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Abstract 

Accurate image reconstruction of damage through Lamb wave diffraction tomography (LWDT) 

requires substantial information of scatter field. This can be achieved by using transducer network 

to collect the scatter field data. However, this requires a large number of transducers that creates 

logistical constraints for the practical applications of the technique. Various methods have been 

developed to improve the practicability of LWDT. One of the main approaches is to employ data at 

multiple frequencies within the bandwidth of the excitation signal. The objective of this study is to 

investigate the performance of using the data at non-central frequencies to reconstruct the damage 

image using LWDT. This provides an understanding on the influence of data at each individual 

frequency in the damage image reconstruction. 

In this paper, a series of numerical case studies with consideration of different damage sizes 

and shapes are carried out. Different non-central frequencies data is used to reconstruct the damage 

image. The results show that using the data at different non-central frequencies leads to different 

qualities of the reconstructed damage images. The quality of these reconstructed damage images are 

then compared to investigate the information contained of the data at each individual frequency. 

The study shows that the non-central frequencies data can provide additional information in the 

damage image reconstruction. Overall the results of this study provide insights into the influences 

of the data at different frequencies, which is essential to advance the developments of the LWDT. 
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1. Introduction 

Structural health monitoring (SHM) has attracted increasing attention in the last two decades. It 

enhances reliability and sustainability of structures through providing in-situ structural monitoring. 

Different damage detection techniques have been developed to provide early detection of damage 

and reduce the life-cycle costs of the structures. Early developments focused on non-destructive 

evaluation (NDE) techniques, such as visual inspection [1,2], conventional ultrasonic [3,4], 

thermography [6] and eddy-current techniques [7,8]. However, safety inspections using these 

techniques are usually carried during scheduled maintenance and they are not able to inspect 

inaccessible locations of the structures, as they need to be operated manually by experienced 

inspectors. In addition the coverage area is usually small in each inspection process. Therefore, the 

safety inspections using these NDE techniques are time-consuming and cost ineffective, and they 

are generally not suitable for SHM purposes. It is important to develop a reliable and robust damage 

detection that can provide in-situ monitoring of the structure. Guided wave based damage detection 

techniques are feasible for SHM as they are able to provide in-situ monitoring of structures. 

Additionally, they are sensitive to small and different types of damages, able to inspect inaccessible 

locations, and cost effective. These advantages make them to be one of the most promising damage 

detection methods. In the literature, different damage detection methods have been developed used 

the guided wave [9-12]. 

 

1.1. Damage detection using Lamb wave 

Lamb waves are mechanical stress wave that propagates along plate-like structures and are guided 

by structural boundaries. It is a type of guided wave. In the last two decades, Lamb waves have 

attracted considerable attention [13-17] in SHM. To date, numerous damage detection techniques 

using Lamb waves have been developed, for example, time-of-flight approach [18], maximum-

likelihood estimation [19], damage imaging [20-22], phase array approach [23], model based 

approach [24,25], time-reversal approach [26] and diffraction tomography [27-29]. Each of these 

techniques provides different levels of assessment for the damages in the structures. While some 

methods are only able to determine the existence and location of the damages, some others provide 

more information, such as severity and shape of the damages.  

Recently, developments have been extended to the concept of using the nonlinear guided 

wave for damage detection [30-34]. This is potential to address some bottlenecks of the linear 

guided wave approaches, e.g. the need of baseline data, which can be changed under varying 

temperature and operational conditions [35-37]. This study will only focus on the topic of linear 

guided wave and diffraction tomography approach. 
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1.2. Lamb wave diffraction tomography 

Apart from the essential requirements that the damage detection must be reliable and sensitive to 

the damages, two additional features: graphical representation and quantitative identification; can 

provide invaluable information for SHM. The former provides physical information for engineers in 

understanding the damage detection results and the latter provides comprehensive information, 

which can assist decision-making on the remedial work. 

Lamb wave diffraction tomography (LWDT) is a quantitative damage detection technique that 

provides an efficient and cost effective inspection of a large area of structures. It utilizes the 

scattering effects of Lamb waves and various tomographic algorithms to reconstruct robust images 

of the damages. The scattered wave field can be obtained by sequentially interrogating an area of 

interest with Lamb waves using multiple transducers. Early developments of tomographic imaging 

are based on the time-of-flight information of Lamb waves [38-40] to reconstruct an image of the 

damage. But this approach assumes that Lamb wave propagation is in the form of straight rays. 

Malyarenko and Hinders [27] proposed a diffraction tomography approach that takes into 

account the diffraction effect of Lamb waves to improve the reconstructed image quality and 

resolution. Wang and Rose [28,41] proposed a LWDT framework based on the Mindlin plate theory 

and Born approximation, which relates the scattered plate waves to the damage geometry. The 

damage parameters were mathematically represented as local perturbations of the global material 

parameters. The scatter field amplitudes were then found to have a linear relationship with the 

Fourier transform of these perturbation functions. Hence, once the Fourier transform values of the 

perturbations were obtained from the scattered field amplitudes, an inverse transformation could be 

applied to obtain the damage parameters. The framework was further investigated for corrosion 

damage in isotropic plates [29]. 

Belanger et al. [42] also proposed a LWDT framework based on the Born approximation. The 

framework examines the dependence of the phase velocity of the waves, on the plate thickness. The 

phase velocity of the fundamental anti-symmetric (A0) mode of a Lamb wave is proportional to the 

square root of the frequency-thickness product. This implies that for constant frequency, Lamb 

waves have a lower velocity in the plate regions with reduced plate thickness. Hence, a diagnostic 

image of the damage can be reconstructed using the wave velocity profile. After that various inverse 

methods and scattering models were also developed [44,45] to improve damage resolution and the 

computational efficiency of LWDT. 

Development of accurate and simple inverse transformation techniques that do not require a 

large number of transducers for LWDT is a very important topic of research. In addition to the two-

dimensional (2D) Fourier transformation approach that was originally used for early development 

of LWDT, Devaney and Dennison [46] proposed a least-squares estimation method for inverse 
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transformation. The least-squares estimation method was implemented by Rohde et al. [47] using a 

constrained linear inversion technique and the results were found to be more accurate and have 

better performance than the direct Fourier inversions approach.  

One of the major requirements of the technique proposed by Wang and Rose is the 

assumption that the scatter field data collected is under far-field conditions [28,41,43]. That is, the 

distance between the sensors and the damage is greater than 2d2/ λ, where d is the diameter of the 

damage and λ is the wavelength of the Lamb wave. However, a near-field imaging method is more 

practical as the damage may be closer to the transducer in real life applications. This drawback was 

addressed by Chan et al. [50] where they employed finite element based numerical Green’s 

functions and the multi-static data matrix to overcome this constraint. The Green’s functions can be 

defined as an undamaged structure’s response to a unit input. They also showed that the numerical 

method suggested for the calculation of Green’s functions is in agreement with the analytical 

function [41]. A similar numerical method, which significantly reduces the mathematical intensity 

of the solution, was also developed for the evaluation of the multi-static data matrix. They proposed 

that the Green’s function can be estimated by the ratio of the Fourier transforms of the response and 

the input forces at the central frequency. 

 In general, the excitation signal for a Lamb wave is a narrowband signal, which contains 

multiple frequency components. While the central frequency of this signal is predominant and has 

the maximum amplitude in the Fourier transform of the signal, it can also be observed that the 

wave-field also contains a significant number of frequency components adjacent to the central 

frequency. A multi-frequency approach that incorporates the effects of the non-central frequencies 

in damage image reconstruction was proposed by Belanger et al. [42]. However, the effect of the 

non-central frequency components on the quality of the reconstruction damage imaging has not yet 

been examined. The aim of this paper is to examine the quality of the reconstructed damage image 

using LWDT based on the Mindlin plate theory and Born approximation when the non-central 

frequency components of response signals are used in the image reconstruction. 

 This paper aims at addressing the importance and efficiency of non-central frequencies in the 

reconstruction of the damage image. The non-central frequency components have a two-fold 

advantage in the advancement of the LWDT. Firstly, they reduce the number of transducers by 

using data from multiple frequencies, and consequently the implementation costs. Secondly, they 

also improve the damage resolution by gathering additional data from the same number of 

transducers, and hence, this gives a better image resolution. This study provides a comprehensive 

assessment of the non-central frequencies on the performance of the reconstructed damage image 

using diffraction tomography algorithm. The quality of the reconstructed damage images using 

central and non-central frequency data are compared. This provides an examination of the quality of 
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the reconstructed damage image using LWDT when the non-central frequency components of 

response signals are used in the image reconstruction. 

The paper is structured as follows: Section 2 describes the methodology of the near-field 

imaging algorithm. Section 3 presents the FE model in the numerical simulations and describes the 

details of the numerical case studies. The results and discussions can be found in Section 4. Finally, 

conclusions are drawn in Section 5. 

 

2. Methodology 

The LWDT requires a network of transducers to sequentially scan the plate, in which the 

transducers are used to transmit and receive Lamb wave signals. Using a pair of transducers as an 

example, Fig. 1 shows a schematic diagram of Lamb waves generated by a source transducer Xs, 

scattering at the damage region Σ𝑑, and then measured by the receiver transducer Xr. For a 

transducer network with N number of transducers, a number of the scattered wave signals can be 

collected from the sequential scan. The scattered wave signals are then used to reconstruct the 

damage using LWDT. 

In this paper, the imaging algorithm used to reconstruct the damage is a near field imaging 

algorithm developed by Chan et el. [50]. This method was developed by extending the previously 

developed far-field imaging algorithm [28,41] to take into account the near field effect. In this 

section, we first describe the far-field imaging algorithm developed by Rose and Wang [28,41] and 

then presents the near-field algorithm [50]. 

 

Fig.1: A schematic diagram of Lamb wave generation and scattering at damage 

  

The far-field imaging algorithm with Born approximation [28] is appropriate for weak 

inhomogeneities in a plate. The Born approximation consists of approximating the total 

displacement with the incident wave displacement. The measured total displacement 𝑤̂ is given by 

the expression: 
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𝑤̂ = 𝑤̂𝐼 + 𝑤̂𝑆                                                            (1) 

where 𝑤̂𝐼 is the incident wave displacement and 𝑤̂𝑆 is the scattered wave displacement. The “   ̂” 

symbol means the frequency domain response obtained by the Fourier transform of the time-domain 

signal. Using the Born approximation, Eq. 1 becomes 

𝑤̂ = 𝑤̂𝐼                                                               (2) 

The integral solution for a scattered field due to a defect can be represented by [28]: 

𝑤̂𝑆(𝑥, 𝜔) =  ∫ ∫ 𝑘1
2 𝑠(𝜉)𝑤̂(𝑥, 𝜔)𝐺(𝑥, 𝜉, 𝜔)𝑑2𝜉                                (3) 

where k1 denotes the wave number of the first flexural wave mode. 𝐺(𝑥, 𝜉, 𝜔) denotes the Green’s 

function [41] of the scattered wave field from point 𝜉 within the damage region Σ𝑑 to point x on the 

plate. 𝜔 is the angular frequency. 𝑠(𝜉) is the damage potential that takes various physical forms 

depending on the nature of targeted damage. In this study, 𝑠(𝜉) is the reduced thickness within the 

damage boundary on the plate. Using the Born approximation, the total wave-field on the right-hand 

side of Eq. 3 can be replaced by the incident wave-field as 

𝑤̂𝑆(𝑥, 𝜔) =  ∫ ∫ 𝑘1
2 𝑠(𝜉)𝑤̂𝐼(𝑥, 𝜔)𝐺(𝑥, 𝜉, 𝜔)𝑑2𝜉                                (4) 

Under far-field condition, the incident wave-field at ξ is given by: 

𝑤̂𝐼(𝑥, 𝜔) = 𝑒𝑖𝒌𝟏
𝐼𝜉                                                          (5) 

and the Green’s function [41] is given by 

  𝐺(𝑥, 𝜉; 𝜔) =
𝑖

4
√

2

𝜋𝑘1𝑟
𝑒𝑖(𝑘1𝑟−𝜋

4⁄ ) 𝑒−𝑘1
𝑆𝜉         where   𝑘1𝑟  →  ∞            (6) 

where 𝒌1
𝐼 = 𝑘1𝛼 = 𝑘1(𝑐𝑜𝑠𝛼, 𝑠𝑖𝑛𝛼) is the incident wave vector. Inserting Eqs. 6 and 5 into Eq. 4, 

the integral representation for the scattered field becomes 

𝑤̂𝑆(𝑥, 𝜔) =  √
𝑖

8𝜋𝑘1𝑟
𝑒𝑖𝑘1𝑟𝐴(𝒌1

𝑆, 𝒌1
𝐼 )                                          (7) 

where 𝒌1
𝑆 = 𝑘1𝜃 = 𝑘1(𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃) is the scattered wave vector. The physical significance of the 

Eq. 7 is the assumption that the damage is located at a distance from the PZTs, where the incident 

wave amplitude can be described by the plane-wave scattering amplitude. 

𝐴(𝜃, 𝛼; 0) = lim
𝑘1𝑟→∞

𝑤̂𝑠(𝑟,𝜃;𝜔)

√
2

𝜋𝑘1𝑟
𝑒𝑖𝑘1𝑟𝑒−𝑖𝜋

4⁄
                                          (8) 

where 𝑤̂𝑠(𝑟, 𝜃; 𝜔) is the scattered wave field along direction 𝜃 due to an incident plane-wave of 

unit strength in the direction α.  

The fundamental concept of LWDT is to relate the 2D spatial Fourier Transform of the 

inhomogeneity variation to the plane-wave scattering amplitude. The inhomogeneity variation is 

eventually reconstructed by taking an Inverse Fourier transformation in the wavenumber space [43]. 
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For plate-wave case, this inversion in the k-space is formulated as integrals over the source and 

receiver angles: 

𝑠(𝑥) =
1

8𝜋2 ∫ ∫
𝐴(𝜃,𝛼;0)

𝑞ℎ(𝜃−𝛼)

2𝜋

0

2𝜋

0
|sin (𝜃 − 𝛼)|𝑒𝑖𝑘1(𝜃−𝛼)𝑥𝑑𝜃𝑑𝛼                     (9) 

where s(x) denotes the reconstructed value of the plate thickness reduction δh. The term |sin (𝜃 −

𝛼)| is the Jacobian for the change in integration variables from (𝑘𝑥
𝑆−𝑘𝑥

𝐼 , 𝑘𝑦
𝑆 − 𝑘𝑦

𝐼 ) to (𝜃, 𝛼). The 

parameter qh(𝜃 − 𝛼) is a function of the type of damage chosen, which is plate thickness reduction 

in this case. It denotes the shape function characterising the scattering pattern for a point-scatterer 

and is given by the following expressions [43]. For a damage that is characterized by plate thickness 

reduction, 

 𝑞ℎ = 3𝑞1 +  𝑞2 + 3𝑞3 + 𝑞4                                               (10) 

where  

𝑞1(𝛥𝜃) =
𝛾1𝑘1

2

(𝑘1
2−𝑘2

2)
[𝑐𝑜𝑠2 𝛥𝜃 +  𝜈 𝑠𝑖𝑛2𝛥𝜃]                                   (11) 

 

𝑞2(𝛥𝜃) =
𝜇̅ℎ(1−𝛾1)2

𝛾1𝐷(𝑘1
2−𝑘2

2)
[cos 𝛥𝜃]                                           (12) 

 

𝑞3(𝛥𝜃) = −
𝛾1𝜌𝐼𝜔2

𝐷(𝑘1
2−𝑘2

2)
[cos 𝛥𝜃]                                           (13) 

 

𝑞4(𝛥𝜃) = −
ℎ𝜌𝜔2

𝛾1𝐷𝑘1
2(𝑘1

2−𝑘2
2)

                                               (14) 

 

where 𝛥𝜃 = 𝜃 − 𝛼, or 𝛥𝜃 = 𝜑𝑖 − 𝜑𝑗 + 𝜋 for the near field imaging formula, D denotes the bending 

stiffness of the plate, 𝛾1 is the wave amplitude ratio between the first and second branches of the 

wave mode. k1,2 is the travelling and non-propagating wavenumber. 𝜇̅ is the modified shear 

modulus. h is the plate thickness. 𝜌 is the density of the plate material. ν is the Poisson ratio and I is 

the area moment of the vertical cross-section of the plate. 

The near field algorithm [50] involves two major steps: i) the incident wave is expressed as a 

function of the vertical input force, ii) The plane wave scattering amplitude is expressed relative to 

the imaging point as opposed to the origin. When a vertical input force 𝐹̂(𝜔) is applied by a 

transducer at location Xs = (xs, ys), the incident wave generated by the transducer takes the following 

form as a function of its location x.  

                                               𝑤̂𝐼(𝑥, 𝜔; 𝑋𝑠) = 𝐹̂(𝜔)𝐺(𝑥, 𝜔; 𝑋𝑠)                                         (15) 
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where 𝐺(𝑥, 𝜔; 𝑋𝑠) denotes the plate–wave dynamic Green’s function. Fig. 2 shows a schematic 

diagram of a PZT network and imaging domain for the LWDT. Using Eq. 8, the scattered field at a 

receiving transducer location Xr = (xr, yr) can be expressed as 

 𝑤̂𝑆(𝑥𝑟, 𝑦𝑟;  𝜔) = 𝐴(𝜑𝑟, 𝜑𝑠, −  𝜋; 𝑥)𝑤̂𝐼(𝑥, 𝜔; 𝑋𝑠) (
𝑖

4
√

2

𝜋𝑘1𝑟
𝑒𝑖𝑘1𝜌𝑟𝑒−𝑖𝜋

4⁄ )        (16) 

where 𝑤̂𝐼 is the incident wave given by Eq. 15 and 𝜌r is the distance between a receiving sensor Xr 

and an imaging point x within the imaging domain. 𝜑𝑟 and 𝜑𝑠 are the receiver and source angles 

relative to the origin at the imaging point x as shown in Fig. 2. It can also be shown that the 

scattering amplitude relative to the origin at x can be related to the scattering amplitude relative to 

an origin at 0 by the following translation 

𝐴(𝜃, 𝛼; 𝑥) = 𝐴(𝜃, 𝛼; 0)𝑒𝑖𝑘1(𝜃−𝛼)𝑥                                              (17) 

 

 

Fig. 2: A schematic diagram of the PZT configuration and imaging domain for Lamb wave 

diffraction tomography 

In this paper, we only consider an analytical value for the Green’s function [41] as opposed to 

the Green’s function obtained from numerical method [50]. It has been shown that for flat plate, the 

Green’s functions obtained using numerical methods are similar to the Green’s functions obtained 

from the analytical method [50]. This analytical Green’s function is given by [41]: 

𝐺(𝑋𝑟 , 𝜔; 𝑥) =
1

𝐷(𝑘1
2−𝑘2

2)𝛾1

𝑖

4
√

2

𝜋𝑘1𝑟
𝑒𝑖𝑘1𝜌𝑟𝑒−𝑖𝜋

4                             (18) 

Using Eq. 17 and 18, Eq. 9 can be rewritten in the following form: 

𝑠(𝑥) =
1

8𝜋2𝐷𝛾1(𝑘1
2−𝑘2

2)
∫ ∫

𝐾𝑟𝑠|sin (𝜑𝑟−𝜑𝑠)|

𝐺(𝑋𝑟,𝑥)𝐺(𝑥,𝑋𝑠)𝑞ℎ(𝜑𝑟−𝜑𝑠+𝜋)

2𝜋

0

2𝜋

0
𝑑𝜑𝑟𝑑𝜑𝑠                   (19) 

where  
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𝐾𝑟𝑠 =  
𝑤̂𝑆(𝑋𝑟,𝜔;𝑋𝑠)

𝐹̂(𝜔)
                                                          (20) 

represents the scattered field data normalized relative to the amplitude of the actuating force at the 

central frequency of the input tone-burst. 

The inversion integral in Eq. 19 can be evaluated as a discrete sum of values using the 

trapezoidal quadrature rule. This is due to the finite number of source and receiver transducers that 

are used for generating the scattered field. Thus Eq. 19 can be expressed as: 

𝑠(𝑥) = 𝑅𝑒 [
1

8𝜋2𝐷𝛾1(𝑘1
2−𝑘2

2)
∑ ∑

𝐾𝑖𝑗|sin (𝜑𝑖−𝜑𝑗)|

𝐺(𝑋𝑖,𝑥)𝐺(𝑥,𝑋𝑗)𝑞ℎ(𝜑𝑖−𝜑𝑗+𝜋)

𝑁
𝑖=1

𝑁
𝑗=1 Δ𝜑𝑖Δ𝜑𝑗]     (21) 

where Δ𝜑𝑖 = (𝜑𝑖+1 − 𝜑𝑖−1 )/2 in which 𝜑0 = 𝜑𝑁 − 2𝜋. Kij is the multi-static matrix defined by 

Eq. 20. φ is the polar angle relative to the imaging point x as origin. Subscripts i and j are used to 

identify receiver and source locations, respectively. N is the total number of source and receiver 

sensors. The value of the thickness reduction in the damage is thus obtained using Eq. 21. 

This paper aims at examining the quality of the reconstructed damage image when the data 

at non-central frequencies is used to calculate the multi-static data matrix. This is carried out by 

taking the Fourier transform of the scattered field and extract the results at frequency that is ±Nf 

kHz away from the central frequency as shown in Fig. 3. It should be noted that care must also be 

taken in determining the corresponding value from the Fourier transform of the excitation force. In 

the next section the numerical case studies will be described in details, in which the effect of the 

data at each non-central frequency on the quality of the reconstructed damage image will be 

investigated. 

 

  

Fig 3: Central and non-central frequency components for a Lamb wave signal at 200 kHz (Solid line 

indicates central frequency and dashed lines indicate non-central frequencies) 
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3. Numerical Case Studies 

The performance of the reconstructed damage image using non-central and central frequency 

components is investigated using a numerical simulation model of an isotropic aluminium plate. 

The three-dimensional (3D) explicit finite element (FE) method [48,49] is used to simulate Lamb 

wave scattering phenomenon at damage in an aluminium plate. A commercial FE software, 

ABAQUS, was used to carry out the FE simulations in this study. The size of the plate is 240 mm × 

240 mm and the thickness is 1.6 mm. The Young’s modulus is 69 GPa, density is 2760 kg/m3 and 

Poisson’s ratio ν = 0.33. The plate is modelled by eight-noded 3D reduced integration solid brick 

element (C3D8I) with incompatible modes. Each node of the solid brick element has three degrees-

of-freedom (DoFs). 

The fundamental anti-symmetric (A0) Lamb wave is used as the incident wave and it is 

generated by transducers installed at the surface of the plate. In this study, only the deformations 

induced by the transducers are modelled, which is simulated by applying the out-of-plane nodal 

displacement at the required points. The excitation signal is a 200 kHz narrow-band five-cycle 

sinusoidal tone burst pulse modulated by a Hanning window. A circular transducer network, which 

contains 128 transducers, is used to actuate and measure the Lamb wave signals in this study. The 

radius of the circular transducer network is 10λ = 75 mm. The Lamb wave signals at particular 

locations are obtained by calculating the out-of-plane nodal displacement of the nodes located at the 

surface of the plate.  

In the FE model, most of the solid brick elements have an in-plane square shape with 

dimensions 0.4 × 0.4 mm2. This means that there are at least 12 nodes per wavelength and five 

layers of FE element in the thickness direction to ensure the accuracy of the Lamb wave simulation 

results. The model has six layers of elements along its thickness with the top and bottom layers 

having a height of 0.08 mm. The other four layers in between are of thickness 0.36 mm. The 

incremental time step of the explicit FE simulation is automatically controlled by ABAQUS based 

on the element size and material properties. Fig. 4 shows a comparison of the A0 Lamb wave group 

velocity dispersion curve calculated by the FE simulations and analytical results, which is based on 

the Mindlin plate theory [48]. The results show that there is very good agreement between the FE 

calculated and analytical results. This shows that the FE simulations are able to accurately predict 

eh A0 Lamb wave propagation in the plate. 
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Fig. 4: A0 Lamb wave group velocity dispersion curve 

 

The imaging area is a 160 mm × 160 mm square as shown in Fig. 5. The plate thickness 

reduction damage is considered in this study, which is used to represent the common corrosion 

damage in metallic structure. The damage geometry is inscribed onto the surface of the model prior 

to its meshing. This ensures a uniform and structured meshing for the damage shape and helps to 

maintain a compatible mesh when the elements at the top layer within the damage geometry are 

removed to create the thickness reduction damage. Inscribing the model with the damage shape 

prior to its meshing ensures that tetrahedral elements are used near the edges of the damage and the 

circular shape is maintained even after the elements at the top layer are removed.  

 

 

Fig. 5: Schematic of the finite element model and the PZT configuration 

 

In the numerical simulation, the absorbing layer is used to minimise the computational cost of 

the FE simulation, and hence, the simulated model can represent a larger aluminium plate. In the FE 

model, absorbing layers by increasing damping (ALID) [51] is applied to four edges of the 

aluminium plate model as shown in Fig. 5. A high rate of variance in the damping coefficients 
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across the layers would give rise to stiff material layers that could themselves induce the wave 

reflections. A low rate of variance, on the other hand, would lead to an incomplete absorption of the 

incident wave, in which the boundary reflections are not fully eliminated in the simulation. It is thus 

imperative to vary the properties of the material gradually along these layers. The presence of an 

absorbing layer greatly reduces the dimension of the model to be analysed, while also eliminating 

any reflected waves simultaneously.  

Each transducer was interrogated twice, in which one is to generate Lamb waves in an intact 

model and the other one is to generate Lamb waves in a model containing the damage. The 

scattered wave-field is then obtained by subtracting the baseline response the intact model from the 

total response obtained of the damaged model. The scatter field is gathered from the locations of 

each of the transducers and aids in constructing a single row of the multi-static data matrix Kij. This 

process is repeated for every transducer to obtain an N X N matrix where N is the number of 

transducers. The diffraction tomography process requires each of the N transducers to be stimulated 

sequentially in order to obtain the multi-static data matrix. 

The numerical studies were carried out, which considers thickness reduction damage. This 

paper focuses on the efficiency of various central and non-central frequencies in predicting the 

damage parameters for different shapes of damages. To provide a robust comparison, the damages 

considered in this study are located at the same location. The three cases considered in this paper 

are a) a circular shaped damage b) a cross shaped damage, and c) a square shaped damage. Using 

the circular shaped damage as an example, the damage is modelled as a symmetric reduction in 

thickness at both surfaces of the plate as shown in Fig. 6b. This prevents any mode-conversion [52] 

of waves at the damage and ensures that the scattered field consists of only the A0 mode Lamb 

wave. A 10% reduction of thickness is considered in all the aforementioned cases. The image will 

be reconstructed at the central frequency of 200 kHz as well as at frequencies ± 20 kHz away from 

the central frequency. 

 

3.1. Circular damage 

The first case consists of a circular damage of diameter 12 mm (~ 1.5λ) located at the origin of the 

plate as shown in Fig. 6. Owing to symmetry of shape and location of the damage, the simulation of 

Lamb wave generation and scattering can be simplified to excitation of just one PZT. This is 

because the excitation of every PZT in this configuration yields the same scattered field. However, 

care must be taken while assembling the multi-static data matrix using Eq. 20, as the order of the 

elements in each row depends on order and location of the PZT excited. 
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                                (a)                                                                    (b) 

Fig. 6: a) Schematic of the circular thickness reduction damage b) cross-section view 

 

 

                                      (a)                                                                          (b)                              

 

(c) 

Fig. 7: Damage reconstruction of circular damage for the central frequency of 200 kHz a) 2-D 

variation of damage along the surface of the plate, b) damage profile along the line x = 0, c) 3-D 

variation of damage (Dashed lines indicate the true geometry and thickness reduction value of the 

damage) 
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The results obtained using the algorithm, are found in Figs. 7-9. The damage reconstruction 

was performed using the central frequency of 200 kHz, and the non-central frequencies of 180 kHz 

and 220 kHz. The damage reconstruction obtained using the central frequency was found to be 

accurate in its prediction of the thickness reduction but it was less satisfactory in its reconstruction 

of the damage geometry (Fig. 7). Figs. 8 and 9 show that the use of non-central frequencies gives an 

excellent reconstruction of the damage shape and size. However, they were less satisfactory in their 

prediction of the thickness reduction. It is worth mentioning that for non-central frequencies, while 

calculating the multi-static data matrix Kij using the scatter data, care was taken to choose the 

corresponding non-central frequency in the amplitude of the actuating force as shown in Eq. 20.  

 

 

(a)                                                                          (b) 

Fig. 8: Damage reconstruction for a non-central frequency of 220 kHz a) 2-D variation, b) damage 

profile along the line x = 0  

 

 

 (a)                                                                          (b) 

Fig. 9: Damage reconstruction for a non-central frequency of 180 kHz a) 2-D variation b) damage 

profile along the line x = 0  
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3.2. Cross shaped damage 

The second case consists of a cross shaped damage, located at the origin of the plate. The width of 

the intersecting bars is 2 mm and the total width of the cross shaped damage is 12 mm. The cross 

shaped damage is symmetric in each quadrant as shown in Fig. 10, and hence, the FE simulation 

can be simplified to only simulating the excitation of the 32 PZTs in the first quadrant. The results 

for the other 96 PZTs can be obtained by carefully rearranging the data obtained from these 

simulations. 

 

Fig. 10: Schematic of the geometry, location and dimensions of the cross shaped thickness 

reduction damage 

 

 

                               (a)                                                                      (b) 

Fig. 11: Damage reconstruction of the cross shaped damage for the central frequency of 200 kHz a) 

2-D variation along the surface of the plate, b) 3-D variation along the surface of the plate (Dashed 

lines indicate the true geometry and thickness reduction value of the damage) 

 

The results obtained using the imaging algorithm, are shown in Figs. 11 and 12. The damage 

reconstruction obtained using the central frequency was found to be accurate in its prediction of the 

thickness reduction. However, there are still some discrepancies between the reconstructed shape 
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and the actual shape of the damage as shown in Fig. 11. The additional peaks between the 

intersecting bars can be attributed to the irregular meshing that is the result of the sharp and 

irregular corners in the structure. The effect of these corners can also be seen in the damage 

reconstruction image (Fig. 12) using non-central frequencies but with lesser extent. In general, the 

use of non-central frequencies provides better prediction of the damage shape but the reconstructed 

image is less accurate in predicting the thickness reduction as well as the damage size. 

 

 

                                     (a)                                                                      (b) 

Fig. 12: 2-D damage reconstruction of the cross shaped damage for non-central frequencies of a) 

220 kHz, b) 180 kHz 

 

3.3. Square shaped damage 

The final case consists of square shaped damage with 12 mm wide at each side, and it is located at 

the origin of the plate. The same as cross shaped damage case, the square shaped damage is also 

symmetric in each quadrant, and hence, it be simplified to simulate only 32 PZTs. The results 

obtained using the imaging algorithm are shown in Figs. 13 and 14. The reconstructed images for 

the square shaped thickness reduction damage were found to be accurate in predicting the damage 

geometry and size. Although the difference in the prediction of damage geometry using both central 

and non-central frequencies was not as significant as in the previous cases, there was still a 

relatively large difference in predicting the thickness reduction. This means the performance of 

imaging algorithm in predicting the thickness reduction is not as good as the damage geometry and 

size prediction. 
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(a)                                                                         (b) 

Fig. 13: Damage reconstruction of the square shaped damage for the central frequency of 200 kHz 

a) 2-D variation along the surface of the plate, b) 3-D variation along the surface of the plate 

(Dashed lines indicate the true geometry and thickness reduction value of the damage) 

 

 

(a)                                                                         (b) 

Fig. 14: 2-D damage reconstruction of the square shaped damage for non-central frequencies of a) 

220 kHz, b) 180 kHz 

 

4. Conclusions 

This study has investigated the performance of the LWDT in reconstructing different shapes of 

damage using central and non-central frequencies. A series of numerical case studies have been 

carried out using the 3D FE simulations. The results show that the scattering data at the non-central 

frequencies can also be used to reconstruct damage using LWDT. This means the non-central 

frequencies could provide addition information in the reconstruction of damage image. This can be 

attributed to the additional important information regarding the damage geometry, size or the 

magnitude of damage contained by each additional non-central frequency. One of the main 

inferences of this study is that the symmetric frequencies on either side of the central frequency 
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provide different results in the reconstruction of the damage image. This can aid in recognising that 

the most efficient interval for studying multi-frequency approaches of damage reconstruction, i.e., 

the non-central frequency components around the centre of the frequency spectrum. The results also 

reconfirms that the most accurate estimations of the damage parameters are indeed obtained from 

the central frequencies. 

In this study, it has been shown that although the central frequencies are the best sources of 

information in estimating the magnitude of the thickness reduction, the non-central frequencies are 

still helpful and can provide additional information in the image reconstruction. The quality of the 

damage reconstruction was found to be significantly better for regular and symmetric geometries of 

thickness reduction damage that do not contain sharp edges and corners. It can be observed in cross 

shaped damage case that while the deficiencies of the meshing and sharp corners are magnified for 

the central frequency, they are significantly diminished for the non-central frequencies. Hence, one 

can consider an increased weighting of the contribution of non-central frequency components in the 

reconstruction of damage image. Efforts are currently exploiting the use of multi-frequency 

information in the LWDT so that the quality of the reconstructed image can be further improved. 
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