Doctoral Thesis

Moving Least Squares Registration in Computer Vision: New Applications and Algorithms

Author:
William Liu

Supervisors:
Dr. Tat-Jun CHIN
Assoc. Prof. Gustavo CARNEIRO
Prof. David SUTER

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the
Faculty of Engineering, Computer and Mathematical Sciences
School of Computer Science
July 2017
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:

Date:
Abstract

Moving Least Squares Registration in Computer Vision:
New Applications and Algorithms

by William Liu

Registration is a fundamental task in computer vision, and is often used as a preliminary step in diverse applications. In the process of registration, the transformation model needs to be estimated to establish the correspondence relationships between input images. Most transformation models are built upon certain assumptions. However, in practice, when given uncharacteristic data, applying such a model may result in critical deviations/artifacts in the registration output. The research conducted in this thesis focuses on the step of transformation model estimation in registration problems, where the underlying model assumptions do not hold. A central theme of this thesis is the usage of moving least squares (MLS) technique to handle violations to model assumptions. This thesis contributes in three specific applications: radial distortion estimation, image stitching and video stabilization.

First, real cameras approximate ideal pinhole cameras using lenses and apertures. This leads to radial distortion effects that are not characterizable by the standard epipolar geometry model and impacts the efficacy of point correspondence validation based on the epipolar constraint. Many previous works deal with radial distortion by augmenting the epipolar geometry model with additional parameters such as distortion coefficients and centre of distortion. In this thesis, radial distortion is treated as a violation to the basic epipolar geometry. To account for the distortion effects, the epipolar geometry is adjusted via the MLS approximation combined with M-estimators to allow robust matching of interest points under severe radial distortion. Compared to previous works, the proposed method is much simpler and exhibits a higher tolerance in cases where the exact model of radial distortion is unknown.

Secondly, spatially varying warps are increasingly popular for image alignment as alternatives to homographic warps, since the basic homography model carries the assumptions that images were taken under pure rotational motions, or that the scene is sufficiently far away such that it is effectively planar – conditions unlikely to be satisfied in casual photography. However, estimating spatially varying warps requires a sufficient number of feature matches. In image regions where feature detection or matching fail, the warp loses guidance and is unable to accurately model the true underlying warp, thus resulting in poor registration. This thesis proposes a correspondence insertion method
for As-Projective-As-Possible (APAP) warps, which are extensions of MLS to the projective setting. The proposed method automatically identifies misaligned regions, and inserts appropriate point correspondences to increase the flexibility of the warp and improve alignment. Unlike other warp varieties, the underlying projective regularization of APAP warps reduces overfitting and geometric distortion, despite increases to the warp complexity.

Lastly, video stabilization is achieved by estimating the camera trajectory throughout the video and then smoothing the trajectory. In practice, most approaches directly model and filter the camera motion using 2D image transforms (e.g., affine or projective). From the smoothed motions, update transforms are obtained to adjust each frame of the video such that the overall sequence appears to be stabilized. However, the update transform is also customarily defined by the basic 2D transforms, which cannot preserve the image contents well. As a result the stabilized videos often appear distorted and “wobbly”. Therefore, estimating good update transforms is more critical to success than accurately modeling and characterizing the motion of the camera. Based on this observation, this thesis proposes homography fields for video stabilization. A homography field is a spatially varying warp that is regularized to be as projective as possible, so as to enable accurate warping while adhering closely to the underlying geometric constraints. It has been shown that homography fields are powerful enough to meet the various warping needs of video stabilization, not just in the core step of stabilization, but also in video inpainting. This enables relatively simple algorithms to be used for motion modeling and smoothing. Results on various publicly available testing videos demonstrate the merits of the proposed video stabilization pipeline.
I thank my supervisor, Dr. Tat-Jun Chin, for all his advices, comments, and critical revisions throughout this thesis and articles I published during my PhD. I really appreciate his interest in this research. Working with him has certainly been an enriching life experience. I would also like to thank my co-supervisors Assoc. Prof. Gustavo Carneiro and Prof. David Suter for their advices, revisions and comments during research meetings. I extend my thanks to Dr. Anders Eriksson for his valuable comments on works that are part of this thesis.

I would like to express my sincere appreciation to my family for their supports and encouragements.

During my PhD candidature, I have shared incredible time with incredible people. I would like to extend my thanks to Dr. Quoc Huy Tran, Dr. Trung Thanh Pham, and Dr. Julio Zaragoza for their general advices and discussions.

Lastly I would like to thank the University of Adelaide for funding my PhD.
Contents

Declaration iii
Abstract v
Acknowledgements vii
Contents viii
List of Figures xiii
List of Tables xv
List of Algorithms xvii
Abbreviations xviii
Publications xxi

1 Introduction 1
1.1 Introduction .. 1
1.2 Overview of Thesis 4
1.3 Background on Moving Least Squares 5
1.3.1 Least squares .. 5
1.3.2 Moving least squares 7
1.4 Thesis Outline .. 9

2 Literature Review 11
2.1 Feature Detection and Matching 11
2.1.1 Feature detection 11
2.1.2 Feature matching 12
2.2 Transformation Functions 13
2.2.1 Global transformation functions 13
2.2.2 Local transformation functions 15
2.3 Camera Calibration and Radial Distortion 17
2.3.1 Camera calibration 17
2.3.2 Radial distortion models 20
2.3.3 Robust radial distortion estimation ... 22
2.4 Image Stitching ... 23
 2.4.1 Image stitching pipeline ... 23
 2.4.2 3D reconstruction and plane-plus-parallax 24
 2.4.3 Panorama creation ... 24
 2.4.4 Spatially varying warps ... 25
 2.4.5 Parallax-tolerant image stitching 25
2.5 Video Stabilization ... 26
 2.5.1 Motion compensation methods 27
 2.5.2 Rolling shutter removal .. 28
 2.5.3 Video inpainting ... 30
2.6 Summary .. 31
3 Point Correspondence Validation Under Unknown Radial Distortion 33
 3.1 Introduction .. 33
 3.1.1 Point correspondence validation 33
 3.1.2 Radial distortion calibration .. 35
 3.1.3 Chapter overview ... 36
 3.2 Proposed Method Overview .. 37
 3.3 Robust Estimation for Epipolar Geometry 38
 3.4 Epipolar Constraint Adjustment for Radial Distortion 40
 3.5 Point Correspondence Validation Under Unknown Radial Distortion 41
 3.6 Results ... 42
 3.6.1 Synthetic data experiments .. 42
 3.6.2 Real image data experiments .. 47
 3.7 Summary .. 49
4 Correspondence Insertion for APAP Image Stitching 53
 4.1 Introduction .. 53
 4.1.1 Basic homographic stitching 53
 4.1.2 As-projective-as-possible image stitching 56
 4.1.3 Chapter overview ... 58
 4.2 Previous Work on Centre Insertion 60
 4.3 Proposed Method Overview .. 61
 4.4 Center Selection .. 62
 4.5 Correspondence Search .. 65
 4.5.1 Objective function and minimization 65
 4.5.2 Jacobian of APAP warp .. 66
 4.6 Data-driven Warp Adaptation Scheme 68
 4.7 Results ... 70
 4.7.1 Comparisons with state-of-the-art stitching methods 70
 4.7.2 Evaluation of flow-based methods 74
 4.7.3 Comparisons on image pairs without significant parallax . 79
 4.8 Summary .. 83
5 Video Stabilization Using Homography Fields 85
 5.1 Introduction .. 85
5.1.1 2D video stabilization .. 85
5.1.2 Chapter overview ... 87
5.2 Proposed Method Overview 88
5.3 Smooth Globally Warp Locally 89
 5.3.1 Motion estimation and smoothing 89
 5.3.2 From global to local 90
 5.3.3 Homography field warps 92
 5.3.4 Calculating homography fields 93
5.4 Removing Rolling Shutter Effects 93
5.5 Inpainting with homography fields 96
 5.5.1 Sliding window RANSAC 97
 5.5.2 Feature propagation 99
5.6 Results .. 100
 5.6.1 Smooth globally warp locally 100
 5.6.2 Removing rolling shutter effects 101
 5.6.3 Video inpainting .. 104
 5.6.4 Overall results ... 105
5.7 Summary .. 106

6 Conclusions and Future Work 111
 6.1 Future Work ... 112
 6.1.1 Radial distortion correction 112
 6.1.2 Quantitative evaluations on image stitching methods .. 112
 6.1.3 Extensions for video stabilization 113

Bibliography .. 115
List of Figures

1.1 Four main steps in image alignment. 2
1.2 Line fitting using least squares. 6
1.3 Line fitting using moving least squares. 8
1.4 Fitted curve using moving least squares. 9

2.1 Basic set of global transformation models. 13
2.2 Principle of a pinhole camera. 18
2.3 A 3D reconstruction of an office scene without considering lens distortion. 20
2.4 Result of parallax-tolerant image stitching with seam cut pixel selection. 26
2.5 Professional camera stabilizers: camera dolly and steadicam. 27
2.6 Example of rolling shutter effect. 29
2.7 Concept of rolling shutter removal method from Grundmann et al. [55]. 29
2.8 Inpainting for stabilized video. 30

3.1 Sample picture taken by a fisheye lens. 36
3.2 Point correspondence validation method overview. 38
3.3 Radial distortion synthetic data experiments setup. 43
3.4 Sample data with two-sided radial distortion. 44
3.5 Synthetic data experiment with one-sided radial distortion. ... 46
3.6 Synthetic data experiment with two-sided radial distortion. ... 47

4.1 The standard pipeline of homographic stitching. 55
4.2 Aligned images with transformed cells overlaid to visualize the warp. 58
4.3 Result using APAP warp [140]. 58
4.4 Overview of the proposed correspondence insertion method. 59
4.5 Correspondence insertion method overview. 61
4.6 Center selection. .. 64
4.7 Comparing three methods on truck image pair. 70
4.8 Comparing three methods on temple image pair. 71
4.9 Comparing three methods on shopfront image pair. 72
4.10 Comparing three methods on lobby image pair. 73
4.11 Dense correspondences and stitching results of three flow-based methods on the truck image pair. 75
4.12 Dense correspondences and stitching results of three flow-based methods on the temple image pair. 76
4.13 Dense correspondences and stitching results of three flow-based methods on the shopfront image pair. 77
4.14 Dense correspondences and stitching results of three flow-based methods on the lobby image pair. 78
4.15 Comparing three methods on the building image pair. 80
4.16 Comparing three methods on the arch image pair. 81
4.17 Comparing three methods on the stage image pair. 82

5.1 2D video stabilization method pipeline. 86
5.2 Camera trajectory stabilization visualization. 86
5.3 Overview of the proposed video processing pipeline. 88
5.4 Smooth globally warp locally stabilization method. 91
5.5 Example of rolling shutter effects. 94
5.6 Warping result generated using three methods. 96
5.7 Example of the proposed video inpainting algorithm. 98
5.8 Rolling shutter warping result 1. 102
5.9 Rolling shutter warping result 2. 103
5.10 Rolling shutter warping result 3. 104
5.11 Rolling shutter warping result 4. 105
5.12 Selected video inpainting result 1. 107
5.13 Selected video inpainting result 2. 107
5.14 Selected video inpainting result 3. 108
5.15 Selected video inpainting result 4. 108
5.16 Selected video inpainting result 5. 109
5.17 Selected video inpainting result 6. 109
List of Tables

3.1 Real image tests. .. 50
3.2 Real image tests, with COD displacement 50%. 51
List of Algorithms

2.1 RANSAC with fundamental matrix combined with division model. 23
3.1 Point correspondence validation method based on MDLT. 41
4.1 Correspondence search for APAP warp. 67
4.2 Data-driven warp adaptation. 69
5.1 Video inpainting based on homography field warps. 97
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APAP</td>
<td>As-Projective-As-Possible</td>
</tr>
<tr>
<td>DoF</td>
<td>Degrees of Freedom</td>
</tr>
<tr>
<td>LS</td>
<td>Least Squares</td>
</tr>
<tr>
<td>MDLT</td>
<td>Moving Direct Linear Transformation</td>
</tr>
<tr>
<td>MLS</td>
<td>Moving Least Squares</td>
</tr>
<tr>
<td>RANSAC</td>
<td>RANdom SAmple Consensus</td>
</tr>
<tr>
<td>SVD</td>
<td>Singular Value Decomposition</td>
</tr>
<tr>
<td>TLS</td>
<td>Total Least Squares</td>
</tr>
<tr>
<td>WLS</td>
<td>Weighted Least Squares</td>
</tr>
</tbody>
</table>
Publications

This thesis is in part the result of the work presented in the following papers:

- William X. Liu, Tat-Jun Chin, Gustavo Carneiro and David Suter,
 “Point Correspondence Validation under Unknown Radial Distortion”,
 (DOI:10.1109/DICTA.2013.6691513)

- William X. Liu, Tat-Jun Chin, Anders Eriksson and Michael S. Brown
 “Correspondence Insertion for As-Projective-As-Possible Image Stitching”,
 Submitted to arXiv as arXiv:1608.07997

- William X. Liu and Tat-Jun Chin,
 “Smooth Globally Warp Locally: Video Stabilization Using Homography Fields”,
 Awarded DSTO Best Fundamental Contribution to Image Processing Paper Prize.
 (DOI: 10.1109/DICTA.2015.7371309)