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Chirality of quark modes

Alex C. Kalloniatis*
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Sergei N. Nedelko†

Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
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A model for the QCD vacuum based on a domainlike structured background gluon field with a definite
duality attributed to the domains has been shown elsewhere to give confinement of static quarks, a reasonable
value for the topological susceptibility, and indications that chiral symmetry is spontaneously broken. In this
paper, we study in detail the eigenvalue problem for the Dirac operator in such a gluon mean field. A study of
the local chirality parameter shows that the lowest nonzero eigenmodes possess a definite mean chirality
correlated with the duality of a given domain. A probability distribution of the local chirality qualitatively
reproduces histograms seen in lattice simulations.
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I. INTRODUCTION

In a previous paper@1#, we formulated a model which
characterizes the QCD vacuum by a ‘‘lumpy’’ distribution
field strength and topological charge density. For lack o
better name, we shall refer to the model as ‘‘the dom
model.’’ The formulation is given concretely in terms of
partition function which describes a statistical ensemble
domains, each of which is characterized by a set of inte
parameters associated with the mean background gluon fi
and the internal dynamics are represented by fluctua
fields. Correlation functions in this model can be calcula
by taking the mean field into account explicitly and deco
posing over the fluctuations. We briefly review the deta
and assumptions behind the model in the next section
state here unambiguously that the ‘‘domains’’ in question
assumed to be purely quantum in nature. They are not s
classical solutions of Yang-Mills theory and are not argued
exist as topologically stable classical configurations, rat
they seek to characterize the average bulk properties of
ensemble of fields that determine the gluonic vacuum.
particular, it is not assumed that the topological charge a
ciated with a domain should be an integer. The rationale
such an extremely simplified construction can be underst
as an attempt to implicitly incorporate effects of the prese
of singular pure gauge configurations in the QCD Euclide
functional integral into a practical calculational scheme w
a mean-field description of the QCD ground state. A se
consistent mean-field approach requires nonperturbative
culation of the free energy as a functional of the mean fi
whose minima should determine its form, but this is beyo
the reach of analytical methods. Nevertheless, there is
accumulation of semiqualitative arguments@1# in favor of the
ansatz for the mean field we have chosen.

In the gluonic sector, the model depends on two para
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eters, a mean-field strength per domainB and a mean size fo
domainsR, which is sufficient for an adequate description
the pure glue characteristics of the QCD vacuum—the glu
condensate, topological susceptibility, and string tensi
The Wilson loop in such a gluonic background was found
exhibit an area law dependence for large loops. Thus a c
finement of static fundamental charges is captured by
model; some dynamical gluon degrees of freedom turn
also to be nonpropagating. The absolute value of the un
lying average topological charge per domain was determi
to be approximatelyq50.15 and the density of domains t
be as high as 42 fm24. Although tentative signals of sponta
neous chiral symmetry breaking were also obtained in@1#, a
more rigorous consideration of the fermionic spectrum a
eigenmodes as well as the calculation of the quark dete
nant is required, which was missed in@1#.

In this paper, we solve the eigenvalue problem for t
Dirac operator for the gluonic background and bound
conditions adopted in the model and examine the chira
properties of the eigenmodes. This is a necessary step
checking the status of chiral symmetry breaking in the d
main model. But in view of recent lattice results, this pro
lem is valuable also in its own right.

There are strong hints in lattice Monte Carlo simulatio
at intermediate-range structures in individual gluon config
rations once fluctuations are filtered out by some means.
example, cooling or relaxation algorithms are well esta
lished now@2#, and can reveal instantoniclike structures af
several sweeps of a given lattice configuration. However
these algorithms are designed precisely to locally minim
the action, it is natural they should bring objects with integ
topological charge into relief. Alternately, and more releva
to the present work, low-lying and zero modes of the ma
less Dirac operator can be used as a probe of long-ra
gluonic structures@3#, although only recently did this be
come more reliable with lattice fermions with good chirali
properties. For example, exact index theorems are foun
be satisfied on the lattice@4,5# and the zero modes are seen
correlate precisely with instantonic structures in the raw
©2002 The American Physical Society20-1
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tice configuration, in the absence of cooling@6#. However,
the exact zero modes of any finite volume simulation can
be those relevant to spontaneous chiral symmetry break
rather the discrete spectrum of low-lying non-zero mod
should, in the infinite volume limit, go over to a continuo
band at zero, saturating the Banks-Casher relationship@7#.
Such modes are sometimes called ‘‘pseudo-zero-mod
Low-lying nonzero modes with strong signs of chirality
regions of high action and topological charge densities wo
be a tool for identification of the properties of gluonic co
figurations relevant to chiral symmetry breaking. Indeed,
ter an initial negative result@8#, recent results have emerge
showing precisely this: low-lying nonzero modes of the ov
lap Dirac operator which seem to exhibit strong chirality,
measured by the local parameterX introduced in@8# and
defined by

tanS p

4
@12X~x!# D5

uc2~x!u
uc1~x!u

, ~1!

in regions where the probability densityc†(x)c(x) of these
modes is maximal@6,9–11#. The verification of the instan
tonic nature of these objects and their relevance to spont
ous chiral symmetry breaking in the infinite volume are s
being argued in the literature~see, for example, the recen
studies of@11,12# and @13#!.

An unbiased summary of the totality of available latti
results can be formulated as follows: that they support
importance of gluon configurations producing regions of
proximately ‘‘locked’’ chromoelectric/magnetic fields fo
chiral symmetry breaking but do not yet confirm or rule o
a specifically instantonic nature for these configurations@14#.
A potential test which might clarify this would be a compa
son of hadronic correlation functions between vacuum m
els and lattice simulations. Such results are already avail
for instanton-based models@15#. A search for complementar
scenarios for the vacuum consistent with lattice results
incorporating confinement~missed in the instanton models!
is evidently timely. This paper is a step in that direction f
the domain scenario.

The core of this paper is the Dirac eigenvalue/funct
problem for a spherical four-dimensional Euclidean region
radiusR with baglike boundary conditions on the fermion
and in the presence of a covariantly constant~anti-! self-dual
gauge field

D” c~x!5lc~x!,

ih” ~x!eiag5c~x!5c~x!, x25R2. ~2!

Here hm(x)5xm /uxu, Dm is the covariant derivative in the
fundamental representation,

Dm5]m2 iB̂m5]m1
i

2
n̂Bmn xn ,

n̂5tana, B̃mn56Bmn ,
07402
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where the~anti-!self-dual tensorBmn is constant, and the
Euclideang matrices are in an anti-Hermitean represen
tion.

The outcomes of this study are the peculiar chiral prop
ties of eigenspinorsc(x): there are no zero modes and no
of the modes is chiral but at the center of a domain the lo
chirality parameterX(x) is found to be

X~0!561

for all modes with zero orbital momentum. The sign
chirality and the duality of the tensorBmn are locked:
(11)21 for an ~anti-!self-dual field. Simultaneously the
normal density for these modes is maximal at the center
the boundary the local chiralityX is equal to zero for all
modes. The chirality of the lowest mode is a monoton
function inside the region while for the higher radial excit
tions the chirality alternates. The detailed form ofX(x)
changes with the variation of an arbitrary anglea in the
boundary condition. This angle is treated as a random v
able. Calculating chiralities averaged over a small cen
region for the various lowest modes, and operating in
whole ensemble of domains, we end up with a histogr
which represents the probability of finding a given smea
chirality among the set of lowest modes. The histogr
qualitatively reproduces the lattice results for the chirality
low-lying Dirac modes such as those of@6# and others.

After reviewing the domain model in the next section, w
present details of the solution of the above-formulated pr
lem and then study the chirality properties of the eige
modes. We conclude with a discussion and future prospe
Technical details of calculations and conventions for this
per are relegated to the Appendixes.

II. REVIEW OF THE MODEL

It has been suggested@16# that the restrictive influence o
pure gauge singularities~present in instanton, monopole, an
vortex configurations! on surrounding quantum fluctuation
may be used for an approximate treatment of QCD dyna
ics. Due to the complex structure of the manifold of gau
orbits in QCD, singular gauge fields may be unavoidable
the course of the elimination of redundant variables. O
structions such as the Gribov problem and condensatio
monopoles are two examples of this potentially more gen
statement. This has also long been advocated by van
@17# in his studies of the fundamental domain in small vo
ume studies on the torus and sphere. In particular, the
posal has been made that ‘‘domain formation’’ at larger v
umes can be driven essentially by the nontrivial topology
the gauge field manifold. Moreover, it is stressed in@17# that
the full set of singular fields, instantons, monopoles, and v
tices must play a role in this. One can also add to this h
archy domain-wall singularities@18# which are not topologi-
cally stable on their own but can be part of a complica
object: a domain wall can start and end on a low
dimensional topologically nontrivial singularity of lower d
mension, namely a vortex, and in this sense should no
neglected also.
0-2
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An arbitrary gauge field configurationA containing a
pure gauge singularity can be represented in the vicinity
the singularity as

Am5Sm1Qm

with Sm a pure gauge singular field. If we now substitute th
into the Yang-Mills Lagrangian, we will see that the requir
ment of finiteness of the action density imposes specific c
ditions on the behavior ofQ in the vicinity of the singularity
in S. The model we consider focuses on domain-wall sin
lar hypersurfaces which are the most restrictive forQ; an
inclusion of lower-dimensional singularities is a complicat
task beyond the scope of the present work. In the case
domain wall, the constraining influence ofS on gluon fluc-
tuationsQ and quark fieldsc is expressed via the bounda
conditions

@Q,S#50, ~3!

c̄~x!h” ~x!c~x!50 ~4!

for x being on the singular hypersurface of the pure ga
field S. These conditions ensure a nonvanishing weight
such fields in the functional integral.

Domain-wall singular pure gauge configurations are to
logically trivial. This implies that the fieldS can be charac-
terized by a definite color directionna and the matrixnata

can always be tuned to belong to the Cartan subalgebr
SUc(3). The off-diagonal ~or, equivalently, orthogonal to
na) components of the fluctuationsQ must then satisfy Di-
richlet boundary conditions, while those fluctuations longi
dinal to na are not restricted at the domain wall. A typic
configuration of this type looks like a system of domai
which are coupled in a sense that fluctuations inside ne
boring domains interact with each other via exchange by
gluon modes longitudinal to the color direction of the d
main boundaries. It should be stressed that unavoidably t
are obstructions of color direction at the domain-wall jun
tions where lower-dimensional topologically nontrivial si
gularities are situated.

To be specific and to deal with an analytically tractab
model, we introduce several drastic simplifications: we d
engage ourselves from the obstructions in the color direc
and substitute the coupling between domains by the pres
of a mean field. Inside and on the boundary of the dom
the field is taken to be covariantly constant~anti-!self-dual
such that the strength over the whole Euclidean space r

Fmn
a ~x!5(

j 51

N

n( j )aBmn
( j )u„12~x2zj !

2/R2
…,

Bmn
( j )Bmr

( j )5B2dnr . ~5!

The individual color and space orientations in each dom
are random. In particular, effective action arguments w
used in@1# to constrain the form ofn( j )a such that the matrix
n̂( j )5t3 cosjj1t8 sinjj with angles j jP$p/6(2k11),k
50, . . . ,5% corresponding to the discrete Weyl subgrou
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Domains are taken to be hyperspherical with a mean radiuR
and centered at random pointszj . For a detailed motivation
of these steps, we refer the reader to@1#.

In this way, consideration is reduced to a model with e
sentially two free parameters: the mean-field strengthB and
the mean domain radiusR. The partition function for this
simplified system can be written down as

Z5N lim
V,N→`

)
i 51

N E
S
ds iEF c

i
Dc ( i ) Dc̄ ( i )

3E
F Q

i
DQid@D~B̆( i )!Q( i )#DFP@B̆( i ),Q( i )#

3e2SVi

QCD[Q( i )1B ( i ),c( i ),c̄( i )] , ~6!

where the functional spaces of integrationF Q
i and F c

i are
specified by the boundary conditions (x2zi)

25R2,

n̆iQ
( i )~x!50, ~7!

ih” i~x!eia ig5c ( i )~x!5c ( i )~x!, ~8!

c̄ ( i )eia ig5ih” i~x!52c̄ ( i )~x!. ~9!

Here n̆i5ni
ata with the color generatorsta in the adjoint

representation. The conditions Eqs.~8! and~9! represent spe-
cific ~though not unique! choices for the implementation o
Eq. ~4! which manifest the explicit breaking of chiral sym
metry by the boundary condition, as occurs, for example
bag models for the nucleon. The thermodynamic limit a
sumesV,N→` but with the densityv215N/V taken fixed
and finite. The partition function is formulated in a bac
ground field gauge with respect to the domain mean fie
The measure of integration over parameters characteri
domains is

E
S
ds i•••5

1

48p2EV

d4zi

V (
n i52`

` E
(2n i21)p

(2n i11)p

da i

3E
0

2p

dw iE
0

p

du i sinu iE
0

2p

dj i

3 (
l 50,1,2

3,4,5

dS j i2
~2l 11!p

6 D
3E

0

p

dv i (
k50,1

d~v i2pk!•••, ~10!

where (u i ,w i) are the spherical angles of the chromoma
netic field,v i is the angle between chromoelectric and ch
momagnetic fields, andj i is an angle parametrizing the colo
orientation. It should be noted that because of the a
anomaly and that nothinga priori constrains the topologica
charge per domain to be integral, the fermion determinan
a single-valued function ofa i only if an appropriate Rie-
mann surface is constructed. Heren i enumerates the Rie
mann sheets to be taken into account.
0-3
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This partition function describes a statistical system
density v21 composed of extended domainlike structur
each of which is characterized by a set of internal parame
and whose internal dynamics are represented by the fluc
tion fields. It respects all the symmetries of the QCD L
grangian, since the statistical ensemble is invariant un
space-time and color gauge symmetries. For the same
son, if the quarks are massless, then the chiral invarianc
respected.

Field eigenmodes satisfying the above boundary con
tions in the presence of an~anti-!self-dual gluon field and
corresponding Green functions can be calculated explic
For gluons, this was shown in@1#. For quarks, this will be
shown in this paper. On this basis one can compute
correlation function taking the mean field into account e
actly and decomposing the integrand over fluctuations
particular, correlation functions of the mean field itself ha
a finite radiusR, which is more or less obvious and is di
cussed in@1# in detail.

Within this framework the gluon condensate to lowest
der in fluctuations is immediately obtained in the form

g2^Fmn
a ~x!Fmn

a ~x!&54B2, ~11!

and the topological susceptibility reads

x5E d4x^Q~x!Q~0!&5
B4R4

128p2 .

Less trivial is the manifestation of an area law for sta
quarks. Computation of the Wilson loop for a circular co
tour of a large radiusL@R gives a string tensions
5B f(pBR2) with the function

f ~z!5
2

3z S 32
A3

2zE0

2z/A3dx

x
sinx2

2A3

z E
0

z/A3dx

x
sinxD .

Estimations of the values of these quantities are known fr
lattice calculation or phenomenological approaches and
be used to fitB andR. As described in@1#, these parameter
are fixed to be

AB5947 MeV, R5~760 MeV!2150.26 fm ~12!

with the average absolute value of topological charge
domain turning out to beq'0.15 and the density of domain
v21542 fm24. The topological susceptibility then turns o
to bex'(197 MeV)4, comparable to the Witten-Venezian
value @19#.

III. SPECTRUM OF THE DIRAC OPERATOR
IN A DOMAIN

We have mentioned already that the boundary conditi
on fermions violate chiral symmetry explicitly, which ca
only be restored by a random assignment of values ofa over
the complete ensemble of domains in Euclidean space.

In this section, we address the eigenvalue problem for
massless Dirac operator as it is stated in Eqs.~2!. Here we
give the scheme for solving the problem, with technical d
07402
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tails given in the Appendixes. The Dirac matrices in Eucl
ean space are chosen to be anti-Hermitean and taken in
chiral representation.

For boundary conditions on a hypersphere and covaria
constant background field of definite duality, it is natural
use hyperspherical coordinates (r ,V), given in detail in Ap-
pendix A. In such coordinates, rather than work with t
covariant derivative itself, it is more convenient to introdu
the operatorh” D” which can be easily expanded into intrins
and orbital angular momentum generators. Any spinor can
represented in the form

c5 ih” x1w, c̄5 i x̄h” 1w̄, ~13!

where w and x have the same chirality. This is simply
decomposition into a sum of chiral components. The eig
value equation~2! can be rewritten then identically as

x52
1

il
h” D” w, D” 2w5l2w. ~14!

In these terms the boundary conditions take the form

x52e7 iaw, x̄5w̄e7 ia, x25R2, ~15!

where upper~lower! signs correspond tow andx with chiral-
ity 71.

A solution of Eqs.~14! is achieved by separating the a
gular and radial coordinates. To do this one has to repres
respectively,D” 2 andh” D” in terms of momentum generator
and projectors onto the various spin and color polarizat
subspaces. In four-dimensional Euclidean space, the ang
momentum operators can be represented as

K1,25
1

2
~L6M !

with L the usual three-dimensional angular momentum
erator andM the Euclidean version of the boost operat
These correspond to the decomposition of the fo
dimensional rotational groupSO(4) into a product of two
SO(3) groups. They lead to Casimir operators and eigenv
ues

K1
25K2

2→k

2 S k

2
11D , k50,1, . . . ,̀ ,

K1,2
z →m1,2, m1,252k/2,2k/211, . . . ,k/221,k/2,

and the correponding angular eigenfunctionsCkm1m2
(V),

given explicitly in Appendix A, are labeled by orbital mo
mentumk and two azimuthal numbersm1 and m2. Eigen-
states are also characterized by the color-spin polariza
related to the projectors

O65N1S61N2S7 ~16!

with
0-4
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N65
1

2
~16n̂/un̂u!, S65

1

2
~16SB/B!

being, respectively, the separate projectors for color and
polarizations. Below we denote the polarization with resp
to O by k56.

It is shown in Appendix B that if the background field
~anti-!self-dual, the boundary condition can only be imp
mented if spinorsw andx are ~right-! left-handed. Also the
presence of the homogeneous background field reduce
spherical symmetry of the problem down to an axial symm
try. In the representation implemented here, this manife
07402
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itself as a restriction on the values of one of the azimut
quantum numbers, namelym256k/2 for the self-dual case
and m156k/2 for the anti-self-dual one. The sign in fron
of k/2 is correlated with the spin polarization of the sta
as seen in the explicit expressions for the eigenspin
below.

Thus for the self-dual case,g5w52w, g5x52x so that
the eigenspinors in the self-dual field can be labeled
ckm1

2k (x), while in the anti-self-dual field they areckm2

1k (x).

With details in Appendix B, we simply write down here th
result for the self-dual case,
two
ckm1

2k 5 ih” xkm1

2k 1wkm1

2k ,

xkm1

2152~ iL!21z(k11)/2e2z/2FM ~k122L2,k12,z!2
k122L2

k12
M ~k132L2,k13,z!G S 0

0

N2Ckm1(k/2)~V!

N1Ckm12(k/2)~V!

D ,

~17!

wkm1

215zk/2e2z/2M ~k122L2,k12,z!S 0

0

N2Ckm1(k/2)~V!

N1Ckm12(k/2)~V!

D , ~18!

xkm1

225z(k11)/2e2z/2
iL

k12
M ~12L2,k13,z!S 0

0

N1Ckm1(k/2)~V!

N2Ckm12(k/2)~V!

D ,

wkm1

225zk/2e2z/2M ~2L2,k12,z!S 0

0

N1Ckm1(k/2)~V!

N2Ckm12(k/2)~V!

D , ~19!

whereM (a,b,x) is the confluent hypergeometric function and

z5B̂r 2/2, L5l/A2B̂, B̂5un̂uB.

The projectorsN6 act on the color vectors which are implicit in the above equations. The eigenfunctionsckm2

1k for the

anti-self-dual case are obtained by the changem1→m2 and the shift of nonzero elements of the angular part to the first
positions of the spinor.

The eigenvalues are determined by the boundary condition atz5z05B̂R2/2, which forLk
21 takes the form

e2 iaM ~k122L2,k12,z0!2
Az0

iL FM ~k122L2,k12,z0!2
k122L2

k12
M ~k132L2,k13,z0!G50, ~20!

and forLk
22 ,
0-5
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e2 iaM ~2L2,k12,z0!1
iLAz0

k12
M ~12L2,k13,z0!50.

~21!

The equations for the eigenvalues in an anti-self-dual dom
are the same as above but witha→2a as follows from Eqs.
~15!. The eigenvalues can be calculated numerically. T
form a discrete set. Zero modes are absent, which is to
expected for these types of boundary conditions@21#. A
graphical solution of Eq.~21! at a5p/2 is presented in Fig
1 to illustrate the structure of the spectrum. In general,
eigenvalues are complex. The spectrum is real fora5
6p/2, which is the only value for which the boundary co
dition Eq. ~7! imposed onc̄km1,2

6k is Hermitean conjugated to

the condition forckm1,2

6k and the general fermion fieldc̄ can

be decomposed in terms of the basis of conjugate eigenf
tions ckm1,2

6k† . For other values ofa, a biorthogonal basis

should be introduced. In particular, ata50 eigenvalues are
complex and come in complex conjugated pairs. The pa
tion function is nevertheless real since iflsd(a) is an eigen-
value for the self-dual case, then for the anti-self-dual
main there is an eigenvaluelasd(a) such that

lasd~a!52lsd* ~a!. ~22!

FIG. 1. Graphical representation of the left-hand side of Eq.~21!
for k50, a self-dual domain, anda5p/2. Zeros of the function are
the radial eigenvaluesL0n

22 .

FIG. 2. Normal density distribution for modes withk50 and
n51,2,3.
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We stress that the definition ofl here does not include a
imaginary unity in front of the Dirac operator.

As seen from Fig. 1, in contradistinction to the eigenva
problem in infinite volume on the space of square integra
functions, the spectrum is not symmetric under reflectio
l→2l. This comes from the fact thatg5 does not commute
with the boundary condition so thatg5c is not an eigenfunc-
tion if c is an eigenfunction. An asymmetry of the spectru
is typical for the Dirac operator in odd-dimensional spac
~see@20# and references therein! and has important conse
quences there for the effective action. In our case, the
usual boundary conditions are responsible for the asymm
in four-dimensional Euclidean space@21#.

The most interesting feature of the fermionic eigenmod
becomes manifest if one considers the local chiralityX(x) of
the lowest eigenmodes as defined by Eq.~1!.

IV. CHIRALITY OF LOW-LYING MODES

It is obvious that none of the solutions are eigenstates
g5. However, at the domain centerx250 @or (x2zj )

250 in
general# all the purely radial modes withk50 have a maxi-
mum in the probability density, they are chiral, and the s
of their chirality is determined by the duality of the mea
field in a domain which is illustrated in Figs. 2 and 3. Th
probability density naturally vanishes at the domain cen
for the modes withk.0, as is seen in Fig. 4. To demonstra

FIG. 3. Chirality parameter for the three lowest radial mod
c00

22 , self-dual domain,a5p/2.

FIG. 4. Plot of the radial dependence of the normal dens
distribution for the modes withk51 andn51,3,5.
0-6
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this analytically, let us turn to the local chirality paramet
given in the Introduction, which we rewrite here in a mo
detailed form,

tanS p

4
@12X~x!# D5Ac†~x!~12g5!c~x!

c†~x!~11g5!c~x!
,

21<X~x!<1,

which takes the extremal valuesX561 at positionsx where
c(x) is purely right~left! -handed. Becausew andx have the
same chirality, the representation Eq.~17! immediately gives,
for the self-dual domain,

tanS p

4
@12Xsd

2k~x!# D5
uw00

2k~x!u
ux00

2k~x!u
,

while for the anti-self-dual case the local chirality reads

tanS p

4
@12Xasd

1k~x!# D5
ux00

1k~x!u
uw00

1k~x!u
.

Moreover, due to the relation Eq.~22!,

uw00
1k~x!u5uw00

2k~x!u, ux00
1k~x!u5ux00

2k~x!u.

Representations Eqs.~18! and ~19! show that

0, lim
x2→0

uw00
1k~x!u,`, lim

x2→0

ux00
1k~x!u50,

which finally results in

Xsd
2k~0!521, Xasd

1k~0!51.

The local chirality parameterX as a function of distance from
the domain center for the lowest few modes is plotted in F
3. There is a peak inX at the domain center. Away from th
center X decreases due to a competition of left and rig
components of the eigenmodes as thex component become
nonvanishing. As is seen from Fig. 3, the chirality of t
lowest mode (n51) monotonically decreases with distan
from the center. The chirality parameter for the excit
modes alternates between extremal values, the numbe
alternations is correlated with the radial numbern, and the
half-width decreases with growingn. The chirality parameter
X is zero at the boundary for all modes. Qualitatively th
picture does not depend on the anglea. The ‘‘width’’ of the
peaks at half-maximum for the lowest (n50) radial modes
varies for different valuesa and is of the order of 0.12
20.14 fm if the values ofB andR are fixed from the gluon
condensate and the string tension, consistent with the la
observations of@11#.

We can now study the chirality characteristics of the e
semble of fermion fields entering the partition function E
~6! with all values ofa treated with equal probability con
sistent with an explicit chiral symmetry. On the lattice@6,8#,
peaks inX or c†c would only be localizeable within a siz
corresponding to the lattice spacing. To take this into
count, we averageX(x) over a small neighborhood of th
domain center. Thus we compute the probability to find
07402
r

.

t

of

ce

-
.

-

a

given value ofX̄, the smearedX, among the chiralities for
the lowest modes. The result given in Fig. 5 was obtained
three sets of modes: withn<2,k50 ~solid line!, n<4,k50
~dashed line!, andn<6,k50 ~dot-dashed line!, and all pos-
sible values ofa and spin-color polarizations. The solid line
formed from the lowest modes, evidently indicates two n
row peaks withX̄'60.87. This double peaking is not un
expected in view of the above-discussed chirality propert
Including higher modes broadens the peaks and shifts t
maxima. This feature as well as the above-mentioned va
for the half-width and the density of domains is in qualitati
and quantitative agreement with recent lattice results@6,9–
11#. It should be stressed that orbital excitations (k.0) are
not included in the histograms because the probability d
sity for orbital modes vanishes at the center. However, th
are maxima in the probability density for these modes
peripheral regions of the domain. The local chiralityX is
significantly smaller in peak value than those for the rad
modes at the center. Inclusion of orbital modes will broad
the peaks more and build up the central plateau.

V. DISCUSSION AND CONCLUSIONS

The statement that signals for spontaneous chiral sym
try breaking should be identifiable in the specific chiral
properties of fermionic eigenmodes for some ‘‘dominan
gluonic background field is generally accepted. Such sign
are now being seen on the lattice, but nevertheless there
not very many analytically explicit examples of this relatio
ship available. Instanton-motivated models are certainly
most advanced example of this kind.

We have studied the spectrum of quark modes in a
mainlike structured gluon background field. Such a ba
ground is argued to characterize the bulk average prope
of the vacuum in the presence of strong intermediate ra
fluctuations and is not the result of a semiclassical appro
mation. The spectrum exhibits definite chirality properties.
particular, there are no zero modes because of the condit
which fermion fields must satisfy on the boundaries of d
mains. Nonetheless, at the center of domains all radial mo

FIG. 5. Histogram of chirality parameterX̄ averaged over the
central region with radius 0.025 fm. Plots given in solid, dash
and dot-dashed lines incorporate all modes withn<2, n<4, and
n<6, respectively.
0-7
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are purely chiral and the sign of their chirality depends
whether the underlying gluon field is self-dual or anti-se
dual. Moreover, the sign of chirality at the center persi
over the whole domain for the lowest modes. Studying
local chirality parameterX in a chirally symmetric ensembl
of domains, we obtain qualitatively similar results to tho
seen in lattice calculations. We stress that this compar
with lattice results takes place at the level of an ensembl
configurations not on a configuration-by-configuration ba

Insofar as these lattice results for chirality are argued
supporting the evidence for spontaneous chiral symm
breaking, the same can be said of the domain model. We
the absence of any explicit zero modes in achieving t
Namely, the range of configurations needed to produce
types of effects seen on the lattice is not restricted to ins
tonlike fields. It suffices that a given gluon background ad
strongly chiral low-lying nonzero modes. In this respect,
more significant property of the gluon background is t
‘‘locking’’ of chromoelectric and chromomagnetic fields int
self-dual or anti-self-dual fields in relatively large but fini
regions of space restricted by the hypersurfaces on w
pure gauge singularities are assumed to be situated. It sh
be stressed that in the thermodynamic limit, the numbe
domains is growing but their sizes stay fixed around so
finite mean value.

The solutions obtained in this paper provide a basis
computation of chiral condensate^c̄c&, in particular in the
presence of an explicitCP-violating u term. This work is in
progress.
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APPENDIX A: CONVENTIONS

We use a chiral representation for the anti-Hermit
Dirac matrices in four Euclidean space,

$gm ,gn%522dmn , gm
152gm ,

g i5S 0 s i

2s i 0 D , g45 i S 0 1

1 0D ,

g55g1g2g3g45diag~1,1,21,21!.

The background field is specified as
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B̂m~x!52
1

2
n̂Bmn xn

Bi j 5« i jkBk , Bi5
1

2
« i jkBjk , Ei5Bi456Bi ,

BmnBmr5dnrB2, B̃mn5
1

2
«mnabBab56Bmn .

In addition, the following conventions and relations ha
been used:

smn5
1

2i
@gm ,gn#, S i5

1

2
« i jks jk ,

s i j Bi j 52S iBi , S65
1

2 S 16
S iBi

B D ,

s i452
1

2
g5« i4mnsmn52

1

2
g5« i jks jk52g5S i ,

g5sab52s̃ab , Tr gmgngagbg554«mnab ,

and in particular

sabBab5s i j Bi j 12s i4Bi452S iBi72Big5S i54P7S iBi

54BP7~S12S2!.

We use the following hyperspherical coordinate system
R4:

x15r sinh cosf, x25r sinh sinf,

x35r cosh cosx, x45r cosh sinx, ~A1!

and define the angular momentum operators as follows:

Li52 i e i jkxj]k ,

Mi52 i ~x4] i2xi]4!,

respectively, for spatial rotations and Euclidean ‘‘boosts.’’
mentioned, it is more convenient to work in the basis

K1,25~L6M !/2,

which generates the following Lie algebra:

@K1
i ,K1

j #5 i e i jkK1
k , @K2

i ,K2
j #5 i e i jkK2

k , @K1
i ,K2

j #50.

Thus the ladder operators

K1,2
6 5~K1,2

1 6 iK 1,2
2 !

satisfy the algebra

@K1,2
3 ,K1,2

6 #56K1,2
6

and correspond to raising and lowering operators ofm1 ,m2.
The angular eigenfunctions corresponding to theK1,2 gen-

erators are
0-8
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Ckm1m2
~h,f,x!

5~21! um11m2u~2p!21Qk
m12m2 ,m11m2~h!3expi @~m1

2m2!x1~m11m2!f#,

Qk
k2r 2s,s2r~h!

5A2~k11!~k2r !! ~k2s!! r !s!

3 (
n50

r
~21!r 2n cosk2r 2s12nh sinr 1s22nh

~k2r 2s1n!!n! ~r 2n!! ~s2n!!
,

s5~k1m2!/2, r 5~k2m1!/2,

wherek,m1 ,m2 are, respectively, the orbital angular mome
tum and the two azimuthal quantum numbers, relevant fo
O(4)5O(3)3O(3) symmetry. They take the following val
ues:

k50,1,2, . . . , m1 ,m252
k

2
, . . . ,

k

2
.

APPENDIX B: DIRAC EIGENVALUE PROBLEM
IN A DOMAIN

Here we give further details of the solution of Eq.~2!.
Using the notation given in the main body of the text, we c
decompose the fieldw over a set of chiral and color-spi
projectors,

w5P6F01P7O1F111P7O2F21 ,

where~lower! upper signs correspond to the~anti-!self-dual
field background field, and fieldsFz must satisfy the second
order equation

~2D212zB̂2l2!P7OzFz50. ~B1!

We remind the reader that implicitlyFz
a is the color vector in

the fundamental representation.
If we were solving the problem for square-integrab

eigenfunctions in infinite volume, then all three compone
Fz would enter the final set of eigenfunctions. Moreover,
is seen from Eq.~B1!, the equation for the componentF21
would produce zero modes with chirality71. The spectrum
in this case would be discrete and all nonzero eigenvalue
the Dirac operator come in pairs: ifc is an eigenfunction
with eigenvaluel, theng5c is an eigenfunction with eigen
value2l—quite a standard state of affairs.

However, the baglike boundary conditions Eq.~8! we
must satisfy in the present case change the structure of e
functions and eigenvalues drastically. First of all, because
the identities

gmBmrxrP7S15 iBx”P7S1 ,

gmBmrxrP7S252 iBx”P7S2 ,

and
07402
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gmBmrxrP6S15H 2i

x2
B@xi

22~Bixi !
2/B2#2 iBJ x”P6S1 ,

gmBmrxrP6S252H 2i

x2
B@xi

22~Bixi !
2/B2#2 iBJ x”P6S2 ,

which can be straightforwardly derived by expanding bo
sides over a complete set of Dirac matrices, the bag
boundary condition can be satisfied only for the trivial so
tion F0(x)[0. The significance of this observation is th
for ~anti-!self-dual domains, the boundary condition can on
be implemented on eigenspinorsc5 ih” x1f for ~positive!
negative chiralityw andx. The functionc in turn is not an
eigenspinor ofg5, which is natural because the bounda
condition violates chiral symmetry. Furthermore, zero mod
are removed from the spectrum because they must be ch
but this is forbidden by boundary conditions. And, finally,
c is an eigenfunction with eigenvaluel, theng5c is not an
eigenfunction anymore, and there is no eigenvalue2l in the
spectrum.

In order to find equations for componentsFz
a of the cor-

responding spinors, we use that

w265P2O6F615~0,0,N7F61
3 ,N6F61

4 !T,

w165P1O6F615~N7F61
1 ,N6F61

2 ,0,0!T. ~B2!

In hyperspherical coordinates Eqs.~A1!, the equations for
the spinor components read~here and below we write down
equations for the self-dual case only!

H 2F 1

r 3
] r r

3] r2
4

r 2
K1

212
n̂

un̂u
B̂K2z2

1

4
B̂2r 2G12B̂2l2J

3N2F11
3 50,

H 2F 1

r 3
] r r

3] r2
4

r 2
K1

212
n̂

un̂u
B̂K2z2

1

4
B̂2r 2G12B̂2l2J

3N1F11
4 50,

H 2F 1

r 3
] r r

3] r2
4

r 2
K1

212
n̂

un̂u
B̂K2z2

1

4
B̂2r 2G22B̂2l2J

3N1F21
3 50,

H 2F 1

r 3
] r r

3] r2
4

r 2
K1

212
n̂

un̂u
B̂K2z2

1

4
B̂2r 2G22B̂2l2J

3N2F21
4 50. ~B3!

The anti-self-dual case is reconstructed by the changeK2z

→K1z andFz
3→Fz

1 , Fz
4→Fz

2 . In @1#, we derived the gen-
eral solution for equations of this type. The requirement
regularity at the origin then gives

F
11
3,km1m25N2zk/2e2z/2M S k

2
1m22L212,k12,zD

3Ckm1m2
~w,x,h!,
0-9
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F
11
4,km1m25N1zk/2e2z/2M S k

2
2m22L212,k12,zD

3Ckm1m2
~w,x,h!,

F
21
3,km1m25N1zk/2e2z/2M S k

2
2m22L2,k12,zD

3Ckm1m2
~w,x,h!,
r
os
E
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F
21
4,km1m25N2zk/2e2z/2M S k

2
1m22L2,k12,zD

3Ckm1m2
~w,x,h!,

where L5l/A2B̂, z5B̂r 2/2. Thus the two independen
mutually orthogonal solutions are
w215S 0

0

N2zk/2e2z/2M S k

2
1m22L212,k12,zD Ckm1m2

N1zk8/2e2z/2M S k8

2
2m282L8212,k812,zD Ck8m

18m
28

D , ~B4!

w225S 0

0

N1zk/2e2z/2M S k

2
2m22L2,k12,zD Ckm1m2

N2zk8/2e2z/2M S k8

2
1m282L82,k812,zD Ck8m

18m
28

D , ~B5!
s

r

where a ‘‘prime’’ indicates that angular quantum numbe
and eigenvalues in the third line need not coincide with th
in the fourth in order that these spinors be eigenmodes of
~14!.

To obtain an explicit representation forx, we use the
identity

2h” ~x!D” 5] r12R21~S•K1P11S•K2P2!

2 ih”
n̂

2
gmBmnxn , ~B6!

where the action of the last term onP7OzF
z can be deter-

mined via the identity

n̂

2
gmBmnxnP7Oz5 i zh”

B̂R

2
P7Oz ,

and the action of theS•K terms via

S•K1,2(
z

OzFz5~S3K1,2
z 1S (1)K1,2

2 1S (2)K1,2
1 !(

z
OzFz

5
n̂

un̂u
K1,2

z ~O1F112O2F21!

1N1S (1)K1,2
2 F111N2S (1)K1,2

2 F21

1N2S (2)K1,2
1 F111N1S (2)K1,2

1 F21 .

~B7!
s
e
q.

As well as the ladder operatorsK6, we also have analogou
operators for the spin,

S (6)5
1

2
~S16 iS2!.

For Bi5Bd i3, the following identities are also useful fo
implementing the above:

S3O656
n̂

un̂u
O6, S (1)O65N6S (1), S (2)O65N7S (2),

and

P2S (1)C5~0,0,2C4,0!T,

P2S (2)C5~0,0,0,2C3!T,

P1S (1)C5~2C2,0,0,0!T,

P1S (2)C5~0,2C1,0,0!T. ~B8!

We thus get for the self-dual case
0-10
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2
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1

il8
F ] r2

Br

2
1

2

r
K2

3GN1zk8/2e2z/2M S k8

2
2m282L8212,k812,zD Ck8m

18m
28

2
2

r S 0

0

1

il8
K2

2N1zk8/2e2z/2M S k8

2
2m282L8212,k812,zD Ck8m

18m
28

1

il
K2

1N2zk/2e2z/2M S k

2
1m22L212,k12,zD Ckm1m2

D , ~B9!

and

x225S 0

0

1

il
F ] r1

B̂r

2
2

2

r
K2

3GN1zk/2e2z/2M S k

2
2m22L2,k12,zD Ckm1m2

1

il8
F ] r1

B̂r

2
1

2

r
K2

3GN2zk8/2e2z/2M S k8

2
1m282L82,k812,zD Ck8m

18m
28

D
2

2

r S 0

0

1

il8
K2

2N2zk8/2e2z/2M S k8

2
1m282L82,k812,zD Ck8m

18m
28

1

il
K2

1N1zk/2e2z/2M S k

2
2m22L2,k12,zD Ckm1m2

D . ~B10!

By inspection, the boundary conditionx52e2 iaw can only be fulfilled if terms with raising/lowering operators of th
azimuthal quantum numbers vanish since these terms contain the projectorsN6 while the rest of the terms entering th
boundary condition containN7 @see Eqs.~B4! and ~B5!#. In particular,m2852k/2, m25k/2. Finally, evaluating the deriva
tives of the confluent hypergeometric functions with the help of relation

Mz8~a,b,z!5
a

b
M ~a11,b11,z!

leads to the solutions given in the main body of the paper.
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