Advances in Development of Novel Ultra-High Performance Concrete

Yu Su
Master of Engineering Science (Civil & Structural)

Thesis submitted for the degree of Doctor of Philosophy at The University of Adelaide, Australia

The School of Civil, Environmental and Mining Engineering

February 2017
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>I</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>III</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>V</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>STATEMENT OF ORIGINALITY</td>
<td>3</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>4</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>6</td>
</tr>
<tr>
<td>RESEARCH GOALS</td>
<td>10</td>
</tr>
<tr>
<td>OUTLINE</td>
<td>11</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER 2: INFLUENCES OF NANO-PARTICLES ON DYNAMIC STRENGTH OF UHPC</td>
<td>16</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>16</td>
</tr>
<tr>
<td>2.1 INTRODUCTION</td>
<td>17</td>
</tr>
<tr>
<td>2.2 UHPC COMPOSITION</td>
<td>19</td>
</tr>
<tr>
<td>2.3 STATIC TESTS</td>
<td>21</td>
</tr>
<tr>
<td>2.3.1 Uniaxial compression test</td>
<td>21</td>
</tr>
<tr>
<td>2.3.2 Split tensile tests</td>
<td>23</td>
</tr>
<tr>
<td>2.4 SHPB TEST</td>
<td>24</td>
</tr>
<tr>
<td>2.4.1 Test apparatus</td>
<td>25</td>
</tr>
<tr>
<td>2.4.2 Equilibrium check</td>
<td>27</td>
</tr>
<tr>
<td>2.4.3 Compression test results</td>
<td>28</td>
</tr>
<tr>
<td>2.4.4 Split tensile results</td>
<td>32</td>
</tr>
<tr>
<td>2.5 MICROSCOPY ANALYSIS</td>
<td>36</td>
</tr>
<tr>
<td>2.5.1 SEM analysis of UHPC after SHPB split tensile tests</td>
<td>37</td>
</tr>
<tr>
<td>2.5.2 X-Ray Fluorescence (XRF) and Diffraction (XRD) Analysis</td>
<td>39</td>
</tr>
<tr>
<td>2.5.3 Influence of nano additives on the properties of UHPC</td>
<td>40</td>
</tr>
<tr>
<td>2.6 CONCLUSIONS</td>
<td>42</td>
</tr>
<tr>
<td>REFERENCE</td>
<td>42</td>
</tr>
<tr>
<td>CHAPTER 3: EFFECTS OF STEEL FIBRES ON DYNAMIC STRENGTH OF UHPC</td>
<td>47</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>47</td>
</tr>
<tr>
<td>3.1 INTRODUCTION</td>
<td>47</td>
</tr>
<tr>
<td>3.2 UHPC SAMPLE PREPARATION</td>
<td>50</td>
</tr>
<tr>
<td>3.3 STATIC TESTS</td>
<td>53</td>
</tr>
<tr>
<td>3.3.1 Uniaxial compression test</td>
<td>53</td>
</tr>
<tr>
<td>3.3.2 Split tensile test</td>
<td>56</td>
</tr>
<tr>
<td>3.4 SHPB TESTING PROGRAM</td>
<td>58</td>
</tr>
<tr>
<td>3.4.1 SHPB – Compression</td>
<td>61</td>
</tr>
<tr>
<td>3.4.2 SHPB – Tension</td>
<td>65</td>
</tr>
<tr>
<td>3.5 CONCLUSIONS</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1: Testing set-up for compression tests of cubic specimens ........................................ 22
Figure 2: Stress-strain curves from quasi-static compressive tests ........................................ 22
Figure 3: Split tensile tests ................................................................................................. 23
Figure 4: SHPB experimental system .................................................................................. 25
Figure 5: Typical waveform of compression test ............................................................... 26
Figure 6: Stress equilibrium checks ...................................................................................... 27
Figure 7: Failure patterns of specimens with different nano materials ................................. 28
Figure 8: Comparison of stress-strain curves at different strain rates of different nano particles ........................................................................................................ 29
Figure 9: Dynamic strength of UHPC under various strain rates .......................................... 30
Figure 10: Comparison of DIF curves between NSC and UHPC ........................................... 31
Figure 11: SHPB split tensile test .......................................................................................... 32
Figure 12: High speed camera results of sample damage ...................................................... 34
Figure 13: Comparison of DIF curves between NRC and UHPC ........................................... 35
Figure 14: Dynamic increase factors influenced by the volume of Nano-CaCO3 in Split Tension SHPB tests ........................................................................................................ 36
Figure 15: Pictures of motor matrix and ITZ from SEM analysis ........................................... 38
Figure 16: XRD analysis of UHPC with and without nano additives ...................................... 40
Figure 17: Different types of steel fibres ............................................................................... 52
Figure 18: Concrete wooden moulds ..................................................................................... 53
Figure 19: Testing set-up for compression tests of cubic specimens ...................................... 54
Figure 20: Stress-strain curves from quasi-static compressive tests ...................................... 54
Figure 21: Influence from fibre aspect ratio on UHPC compressive strength.......................... 55
Figure 22: Compressive stress-strain curves for different fibre volume fractions .................. 56
Figure 23: Split tension tests ............................................................................................... 57
Figure 24: Stress-strain curves from static split tensile tests ................................................. 57
Figure 25: Tensile strength of UHPC with different fibre volume fractions............................ 58
Figure 26: SHPB experimental system .................................................................................. 59
Figure 27: Typical waveform of compression test ............................................................... 59
Figure 28: Stress equilibrium checks .................................................................................... 60
Figure 29: Failure patterns of different type fibre .................................................................... 61
Figure 30: Comparison of stress-strain curves at different strain rates of different type fibre 62
Figure 31: Strain rate-stress curves of UHPC with various types of fibres ............................. 63
Figure 32: Dynamic increase factor curves of UHPC with various types of fibres .................. 63
Figure 33: Dynamic increase factors of UHPC and normal strength concrete ...................... 65
Figure 34: Damage modes of UHPC specimens under SHPB tension test ......................... 67
Figure 35: Dynamic increase factors of UHPC with different types of fibres in SHPB tests. 67
Figure 36: Dynamic increase factors influenced by the volume of MF15 in Split Tension SHPB tests ........................................................................................................ 68
Figure 37: Different types of steel fibres ............................................................................... 75
Figure 38: Testing set-up for compression tests of cubic specimens .................................... 78
Figure 39: Setup of the flexural tensile tests ....................................................................... 79
Figure 40: Failure of specimens from the compression tests ............................................... 80
Figure 41: Comparison of compressive stress-strain curves of UHPC specimens (1 Vol-% TF and 2 Vol-% TF) with mixtures of (a) Nano-CaCO₃, (b) Nano-Al₂O₃ (c) Nano-TiO₂ and (d) Nano-SiO₂ .......................................................... 82
Figure 42: Failure modes of the UHPC specimens in flexural tension tests .......................................................... 84
Figure 43: Flexural tensile tests results .................................................................................................................. 84
Figure 44: Pictures of mortar matrix from SEM analysis .......................................................................................... 87
Figure 45: Specimen configuration and reinforcement .......................................................................................... 88
Figure 46: Instrumentation and setup in the static bending tests .............................................................................. 89
Figure 47: Crack propagation on the UHPC component under bending ................................................................. 90
Figure 48: Load deflection curve ......................................................................................................................... 91
Figure 49: Field blast test setup .......................................................................................................................... 92
Figure 50: Blast pressure time-histories ................................................................................................................ 93
Figure 51: Structural column performance after field tests .................................................................................. 94
Figure 52: Setup of fibre pull-out test ................................................................................................................... 104
Figure 53: Load versus end-slip curves for different fibre embedding depths ....................................................... 104
Figure 54: General fibre pull-out load versus end slip curve ................................................................................. 105
Figure 55: Fictitious spring between fibre and concrete matrix ............................................................................. 107
Figure 56: Bond shear stress-slip relationship for the one-dimensional slide line model ................................... 108
Figure 57: Comparison between test and simulation .......................................................................................... 110
Figure 58: Split tensile tests .............................................................................................................................. 111
Figure 59: 3D mesoscale model establishment .................................................................................................... 111
Figure 60: Comparison of the damage mode ........................................................................................................ 112
Figure 61: Split stress - Displacement curve ......................................................................................................... 112
Figure 62: SHPB split tensile test setup ................................................................................................................ 113
Figure 63: Set-up for SHPB split tension test ....................................................................................................... 114
Figure 64: Finite element model of SHPB split tensile test ................................................................................ 115
Figure 65: Dynamic Increase Factor (DIF) for the tension strength of different concretes and UHPC in comparison ........................................................................................................................ 117
Figure 66: Comparison of stress histories from test and simulation .................................................................... 118
Figure 67: Comparison of stress-time curves obtained in the test and 3D Mesoscale model .......................... 119
LIST OF TABLES

Table 1: Mix proportions of different UHPC formula (unit: kg) .................................................20
Table 2: Experimental results of different formula UHPC under static load ..................23
Table 3: Static split tensile strength of different UHPC .................................................................23
Table 4: Number of SHPB compression and split tensile tests .............................................24
Table 5: Material semi-quantitative analysis from XRF for UHPC with nano additives ....39
Table 6: Calcium Hydroxide (CH) measurement based on XRD analysis at 28 days ....41
Table 7: Calcium Hydroxide (CH) measurement based on XRD analysis at 28 and 500 days .................................................................42
Table 8: Mix proportion of UHPC (unit: kg) ................................................................................51
Table 9: Material Properties of Fibres ..........................................................................................52
Table 10: Experimental results of different formula UHPC under static compressive load ...56
Table 11: Split tensile strength of different formula UHPC under static load ..................58
Table 12: Material properties of steel fibres .............................................................................76
Table 13: Mix proportions of UHPC (unit: kg/m3) ...................................................................77
Table 14: Compression strength of UHPC with different nano-additives (unit: MPa) ......81
Table 15: Compression strain energy of UHPC with nano-additives (unit: MJ/m3) ..........82
Table 16: Flexural tensile testing results (unit: MPa) .................................................................85
Table 17: Fracture energy of UHPC with different nano-particles (unit: J/m3) .................86
Table 18: Mix proportions of different UHPC formula (unit: kg) ........................................103
Table 19: Parameters used in numerical model .....................................................................106
Table 20: Parameters used in the contact definition .................................................................110
Table 21: Comparison of simulation results with high speed camera observation ..........120
Table 22: Crack and axial force development in the numerical model ...............................121
ABSTRACT

The rising of terrorism activities has promoted fast development of new construction materials to enhance the resistance and resilience of buildings and infrastructure against blast loads. As a notable representative, ultra-high performance concrete (UHPC) has now been widely investigated by government agencies and universities. UHPC inherits positive aspects of ultra-high strength concrete (UHSC) and it is equipped with improved ductility as a result of fibre addition. These features make it an ideal construction material for bridge decks, storage halls, thin-wall shell structures, and other infrastructure against seismic, impact and blast loads.

In the thesis, development of novel UHPC material is presented. The new concrete material is distinguished from previous development by the inclusion of the nanoparticles. It was noticed that addition of nanoscale size particles results in significantly improved material properties without much change of the material composition. The present study focuses on influence of fibre material addition and nanomaterial addition on mechanical properties of UHPC material. In total, three kinds of steel fibre material with varying volume fraction are considered in the material design, in combination with four different nano materials at varying weight dosages. Discussion is carried out on fibre material geometry and fraction as well as nano particle effect.

Static material tests are carried out to understand material strength and ductility. Uniaxial compressive tests and flexural tensile tests reveal the exceptional material strength, ductility as well as energy absorption capability. Since the material aims at improving the structural performance under extreme loading conditions, dynamic material properties are also of significant importance. Split Hopkinson Pressure Bar (SHPB) tests are conducted on UHPC samples, dynamic compression tests and split tensile tests are studied and compared with static material strength to obtain the dynamic increase factor which is critical in the design of material and structures against dynamic loads.

All the above tests can be used to qualitatively and quantitatively examine the material performance with nano material and steel fibre material addition at macroscale. To further study the influence of these materials, microscopy analysis was conducted to provide explanation of macroscopic failure phenomenon at micro-scale. Morphology of the samples was observed by Scanning Electron Microscopy (SEM). X-Ray Diffraction (XRD) instrument was used for phase analysis and semi-quantitative analysis. Elemental analysis
was conducted by X-Ray Fluorescence (XRF). In SEM tests on post-damage UHPC samples, different damage modes at ITZ are identified, XRD and XRF analysis confirmed the filling and pozzolanic effect of nano particles addition.

In most cases, UHPC material can be treated as homogeneous at macroscopic scale, when observed at a smaller length scale, UHPC is heterogeneous and consists of constituents including aggregate, CH crystals, C-S-H gel, water and fibre material. It is impractical to consider all the phases in the microstructure of SFRC. In general, to investigate the interfacial transition zone (ITZ) effect on the fibre bonding properties, UHPC is described as multi-phase material consisting of the cement paste, aggregates, fibres and ITZs among them. The existence of ITZs weakens the bonding between the fibres and concrete matrix. The bonding performance of UHPC is influenced by the fibre geometry, fibre orientation, and also the strength of the matrix, it is therefore critical to consider the ITZ effect in the performance of UHPC. In the current study, the bonding effect between the fibre material and matrix is investigated firstly by single fibre pull-out tests in which different fibre embedding depths are considered. The experimental results are then used to establish the bond-slip relationship in the numerical model. Three dimensional mesoscale model with consideration of both the concrete matrix and fibre phase is established. Model calibration is conducted with comparison to static material tests, further validation is obtained through SHPB split tensile test simulation. The proposed 3D mesoscale model can effectively model the material behaviour especially the post yielding ductility.

With the understanding of the new material, field blast tests are carried out on concrete components constructed with this UHPC. Comparison is made against conventional concrete component and high strength concrete components, and the exceptional performance reveals its potentiality in the protective structural design.
STATEMENT OF ORIGINALITY

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

………………………………………………………………………..……………
Print Name Signature Date
LIST OF PUBLICATIONS

   **Status**: Published

   **Status**: Published

   **Status**: Published

   **Status**: Accepted
ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude to his supervisors, Prof. Chengqing Wu for his invaluable guidance and supervision during this study. His good nature, patience, frankness, and technical expertise had a profound impact on the author’s academic experience and personal goals. Special thanks are given to the author’s team, Dr. Jun Li, Mr Jian Liu and Mr. Pengtao Wu, for helping with definitely improving the quality of the author’s work.

The author extends his sincerest thanks to his family for the support, especially his father Guozhi Su and mother Xiulan Peng. Also, his friends Mr. Ron Seidel and Mr. Yuemin Yuan deserve lots of thanks and much more, for their patience and help. Finally, the author dedicates this thesis to his fiancée Ms. Guanzhen Li who has provided with the confidence and on-going support to the author to complete the thesis with the best of his abilities.