PUBLISHED VERSION

Bass, Steven David; Crewther, Rodney James; Steffens, F. M.; Thomas, Anthony William Heavy-quark axial charges to nonleading order Physical Review D, 2002; 66(3):031901
© 2002 American Physical Society
http://link.aps.org/doi/10.1103/PhysRevD.66.031901

PERMISSIONS
http://publish.aps.org/authors/transfer-of-copyright-agreement
"The author(s), and in the case of a Work Made For Hire, as defined in the U.S. Copyright Act, 17 U.S.C.
§101, the employer named [below], shall have the following rights (the "Author Rights"):
[...]
3. The right to use all or part of the Article, including the APS-prepared version without revision or modification, on the author(s)' web home page or employer's website and to make copies of all or part of the Article, including the APS-prepared version without revision or modification, for the author(s)' and/or the employer's use for educational or research purposes."

9th April 2013

Heavy-quark axial charges to nonleading order

S. D. Bass, ${ }^{1}$ R. J. Crewther, ${ }^{2,3}$ F. M. Steffens, ${ }^{4}$ and A. W. Thomas ${ }^{2}$
${ }^{1}$ Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A 6020 Innsbruck, Austria
${ }^{2}$ Department of Physics and Mathematical Physics and Centre for the Subatomic Structure of Matter (CSSM), University of Adelaide, Adelaide SA 5005, Australia
${ }^{3}$ Centre for Particle Theory, Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE, United Kingdom
${ }^{4}$ Instituto de Fisica Teorica, Rua Pamplona 145, 01405-900 Sao Paulo SP, Brazil

(Received 4 July 2002; published 20 August 2002)

Abstract

We combine Witten's renormalization group with the matching conditions of Bernreuther and Wetzel to calculate at next-to-leading order the complete heavy-quark contribution to the neutral-current axial-charge measurable in neutrino-proton elastic scattering. Our results are manifestly renormalization group invariant.

DOI: $10.1103 /$ PhysRevD. 66.031901 PACS number(s): 11.10.Hi, 12.15.Mm, 12.38.Cy, 12.39.Hg

This paper announces results for the next-to-leading-order (NLO) heavy-quark corrections to the axial charge $g_{A}^{(Z)}$ for protons to couple to the weak neutral current

$$
\begin{equation*}
J_{\mu 5}^{Z}=\frac{1}{2}\left\{\sum_{q=u, c, t}-\sum_{q=d, s, b}\right\} \bar{q} \gamma_{\mu} \gamma_{5} q . \tag{1}
\end{equation*}
$$

The calculation is performed by decoupling heavy quarks h $=t, b, c$ sequentially, i.e. one at a time. An extension to simultaneous decoupling of t, b, c quarks is foreshadowed in our concluding remarks.

The charge $g_{A}^{(Z)}$ receives contributions from both light u, d, s and heavy c, b, t quarks,

$$
\begin{equation*}
2 g_{A}^{(Z)}=(\Delta u-\Delta d-\Delta s)+(\Delta c-\Delta b+\Delta t) \tag{2}
\end{equation*}
$$

where Δq refers to expectation value $\langle p, s| \bar{q} \gamma_{\mu} \gamma_{5} q|p, s\rangle$ $=2 m_{p} s_{\mu} \Delta q$ for a proton of spin s_{μ} and mass m_{p}. It governs parity-violating effects due to Z^{0} exchange at low energies in elastic νp and $\bar{\nu} p$ scattering $[1,2]$ or in light atoms [3,4]. A definitive measurement of νp elastic scattering may be possible using the MiniBooNE setup at Fermilab [5].

Once heavy-quark corrections $[2,6,7]$ have been taken into account, $g_{A}^{(Z)}$ is related (modulo the issue of δ-function terms at $x=0$ [8]) to the flavor-singlet axial charge, defined scale invariantly and extracted from polarized deep inelastic scattering:

$$
\begin{equation*}
\left.g_{A}^{(0)}\right|_{\mathrm{inv}}=0.2-0.35 \tag{3}
\end{equation*}
$$

The small value of this quantity has inspired vast experimental and theoretical activity to understand the spin structure of the proton [9]. As a result, new experiments are being planned to map out the spin-flavor structure of the proton. These include polarized proton-proton collisions at the BNL Relativistic Heavy Ion Collider (RHIC) [10], semi-inclusive polarized deep inelastic scattering, and polarized ep collider studies [11]. Full NLO analyses are essential for a consistent interpretation of these experiments.

Many techniques for decoupling a single heavy quark are available. We rely on Witten's method [12], where the renormalization scheme is mass independent and improved

Callan-Symanzik equations [13] can be exploited. In such schemes, the decoupling of heavy particles required by the Appelquist-Carrazone theorem [14] is not manifest. However, correct decoupling is ensured by applying the matching conditions of Bernreuther and Wetzel [15]; these relate coupling constant, mass and operator normalizations before and after the decoupling of a heavy quark. The advantages of this approach are its rigor and the fact that the final results are expressed in terms of renormalization group (RG) invariants. These invariants are Witten-style running couplings $\tilde{\alpha}_{h}$, one for each heavy quark $h=t, b, c$, and axial charges for nucleons in the residual theory with three light flavors.

We find that, when first t, then b, and finally c are decoupled from Eq. (2), the full NLO result is
$2 g_{A}^{(Z)}=(\Delta u-\Delta d-\Delta s)_{\mathrm{inv}}+\mathcal{P}(\Delta u+\Delta d+\Delta s)_{\mathrm{inv}}+O\left(m_{t, b, c}^{-1}\right)$
where \mathcal{P} is a polynomial in the running couplings $\tilde{\alpha}_{h}$,

$$
\begin{align*}
\mathcal{P}= & \frac{6}{23 \pi}\left(\tilde{\alpha}_{b}-\tilde{\alpha}_{t}\right)\left\{1+\frac{125663}{82800 \pi} \tilde{\alpha}_{b}+\frac{6167}{3312 \pi} \tilde{\alpha}_{t}\right. \\
& \left.-\frac{22}{75 \pi} \tilde{\alpha}_{c}\right\}-\frac{6}{27 \pi} \tilde{\alpha}_{c}-\frac{181}{648 \pi^{2}} \tilde{\alpha}_{c}^{2}+O\left(\tilde{\alpha}_{t, b, c}^{3}\right) \tag{5}
\end{align*}
$$

and $(\Delta q)_{\text {inv }}$ denotes the scale-invariant version of Δq defined in the following way.

Let $\alpha_{f}=g_{f}^{2} / 4 \pi$ and $\beta_{f}\left(\alpha_{f}\right)$ be the gluon coupling and beta function for $\overline{\mathrm{MS}}$ renormalized quantum chromodynamics (QCD) with f flavors and $N_{c}=3$ colors, and let $\gamma_{f}\left(\alpha_{f}\right)$ be the gamma function for the singlet current

$$
\begin{equation*}
\left(\bar{u} \gamma_{\mu} \gamma_{5} u+\bar{d} \gamma_{\mu} \gamma_{5} d+\cdots\right)_{f}=\sum_{k=1}^{f}\left(\bar{q}_{k} \gamma_{\mu} \gamma_{5} q_{k}\right)_{f} . \tag{6}
\end{equation*}
$$

A scale-invariant current $\left(S_{\mu 5}\right)_{f}$ is obtained when Eq. (6) is multiplied by

$$
\begin{equation*}
E_{f}\left(\alpha_{f}\right)=\exp \int_{0}^{\alpha_{f}} d x \frac{\gamma_{f}(x)}{\beta_{f}(x)} . \tag{7}
\end{equation*}
$$

Up to $O\left(m_{h}^{-1}\right)$ corrections, the invariant singlet charge (3) is given by

$$
\begin{align*}
\left.g_{A}^{(0)}\right|_{\mathrm{inv}} & =E_{3}\left(\alpha_{3}\right)(\Delta u+\Delta d+\Delta s)_{3} \\
& =(\Delta u+\Delta d+\Delta s)_{\mathrm{inv}} \tag{8}
\end{align*}
$$

Flavor-dependent, scale-invariant axial charges $\left.\Delta q\right|_{\text {inv }}$ such as

$$
\begin{equation*}
\left.\Delta s\right|_{\mathrm{inv}}=\frac{1}{3}\left(\left.g_{A}^{(0)}\right|_{\mathrm{inv}}-g_{A}^{(8)}\right) \tag{9}
\end{equation*}
$$

can then be obtained from linear combinations of Eq. (8) and

$$
\begin{align*}
& g_{A}^{(3)}=\Delta u-\Delta d=(\Delta u-\Delta d)_{\mathrm{inv}} \\
& g_{A}^{(8)}=\Delta u+\Delta d-2 \Delta s=(\Delta u+\Delta d-2 \Delta s)_{\mathrm{inv}} \tag{10}
\end{align*}
$$

Here $g_{A}^{(3)}=1.267 \pm 0.004$ is the isotriplet axial charge measured in neutron beta-decay, and $g_{A}^{(8)}=0.58 \pm 0.03$ is the octet charge measured independently in hyperon beta decay. Taking $\tilde{\alpha}_{t}=0.1, \tilde{\alpha}_{b}=0.2$ and $\tilde{\alpha}_{c}=0.35$ in Eq. (5), we find a small heavy-quark correction factor $\mathcal{P}=-0.02$, with LO terms dominant.

Our results extend and make more precise the well known work of Collins, Wilczek and Zee [6] and Kaplan and Manohar [2], where heavy-quark effective theory was used to estimate $g_{A}^{(Z)}$ in leading order (LO) for sequential decoupling of t, b and t, b, c respectively. Our analysis is also influenced by a discussion of [6] by Chetyrkin and Kühn [16], who considered some aspects of NLO decoupling of the t quark from the neutral current and in particular, the requirement that the result be scale invariant. Related work has been done on heavy-quark production in polarized deep inelastic scattering using the QCD parton model [17] and in high-energy polarized γp and $p p$ at NLO [18].

The plan of this paper is as follows. First is a brief review of Witten's application of improved Callan-Symanzik equations [13] to the decoupling of a heavy quark in massindependent renormalization schemes. Next, we combine it with matching conditions [15] to deal with next-to-leadingorder (NLO) calculations involving axial-vector currents. Following is then a direct derivation of Eq. (5) from Eq. (1) for the neutral current. Our concluding remarks indicate the result of extending Eq. (5) to simultaneous decoupling of t, b, c-done not only for numerical reasons, but also to check that the t, b contributions cancel for $m_{t}=m_{b}$.

We begin by considering mass-independent schemes, such as the modified minimal subtraction scheme (MS), where renormalized masses behave like coupling constants. This key property is exploited in Witten's method.

Let μ be the scale used to define dimensional regularization and renormalization. Then the $\overline{\mathrm{MS}}$ scale is

$$
\begin{equation*}
\bar{\mu}=\mu \sqrt{4 \pi} e^{-\gamma / 2}, \quad \gamma=0.5772 \ldots \tag{11}
\end{equation*}
$$

We choose the same scale $\bar{\mu}$ irrespective of the number of flavors f being considered, and so hold $\bar{\mu}$ fixed as the heavy quarks (masses m_{h}) decouple:

$$
F \rightarrow f \text { flavors, } m_{h} \rightarrow \infty
$$

Also held fixed in this limit are the coupling α_{f} and lightquark masses $m_{l f}$ of the residual f-flavor theory, and all momenta p. Feynman diagrams for amplitudes

$$
\begin{equation*}
\mathcal{A}_{F}=\mathcal{A}_{F}\left(\mathbf{p}, \bar{\mu}, \alpha_{F}, m_{l F}, m_{h}\right) \tag{12}
\end{equation*}
$$

give rise to power series in m_{h}^{-1} modified by polynomials in $\ln \left(m_{h} / \bar{\mu}\right)$. We consider just the leading power $\widetilde{\mathcal{A}}_{F}$:

$$
\begin{equation*}
\mathcal{A}_{F}=\widetilde{\mathcal{A}}_{F}\left\{1+O\left(1 / m_{h}\right)\right\} . \tag{13}
\end{equation*}
$$

As m_{h} tends to infinity, logarithms in \mathcal{A}_{F} can be produced by any 1PI (one-particle irreducible) subgraph which contains at least one heavy-quark propagator and whose divergence by power counting is at least logarithmic. The effect is equivalent to shrinking all contributing 1PI parts of each diagram to a point. This means [14] that the F-flavor amplitudes \mathcal{A}_{F} are the same as amplitudes \mathcal{A}_{f} in the residual f-flavor theory, apart from m_{h}-dependent renormalizations of the coupling constant, light masses, and amplitudes:

$$
\begin{align*}
& \tilde{\mathcal{A}}_{F}\left(\mathbf{p}, \bar{\mu}, \alpha_{F}, m_{l F}, m_{h}\right) \\
&=\sum_{\mathcal{A}^{\prime}} \mathcal{Z}_{\mathcal{A} A^{\prime}}\left(\alpha_{F}, m_{h} / \bar{\mu}\right) \mathcal{A}_{f}^{\prime}\left(\mathbf{p}, \bar{\mu}, \alpha_{f}, m_{l f}\right) \tag{14}\\
& \alpha_{f}=\alpha_{f}\left(\alpha_{F}, m_{h} / \bar{\mu}\right), \quad m_{l f}=m_{l F} D\left(\alpha_{F}, m_{h} / \bar{\mu}\right) \tag{15}
\end{align*}
$$

Eventually, we will have to invert Eq. (15), i.e. use α_{f} and $m_{l f}$ as dependent variables instead of α_{F} and $m_{l F}$, because we hold α_{f} and $m_{l f}$ fixed as $m_{h} \rightarrow \infty$.

For any number of flavors f (including F), let

$$
\begin{equation*}
\mathcal{D}_{f}=\bar{\mu} \frac{\partial}{\partial \bar{\mu}}+\beta_{f}\left(\alpha_{f}\right) \frac{\partial}{\partial \alpha_{f}}+\delta_{f}\left(\alpha_{f}\right) \sum_{k=1}^{f} m_{k f} \frac{\partial}{\partial m_{k f}} \tag{16}
\end{equation*}
$$

be the corresponding Callan-Symanzik operator. Then the amplitude \mathcal{A}_{F} and hence its leading power \mathcal{A}_{F} both satisfy an F-flavor improved Callan-Symanzik equation:

$$
\begin{equation*}
\left\{\mathcal{D}_{F}+\gamma_{F}\left(\alpha_{F}\right)\right\} \tilde{\mathcal{A}}_{F}=0 \tag{17}
\end{equation*}
$$

In general, both γ_{F} and $\mathcal{Z}=\left(\mathcal{Z}_{\mathcal{A} A^{\prime}}\right)$ are matrices.
If we substitute Eq. (14) in Eq. (17) and change variables,

$$
\begin{equation*}
\mathcal{D}_{F}=\bar{\mu} \frac{\partial}{\partial \bar{\mu}}+\left(\mathcal{D}_{F} \alpha_{f}\right) \frac{\partial}{\partial \alpha_{f}}+\sum_{k=1}^{f}\left(\mathcal{D}_{F} m_{k f}\right) \frac{\partial}{\partial m_{k f}} \tag{18}
\end{equation*}
$$

the result is an improved Callan-Symanzik equation for each residual amplitude,

$$
\begin{equation*}
\left\{\mathcal{D}_{f}+\gamma_{f}\left(\alpha_{f}\right)\right\} \mathcal{A}_{f}=0 \tag{19}
\end{equation*}
$$

where the functions $[12,15]$

$$
\begin{equation*}
\beta_{f}\left(\alpha_{f}\right)=\mathcal{D}_{F} \alpha_{f} \tag{20}
\end{equation*}
$$

$$
\begin{align*}
& \delta_{f}\left(\alpha_{f}\right)=\mathcal{D}_{F} \ln m_{l} \tag{21}\\
& \gamma_{f}\left(\alpha_{f}\right)=\mathcal{Z}^{-1}\left[\gamma_{F}\left(\alpha_{F}\right)+\mathcal{D}_{F}\right] \mathcal{Z} \tag{22}
\end{align*}
$$

depend on α_{f} alone. The lack of m_{l} dependence of the renormalization factors in Eqs. (14) and (15) ensures massindependent renormalization for the residual theory.

Although these equations hold for any $f<F$, their practical application is straightforward only when heavy quarks are decoupled one at a time. So we set $F=f+1$, where just one quark h is heavy. Then it is convenient to introduce a running coupling [12]

$$
\begin{equation*}
\tilde{\alpha}_{h}=\tilde{\alpha}_{h}\left(\alpha_{F}, \ln \left(m_{h} / \bar{\mu}\right)\right) \tag{23}
\end{equation*}
$$

associated with the $\overline{\mathrm{MS}}_{F}$ renormalized mass m_{h} :

$$
\begin{equation*}
\ln \left(m_{h} / \bar{\mu}\right)=\int_{\alpha_{F}}^{\tilde{\alpha}_{h}} d x\left[1-\delta_{F}(x)\right] / \beta_{F}(x) \tag{24}
\end{equation*}
$$

It satisfies the constraints

$$
\begin{equation*}
\tilde{\alpha}_{h}\left(\alpha_{F}, 0\right)=\alpha_{F}, \tilde{\alpha}_{h}\left(\alpha_{F}, \infty\right)=0 \tag{25}
\end{equation*}
$$

the latter being a consequence of the asymptotic freedom of the F-flavor theory $(F \leqslant 16)$. Also, Eqs. (16), (20) and (24) imply that $\tilde{\alpha}_{h}$ is renormalization group (RG) invariant:

$$
\begin{equation*}
\mathcal{D}_{F} \tilde{\alpha}_{h}=0 \tag{26}
\end{equation*}
$$

Witten's solution of Eq. (22) for the matrix \mathcal{Z} is

$$
\begin{align*}
\mathcal{Z}\left(\alpha_{F}, m_{h} / \mu\right)= & \exp \left\{\int_{\alpha_{F}}^{\tilde{\alpha}_{h}} d x \frac{\gamma_{F}(x)}{\beta_{F}(x)}\right\} \quad \mathcal{Z}\left(\tilde{\alpha}_{h}, 1\right) \\
& \times \exp -\left\{\int_{\alpha_{f}}^{\alpha_{f}\left(\tilde{\alpha}_{h}, 1\right)} d x \frac{\gamma_{f}(x)}{\beta_{f}(x)}\right\}_{\text {ord }} \tag{27}
\end{align*}
$$

where "ord" indicates x-ordering of matrix integrands in the exponentials. Note that it is the relative scaling between the initial and residual theories which matters.

For our NLO calculation, we need the formulas

$$
\begin{align*}
& \beta_{f}(x)=-\frac{x^{2}}{3 \pi}\left(\frac{33}{2}-f\right)-\frac{x^{3}}{12 \pi^{2}}(153-19 f)+O\left(x^{4}\right) \\
& \gamma_{f}(x)=\frac{x^{2}}{\pi^{2}} f+\frac{x^{3}}{36 \pi^{3}}(177-2 f) f+O\left(x^{4}\right) \\
& \delta_{f}(x)=-\frac{2 x}{\pi}+O\left(x^{2}\right) \tag{28}
\end{align*}
$$

where γ_{f} refers to the f-flavor singlet current (6) and includes the three-loop term found by Larin [19] and Chetyrkin and Kühn [16].

Our matching procedure amounts to evaluating to NLO accuracy the quantities $\tilde{\alpha}_{h}, \alpha_{f}\left(\tilde{\alpha}_{h}, 1\right)$ and $\mathcal{Z}\left(\tilde{\alpha}_{h}, 1\right)$ in Eq. (27), such that the answers depend on α_{f} and not α_{F}.

Bernreuther and Wetzel [15] applied the AppelquistCarrazone decoupling theorem [14] to the gluon coupling constant α_{Q}^{MO} renormalized at space-like momentum Q,

$$
\begin{equation*}
\left.\alpha_{Q}^{\mathrm{MO}}\right|_{\text {with } h}=\left.\alpha_{Q}^{\mathrm{MO}}\right|_{\text {no } h}+O\left(m_{h}^{-1}\right) \tag{29}
\end{equation*}
$$

and compared calculations of α_{Q}^{MO} in the $F=f+1$ and f-flavor $\overline{\mathrm{MS}}$ theories. This reduces to a determination of the leading power of the one- h-loop $\overline{\mathrm{MS}}_{F}$ gluon self-energy. The result is a matching condition

$$
\begin{equation*}
\alpha_{F}^{-1}-\alpha_{f}^{-1}=C_{\mathrm{LO}} \ln \left(m_{h} / \bar{\mu}\right)+C_{\mathrm{NLO}}+O\left(\alpha_{f}, m_{h}^{-1}\right) \tag{30}
\end{equation*}
$$

with α_{f}-independent LO and NLO coefficients given by

$$
\begin{equation*}
C_{\mathrm{LO}}=\frac{1}{3 \pi}, \quad C_{\mathrm{NLO}}=0 \tag{31}
\end{equation*}
$$

As a result, we find

$$
\begin{equation*}
\alpha_{f}\left(\tilde{\alpha}_{h}, 0\right)=\tilde{\alpha}_{h}+O\left(\tilde{\alpha}_{h}^{3}\right)=\tilde{\alpha}_{\text {NLO }} . \tag{32}
\end{equation*}
$$

Bernreuther and Wetzel showed that it is possible to deduce all LO and NLO terms in Eq. (30) from Eq. (31) and β_{f} and δ_{f} in Eq. (28). We have done the calculation explicitly:

$$
\begin{align*}
\alpha_{f+1}^{-1}= & \alpha_{f}^{-1}+\frac{1}{3 \pi} \ln \frac{m_{h}}{\bar{\mu}}+c_{f} \ln \left[1+\frac{\alpha_{f}}{3 \pi} \ln \frac{m_{h}}{\bar{\mu}}\right] \\
& +d_{f} \ln \left[1+\frac{\alpha_{f}}{3 \pi}\left(\frac{33}{2}-f\right) \ln \frac{m_{h}}{\bar{\mu}}\right] \\
c_{f}= & \frac{142-19 f}{2 \pi(31-2 f)}, \quad d_{f}=\frac{57+16 f}{2 \pi(33-2 f)(31-2 f)} . \tag{33}
\end{align*}
$$

From Eq. (24), we have also found $\tilde{\alpha}_{h}$ in NLO,

$$
\begin{align*}
\tilde{\alpha}_{h}^{-1}= & \alpha_{f}^{-1}+\frac{1}{3 \pi}\left(\frac{33}{2}-f\right) \ln \frac{\bar{m}_{h}}{\bar{\mu}}+\frac{153-19 f}{2 \pi(33-2 f)} \\
& \times \ln \left[1+\frac{\alpha_{f}}{3 \pi}\left(\frac{33}{2}-f\right) \ln \frac{m_{h}}{\bar{\mu}}\right] \tag{34}
\end{align*}
$$

where \bar{m}_{h} is Witten's RG invariant mass:

$$
\begin{equation*}
\bar{m}_{h}=m_{h} \exp \int_{\alpha_{F}}^{\tilde{\alpha}_{h}} d x \delta_{F}(x) / \beta_{F}(x) \tag{35}
\end{equation*}
$$

If desired, $\ln \left(\bar{m}_{h} / \bar{\mu}\right)$ can be eliminated by substituting

$$
\begin{equation*}
\ln \frac{\bar{m}_{h}}{\bar{\mu}_{\mathrm{LO}}}=\ln \frac{m_{h}}{\bar{\mu}}-\frac{12}{31-2 f} \ln \left[1+\frac{\alpha_{f}}{3 \pi}\left(\frac{31}{2}-f\right) \ln \frac{m_{h}}{\bar{\mu}}\right] . \tag{36}
\end{equation*}
$$

Therefore the asymptotic formula for $\tilde{\alpha}_{h}$ as $m_{h} \rightarrow \infty$ is
$\tilde{\alpha}_{h} \sim 3 \pi /\left\{\left(\frac{33}{2}-f\right) \ln \frac{m_{h}}{\bar{\mu}}+k_{f} \ln \ln \frac{m_{h}}{\bar{\mu}}+O(1)\right\}$
$k_{f}=\frac{3(153-19 f)}{2(33-2 f)}-\frac{6(33-2 f)}{31-2 f}$.
To find the matrix $\mathcal{Z}\left(\tilde{\alpha}_{h}, 1\right)$ in NLO, we need a matching condition for the $\overline{\mathrm{MS}}$ amplitude $\Gamma_{\mu 5}$ for $\bar{h} \gamma_{\mu} \gamma_{5} h$ to couple to a light quark l. We have calculated the leading power due to the two-loop diagram

$$
\begin{equation*}
\Gamma_{\mu 5}=\left(\frac{\alpha_{F}}{\pi}\right)^{2} \gamma_{\mu} \gamma_{5}\left(\ln \frac{m_{h}}{\bar{\mu}}+\frac{1}{8}\right)+O\left(\alpha_{F}^{3}, m_{h}^{-1}\right) \tag{38}
\end{equation*}
$$

Consequently, there is a NLO term $\tilde{\alpha}_{h}^{2} / 8 \pi^{2}$ in $\mathcal{Z}\left(\tilde{\alpha}_{h}, 1\right)$ for $\bar{h} \gamma_{\mu} \gamma_{5} h$ to produce $\bar{l} \gamma_{\mu} \gamma_{5} l$ as $m_{h} \rightarrow \infty$.

Now we consider the special case where heavy quarks are decoupled from the weak neutral axial current. Let us adopt the shorthand notation q_{f} for $\overline{\mathrm{MS}}$ currents $\left(\bar{q} \gamma_{\mu} \gamma_{5} q\right)_{f}$ in the f-flavor theory, e.g. the neutral current $J_{\mu 5}^{(\mathrm{Z})}$ and the scaleinvariant singlet current $\left(S_{\mu 5}\right)_{f}$:

$$
\begin{align*}
& J^{Z}=\frac{1}{2}(t-b+c-s+u-d)_{6} \tag{39}\\
& S_{f}=E_{f}\left(\alpha_{f}\right)(u+d+s+\cdots)_{f} \tag{40}
\end{align*}
$$

We begin by decoupling the t quark. Because of

$$
\begin{equation*}
(c-s+u-d)_{6}=(c-s+u-d)_{5}+O\left(1 / m_{t}\right) \tag{41}
\end{equation*}
$$

we see that Eq. (27) is nontrivial only for

$$
\begin{align*}
(t-b)_{6}= & \mathcal{Z}_{6 \rightarrow 5}(u+d+s+c+b)_{5}+\frac{1}{5}(u+d+s+c-4 b)_{5} \\
& +O\left(1 / m_{t}\right) . \tag{42}
\end{align*}
$$

Since $(t-b)_{6}$ is scale invariant, we have $\gamma_{F}=0$ in Eq. (27):

$$
\begin{equation*}
\mathcal{Z}_{6 \rightarrow 5}\left(\alpha_{6}, m_{t} / \bar{\mu}\right) \underset{\mathrm{NLO}}{=\mathcal{Z}_{6 \rightarrow 5}}\left(\tilde{\alpha}_{t}, 1\right) \exp -\int_{\alpha_{5}}^{\tilde{\alpha}_{t}} d x \frac{\gamma_{5}(x)}{\beta_{5}(x)} \tag{43}
\end{equation*}
$$

The operator matching condition (38) corresponds to
$t_{6}=\frac{\alpha_{6}^{2}}{\pi^{2}}\left(\ln \frac{m_{t}}{\bar{\mu}}+\frac{1}{8}\right)(u+d+s+c+b)_{5}+O\left(\alpha_{6}^{3}, m_{t}^{-1}\right)$
and so we conclude:

$$
\begin{equation*}
\mathcal{Z}_{6 \rightarrow 5}\left(\tilde{\alpha}_{t}, 1\right)=-\frac{1}{5}+\left(8 \pi^{2}\right)^{-1} \tilde{\alpha}_{t}^{2}+O\left(\tilde{\alpha}_{t}^{3}\right) \tag{45}
\end{equation*}
$$

Equation (43) is to be expanded about $\tilde{\alpha}_{t} \sim 0$ with α_{5} held fixed. In that limit, the exponential tends to the constant factor $E_{5}\left(\alpha_{5}\right)$ of Eq. (7). This factor combines with the singlet current in Eq. (42) to form the scale-invariant operator S_{5}, as required by $\mathrm{RG}_{f=5}$ invariance. The full NLO result is then obtained by writing

$$
\begin{align*}
(t-b)_{6}= & \mathcal{Z}_{6 \rightarrow 5}\left(\tilde{\alpha}_{t}, 1\right) \exp \left\{-\int_{0}^{\tilde{\alpha}_{t}} d x \frac{\gamma_{5}(x)}{\beta_{5}(x)}\right\} S_{5} \\
& +\frac{1}{5}(u+d+s+c-4 b)_{5} \tag{46}
\end{align*}
$$

and expanding in $\tilde{\alpha}_{t}$, keeping all quadratic terms:

$$
\begin{align*}
(t-b)_{6}= & \left\{-\frac{1}{5}-\frac{6}{23} \frac{\tilde{\alpha}_{t}}{\pi}\left(1+\frac{6167}{3312} \frac{\tilde{\alpha}_{t}}{\pi}\right)+O\left(\tilde{\alpha}_{t}^{3}\right)\right\} S_{5} \\
& +\frac{1}{5}(u+d+s+c-4 b)_{5}+O\left(1 / m_{t}\right) \tag{47}
\end{align*}
$$

Next we decouple the b quark. Here, it is natural to define five-flavor quantities $\tilde{\alpha}_{b_{5}}$ and $\bar{m}_{b_{5}}$ analogous to the six-flavor running coupling $\tilde{\alpha}_{t}$ and mass \bar{m}_{t} for the top quark:

$$
\begin{align*}
& \ln \frac{m_{b 5}}{\bar{\mu}}=\int_{\alpha_{5}}^{\tilde{\alpha}_{b_{5}}} d x \frac{1-\delta_{5}(x)}{\beta_{5}(x)}, \\
& \ln \frac{\bar{m}_{b_{5}}}{m_{b_{5}}}=\int_{\alpha_{5}}^{\tilde{\alpha}_{b_{5}}} d x \frac{\delta_{5}(x)}{\beta_{5}(x)} \tag{48}
\end{align*}
$$

Equations (20) and (21) imply that $\tilde{\alpha}_{b_{5}}$ and $\bar{m}_{b_{5}}$ are both $\mathrm{RG}_{f=5}$ and $\mathrm{RG}_{f=6}$ invariant

$$
\begin{equation*}
\mathcal{D}_{5} \tilde{\alpha}_{b_{5}}=0=\mathcal{D}_{6} \tilde{\alpha}_{b_{5}}, \quad \mathcal{D}_{5} \bar{m}_{b_{5}}=0=\mathcal{D}_{6} \bar{m}_{b_{5}} \tag{49}
\end{equation*}
$$

and hence physically significant in the original six-flavor theory. So we write $\tilde{\alpha}_{b}$ and \bar{m}_{b} for $\tilde{\alpha}_{b_{5}}$ and $\bar{m}_{b_{5}}$.

Consider decoupling the b quark from Eq. (47). The NLO matching condition (38) becomes
$b_{5}=\frac{\alpha_{5}^{2}}{\pi^{2}}\left(\ln \frac{\bar{m}_{b_{5}}}{\bar{\mu}}+\frac{1}{8}\right)(u+d+s+c)_{4}+O\left(\alpha_{5}^{3}, m_{b 5}{ }^{-1}\right)$
so the nonsinglet current in Eq. (47) can be written

$$
\begin{align*}
(u+d+s+c-4 b)_{5}= & \left\{1-\left(\tilde{\alpha}_{b}^{2} / 2 \pi^{2}\right)\right\} E_{4}^{-1}\left(\tilde{\alpha}_{b}\right) S_{4} \\
& +O\left(\tilde{\alpha}_{b}^{3}, m_{b 5}^{-1}\right) \tag{51}
\end{align*}
$$

For the singlet current S_{5} in Eq. (47), we find

$$
\begin{equation*}
S_{5}=E_{5}\left(\tilde{\alpha}_{b}\right)\left\{1+\frac{\tilde{\alpha}_{b}^{2}}{8 \pi^{2}}\right\} E_{4}^{-1}\left(\tilde{\alpha}_{b}\right) S_{4}+O\left(\tilde{\alpha}_{b}^{3}, m_{b 5}^{-1}\right) \tag{52}
\end{equation*}
$$

taking into account the definitions (7) and (40). Then we expand Eqs. (51) and (52) in $\tilde{\alpha}_{b}$, keeping quadratic terms:

$$
\begin{align*}
(t-b)_{6}= & \frac{6}{23 \pi}\left(\tilde{\alpha}_{b}-\tilde{\alpha}_{t}\right)\left\{1+\frac{125663}{82800 \pi} \tilde{\alpha}_{b}\right. \\
& \left.+\frac{6167}{3312 \pi} \tilde{\alpha}_{t}\right\} S_{4}+O\left(\tilde{\alpha}_{t, b}^{3}, m_{t, b}^{-1}\right) \tag{53}
\end{align*}
$$

The same technique can be applied to decouple the c quark from S_{4} in Eq. (53) and $(c-s+u-d)_{4}$ [the result of decoupling b from Eq. (41)]. That yields the final results (4) and (5) given in the introduction.

Notice that our results depend on two key features:
(i) Like previous workers in this area, we decouple heavy quarks sequentially, i.e. one at a time.
(ii) Our running couplings $\tilde{\alpha}_{t}, \widetilde{\alpha}_{b}$ and $\tilde{\alpha}_{c}$, which correspond to Witten's prescription [12], are all renormalization group invariant.

The restriction to sequential decoupling is numerically reasonable for the t quark, but dubious for the b and c quarks, because it amounts to an assumption that $\ln \left(m_{c} / \bar{\mu}\right)$ is negligible compared with $\ln \left(m_{b} / \bar{\mu}\right)$. This inhibits detailed comparison of NLO results with data, which ought to be carried out with NLO accuracy [20].

There is also a theoretical issue here: one would like to check that, in the limit $m_{t}=m_{b}$, the t and b contributions cancel. However, that is outside the region of validity $\ln \left(m_{t} / \bar{\mu}\right) \geqslant \ln \left(m_{b} / \bar{\mu}\right)$ for sequential decoupling.

For these reasons, we have extended our analysis to the case of simultaneous decoupling, where the mass logarithms are allowed to grow large together: $\ln \left(m_{c} / \bar{\mu}\right) \sim \ln \left(m_{b} / \bar{\mu}\right)$ $\sim \ln \left(m_{t} / \bar{\mu}\right) \rightarrow$ large. This requires a considerable theoretical development of matching conditions and the renormalization group, which we will present separately. It involves the construction of running couplings $\alpha_{t}, \alpha_{b}, \alpha_{c}$ with the following properties: (i) They are renormalization group invariant; (ii) they are defined for $m_{t} \geqslant m_{b} \geqslant m_{c}$, and can have a nontrivial
dependence on more than one heavy-quark mass; (iii) in the special case of sequential decoupling, they agree with $\tilde{\alpha}_{t}, \tilde{\alpha}_{b}$ and $\tilde{\alpha}_{c}$ to NLO; and (iv) for the case of equal masses, they coincide, e.g.

$$
\begin{equation*}
\alpha_{t}=\alpha_{b} \quad \text { for } \quad m_{t}=m_{b} \tag{54}
\end{equation*}
$$

Then we find that the result for the simultaneous decoupling of the t, b, c quarks from the neutral current is of the same form (4) as the sequential answer, but with the sequential running couplings in Eq. (5) replaced by our simultaneous couplings α_{t}, α_{b}, and α_{c} :

$$
\begin{align*}
\mathcal{P}= & \frac{6}{23 \pi}\left(\alpha_{b}-\alpha_{t}\right)\left\{1+\frac{125663}{82800 \pi} \alpha_{b}+\frac{6167}{3312 \pi} \alpha_{t}-\frac{22}{75 \pi} \alpha_{c}\right\} \\
& -\frac{6}{27 \pi} \alpha_{c}-\frac{181}{648 \pi^{2}} \alpha_{c}^{2}+O\left(\alpha_{t, b, c}^{3}\right) \tag{55}
\end{align*}
$$

Notice the factorization of the terms depending on α_{t} and α_{b}. Given Eq. (54), the factor $\alpha_{b}-\alpha_{t}$ ensures that all contributions from b and t quarks cancel (as they should) for $m_{t}=m_{b}$.

This work was supported by the Australian Research Council and the Austrian FWF. F.M.S. is supported by contract number PV-IFT/005. R.J.C. thanks Professor Wojtek Zakrzewski for his hospitality at Durham. S.D.B. thanks Professor Dietmar Kuhn and the HEP group for their hospitality at Innsbruck.
[1] L.A. Ahrens et al., Phys. Rev. D 35, 785 (1987); G.T. Garvey, W.C. Louis, and D.H. White, Phys. Rev. C 48, 761 (1993); W.M. Alberico, S.M. Bilenky, and C. Maieron, Phys. Rep. 358, 227 (2002).
[2] D.B. Kaplan and A.V. Manohar, Nucl. Phys. B310, 527 (1988).
[3] E.N. Fortson and L.L. Lewis, Phys. Rep. 113, 289 (1984); J. Missimer and L.M. Simons, ibid. 118, 179 (1985); I.B. Khriplovich, Parity Non-conservation in Atomic Phenomena (Gordon and Breach, Philadelphia, 1991); D. Bruss, T. Gasenzer, and O. Nachtmann, Phys. Lett. A 239, 81 (1998); EPJdirect 2, 1 (1999).
[4] B.A. Campbell, J. Ellis, and R.A. Flores, Phys. Lett. B 225, 419 (1989).
[5] R. Tayloe, Nucl. Phys. B (Proc. Suppl.) 105, 62 (2002).
[6] J. Collins, F. Wilczek, and A. Zee, Phys. Rev. D 18, 242 (1978).
[7] S.D. Bass and A.W. Thomas, Phys. Lett. B 293, 457 (1992).
[8] S.D. Bass, Mod. Phys. Lett. A 13, 791 (1998).
[9] M. Anselmino, A. Efremov, and E. Leader, Phys. Rep. 261, 1 (1995); S.D. Bass, Eur. Phys. J. A 5, 17 (1999); R. Windmolders, Nucl. Phys. B (Proc. Suppl.) 79, 51 (1999); B. Lampe
and E. Reya, Phys. Rep. 332, 1 (2000).
[10] G. Bunce, N. Saito, J. Soffer, and W. Vogelsang, Annu. Rev. Nucl. Part. Sci. 50, 525 (2000).
[11] S.D. Bass and A. De Roeck, Nucl. Phys. B (Proc. Suppl.) 105, 1 (2002).
[12] E. Witten, Nucl. Phys. B104, 445 (1976).
[13] S. Weinberg, Phys. Rev. D 8, 3497 (1973).
[14] T. Appelquist and J. Carrazone, Phys. Rev. D 11, 2856 (1975).
[15] W. Bernreuther and W. Wetzel, Nucl. Phys. B197, 228 (1982); W. Bernreuther, Ann. Phys. (N.Y.) 151, 127 (1983). We set $\operatorname{Tr} I=4$ for spinor traces in dimensional regularization.
[16] K.G. Chetyrkin and J.H. Kühn, Z. Phys. C 60, 497 (1993).
[17] G. Altarelli and B. Lampe, Z. Phys. C 47, 315 (1990); S.D. Bass, S.J. Brodsky, and I. Schmidt, Phys. Rev. D 60, 034010 (1999).
[18] I. Bojak and M. Stratmann, Phys. Lett. B 433, 411 (1998); Nucl. Phys. B540, 345 (1999); hep-ph/0112276.
[19] S.A. Larin, Phys. Lett. B 303, 113 (1993); 334, 192 (1994).
[20] This includes matching conditions for the b and c masses, to be discussed elsewhere.

