGHT CONE MOMENTUM DISTRIBUTION

Before we proceed with the discussion of light-cone m
mentum distributions, we should establish the relation
tween the cross section in charged lepton scattering and
light-cone momentum distribution. The cross section for
scattering of a charged lepton with a nucleus is proportio
to the product of the leptonic tensorLmn with the hadronic
tensorWmn . For an unpolarized hadronic system of spin 1
~i.e., free nucleon,3He and 3H) the hadronic tensor has th
following form @13–15#:

Wmn5
1

2 (
S
E d4xeiqx^PSuJm~x!Jn~0!uPS&

5S 2gmn1
qmqn

q2 D W11S Pm2
P•q

q2
qmD

3S Pn2
P•q

q2
qnD W2

M2
, ~26!

TABLE I. Binding energy for a given potential and componen
of the wave function.

Number of Binding energy P(S) P(S8) P(D)
Potential channels ~MeV! % % %

RSC 5 27.15 88.37% 1.88% 8.89%
YAM4 5 29.12 93.08% 1.58% 4.97%
YAM7 5 28.05 89.1% 1.59% 8.71%
PEST 5 27.27 89.3% 1.88% 8.11%
PEST 10 27.10 89.72% 1.71% 7.85%
PEST 18 27.32 89.56% 1.66% 8.07%
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whereP is the four momentum of the hadronic system,S is
its polarization, andM is its mass. Here,J is the electromag-
netic current, andq the four momentum of the virtual pho
ton. Finally,W1 andW2 are the form factors of the hadroni
system. In deep inelastic scattering, one prefers to use
structure functionsF1 andF2 instead. The relation betwee
the form factors and the structure functions is the followin

F15MW1 , F25
P•q

M
W2 . ~27!

The leptonic tensor for unpolarized scattering has the follo
ing structure@13–15#:

Lmn5
1

2 (
s,s8

ū~k8,s8!gmu~k,s!ū~k8,s8!gnu~k,s!,

52~kmkn81km8 kn2gmnk•k8!, ~28!

with k(k8) ands(s8) the initial ~final! four momentum and
polarization of the lepton.

For polarized scattering one does not average over
initial polarization and the resulting tensors then have t
parts; a symmetric part, identical to those of Eq.~26! and Eq.
~28!, and a new antisymmetric piece that is related to
polarization. The antisymmetric part of the hadronic ten
contains two new form factors,G1 andG2, which are in turn
linked to two new structure functions,g1 andg2.

The convolution formalism gives a prescription, valid u
der certain conditions, to link structure functions of compl
hadronic systems to structure functions of free nucle
@16,17#. In this formalism, the nucleon light cone momentu
distribution in a nucleus plays a central role, in that it rela
the in-medium structure function to the nucleon structu
function. This relation takes the form of a convolution int
gral and, in the case ofF2, given by~see Ref.@18#!

F2
A~x,Q2!5E

x

MA /m

dy f~y!F2S x

y
,Q2D . ~29!

Here,F2 (F2
A) is the free~in nuclear medium! structure func-

tion, f is the nucleon light cone momentum distribution i
side the nuclear medium,MA and m are the masses of th
nucleus and of the free nucleon, respectively, finally,x is the
traditional Bjorken variable andQ2 is the momentum trans
fer squared (Q252q2). The above relation is valid for the
leading twist of the structure functions, which is whyf (y)
has noQ2 dependence. Another important assumption ma
in this formula is the impulse approximation, namely t
assumption that the structure function of an off-shell nucle
is equal to the structure function of an on-shell nucleon
more complete discussion about problems raised by this
sumption can be found in Ref.@13#.

The nucleon light cone momentum distribution in
nucleus,f (y), is the probability to find the nucleon in th
nucleus with a given fraction of the total momentumy
(5p1/P1) of the nucleus on the light front. As a result, on
readily see that Eq.~29! has a simple interpretation. Th
structure function in the medium is the sum of all possib
values of the free nucleon structure function, weighted by
probability of finding the nucleon with a given momentu
4-5
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fractiony. In this section, we will show how to determine th
light cone momentum distributions for the neutron or prot
in the three-nucleon system.

Since the light cone momentum distribution is essentia
the probability of finding a given nucleon with a particul
fraction of the momentum of a nucleus, it should be rela
to the spectral function of the nucleon in that nucleus. In
instantaneous frame the spectral function is the combi
probability of finding a nucleon with a given momentumkW
while the remaining nucleus is in a statel. We denote this
spectral function bySl(k). The light cone momentum distri
bution is then a sum over all possible statesl, and all pos-
siblek that are compatible with the fraction of momentumy.
This is given by

f ~y!5(
l
E d4kS 11

k3

k0D dS y2
k01k3

m DSl~k!. ~30!

In some cases~see Ref.@13#! a light cone momentum distri
bution is defined for each statel. In Eq. ~30! the factor (1
1k3/k0) is called the flux factor. It is a relativistic correctio
arising from the fact that we are using a light front formalis
@19,20#. Light cone momentum distributions, as well as sp
tral functions, can also be defined for polarized nucleons
the following section, we will concentrate on the unpolariz
spectral function and merely state the results for the po
ized nucleon spectral function.

We note that the calculation of the nucleon moment
distributions presented here is very similar in spirit to t
pioneering work of Ciofi degli Atti and Liuti@21#. That work
used a wave function based on variational method, ra
than the Faddeev equations. While the variational appro
is designed to produce an accurate estimate of the bin
energy of the system, one must work harder to obtain
equally accurate wave function. Indeed, for the trinucle
system this has led to the necessity to explicitly correct
proton momentum distribution, as described in Ref.@22#. We
are not aware of a similar correction being applied to
neutron momentum distribution. In any case, it appears to
that it is worthwhile to make the calculation with a differe
technique. In addition, we can study the dependence on
assumed two-nucleon force explicitly.

A. The spectral function

To determine the light cone momentum distribution w
need to know how to compute the spectral function. For
unpolarized case, the ‘‘diagonal spectral function’’ is giv
by @23,24#

Sl~k!5
1

2JA11 (
sA ,s

^C,sAuas,N
† ~kW !as,N~kW !uC,sA&

3d„k02~m1el2Trl!…

5
1

2JA11 (
sA ,s

sb

u^f,sbuas,N~kW !uC,sA&u2

3d„k02~m1el2Trl!…. ~31!
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Here, uC,sA& is the wave function of the initial nucleusA
with spin, JA , and spin projection,sA , along thez axis,
while uf,sb& is the wave function of theA21 system in the
statesb . The sum oversb is restricted to those states a
lowed by the energy conservingd function. The energyk0 of
the nucleon in this equation is given as the sum of
nucleon massm plus the separation energy of this nucle
el

2 and minus the recoil kinetic energyTrl of the remaining
nucleus. The operatoras,N

† (kW ) is the creation operator for a
nucleonN ~proton or neutron! with spin projections and
momentumkW .

In the following we will note the productas,N
† (kW )as,N(kW )

as the familiar number density operatorrs,N(kW ) and we will
define it in a way similar to Ref.@25#. For example, the
density of protons with spin11/2 along thez axis and mo-
mentumpW , ^rp

1(pW )& , in a trinucleon, is defined by

^rp
1~pW !&5

1

2 (
sA

^C,sAurp
1~pW !uC,sA&,

5
1

2 (
sA

(
i 51

3 E d3qW ^C,sA~pW ,qW !urp,i
1 uC,sA~pW ,qW !&,

~32!

with

rp,i
1 5

~11t3,i !

2

~11sz,i !

2
. ~33!

In Eq. ~33! one can recognize the number density, in t
sense of Ref.@25#. The other density operators which w
may use are

rp,i
2 5

~11t3,i !

2

~12sz,i !

2
,

rn,i
1 5

~12t3,i !

2

~11sz,i !

2
,

rn,i
2 5

~12t3,i !

2

~12sz,i !

2
.

Using the notation of Sec. II, and more specifically Eq.~4!,
we can rewrite Eq.~32! in a slightly different way, showing
explicitly how we conduct this computation with our wav
function

2el is defined asel5M2Ml2m whereMl is the mass of the
remaining nucleus.
4-6
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^rp
1~pW !&5

1

2 (
l a ,Na ,l b ,Nb

F S (
i ,sA

E d2q̂^V l aNa

JI ,sA~ p̂,q̂!urp,i
1 u

3V l bNb

JI ,sA~ p̂,q̂!& D
3S E dq q2^U l aNa

IJ ~p,q!uU l bNb

IJ ~p,q!& D G . ~34!

B. The case of3He
3He is one of simplest nuclei, along with3H and deute-

rium. It consists of two protons and one neutron. If we m
sure the light-cone momentum distribution of the neutr
the remaining two protons can only be in a scattering st
since there is no bound state of two protons. On the o
hand, if we measure the light cone momentum distribution
the proton, the remaining two nucleons are a proton an
neutron, which can be in either a bound state, the deute
or a scattering state. We will therefore study first the simp
case of the neutron momentum distribution and then turn
the more difficult proton momentum distribution. In the fo
lowing equationsrN will mean the following:( i ,6rN,i

6 . And
whenever we omit the indexi it means that we implicitly
sum over all three particles.

1. Neutron in 3He

In Eq. ~31!, the sum oversb is constrained by the energ
conservingd function, and for the neutron spectrum in3He
this gives a scattering state for the final two protons with
neutron off-shell. As a result the neutron does not satisfy
on-mass-shell relationE25pW 21m2. Since we are using a
nonrelativistic wave function for3He we will use a nonrel-
ativistic approximation for the relation between the ene
and the momentum. We then define the binding energy of
nucleus,E, by the relationM53m1E, wherem is the mass
of a nucleon. Since we are working with a nonrelativis
wave function, we make use of the approximationp0'm

1pW 2/(2m). Since we are working in the frame of the cent
of mass of the nucleus we have the following:M5pa

01pb
0

1pg
0 . As a result, the energy of the struck nucleon ispa

0

5m1E2pW b
2/(2m)2pW g

2/(2m). One then findspa
0 in terms

of pW a andqW a : pa
05m1E2pW a

2/(2m)2qW a
2/(2n), wheren is

the reduced of the mass of the interacting pair andm is their
total mass.3 If we compare this result with the expressio
given in Eq. ~31!, then the recoil energyTr is pW a

2/(2m),

while the separation energy,e, is E2qW a
2/(2n). So the unpo-

larized spectral function for the neutron in3He is given by

Sn~p!5
1

2 (
sA

E d3qW ^C,sA~pW ,qW !urnuC,sA~pW ,qW !&

3dXp02S m1E2
pW 2

2m
2

qW 2

2n
D C. ~35!

3Note that here, in the case of two identical particles, we havn
5m/2 andm52m.
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We stress that the two forms of Eq.~31! are equivalent and
should give the same results. In order to demonstrate this
computed the light cone momentum distribution, using E
~30!

f n~y!5E d4kS 11
k3

k0D dS y2
k01k3

m DSn~k!, ~36!

with the two forms of Eq.~31!. For the second form of this
equation, the final stateuf,sb& was taken to be a plane wav
plus a pair of proton interacting in the1S0 channel. This is
by far the most important channel for the final state inter
tion. We found that the light cone momentum distributio
computed with the two forms of Eq.~31! were identical, for
all purpose.

For the polarized case there are two useful spec
functions

Sn
1~p!5

1

2 (
6

E d3qW ^C6~pW ,qW !urn
6uC6~pW ,qW !&

3dXp02S m1E2
pW 2

2m
2

qW 2

2n
D C, ~37!

Sn
2~p!5

1

2 (
6

E d3qW ^C6~pW ,qW !urn
7uC6~pW ,qW !&

3dXp02S m1E2
pW 2

2m
2

qW 2

2n
D C. ~38!

These spectral functions are, respectively, for a neutron w
spin parallel or antiparallel to the spin of the nucleus. T
‘‘ 1 ’’ designates a positive projection of the spin of either t
neutron or the nucleus on thez axis, and the ‘‘2 ’’ a negative
projection. These computations of polarized spectral fu
tions are similar to previous work found in Refs.@26,27#. In
the same way as we obtainf n(y) we can calculate the quan
tities, f n

1(y) and f n
2(y), just by inserting the correct spectra

functions. Then one can form the useful quantityD f n(y)
5 f n

1(y)2 f n
2(y), which is the equivalent off n(y) for polar-

ized structure functions.

2. Proton in 3He

In the case of the proton we have two possibilities for t
final state, so we also have two spectral functions. The
state is a scattering state similar to the final state encount
in the neutron case, with which it shares the formula forp0.
The second possible final state is made of a scattered pr
and a deuteron. We can find the form of the proton energ
the same way we did for the scattering state, only it is n
much more simple as we have only two particles in the fi
state and not three. With the same nonrelativistic approxim
tion as before, one easily finds that in this casepa

05M

2Md2pW a
2/(2Md), whereMd is the deuteron mass. Defin

ing the binding energy of the deuteron,Ed , in same way we
did for the trinucleon we haveMd52m1Ed and finally,
4-7
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pa
05m1E2Ed2pW a

2/(2Md). So we will have two spectra
functions, Sp

s(p) ~scattering state! and Sp
d(p) ~deuteron

state!:

Sp
s~p!5

1

2 (
6

E d3qW ^C6~pW ,qW !urpuC6~pW ,qW !&

3dXp02S m1E2
pW 2

2m
2

qW 2

2n
D C, ~39!

Sp
d~p!5

1

2 (
6

E d3qW ^C6~pW ,qW !urpuC6~pW ,qW !&

3dXp02S m1E2Ed2
pW 2

2Md
D C. ~40!

As in Eq. ~37! and Eq.~38! the ‘‘1 ’’ and ‘‘ 2 ’’ indicate the
nuclear spin projection on thez axis.

In term of these spectral functions we can write the lig
cone momentum distribution of the proton

FIG. 1. Neutron light cone momentum distribution in3He for
various potentials.

FIG. 2. Proton light cone momentum distribution in3He for
various potentials.
02400
t

f p~y!5
1

2E d4kS 11
k3

k0D dS y2
k01k3

m D ~Sp
s~k!1Sp

d~k!!.

~41!

In the preceding equation we introduced a factor one-h
because there are two protons in a3He nucleus. Without this
coefficient f p would be normalized to 2 instead of 1. In th
same way we did for the neutron we can extract polariz
spectral functions,Sp

l6 , for the proton by using a polarize
densityrp

6 in combination with the right polarization of th
wave function. One can then getf p

6 by applying Eq.~41!,
with the appropriate polarized spectral functions and in
end computeD f p(y)5 f p

1(y)2 f p
2(y).

C. Results

Using the formalism presented above, we have compu
light cone momentum distributions for some of our thr
nucleon wave functions. For all those distributions we us
only the first 42 three-body channels. This is because
computation of the polarized distributions involves som
complicated matrix elements. However for all these wa
functions the 42 first channels add up to more than 99%
the total, so one can safely assume that the contribution

FIG. 3. Neutron polarized light cone momentum distribution
3He for various potentials.

FIG. 4. Proton polarized light cone momentum distribution
3He for various potentials.
4-8
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TABLE II. Effective polarization of the nucleons in3He for various potentials.

(P(X) * f (y)
n1 n2 p1 p2 n1 n2 p1 p2

PEST 93.97% 6.03% 48.96% 51.04% 93.62% 6.32% 48.98% 50.96%
RSC 93.45% 6.55% 48.83% 51.17% 92.92% 6.79% 48.76% 50.95%
YAM7 93.66% 6.34% 48.81% 51.19% 93.25% 6.35% 48.69% 50.92%
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the rest of the channels is negligible. For the unpolariz
distribution the matrix elements are quite simple, so one
easily check, in this case, that the contribution from hig
channels is indeed small. We compared the light cone
mentum distribution for a proton and a neutron in3He for,
respectively, 42 and 130 channels and found that for all p
pose they were indistinguishable. For the PEST potential
also compared wave functions including five and 18 thr
body channels and found that they were also indistingu
able. In Figs. 1 and 2 we show the proton and neutron li
cone momentum distributions for our potentials~PEST, RSC
and YAM7!. The light cone momentum distributions give
by the RSC and PEST potentials are almost indistinguish
and they cannot be separated on these figures. The YA
potential, however, shows some difference associated
the excess of high momentum components inD-wave wave
function, in comparison with realistic potential. It is als
important to note that to have consistent results one need
use a deuteron wave function computed with the same
tential as the three nucleon system.

In Figs. 3 and 4 we show the proton and neutron polari
light cone momentum distributions for the same potent
used in Figs. 1 and 2. The polarized neutron light cone m
mentum distribution shows the same behavior and is sim
in size to its unpolarized counterpart. However, for the p
ton the polarized momentum distribution is far smaller th
its unpolarized counterpart. In this case all the potent
gives very similar results. We note that one can extract m
information from the polarized momentum distribution
While in the unpolarized case the distributions are norm
ized to one, in the polarized case they are normalized to
polarization of the given nucleon. From Ref.@25# one can
compute these polarizations analytically in terms of
S, S8, andD waves probabilities~neglecting the small con
tribution of theP waves!. One can compute those probabi
ties from the wave function and then compare them with
values extracted from the momentum distributions. Fr
Ref. @25# we have the following relations:

n15E dy fn
1~y!512

1

3
„P~S8!12P~D !…, ~42!
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n25E dy fn
2~y!5

1

3
„P~S8!12P~D !…, ~43!

p15E dy fp
1~y!5

1

2
2

1

6
„P~D !2P~S8!…, ~44!

p25E dy fp
2~y!5

1

2
1

1

6
„P~D !2P~S8!…. ~45!

In Table II we compare the numerical values of these t
expressions in3He, for our various potentials. The results
quite good agreement, with the small discrepancies aris
from numerical errors in the computation of many nes
integrals.~Note, for example, that the overall normalizatio
is correct to about 0.06%.! In Table III we make the same
comparison but with wave functions in which we have a
justed the binding energies to the experimental values.

IV. STRUCTURE FUNCTIONS

A. Introduction

In the incoherent impulse approximation, the structu
function of a nucleus is the sum of the contributions from
its constituents. As we have already said in the previous s
tion, the convolution formalism gives a way to link the in
medium structure functions to the free ones. This formalis
however, has some limitations, especially at small Bjorkenx,
where other physics, like multiple scattering, becomes
portant. It is also only valid in the Bjorken limit, as th
convolution formalism itself does not depend onQ2. In un-
polarized scattering this formalism is a good tool to inves
gate the EMC effect@28#, so we will use our previous result
to study this effect in the three nucleon system. Another
teresting result from the previous section is the fact tha
3He, the proton polarization~i.e., Dp5p12p2'22%) is
very small and negative, while the neutron polarization~i.e.,
Dn5n12n2'87%) is quite big. This is also clear from
Figs. 3 and 4. This means that the neutron carries most o
spin of 3He, so, at least for polarized scattering, this nucle
should be a good approximation to a pure neutron target.
%
%

TABLE III. Effective polarization of the nucleons in3He and3H, with two-body interaction adjusted to
produce the experimental binding energies~PEST potential only!.

(P(X) * f (y)
n1 n2 p1 p2 n1 n2 p1 p2

3He 93.97% 6.03% 48.91% 51.09% 93.73% 6.24% 48.94% 51.02
3H 93.45% 6.55% 48.85% 51.15% 93.86% 6.13% 48.89% 51.10
4-9
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same argument is valid for the proton in3H. Since we al-
ready have a free proton target this may appear less inte
ing at first sight. On the other hand, it provides an ideal w
to study the effect of the nuclear medium on the spin str
ture of a bound nucleon.

B. Unpolarized structure function and EMC effect

As we explained at the beginning of the previous secti
in unpolarized deep inelastic scattering of a charged lep
on a nuclear target, all the target information is included
the two structure functionsF1 and F2. In a simple quark
model those functions have the following form@13,15#:

F1~x,Q2!5
1

2 (
q

eq
2q~x,Q2!, ~46!

F2~x,Q2!52xF1~x,Q2!5x(
q

eq
2q~x,Q2!. ~47!

In these expressionsq(x) is the distribution of quarks o
flavor q and electric chargeeq . The relation betweenF1 and
F2 implies that the partons have spin 1/2 and no transve
momentum in the infinite momentum frame. A more gene
relation betweenF1 andF2 @13# is

F2~x!52xF1~x!
11R

112xmN /n
, ~48!

where R is the ratio of the cross section for absorbing
longitudinal photon to that for a transverse photon.

Given the relation betweenF1 andF2, most studies con-
centrate on the latter. The convolution formula between
free and in mediumF2 structure functions@13,18# is

F̃2
N~x,Q2!5E

x

MA /m

dy fN~y!F2
NS x

y
,Q2D . ~49!

Hence theF2 structure function of a nucleus of mass numb
A and proton numberZ is given by

F2
A~x,Q2!5E

x

MA /m

dyXZ fp~y!F2
pS x

y
,Q2D

1~A2Z! f n~y!F2
nS x

y
,Q2D C. ~50!

In comparing theF2 structure functions on various ta
gets, the European Muon Collaboration~Aubert et al. @28#!
discovered what is now called the ‘‘EMC’’ effect. We defin
a theoretical EMC ratio as the ratio of theF2 structure func-
tion of the nucleus to the sum of the free structure functio
of the nucleons in this nucleus:

Rt5F2
A/„ZF2

p1~A2Z!F2
n
…. ~51!

On the other hand, it is more common to compare the rati
theF2 structure function of the nucleus to that of deuteriu

Rx5~F2
A/A!/~F2

D/2!. ~52!
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This should be close toRt if the deuteron is a quasifre
system of a proton and a neutron and if the nucleus studie
symmetric, or almost, in its content of neutrons and proto
3He and3H are highly asymmetric nuclei, as their content
one type of nucleon is twice as much as the other. To t
this into account, it is common to an isosymmetric correct
so that the ratio studied is@18#

RA~x,Q2!5
F2

A~x,Q2!

F2
D~x,Q2!

I ~x,Q2!, ~53!

with

I ~x,Q2!5
F2

p~x,Q2!1F2
n~x,Q2!

ZF2
p~x,Q2!1~A2Z!F2

n~x,Q2!
. ~54!

This ratio is, strictly speaking, the ratio of the EMC ratio
of the nucleusA and the deuteron. Following the same kin
of procedure used in the previous section, one can com
the light cone momentum distribution of a nucleon in t
deuteron. To be consistent, this ratio has to be computed
the same interaction for both the three nucleon system
the deuteron. To computeRA we used several parametriza
tions for the quark distributions.

The parametrization ‘‘CTEQ5’’ from the CTEQ Collabo
ration @29#. The collaboration gives several parametrizatio
but we mainly used the one called ‘‘leading order,’’ and
will be the one used when we talk about the CTEQ5 para
etrization, unless explicitly stated otherwise:

The ‘‘GRV’’ parametrization from Glu¨ck, Reya, and Vogt
@30#.

The ‘‘DOLA’’ parametrization from Donnachie and Land
shoff @31#.

These distributions are usually given for quarks in a p
ton and in order to compute neutron structure functions
used charge symmetry4 @32#. In Figs. 5 and 6 one can see th
ratio R3 for 3He and3H, with the CTEQ5 parametrization a
Q2510 GeV2, for the three potentials studied. In Fig. 7 w
showR3 in 3He for the PEST potential alone but for all thre
quark distributions~again atQ2510 GeV2). We also studied
the effect of adjusting the binding energy as described at
end of the first section but did not include it in Figs. 5 and
because it would have confused the plot. This adjustmen
the binding energy caused a slightly deeper EMC effec
both 3He and 3H and also a slightly steeper increa
at highx.

C. Polarized structure functions

If one does experiments with both a polarized lept
beam and a polarized spin 1/2 nuclear target, one needs
more structure functions,g1 andg2. One can perform vari-
ous measurements of cross sections with several pola

4With the exception of the DOLA distribution which gives proto
and deuteron distributions. In this case we took the neutron as
difference between the deuteron and the proton.
4-10



e

fo
o

le
cle
o

in

y
rk
on
on

re

-
lts

al
del

a

l
.
om-

ig
on
n,

he

ar

bu

is-

STRUCTURE FUNCTIONS FOR THE THREE-NUCLEON SYSTEM PHYSICAL REVIEW C64 024004
tions in order to extract those two structure functions. Th
are smaller thanF1 and F2 and g2, in particular, is often
neglected. As we indicated in the Introduction, the figures
the effective polarization of the nucleons in the three nucle
system seem to indicate that the contribution to the nuc
spin structure functions from the doubly represented nu
ons is severely reduced. Thus, this system should be a g
approximation to a pure single nucleon target. At lead
order,g1 has the following form@14,33,34#:

g1~x,Q2!5
1

2 (
q

eq
2Dq~x,Q2!. ~55!

In Eq. ~55!, Dq are the polarized quark distributions. The
involve the difference between the distributions of qua
with the same and opposite helicity from that of the nucle
It is much harder to find a simple parton interpretati
for g2 @14#.

The convolution formula relating the free spin structu
function to that in-medium is the following:

g̃1
N~x,Q2!5E

x

MA /m dy

y
D f N~y!g1

NS x

y
,Q2D . ~56!

FIG. 5. The ratioR3, given in Eq. ~53!, for 3He, at Q2510
GeV2, calculated for various potentials using the CTEQ5 qu
distributions.

FIG. 6. The ratioR3, given in Eq.~53!, for 3H, atQ2510 GeV2,
calculated for various potentials using the CTEQ5 quark distri
tions.
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We computed theg1 structure function of3He using the
same three potentials as forF2. The results from those po
tentials are sufficiently close that we will only use the resu
from the PEST potential hereafter. To computeg1 we mainly
used the NLO ‘‘standard scenario’’ of Ref.@35#. We also
studied the impact of the off-shell correction from Ref.@36#
on g1. ~The off-shell correction was calculated using a loc
density approximation and the quark meson coupling mo
@37# to estimate the change of the parton distributions in
bound nucleon.! In Fig. 8 we show the following three
curves atQ2510 GeV2: xg1(x) for the free neutron, as wel
asxg1(x) for 3He with and without the off-shell correction
As one can see, the three of them are close. The main c
plication in the extraction ofg1 for the free neutron from
3He is that the free proton spin structure function is very b
compared with that of the neutron. So, while its contributi
in 3He is severely reduced by the low effective polarizatio
it is still not negligible. One way to estimate the size of t
contribution of the proton is to compareg1(3He) with a for-
mula often used in the experimental analysis@38# ~see Ref.
@15# for a derivation!:

g1~3He!'Dng1~n!12Dpg1~p!. ~57!

k

-

FIG. 7. The ratioR3, given in Eq. ~53!, for 3He, at Q2510
GeV2, calculated for the PEST potential, using various quark d
tributions for the nucleons.

FIG. 8. Comparison of several calculations ofxg1(x) for 3He,
at Q2510 GeV2, with the parametrization ofxg1(x) for the free
neutron at the same energy.
4-11
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If the contribution of the proton tog1(3He) is negligible, Eq.
~57! is equivalent tog1(3He)'Dng1(n). To estimate the ef-
fect of the proton contribution in the extraction ofg1(n), we
plotted the following differences:

Dg5
g1~3He!22Dpg1~p!

Dn
2g1~n! ~58!

and

Dg85
g1~3He!

Dn
2g1~n!. ~59!

In Figs. 9 and 10 we plot bothDg andDg8 . The second plot
includes the off-shell effect of Ref.@36#. Note that the curves
have been divided by*dxg1(3He)('21/16) so that one can
judge the effect on the spin sum rule. Since one ultimat
wants to extractg1(n), we have also plotted that with th
same normalization, so as to have an idea of the size of

FIG. 9. Dg , Dg8 , andg1(n) at Q2510 GeV2. Note that all three
curves have been divided by*dxg1( 3He).

FIG. 10. Dg , Dg8 , andg1(n), including off-shell corrections, a
Q2510 GeV2. Note that all three curves have been divided
*dxg1( 3He).
02400
ly

he

error in the differences.5 It is clear from both plots that one
gets more accurate results by including the proton contri
tion for midrangex(0.2<x<0.6), the biggest error in this
region occurring when the structure function crosses thx
axis. At higherx(x>0.6) the effect of Fermi motion is sig
nificant and this will be even more important for3H, below.
Nevertheless, the absolute value of the structure func
is small and the corrections have little effect on the s
sum rule. If we apply the corrections computed with th
parametrization to the experimental results of E154@39# and
HERMES@40#, we get Figs. 11 and 12. It is quite clear fro
those figures that it is possible to extractg1(n) from 3He
data without worrying too much about nuclear effects
most of the kinematical range. Similar results are found
other partons distributions such as those from Ref.@41#

In the case of tritium one can plot a ratio, asg1(p) does
not change sign. Therefore, to illustrate the effect of the n
tron contribution in this case we plot

Rg5
g1~3H!22Dng1~n!

Dpg1~p!
~60!

and

Rg85
g1~3H!

Dpg1~p!
. ~61!

In Fig. 13 we show both ratios (Rg is the solid line andRg8 is
the dashed line! without including the off-shell corrections
@36# as well asRg with the off-shell corrections~dot-dashed
line!. In this figure we can clearly see that on most of t
interval the contribution of the neutron is negligible, som
difference appearing for smallx. This is expected simply
becauseg1(n) is significantly smaller thang1(p) for most
values ofx. On the other hand, we can also see that med

5We do not plot the ratio of structure functions because in both
neutron and3He casesg1 can be zero, leading to singularities in th
plots.

FIG. 11. Corrections tog1(n) data from E154. White circles
represent the original data. Black circles are corrected for bind
energy and nuclear effect. Diamonds have all corrections from
black circles as well as off-shell corrections. The error bars
statistical errors.
4-12
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effects seem to be quite important and that the off-shell c
rection makes an important difference. One can also
clearly the effect of Fermi motion at highx, while it would
be invisible if one were to plot differences. It is clear fro
these results that from a measurement ofg1( 3H) one can
expect to extract the size of the change in the spin struc
function of the bound proton and one might even hope
separate the origin of this effect.

V. CONCLUSIONS

We have computed the three-nucleon structure functi
from various two body potentials. This involved calculatin
wave functions, light cone momentum distributions and
nally the structure functions. We have presented our com
tations of the effects of nuclear binding and Fermi motion
the ratioRA for both 3He and3H. We have shown that thos
effects were quite close for various two-body potentials a
quark distributions. In addition, we saw that isospin break
would have only a small effect on these findings. This res
has been used elsewhere@42# in a proposal to measure th
d/u ratio at largex at Jefferson Laboratory@43,44#.

From our study of the spin structure function of3He, we
showed that it is possible to extract the structure function

FIG. 12. Corrections tog1(n) data from HERMES. White
circles represent the original data. Black circles are corrected
binding energy and nuclear effect. Diamonds have all correcti
from the black circles as well as off-shell corrections. The error b
are statistical errors.
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a polarized neutron with reasonable accuracy. However,
necessary to account for the contribution from the pair
protons which are not totally unpolarized. Turning to t
polarized structure function of3H, we saw that while the
experiment is extremely challenging it could also be ve
valuable. In particular, one can measure the size of the
dium corrections and check experimentally the predic
modification of the spin dependent parton distributions of
bound nucleon.
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APPENDIX A: THE KERNEL OF THE HOMOGENEOUS
FADDEEV EQUATION

For completeness, we present in this appendix the exp
expression for the kernel of the homogeneous Faddeev e
tion when the interaction is represented by a separable
tential. The details of the derivation are in Ref.@8#. We have

or
s
s

FIG. 13. The ratio of the proton spin spin structure function,g1
p

~at 10 GeV2), extracted from3He data under two approximation
@Rg andRg8 ; see Eqs.~60! and~61!# to the free protong1

p . The solid
line is Rg and the dashed line isRg8 , both computed without off-
shell corrections. Dash-dotted line isRg when one includes off-shel
corrections
Zl aNa ; l bNb

JI [^gl a

na;V l aNa

JI uG0~E!uV l bNb

JI ;gl b

nb&5
1

2E21

11

dx
gl a

na~qa!gl b

nb~qb!

E2
1

m
~pa

21pb
21papbx!

G l aNa ; l bNb

JI ~pa ,pb ;x!, ~A1!

where

G l aNa ; l bNb

JI ~pa ,pb ;x!5S pb

qa
D l aS pa

qb
D l b

BNaNb(L PL~x! (
a50

l a

(
b50

l b

A
l aNa ; l bNb

L,a,b S pa

pb
D a2b

, ~A2!

with PL(x) the Legendre polynomial of orderL, and
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x5 p̂a• p̂b , qW a52pW b2
1

2
pW a , qW b5pW a1

1

2
pW b . ~A3!

The coefficientsAl aNa ; l bNb

L,a,b which results from the recoupling of the spin and orbital angular momentum is given by

Al aNa ; l bNb

L,a,b 5~21!Rl̂ a l̂ bL̂aL̂bŜaŜb ̂̄a ̂̄bŝaŝbL̂2ra
arb

bA ~2l a11!! ~2l b11!!

~2a!! ~2b!! ~2l a22a!! ~2l b22b!! (
f LL8

~ f̂ L̂L̂8!2H Sa Sb f

Lb La JJ
3H La Lb f

L8 L LJ H j a Sa Sb j b

̄a f ̄b j g

sa l a l b sb

J H l a l b f

a lb2b L

l a2a b L8
J S a lb2b L

0 0 0D
3S L8 L Lb

0 0 0 D S L L La

0 0 0 D S l a2a b L8

0 0 0 D , ~A4!

where the 122 j symbol is that defined by Ord-Smith@45#, the phaseR is defined as

R52J1La1Lb1Sa1Sb1 ̄a1 ̄b2 j a1sb1 l a1L,

and finallyra andrb are

ra5
mb

mb1mg
5

1

2
, rb5

ma

ma1mg
5

1

2
.

The isospin recoupling coefficientBNaNb
is given in terms of 62 j symbol by the relation

BNaNb
5~21! ıa1ıg2 ı̄ b12I ı̂̄ a ı̂̄ bH ıb ıg ı̄ a

ıa I ı̄ b
J . ~A5!
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