Weak Interference Direction of Arrival Estimation in the GPS Frequency Band

by

Zili Xu

Thesis submitted for the degree of

Doctor of Philosophy

THE UNIVERSITY
of ADELAIDE

School of Electrical and Electronic Engineering
Faculty of Engineering, Computer and Mathematical Science
The University of Adelaide
Adelaide, South Australia

December, 2016
Contents

Contents ...i
Abstract...v
Declaration... vii
Acknowledgements .. ix
List of Figures .. xi
List of Tables ... xvii
Abbreviations .. xix
Publications .. xxii

Chapter 1: Introduction .. 1
 1.1 Problem Description .. 1
 1.1.1 Global Positioning System (GPS) ... 1
 1.1.2 Interference in the GPS Frequency Band .. 4
 1.1.3 The Need for GPS Interference Localisation ... 5
 1.2 Thesis Outline and Contributions ... 8

Chapter 2: Background of GPS Antenna Array Processing ... 13
 2.1 Introduction .. 13
 2.2 Antenna Array Beamforming in the GPS Area .. 13
 2.3 Subspace Based DOA Estimation Algorithms .. 15
 2.4 Antenna Array Calibration ... 18
 2.5 Previous Work in GPS Interference DOA Estimation and Localisation Area 22

Chapter 3: GPS Antenna Array Calibration I: Modelled Eigenstructure based GPS Antenna Array Calibration .. 25
3.1 Introduction .. 25
3.2 Signal Model .. 28
 3.2.1 Ideal Array Model ... 28
 3.2.2 Array Error Model ... 29
 3.2.3 Array Model with the Errors ... 31
 3.2.4 Solution Existence Condition .. 32
3.3 Calibration Algorithm ... 33
 3.3.1 Cost function .. 34
 3.3.2 Initialization ... 35
 3.3.3 Orientation Error Estimation ... 36
 3.3.4 Gain/phase Error Estimation .. 36
 3.3.5 Mutual Coupling Matrix Estimation ... 37
 3.3.6 Convergence Check ... 39
3.4 Simulation Results .. 39
 3.4.1 Beampattern ... 40
 3.4.2 Calibration Error Analysis ... 42
 3.4.3 Effect of the Number of Calibration Sources and DOAs 45
 3.4.4 Comparison between Orientation Error Estimation and Source DOA Estimation ... 48
3.5 Experimental Results .. 50
3.6 Conclusion ... 54

Chapter 4: GPS Antenna Array Calibration II: Mutual Coupling Calibration in the Presence of Multipath Signals .. 57
 4.1 Introduction .. 57
 4.2 Signal Model .. 60
 4.2.1 Ideal Array Model ... 60
 4.2.2 Mutual Coupling Model ... 60
 4.2.3 Array Model with Errors .. 62
 4.2.4 Solution Existence Condition ... 63
 4.3 Calibration Algorithm ... 64
 4.3.1 Cost Function .. 64
 4.3.2 Calibration Algorithm Flow Chart .. 66
Chapter 6: Weak GPS Interference DOA Estimation

6.1 Introduction

6.2 Signal Model of Weak GPS Interference DOA Estimation

 6.2.1 Ideal Signal Model

6.2.2 Signal Model with Errors

6.3 Cramer-Rao Lower Bound (CRLB) Analysis for DOA Estimation

 6.3.1 CRLB Derivation for Ideal Signal Model

 6.3.2 The Antenna Array and CRLB Analysis

6.4 Coloured Noise Mitigation

6.5 Experimental Results

 6.5.1 Hardware Description

 6.5.2 DOA Estimation Results

6.6 Conclusion

Chapter 7: Conclusion

7.1 Summary

7.2 Future Work

Appendix A. Lemmas for Matrix Manipulation

Bibliography
Abstract

The GPS signal is vulnerable to both intentional and unintentional interferences due to its low received power. The need to localise GPS interference sources is becoming more pressing as more systems rely on GPS, while GPS jammers are becoming more widely available. This thesis discusses techniques to estimate the direction of arrival (DOA) of weak interferences in the GPS frequency band using antenna arrays.

The main issues which affect weak GPS interference DOA estimation accuracy are the antenna array errors, interference from other GPS signals, the number of snapshots required for DOA estimation and system coloured noise.

In order to estimate antenna array errors, a modelled eigenstructure based antenna array calibration algorithm is presented. This algorithm describes the antenna array errors using a physical model and uses the GPS signals with known DOAs as disjoint calibration sources to reduce the number of unknown calibration parameters and to enable a larger number of possible calibration sources to be used.

GPS calibration sources often have multipath components. These multipath components will contaminate the mutual coupling estimation result due to a similar directional behaviour. In order to solve this issue, a new calibration algorithm is developed to estimate the mutual coupling matrix in the presence of multipath signals. This algorithm first uses the decomposed signal subspace to construct its calibration cost function and then estimates the calibration parameters using alternating projection based methods iteratively.

The GPS signals typically have a SNR range from -15dB to -30dB. If the INR of the weak GPS interference is close or lower than this range, GPS signals need to be mitigated as they act like strong interferences. A Multiple
Subspace Projection (MSP) algorithm is proposed to cancel GPS signals. This algorithm projects the received signal onto the orthogonal subspace of GPS signals to cancel them completely even if the signals are band-limited, have multipath components, or have fractional delays.

The number of snapshots in the received data significantly influences the DOA estimation variance. The Cramer-Rao Lower Bound (CRLB) is derived and analysed for the antenna array DOA estimation. By using the CRLB, the number of snapshots is required to be larger than 1×10^6 to have the DOA estimation standard deviation to be smaller than 0.25° for a signal with a SNR of -20dB.

Finally, after cancelling GPS signals using the MSP algorithm, whitening the coloured noise in the system by using noise only data and calibrating the antenna array, the experimental results using an eight-element GPS antenna array showed that the DOA of a weak GPS interference with a SNR of -22dB could be accurately estimated.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature:

Date: 27 December, 2016
Acknowledgements

I would like to thank Professor Douglas Gray, my principal supervisor, for supervising and supporting this thesis. He introduced me to the field of array processing and gave me freedom to explore new ideas.

I wish to thank my supervisor Mr. Matthew Trinkle for his patience, guidance and assistance during my Ph.D. study, and providing me with extremely useful analysis, discussions and suggestions on my research.

I also would like to thank my friends and colleagues at the University of Adelaide Radar Research Centre and Sensor and Signal Processing Group at the University of Adelaide, in particular Ruiting Yang, Chow Yii Pui, Federica Salvetti, Tishampati Dhar, Rowen Fry, Joy Li, Mr. Marian Viola and Dr. Danny Gibbins.

Finally, thanks to my parents and my daughter, for all the love and strength they give me. And thanks to my wife Xiuran Zhu, without her support and encouragement, I would never have had the energy to see this thesis through to completion.
List of Figures

Figure 1.1.1: GPS L1 signal structure.. 2
Figure 2.3.1: The MUSIC “spectrum” in the presence of phase errors, the
sensor phase error β is between $0.005^\circ<\beta<0.05^\circ$ [66]............................ 17
Figure 3.3.1: Calibration algorithm flow chart.. 34
Figure 3.4.1: Ideal beampattern and original beampattern (no calibration),
beam steering direction: 180°. ... 41
Figure 3.4.2: Ideal and calibrated beampattern, beam steering direction: 180°. ... 41
Figure 3.4.3: Averaged channel gain calibration error versus iteration number.
.. 42
Figure 3.4.4: Gain calibration error of channel 1, 6 and 8. 43
Figure 3.4.5: Averaged mutual coupling calibration error versus iteration number... 44
Figure 3.4.6: Orientation estimation error in degrees versus iteration number.
.. 44
Figure 3.4.7: Statistical performance (mean and STD) of array orientation
estimation. .. 45
Figure 3.4.8: Cost function value with different number of calibration sources
versus iteration number. ... 46
Figure 3.4.9: Averaged mutual coupling relative error with different number of
calibration sources versus iteration number. The percentage is calculated by
the formula $\text{error_in_percentage} = \frac{\text{estimation_error}}{\text{initial_error}}\times100\%$....... 47
Figure 3.4.10: Array orientation error estimation mean and 95% confidence
interval with different number of calibration sources versus the calibration
source SNR... 48
Figure 3.4.11: Channel 2 gain estimation mean values versus SNR using
array orientation estimation (blue) and source DOA estimation (red). 49
Figure 3.4.12: Channel 2 gain estimation standard deviation versus SNR
using array orientation estimation (blue) and source DOA estimation (red). 50
Figure 3.5.1: MUSIC spectrums before (blue) with peak value at 167.3° and after (red) the calibration with peak value at 157° for satellite 11.53
Figure 3.5.2: MUSIC spectrums before (blue) with peak value at 96.4° and after (red) the calibration with peak value at 93.3° for satellite 23.53
Figure 3.5.3: DOA estimation errors after calibration by cross validating the experimental data sets. Mean = 0.68°, STD = 2.44°.........................54
Figure 4.2.1: 8 elements array geometry – 7 element uniform circular array with 1 additional element in the centre. ..61
Figure 4.3.1: Calibration algorithm flow chart. ..67
Figure 4.4.1: Cost function value versus iterations..............................74
Figure 4.4.2: Ideal beampattern (blue) and beampattern without calibration (red), main beam steering direction: 180°, elevation angle = 0°.75
Figure 4.4.3: Ideal beampattern (blue) and beampattern with calibration (green), main beam steering direction: 180°, elevation angle = 0°.76
Figure 4.5.1: The antenna array used in the experiment. It is part of the GNSS Environmental Monitoring System (GEMS) [83].77
Figure 4.5.2: Cost function value versus the iterations.........................78
Figure 4.5.3: The possible multipath reflector for SV 20..........................80
Figure 4.5.4: MUSIC spectrums for SV04 without multipath calibration (upper) and with multipath calibration (lower).83
Figure 4.5.5: MUSIC spectrums for SV16 without multipath calibration (upper) and with multipath calibration (lower).84
Figure 5.1.1: Standard Deviation of the GPS interference DOA estimation using the MUSIC algorithm in the presence of 10 GPS signals (red) and without GPS signals (blue). ..90
Figure 5.2.1: Finite Impulse Response (FIR) model.94
Figure 5.3.1: Cross correlation results before the MSP cancellation (blue) and after the MSP cancellation (red). The data length is 20ms, the GPS (PRN 1) signal has a SNR of -20dB. ...100
Figure 5.3.2: The cancellation performance comparison between MSP (blue) and PSP (red) using GPS (PRN 1) signal. The data length is 20ms, each cancellation performance point is estimated using 100 simulations.101
Figure 5.3.3: The cancellation performance comparison between MSP (blue) and PSP (red) using GPS (PRN 1) signal. The SNR of the GPS (PRN 1)
signal is -20dB, each cancellation performance point is estimated using 100 simulations.

Figure 5.3.4: Cross-correlation results before the MSP cancellation (blue) and after the MSP cancellation (red). The residual Doppler frequency is 10Hz, the data length is 20ms, the GPS signal (PRN 1) has a SNR of -20dB.

Figure 5.3.5: Cross-correlation results before the MSP cancellation (blue) and after the MSP cancellation (red). The residual Doppler frequency is 30Hz, the data length is 20ms, the GPS signal (PRN 1) has a SNR of -20dB.

Figure 5.3.6: Cancellation performance comparison between MSP (blue) and PSP (red) using GPS (PRN 1) signal. The SNR of the GPS (PRN 1) signal is -20dB, the data length is 20ms, each cancellation performance point is estimated using 100 simulations.

Figure 5.3.7: The MSP cancellation performance comparison between no Doppler error (blue) and 1Hz Doppler error (red). The SNR of the GPS (PRN 1) signal is -20dB, each cancellation performance point is estimated using 100 simulations.

Figure 5.3.8: Cross correlation results comparison between the MSP cancellation (red) and the PSP cancellation (green) with a fraction delay. The data length is 20ms, the GPS (PRN 1) signal has a SNR of -20dB. The fractional delays are 1/4 chip (upper) and 1/2 chip (lower).

Figure 5.3.9: The cancellation performance comparison between MSP (blue) and PSP (red) using GPS (PRN 1) signal. The SNR of the GPS (PRN 1) signal is -20dB, the data length is 20ms, each cancellation performance point is estimated using 100 simulations.

Figure 5.3.10: Cross correlation results comparison between the MSP cancellation (red) and the PSP cancellation (green) with a multipath signal. The blue curve is the cross-correlation result before cancellation. The data length is 20ms, the GPS (PRN 1) signal has a SNR of -20dB, the multipath signal has 3 sample delay and SNR of -26dB.

Figure 5.3.11: The cancellation performance comparison between MSP (blue) and PSP (red) using GPS (PRN 1) signal. The SNR of the GPS (PRN 1) signal is -20dB, the multipath signal has a 3 sample delay, the data length is 20ms, each cancellation performance point is estimated using 100 simulations.
Figure 5.3.12: The cancellation performance comparison between MSP (blue) and PSP (red) using GPS (PRN 1) signal. The SNR of the GPS (PRN 1) signal is -20dB, the multipath signal has SNR of -26dB, the data length is 20ms, each cancellation performance point is estimated using 100 simulations.

Figure 5.3.13: The frequency spectrum of the band pass filter.

Figure 5.3.14: Cross correlation results comparison between the MSP cancellation (red) and the PSP cancellation (green) with a band limited GPS signal. The data length is 20ms, the GPS (PRN 1) signal has a SNR of -20dB.

Figure 5.4.1: Cross correlation results comparison between the MSP cancellation (red) and the PSP cancellation (green) for PRN 14.

Figure 5.4.2: Cross correlation results comparison between the MSP cancellation (red) and the PSP cancellation (green) for PRN 21.

Figure 6.3.1: The 8 element monopole antenna array.

Figure 6.3.2: CRLB for azimuth angle variation with azimuth angle (upper) and elevation angle (lower).

Figure 6.3.3: CRLB for elevation angle variation with elevation angle (upper) and azimuth angle (lower).

Figure 6.3.4: CRLB for azimuth angle variation with SNR (blue) and CRLB for elevation angle variation with SNR (red).

Figure 6.3.5: CRLB for azimuth angle variation with the number of snapshots (blue) and CRLB for elevation angle variation with the number of snapshots (red).

Figure 6.3.6: The number of snapshots and the predicted location errors based on CRLB. The location error assumes 1 km distance from the array and is estimated by 2 STD of azimuth DOA estimation.

Figure 6.4.1: The covariance matrix of the noise-only data.

Figure 6.4.2: MVDR estimated power spectrum of the noise-only data.

Figure 6.4.3: The covariance matrix of the whitened noise.

Figure 6.4.4: MVDR estimated power spectrum of the whitened noise.

Figure 6.5.1: Estimated mutual coupling matrix using the calibration algorithm in Chapter 4.

Figure 6.5.2: Antenna array data recording system.
Figure 6.5.3: Picture of the antenna array data recording system. 138
Figure 6.5.4: The power spectrum of channel 1 received data after GPS signal subtraction. The peak value of the spike (narrowband interference) is 11.4dB, the noise floor is at 1.5dB, the processing gain is 31.9dB, so the power of the narrowband interference is $11.4\text{dB} - 1.5\text{dB} - 31.9\text{dB} = -22\text{dB}$. ... 139
Figure 6.5.5: Interference DOA estimation using MUSIC......................... 140
List of Tables

Table 1.1.1: Types and potential sources of RF interferences. 4
Table 3.4.1: The mutual coupling parameters used in the simulations. 40
Table 3.5.1: GPS satellite DOAs referring to the GPS almanac........................ 51
Table 3.5.2: GPS satellite DOAs referring to the GPS antenna array with the
nominal array orientation value. .. 51
Table 3.5.3: Estimated antenna array parameters... 52
Table 3.5.4: GPS Satellite DOAs relative to the GPS antenna array after
correcting the array orientation. .. 52
Table 4.4.1: DOAs of the 12 GPS calibration sources. 73
Table 4.4.2: Mutual coupling coefficients for the fixed distances between two
antennas. .. 74
Table 4.4.3: Estimated mutual coupling coefficients...................................... 75
Table 4.5.1: DOAs of the satellites... 78
Table 4.5.2: Estimated parameters for the antenna array............................. 79
Table 4.5.3: Magnitudes of s... 79
Table 4.5.4: Estimated parameters for the antenna array with no multipath
calibration. .. 81
Table 4.5.5: GPS signal azimuth angle estimations. The angle estimation
errors are in brackets. ... 82
Table 4.5.6: GPS signal elevation angle estimations. The angle estimation
errors are in brackets. ... 82
Table 4.5.7: Magnitudes of s... 85
Table 4.5.8: Estimated parameters for the antenna array with two multipath
assumption.. 85
Table 4.5.9: GPS signal azimuth angle estimations. The angle estimation
errors are in brackets. ... 86
Table 4.5.10: GPS signal elevation angle estimations. The angle estimation
errors are in brackets. ... 86
Table 5.3.1: Comparisons of the cancellation capability of PSP and MSP methods..114
Table 5.4.1: MSP and PSP cancellation performance comparison, the unit is in dB. ..115
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC:</td>
<td>Analog-to-Digital Converter</td>
</tr>
<tr>
<td>AGC:</td>
<td>Automatic Gain Control</td>
</tr>
<tr>
<td>AP:</td>
<td>Alternating Projections</td>
</tr>
<tr>
<td>BF:</td>
<td>Beamformer</td>
</tr>
<tr>
<td>BPSK:</td>
<td>Binary Phase Shift Keying</td>
</tr>
<tr>
<td>C/A:</td>
<td>Coarse/Acquisition Code</td>
</tr>
<tr>
<td>CBF:</td>
<td>Conventional Beamformer</td>
</tr>
<tr>
<td>C/No:</td>
<td>Carrier-to-Noise ratio</td>
</tr>
<tr>
<td>CRLB:</td>
<td>Cramer-Rao Lower Bound</td>
</tr>
<tr>
<td>CW:</td>
<td>Continuous Wave</td>
</tr>
<tr>
<td>DOA:</td>
<td>Direction of Arrival</td>
</tr>
<tr>
<td>DS-SS:</td>
<td>Direct Sequence-Spread Spectrum</td>
</tr>
<tr>
<td>ESPRIT:</td>
<td>Estimation of Signal Parameter via Rotational Invariance Techniques</td>
</tr>
<tr>
<td>FIM:</td>
<td>Fisher Information Matrix</td>
</tr>
<tr>
<td>FIR:</td>
<td>Finite Impulse Response</td>
</tr>
<tr>
<td>GNSS:</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GPS:</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>INR:</td>
<td>Interference-to-Noise Ratio</td>
</tr>
<tr>
<td>LF:</td>
<td>Likelihood Function</td>
</tr>
<tr>
<td>LPF:</td>
<td>Low Pass Filter</td>
</tr>
<tr>
<td>LS:</td>
<td>Least Squares</td>
</tr>
<tr>
<td>L1:</td>
<td>L1 Frequency Band, 1575.42MHz</td>
</tr>
</tbody>
</table>
L2: L2 Frequency Band, 227.6MHz
MaxSINR: Maximum Signal-to-Interference and Noise Ratio
ML: Maximum Likelihood
MMSE: Minimum Mean Square Error
MUSIC: Multiple Signal Classification
MVDR: Minimum Variance Distortionless Response
NCO: Numerically Controlled Oscillator
PRN: Pseudo Random Noise
RF: Radio Frequency
RFI: Radio Frequency Interference
RHCP: Right Hand Side Circularly Polarisation
RMSE: Root Mean Squared Error
SINR: Signal-to-Interference and Noise Ratio
SNR: Signal-to-Noise Ratio
STD: Standard Deviation
SV: Space Vehicle
UCA: Uniform Circular Array
ULA: Uniform Linear Array
The list of publications related to this thesis are:

