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 25 

Abstract 26 

On average less than half of the applied N is captured by crops, thus there is scope and need to 27 

improve N uptake in cereals. With nitrate (NO3
-) being the main form of N available to cereal 28 

crops there has been a significant global research effort to understand plant NO3
- uptake. Despite 29 

this, our knowledge of the NO3
- uptake system is not sufficient to easily target ways to improve 30 

NO3
- uptake. Based on this there is an identified need to better understand the NO3

- uptake system 31 

and the signalling molecules that modulate it. With strong transcriptional control governing the 32 

NO3
- uptake system, we also need new leads for modulating transcription of NO3

- transporter 33 

genes. 34 

Keywords 35 

Nitrate transporters, nitrate signalling, regulation, nitrogen use efficiency, regulation  36 



 37 

1. Introduction 38 

Approximately 80 million tonnes of N fertiliser is applied to cereals globally to maximise yields  39 

[1]. Unfortunately, the applied nitrogen fertiliser is not used efficiently, with, on average, less than 40 

40% of the applied N being taken up by cereals [2, 3]. This inefficient usage comes at considerable 41 

environmental cost and considerable effort is now being directed at improve nitrogen use 42 

efficiency (NUE) [4]. 43 

The major sources of N in agricultural soils are nitrate (NO3
-) and ammonium (NH4

+) [5]. 44 

Proportionally NH4
+ is on average 10% of the soil NO3

- concentration, making NO3
- the 45 

predominant form of N available to cereal crops [6]. Due to its negative charge and solubility NO3
- 46 

is highly mobile, and in cropping soils can vary by four orders of magnitude from micromolar to 47 

millimolar [7]. As sessile organisms, plants therefore need to be able to rapidly adapt to these 48 

variable soil NO3
- concentrations to optimize N capture. In order to enhance the ability of plants 49 

to capture the applied nitrogen fertiliser, it is important to understand the processes by which plants 50 

acquire NO3
- and how this process is regulated. This review details current knowledge of these 51 

processes, and given their importance in terms of nitrogen application, will where possible relate 52 

model plant data to cereals. 53 

2. Nitrate uptake 54 

To cope with such variable soil NO3
- concentrations plants have two NO3

- uptake systems: a high 55 

affinity transport system (HATS) which is active when NO3
- in the soil is low (< 250 µM); and a 56 

low affinity transport system (LATS) which predominates at high soil NO3
- concentration (> 250 57 

µM) [8-10]. This has been the accepted paradigm for many years, however recent studies have 58 

shown the HATS respond to plant N demand and contribute the majority of total uptake capacity 59 

at high NO3
- concentrations (> 2.5 mM) raising questions regarding the roles and activity of each 60 

uptake system [11, 12]. In Arabidopsis these LATS and HATS uptake systems have been linked 61 

to the NO3
- transporter (NRT) families NRT1/NPF and NRT2, respectively, with  NRT1.1/NRT1.2 62 

(NPF6.3/NPF4.6) and NRT2.1/NRT2.2/NRT2.4/NRT2.5 primarily mediating NO3
- uptake [13-63 



19]. However due to the dichotomy in the NRT gene families of dicots and grass species, and the 64 

subsequent lack of directly orthologous gene pairs, the function of these genes cannot simply be 65 

extrapolated into cereals based on sequence homology [20]. 66 

The most extensively studied NRT gene is NRT1.1 (CHL1/NPF6.3) which in Arabidopsis is 67 

predominantly expressed in the epidermis of young root tips [19]. This gene is NO3
- inducible and 68 

encodes a dual affinity transporter with both HATS and LATS activity [21-24], and also acts as a 69 

transceptor with the ability to sense external NO3
- and activate NO3

--signalling pathways [25, 26]. 70 

The AtNRT1.1 crystal structure reveals that it dimerises in the plasma membrane and operates as 71 

a phosphorylation-controlled dimerization switch [23, 24]. Some cereal species have been shown 72 

to possess additional AtNRT1.1 orthologues although their functional roles are yet to be defined 73 

[27, 28]. Four co-orthologues have been identified in maize of which three showed different 74 

expression patterns and responses to NO3
- concentration over the lifecycle of maize [11]. Similarly 75 

in wheat, four co-orthologous genes were recently identified and shown to have different tissue 76 

specificity and transcriptional responses to N supply [28], further confirming that the functional 77 

roles need to be separately defined for cereals. In rice a number of co-orthologues have been 78 

identified with over expression of one orthologue leading to improved NUE [29, 30]  79 

In contrast to NRT1.1, NRT1.2 (NPF4.6) expression in Arabidopsis is primarily located in root 80 

hairs and the epidermis of both young root tips and mature root regions and constitutively 81 

expressed [31]. In cereals a single orthologous NRT1.2 gene has been identified for each of the 82 

sequenced cereal species meaning function may be more evolutionarily conserved [27]. In maize 83 

Garnett et al. [11] showed little difference in transcript levels of ZmNRT1.2 between plants grown 84 

at high and low NO3
- concentration until late reproductive growth where expression profiles 85 

differed between treatments. More recently however, a wheat orthologue has been shown to be 86 

dramatically induced under N starvation [32], again highlighting the need for complete functional 87 

characterisation to confirm this genes contribution to NO3
- uptake in cereals. 88 

In Arabidopsis NRT2.1 and NRT2.2 share 90.4 % sequence identity and are located in tandem on 89 

chromosome 1 suggesting they are a product of a gene duplication event [33]. Despite their 90 



similarity, AtNRT2.1 has been demonstrated as the main component of the HATS under many 91 

conditions with AtNRT2.2 providing only a minor contribution [17, 34]. However, when 92 

AtNRT2.1 is knocked-out AtNRT2.2 transcript levels have been shown to increase and provide a 93 

greater contribution to HATS, partially compensating for the AtNRT2.1 loss [17]. Although the 94 

cereal orthologues are yet to be functionally characterised, their transcriptional changes have 95 

shown strong correlation to NO3
- uptake and HATS activity indicating a similar role to their 96 

Arabidopsis counterparts [11, 35]. In Arabidopsis, NRT2.4 is expressed in both the epidermis of 97 

lateral roots and in shoot tissue with affinity for NO3
- at very low levels, suggesting this protein 98 

plays a role in both the root and shoot during N starvation [18]. Finally, NRT2.5 in Arabidopsis 99 

has been located in the epidermis and cortex of roots at the root hair zone, and, is induced under 100 

N starvation [15, 16, 36] and suppressed by NO3
- [16, 37]. Kotur and Glass [38] suggest the 101 

AtNRT2.5 provides the bulk of the constitutive HATS capacity. In rice the orthologous gene 102 

OsNRT2.5 (also known as OsNRT2.3a) is expressed predominantly in xylem parenchyma cells of 103 

the root stele and has been demonstrated to play a role in the transport of NO3
- from root to shoot, 104 

again under low NO3
- conditions [39]. OsNRT2.3b expression is in the phloem and it is suggested 105 

be involved in NO3
- transport within the shoot and its remobilisation to the grain [40]. In both 106 

maize and wheat the NRT2.5 orthologues also demonstrate induction under low NO3
- conditions 107 

[11, 32], however the difference in function between the orthologues in Arabidopsis and rice 108 

suggest that the simple one to one orthologous gene relationships for this gene will not translate 109 

into a conservation of function between dicots and cereals [27]. 110 

3. The control of nitrate uptake 111 

Knowledge of the transporters mediating NO3
- uptake has increased substantially in the past 30 112 

years, however to truly understand the NO3
- uptake system in plants the regulatory system 113 

controlling the transporter function must be elucidated. Improvements of NO3
- uptake and NUE in 114 

crops through manipulation of NO3
- transporters has recently been successful [29, 40], however it 115 

stands to reason that further improvements will require more complete knowledge of the regulatory 116 

system to maximise efficiency gains. There is evidence to suggest that NO3
- uptake is controlled 117 



at the transcriptional, translational and post-translational levels. Isolation of mutants impaired in 118 

NO3
- uptake has provided some new players in the regulatory system, however the advent of 119 

technology capacities such as systems biology has accelerated the identification of ‘master 120 

regulators’ or ‘hub genes’ which control NO3
- uptake [41]. 121 

3.1 Transcriptional control 122 

Transcriptional control of NO3
- uptake is well documented. When Arabidopsis and barley plants 123 

are subjected to NO3
- starvation and resupply, the observed changes in transcript levels of NRT2.1 124 

and NRT2.2 follow changes in HATS NO3
- uptake capacity [16, 42-48]. Mutant analyses of these 125 

genes have confirmed that they are indeed the major drivers of the changes in NO3
- uptake capacity 126 

supporting the link between NRT2 transcription and uptake capacity [34, 37, 49, 50]. Longer term 127 

lifecycle analysis has also shown distinct correlation between the changes NO3
- uptake capacity 128 

changes and transcript levels of the NRT2s across the lifecycle of maize [11]. In Arabidopsis, 129 

maize and wheat transcript levels of some NRT2s have been shown to increase in response to 130 

reduction in N availability, aligning with an observed increase in NO3
- uptake capacity [16, 28, 131 

36]. 132 

Transcription factors (TFs) act as master switches for regulatory networks [51-53]. The first TF 133 

identified to play a role in NO3
--responsive signalling in plants was a MADS box TF, ANR1, 134 

which regulates the proliferation of lateral roots in response to NO3
- [54], but also exists in the 135 

signalling pathway of the ‘transceptor’ NRT1.1 [26]. Several members of the NIN-like protein 136 

(NLP) family of TFs, including NLP6, NLP7 and NLP8 regulate numerous genes in the NO3
- 137 

uptake and signalling pathways including NRT1.1, NRT2.1 and NRT2.2 [55-57]. Along with 138 

regulating expression of NO3
- related genes under a wide range of NO3

--provision, the NLPs 139 

regulate other plant processes which indicates they likely exist at a high level in the NO3
- uptake 140 

regulatory pathway and even co-ordinate NO3
- uptake with related processes [58]. TEOSINTE 141 

BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20) is involved in 142 

lateral root regulation in response to NO3
- availability [59, 60], and was recently identified as co-143 

regulating several NO3
- assimilatory genes along with the NLPs [61]. NITRATE REGULATORY 144 



GENE2 (NRG2) is another TF which interacts with NLP7, however NRG2 regulates the NO3
- 145 

uptake and assimilation pathway differently to NLP7 indicating the complexity of the regulatory 146 

system response to NO3
- provision requires several high-level controllers [62]. The LATERAL 147 

ORGAN BOUNDARY DOMAIN TFs LBD37, LBD38 and LBD39 are all strongly upregulated 148 

by NO3
- provision and subsequent analysis of the mutants revealed the three TFs repress several 149 

NO3
- uptake and assimilation genes leading to altered N phenotypes [63]. Several NUCLEAR 150 

FACTOR Y (NF-YA) TFs are regulated by NO3
- provision (and microRNAs, see below) and a 151 

putative binding-site exists within the NRT2.1 promoter suggesting this may be a mechanism for 152 

regulation of NO3
- uptake [64]. Finally, HIGH NITROGEN INSENSITIVE 9 (HNI9), a chromatin 153 

modification factor, has been shown to repress activity of several cis-elements in the NRT2.1 154 

promoter, thereby regulating expression of NRT2.1 along with several hundred other N-responsive 155 

genes in roots [65]. 156 

Discovery of the regulatory network controlling the NO3
- uptake system has been accelerated by 157 

development of bioinformatic tools and associated databases and computing power. Systems 158 

biology approaches, where regulatory networks are developed in-silico, have allowed the 159 

discovery of putative ‘hub genes’ which are high-level controllers of NO3
- uptake and assimilation 160 

[41]. These hypotheses can then be tested by manipulating the hub genes in planta and measuring 161 

the effect on the network. This allows identification of targets for improvement of NO3
- uptake 162 

and also is an iterative process which strengthens the network structure for future efforts to identify 163 

the targets for manipulation. Comparison of the transcriptional responses of Arabidopsis to organic 164 

and inorganic N sources along with network analysis of the resulting gene lists identified a link 165 

between the circadian clock regulator, CCA1, and downstream responses of N-assimilation system 166 

[66]. A putative hub-gene in this network is the TF bZIP1, subsequently shown to play an 167 

important role in N-signalling response in Arabidopsis [67, 68], thereby demonstrating the validity 168 

of this approach. Modelling the transcriptional response of roots to NO3
- provision over time 169 

allowed prediction of hub genes, such as SQUAMOSA PROMOTER BINDING-LIKE9 (SPL9), 170 

which regulate a network which responds very quickly to NO3
-, preparing the plants for longer 171 



term adaptation to nutritional status [69]. Further analysis of this time-responsive network revealed 172 

two homologous TFs, hypersensitive to low Pi-elicited primary root shortening 1 (HRS1) and 173 

HRS1 homologue 1 (HHO1), act to regulate root growth under P deficiency, but only when NO3
- 174 

is present, indicating these TFs are a regulatory link mediating root responses to availability of 175 

multiple nutrients [70]. Transcriptional analysis of an auxin receptor mutant, afb3, previously 176 

identified to play a role in NO3
--responsive root growth [71], led to development of a network 177 

model which identified a NAM/ATAF/CUC TF, NAC4, which acts downstream of AFB3 178 

mediating root response to NO3
- [72]. A meta-analysis of previously constructed NO3

--responsive 179 

genetic networks identified the bZIP TFs, TGA1 and TGA4, as potential regulators of Arabidopsis 180 

response to NO3
- provision [73]. Subsequent transcriptional analysis of the tga mutants revealed 181 

that the TFs directly regulate NRT2.1 and NRT2.2 transcription, but also regulate root growth 182 

responses to NO3
- provision [73]. Another meta-analysis approach using a machine learning 183 

algorithm known as discriminative local subspaces identified the Bric-a-Brac/Tramtrack/Broad 184 

TFs, BT1 and BT2, as hubs in regulating plant response to NO3
- [74]. Analysis of the mutants in 185 

Arabidopsis indicated that the TFs do regulate sub-traits determining NUE, including through 186 

control over several NRT2 genes, and this regulation was shown to exist for the orthologues in rice 187 

demonstrating the suitability of Arabidopsis as a model for studying regulatory networks in more 188 

genetically complex plants like cereals [74, 75]. 189 

Commonly, TFs elicit their control by interacting with cis-acting elements and/or with other 190 

transcription factors to control gene expression [51-53]. To date, identifying NO3
--specific cis-191 

trans regulatory elements has focused heavily on finding NO3
--responsive cis-elements (NREs) 192 

involved in triggering the NO3
- -inducible expression associated with the primary NO3

- response 193 

(PNR). The promoter regions of the NO3
- reductase genes (NIA1 & NIA2) have been extensively 194 

studied in Arabidopsis and spinach revealing a number of key cis-elements with the ability to drive 195 

NO3
- induced expression in minimal promoter studies [76-79]. For the NRTs, the Arabidopsis 196 

AtNRT2.1 promoter has been analysed using a minimal promoter approach which identified a 150 197 

bp sequence required for the gene’s NO3
- expression and N metabolite repression responses [80]. 198 



Deletion analysis of the rice OsNAR2.1 (OsNRT3.1 – see below) promoter identified a 311 bp 199 

region necessary for the NO3
- responsive transcriptional activation of the gene [81]. Subsequent 200 

motif analysis of that sequence revealed three putative NO3
--responsive cis-elements which had 201 

all previously been associated with the NO3
-  responsiveness of the NIA genes in Arabidopsis and 202 

spinach: 5’-GATA-3’ [79, 82], 5’-A(c/G)TCA-3’ [76], and 5’-GACtCTTN10AAG-3’ [77, 78].  203 

3.2 Post Transcriptional 204 

Micro RNAs (miRNAs) have emerged as another mode of master regulation governing gene 205 

expression in plants [83, 84]. Many studies have now revealed that miRNAs can regulate plant 206 

adaptive responses to nutrient deprivation [85-90]. Significant differences in miRNA 207 

accumulation have been observed in response to NO3
- availability, especially under low NO3

- 208 

conditions [91-93]. The repression of six miRNAs (miR528a/b, miR528a*/b*, miR169i/j/k, 209 

miR169i*/j*/k*) in maize roots in response to prolonged low NO3
- provision has been suggested 210 

to play a key role in integrating NO3
- signals into root developmental changes [94]. The small 211 

RNA miR167 has been shown to mediate lateral root initiation and growth in response to NO3
- in 212 

Arabidopsis, putatively through regulation of the TF ARF8 [95]. Pant et al [88] found several NO3
- 213 

responsive miRNAs in Arabidopsis and different members of the miR169 family have been shown 214 

to be involved in the long distance signaling that regulates NO3
- starvation responses [64]. The 215 

NO3
- induced miR393 was identified in a transcriptomics study and shown to target an auxin 216 

receptor AFB3, revealing an N-responsive module that controls root system architecture in 217 

response to external and internal N availability in Arabidopsis [71]. Compared to modifying 218 

transcriptional and post-transcriptional activation, it is anticipated that miRNA transcription and 219 

processing may be less energy intensive [96]. Subsequently it has recently been proposed that 220 

modification of miRNAs may be an attractive option for improving NUE in plants [96]. However, 221 

at this stage no miRNAs have been shown to specifically target and regulate the NRTs. With that 222 

said, given the increasing research interest in this area it appears likely that it may only be a matter 223 

of time until NRT specific miRNAs are identified which would open new opportunities for 224 

improving N uptake efficiency (NupE) for improved NUE in cereals.  225 



3.3 Post translational 226 

Post-translational regulation has also been demonstrated as an important mechanism controlling 227 

NO3
- uptake and assimilation [97-99]. The post-translational control of NR activity is well 228 

characterised. The NR enzyme is inactivated by a two-step process involving the phosphorylation 229 

of Ser residue 543, followed by the inhibitory binding of a 14-3-3 protein kinase (see review by 230 

[100]). Focusing on the NRTs, AtNRT1.1 (CHL1/NPF6.3) has been demonstrated as a dual 231 

affinity transporter under post-translational control. When AtNRT1.1 is phosphorylated at T101 232 

by the calcineurin B-like (CBL)-interaction protein kinase CIPK23, AtNRT1.1 functions as a high 233 

affinity NO3
- transporter and when T101 is dephosphorylated it functions as a low-affinity NO3

- 234 

transporter [22-25]. Phosphorylation status of AtNRT1.1 also determines the affinity for transport 235 

of auxin, a function associated with its role as a ‘transceptor’ thereby mediating NO3
- uptake and 236 

regulating lateral root development in response to NO3
- provision [101]. Further upstream of this 237 

interaction is CBL9, which plays a role in determining the affinity of AtNRT1.1 and the 238 

downstream genes regulated by this signalling pathway [25]. A number of conserved protein 239 

kinase C recognition motifs have been identified in the N- and C-terminal domains of NRT2.1 240 

[102] suggesting that phosphorylation events may be involved in regulating NRT2.1 activity as 241 

has been demonstrated for NRT1.1.  Subsequent analysis has shown that Ser28 is phosphorylated 242 

in low NO3
- conditions and is rapidly dephosphorylated by high NO3

- treatment, suggesting post-243 

translational modification of NRT2.1 is important for adaptation of NO3
- uptake capacity to 244 

changing NO3
- provision [103].  245 

Most notably, the AtNAR2.1 (AtNRT3.1) protein has been shown to constitute part of a two-246 

component NO3
- HATS system which is essential for high affinity NO3

- transport [104]. The 247 

AtNAR2.1 protein is not a transporter itself but is a partner protein which has been shown to 248 

interact with AtNRT2.1 on a protein level at the plasma membrane [105]. Subsequently it has been 249 

shown that AtNRT2.1 may only function when in a complex with AtNAR2.1 in the plasma 250 

membrane, and may exist as a heterotetramer consisting of two subunits each of AtNRT2.1 and 251 

AtNAR2.1 [106]. It is tempting to speculate that this interaction in the plasma membrane and 252 

putative involvement of the membrane trafficking system may be important for regulating this 253 



interaction, thus providing a quick response method of adapting plant NO3
- uptake capacity to 254 

changes in NO3
- provision. This would be an analogous system to the one controlling Fe uptake in 255 

plants which is regulated by the trafficking of membrane transporters to the plasma membrane in 256 

combination with the absolute amount of the transporter transcript or protein present [107]. In 257 

Arabidopsis, all NRT2s with the exception of AtNRT2.7 appear to require interaction with 258 

AtNAR2.1 to facilitate NO3
- transport [108]. This two component NO3

- uptake system has also 259 

been shown to hold true in barley (Hordeum vulgare) and rice (Oryza sativa) for orthologous 260 

NRT2 and NAR2.1 proteins [81, 109].  Interestingly, only one of the two splice variants of the rice 261 

OsNRT2.3 (an orthologue of AtNRT2.5) requires interaction with OsNAR2.1 to mediate NO3
- 262 

uptake [110, 111]. OsNRT2.3b has a 30 amino acid deletion and suggests this region may be 263 

important for interaction with OsNAR2.1 as is the case for OsNRT2.3a. However, when 264 

OsNRT2.3b is overexpressed in rice it provides an increase in NO3
- uptake and improves NUE of 265 

the transformed plants compared to wild-type, a result that is not obtained in plants overexpressing 266 

OsNRT2.3a [40]. Together this information highlights the influence of post-translational control 267 

mechanisms on the NO3
- uptake system.  268 

3.4 Signalling 269 

There has been a significant amount of work attempting to unravel what molecules act as signals 270 

for communicating NO3
- supply and demand to trigger changes in the plants NO3

- uptake system. 271 

Nitrate itself has been shown to act as a signal molecule that regulates its own uptake [102, 112, 272 

113] which is a property not shared by other ions and their associated transport systems. Reduced 273 

nitrogen sources have also been shown to regulate NO3
- uptake with NH4

+ inducing strong 274 

inhibitory effects on NO3
-  uptake [114]. Supplying amino acids as the sole nitrogen source exerts 275 

strong inhibition on NO3
- uptake [115]. Individual amino acid levels, particularly glutamate and 276 

glutamine, have been strongly linked to gene expression and feedback repression of genes involved 277 

in NO3
- uptake and assimilation [47, 48]. To date no one metabolite has been identified as the key 278 

signalling molecule regulating the NO3
- uptake system and this remains a key area of interest 279 

amongst the scientific community.  280 



Recent work has identified a role for Ca2+ as a signalling intermediate in regulating NO3
--281 

responsive gene expression responses [116]. Nitrate elicits a rise in cytoplasmic Ca2+ levels as 282 

detected by lines expressing the Ca2+ reporter, aequorin. The response was not detected in lines 283 

which were treated with LaCl3, a Ca2+ channel blocker, or EGTA, a chelating agent. The Ca2+ 284 

response did not occur in NRT1.1 mutants, indicating the response requires the ‘transceptor’ 285 

function of that protein to elicit a response. The NO3
- treatment also elicits an increase in IP3 (1, 286 

4, 5-triphosphate) suggesting that the activity of a phospholipase C (PLC), the enzyme which 287 

generates lipid secondary messengers, is required in this response. Importantly this response was 288 

not observed in plants treated with the PLC inhibitor, U73122, and there was no transcriptional 289 

response of NRTs when treated with NO3
-.  290 

The role of Ca2+ as an intermediate has been identified in another NO3
- induced signalling pathway 291 

[117]. Nitrate triggers a unique and dynamic Ca2+ signature in the nucleus and cytosol which 292 

activates the subgroup III Ca2+-sensor protein kinases, CPK10, CPK30 and CPK32. These kinases 293 

in turn regulate many of the genes involved in the primary NO3
- response including NRT2.1, 294 

NRT2.2 and NRT3.1. However, the kinases also regulate the transcription factor, NLP7, which has 295 

been shown to be a master regulator of the primary NO3
- response. Thus, this signalling pathway 296 

regulates NO3
- uptake and assimilation as well as growth responses to N availability. 297 

CIPK8 has also been shown to mediate NO3
- sensing and to positively regulate the NO3

--induced 298 

expression of PNR associated genes including NRT1.1 (CHL1/NPF6.3), NRT2.1 and NRT2.2 299 

[118]. It is likely that this kinase causes posttranslational modifications to protein(s) related to 300 

NO3
- uptake, however the identity of the target protein(s) is currently unknown. 301 

An elegant study uncovered the role of a mobile transcription factor, ELONGATED 302 

HYPOCOTYL5 (HY5) [119], in regulating the NO3
--induced signalling pathway. Illumination of 303 

the shoots of Arabidopsis plants caused upregulation of HY5 and subsequent transport to the root 304 

through phloem [120]. Once HY5 reaches the root it elicits an upregulation of NRT2.1 thereby 305 

increasing uptake of NO3
-. The complex interaction between light and N signalling pathways are 306 



linked by HY5 and further work is required to disentangle these pathways to determine how to 307 

manipulate higher level regulators to improve plant responses to changing light or N availability.  308 

Small peptides play a role in signalling of N status in plants. CLAVATA3/Endosperm surrounding 309 

region-related (CLE) peptides are induced by N deficiency are perceived as part of a signalling 310 

module with the CLV receptor together regulating lateral root development [121]. C-terminally 311 

encoded peptides (CEPs) have been demonstrated to be part of the long-distance signalling 312 

pathway informing the shoot of the availability of N supply by the roots through the xylem and 313 

are detected by leucine-rich receptor kinases in the shoot, CEPR1 and CEPR2 [122]. Subsequently, 314 

the class III glutaredoxin polypeptides CEP DOWNSTREAM 1 (CEPD1) and CEPD2 are 315 

produced and have been found to be upregulated in the shoot in response to N deficiency and move 316 

to the root through phloem where they induce upregulation of NRT2.1 [123].  317 

The plant hormones cytokinin, abcisic acid and auxin have all been linked to N-status signalling 318 

pathways. Cytokinin increases in roots treated with NO3
- through an induction of the IPT3 gene, 319 

mediated by NRT1.1 (NPF6.3) and this cytokinin can serve as a signal to shoots of NO3
- 320 

availability [124]. However, cytokinin also acts as a signal from shoots of N status as suggested 321 

by the loss of systemic N signalling in IPT mutant lines [125]. ABA regulates ABI2, a phosphatase 322 

induced by ABA, and together are part of signalling pathway along with NRT1.1 (NPF6.3) which 323 

regulates NRT2.1 [126].  324 

4. Conclusions 325 

We know a considerable amount about the uptake of NO3
- and its regulation in Arabidopsis. In 326 

terms of progressing towards the development of cereal crops with high NUpE we have identified 327 

three main knowledge gaps.  328 

4.1 The uptake systems and signalling molecules 329 

As highlighted previously the accepted paradigm describing the LATS and HATS contribution to 330 

total NO3
- uptake in Arabidopsis has recently been challenged by showing that the HATS is also 331 

responsive to N demand at high NO3
-  concentrations and appears to be responsible for a major 332 

proportion of the NO3
-  uptake capacity in cereals [11, 12]. Resolving the ambiguity around the 333 



contribution of each system to NO3
- uptake in cereals is important for focusing NUpE improvement 334 

efforts on specific NRT transporters and revealing the signals modulating the NO3
- uptake system 335 

in response to NO3
- supply and demand. 336 

4.2 Leveraging the PNR literature 337 

The majority of the literature regarding NO3
- uptake focused around PNR NO3

- starvation and re-338 

supply experiments in Arabidopsis [127]. It is important to understand how the results stimulated 339 

by this perturbation relates to NO3
- uptake in the context of improving NUpE in cereals, i.e. more 340 

realistic N demand and supply. Understanding the relationships between these experimental 341 

models could provide key insight into the complex regulation networks governing the NO3
- uptake 342 

system. 343 

4.3 New leads for transcriptional control 344 

With such a core role in all aspects of plant function there is evidence that TFs have played a major 345 

role in crop improvement over the years of crop domestication and breeding [128-130]. 346 

Consequently, TFs have been suggested as attractive candidates for engineering complex traits 347 

such as NUpE and NUE [131, 132]. As highlighted previously, with evidence of such strong 348 

transcriptional control over the NRTs there is the potential to exploit key cis-trans regulatory 349 

elements to increase functional NRT levels for improved NUpE. Therefore, discovery of novel 350 

NRT cis-trans regulatory elements and determination of whether regulatory mechanisms 351 

discovered in Arabidopsis exist in cereals appears to be an attractive step to enable the production 352 

of cereals with increased NUpE and overall improved NUE.  353 
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Figure Captions 359 



Fig. 1: Summary of key transporters and regulators mediating NO3
-uptake in plant roots. The low-360 

affinity transporter, NRT1.1 and the high-affinity transporters, NRT2.1 and NRT2.2 are involved 361 

in acquiring NO3
- from the rhizosphere, while NRT2.5 mediates the loading of NO3

- into the 362 

transpirational stream in the stele. The root tissue types represented are: epidermis (EP), cortex 363 

(CO), stele (ST). Depicted are the transporters (circles), transcription factors (squares), kinases 364 

(trapezoids), peptides (triangles) and chromatin regulators (pentagons). Regulation of the 365 

transporters which has been established as direct interaction (red arrows) or indirect interaction (or 366 

not determined to date) (blue arrows). Transporters are localised to the tissue in which they are 367 

most highly expressed, and the area of the transporter circle represents the relative expression level 368 

of the genes encoding the respective transporter in either low (left) or high (right) NO3
- provision. 369 

Top half of the diagram represents mature root tissue, while the bottom represents the root tip 370 

region. 371 
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