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Abstract

The International Committee on Taxonomy of Viruses authorizes and organizes the taxonomic classification of viruses. Thus
far, the detailed classifications for all viruses are neither complete nor free from dispute. For example, the current missing
label rates in GenBank are 12.1% for family label and 30.0% for genus label. Using the proposed Natural Vector
representation, all 2,044 single-segment referenced viral genomes in GenBank can be embedded in R12. Unlike other
approaches, this allows us to determine phylogenetic relations for all viruses at any level (e.g., Baltimore class, family,
subfamily, genus, and species) in real time. Additionally, the proposed graphical representation for virus phylogeny provides
a visualization of the distribution of viruses in R12. Unlike the commonly used tree visualization methods which suffer from
uniqueness and existence problems, our representation always exists and is unique. This approach is successfully used to
predict and correct viral classification information, as well as to identify viral origins; e.g. a recent public health threat, the
West Nile virus, is closer to the Japanese encephalitis antigenic complex based on our visualization. Based on cross-
validation results, the accuracy rates of our predictions are as high as 98.2% for Baltimore class labels, 96.6% for family
labels, 99.7% for subfamily labels and 97.2% for genus labels.
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Introduction

The rapid development of sequencing technologies produces a

large number of viral genome sequences. Characterizing genetic

sequences and determining viral origins have always been

important issues in virology [1]. The study of sequence similarity

at the interfamily level is especially crucial for revealing key aspects

of evolutionary history [2]. It is known that the commonly used

multiple sequence alignment methods fail for diverse systems of

different families of RNA viruses [3]. Another popular category of

alignment-free methods is based on the statistics of oligomers

frequency and associated with a fixed length segment, known as k-

mers [4]. In the past 10 years alignment-free methods have

attracted a lot of attention from researchers [5–8]. More recently

the genome space method has been shown to be a fast and efficient

way to characterize nucleotide sequences [9,10]. Unlike k-mer

methods, which ignore the positional information of nucleotides,

the natural vector characterization constructs a one-to-one

correspondence between genome sequences and numerical vectors

[10]. Along this line, we construct a viral genome space in R12

based on the quantity and global distribution of nucleotides in viral

sequences. Each sequence is uniquely represented by a single point

in R12, called a Natural Vector (NV). The Euclidean distance

between two points represents the biological distance of the

corresponding two viruses. This allows us to make a simultaneous

comparison against all available viruses at any level (e.g., Baltimore

class, family, subfamily, genus, and species) in a fast and efficient

manner. Using a higher dimensional NV doesn’t change the

classification or phylogenetic relationships. We emphasize that our

NV does not depend on any model assumption. Our approach to

classifying viral genomes is not a partial-sequence-based method; it

uses the global sequence information of genomes. Furthermore, we

propose a two-dimensional graphical representation of viruses in the

genome space which is unique and does not depend on any model

assumption.

Materials and Methods

Overview of the viral genome data
The composition and structure of viral genomes is more varied

than bacterial, plant, or animal kingdoms. The viral genomes may

be single-stranded or double-stranded, linear or circular, and in

single-segmented or multi-segmented configuration. There are

2,418 reference viral genomes in the current GenBank collection

(up to 2012-4-6). In this study, we focus on the 2,044 single-

segment viruses among them (Table S1 in File SI). Baltimore

classification places viruses into one of seven groups based on their

method of viral mRNA synthesis [11]. The International

Committee on Taxonomy of Viruses (ICTV) has also developed

a universal taxonomic scheme for viruses by assigning them order,

family, subfamily, genus, and species [12]. All viruses belonging to

the same family should have the same Baltimore classification.
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After checking the consistency between Baltimore classification

and ICTV families, we find that the original GenBank records of

the viruses in the Retroviridae family (RNA viruses) contain

erroneous DNA label information. Additionally, there are 17

families containing both circular virus(es) and linear virus(es)

(Table S2 in File SI). This is not possible based on the ICTV

classification criteria [12]. Using within-family majority voting

results in the correct shape labels. In Table 1, we show the

corrected Baltimore classification information of the 2,044 single-

segment referenced viruses. Satellites have no Baltimore class and

,NA. refers to unknown classifications.

Among the 2,044 viruses, there are 248 without family labels; a

missing label rate 12.1%. The remaining viruses belong to 72

families. The missing label rates for subfamily and genus are

84.7% and 30.0%, respectively. Relative to the dramatically

increased rate of virus genome sequencing, the expert time and

technical resources of ICTV are too restricted to be able to

continue assigning labels to all new sequences. For details of the

dataset, please see Supporting Information.

Natural vector and genome space
To study virus classification and phylogeny rapidly and

accurately, we construct a novel viral genome space as a subspace

in R4Nz4 (N$2) by means of the natural vector mapping which is

based on the quantity and global distribution of nucleotides in the

sequence. Each sequence is uniquely represented by a single point

in this subspace. The Euclidean distance between two points

represents the biological distance of the corresponding two viruses.

Using the natural vector representation we can perform phyloge-

netic and cluster analysis for all the existing viral genomes.

A key finding of this work is that this viral genome space is a 12-

dimensional space (N = 2). We emphasize that our natural vectors

depend only on the numbers and distributions of nucleotides in the

viral genome sequences. They do not rely on any model

assumption. There are two reasons that the virus is represented

as a point in the viral genome space without losing inherent

biological information. First, the 12-dimensional natural vector

mapping on all the viruses we examined is one-to-one. Second, we

do not gain any more useful information for classification purposes

using the 16-dimensional or higher natural vector mapping. Our

new approach to classifying viral genomes is not a partial-

sequence-based method. It is constructed based on the global

sequence information of genomes.

Let S~(s1,s2,:::,sn) be a nucleotide sequence of length n, that is,

si[fA,C,G,Tg, i = 1, 2, …, n. For k = A, C, G, T, define

wk(:) : fA,C,G,Tg?f0,1g such that wk(s)~1 if s = k and

wk(s)~0 otherwise.

(1) Let nk~
Pn
i~1

wk(si) denote the number of letter k in S.

(2) Let mk~
Pn
i~1

i: wk(si)
nk

be the mean position of letter k.

(3) For j = 2, 3, …, nk, let Dk
j ~

Pn
i~1

(i{mk)j wk(si)
nk

j{1nj{1 .

The natural vector N(S) of a nucleotide sequence S is defined by

(nA,mA,DA
2 ,:::,DA

nA
,nC ,mC ,DC

2 ,:::,DC
nC

,

nG,mG,DG
2 ,:::,DG

nG
,nT ,mT ,DT

2 ,:::,DT
nT

)
ðA1Þ

It has been proved that the correspondence between nucleotide

sequences and their associated natural vectors is one-to-one [10].

The natural vector defined here is essentially the same vector

defined in [10] when si[fA,C,G,Tg only.

In DNA/RNA sequencing data, the standard International

Union for Pure and Applied Chemistry (IUPAC) nucleotide

code is used to describe ambiguous sites, where a single

character may represent more than one nucleotide (see Table

S3 in File SI). Our natural vector defined above can be easily

extended to handle the nucleotide sequences with ambiguous

letters other than A, C, G, T. That is, for k = A, C, G, T, let the

weight wk(si) be the expected count of letter k at position i. For

example,

wA(si)~

1, if si~A;

0, if si~G, T , C, Y , K , S, or B;

1=2, if si~R, M, or W ;

1=3, if si~H, V , or D;

1=4, if si~N:

8>>>>>><
>>>>>>:

For a DNA/RNA sequence with ambiguous letters, the

coordinates of weighted natural vector are defined by the same

formula as in (A1) which is also used for the usual natural vector.

We use this natural vector to construct a viral genome space,

which is a moduli space of viral genomes. In this space each point

Table 1. The dataset and statistical results of our study.

Baltimore class I II III IV V VI VII Satellite ,NA.

Name dsDNA ssDNA dsRNA
ssRNA
(+)

ssRNA
(2)

ssRNA
(RT)

dsDNA
(RT)

Linear number 599 56 45 563 66 58 0 33 19

Circular number 177 272 0 0 1 0 44 103 8

Total Number 776 328 45 563 67 58 44 136 27

Checking Baltimore
classification by NV

Inconsistencies 4 14 5 21 2 7 1 NA NA

Inconsistency Rate 0.01 0.04 0.11 0.04 0.03 0.12 0.02 NA NA

Checking Family
classification by NV

Inconsistencies 58 0 0 11 0 0 0 NA NA

Inconsistency Rate 0.08 0 0 0.02 0 0 0 NA NA

(1) The corrected Baltimore classification information of the 2,044 single-segmented referenced viruses. (2) The Baltimore classification prediction information for the
2,044 viruses. (3) The family classification prediction information given Baltimore class information.
doi:10.1371/journal.pone.0064328.t001
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corresponds to a viral genome. The distance between two viruses

in the space reflects the biological distance between these two

viruses. For a viral genome sequence of length n, we can compute

its (n+4)-dimensional natural vector as in (A1). A noteworthy

contribution of this work is that we do not need to compute the

central moments (Dk
j ) higher than j = 2 in the vector since the 12-

dimensional natural vectors have allowed us to obtain stable

classification results - the 12-dimensional natural vector mapping

(restricted to this dataset) is still one-to-one. Thus, we use the 12-

dimensional natural vector

(nA,mA,DA
2 ,nC ,mC ,DC

2 ,nG,mG,DG
2 ,nT ,mT ,DT

2 ):

Using these natural vectors, we can construct the genome space as

a subset in R12. Every virus corresponds to a point in this space.

Using the Euclidean distance between two points as a metric, we

can perform phylogenetic and clustering analysis for the viral

genome sequences.

Novel graphical representation for phylogeny
Distance matrices or similarity matrices are used by many

algorithms [13–15] to produce either rooted or unrooted

phylogenetic trees of DNA or protein sequences. For example,

the neighbor-joining algorithm [15] produces unrooted trees,

while the UPGMA algorithm [13] produces rooted trees.

Additionally, the matrices produced by sequence alignment

methods may not satisfy the triangle inequality and therefore are

not proper distance matrices. Even if a proper distance matrix and

an algorithm are given, the resulting trees may not be unique

[16,17]. Therefore previous phylogenetic results may be contro-

versial.

With the construction of a natural vector distance matrix we

propose a natural graphical representation to overcome the

disadvantages of existing methods for inferring phylogenies.

Specifically, given a distance matrix of finite elements, the

algorithm is as follows:

(1) For each point A, find the closest point(s) B (B1,B2,:::,Bk) to A.

Then connect A to B (B1,B2,:::,Bk) with a directed line(s) from

A to B. If both A and B are closest to each other then connect

them using a bi-directional line.

(2) We then get many connected components, called level-1

graphs, after step (1). We compute the distance matrix for

these connected components. The distance between two

components is defined as the minimum of all distances

between an element in one component and an element in

another component. We then obtain a new distance matrix, in

which the elements are the connected graphs obtained in step

(1).

(3) Repeat the process in steps (1) and (2) to obtain higher-level

graphs until we get one connected component for all elements,

which is the final graphical representation.

For example, given the distance matrix of 10 elements in

Table 2, we illustrate the graph construction process in Figure 1.

First, we find the closest element(s) for each element and connect

them as shown in Figure 1(A). Then we combine the level-1

connected components to get level-2 components, graph 1 and

graph 2, as shown in Figure 1(B). We check the minimum distance

between these two graphs, and get the new distance matrix in

Table 3. The minimum distance 18 is obtained between element A

in graph 1 and element G in graph 2. So, we connect these two

elements to get a connected graph as shown in Figure 1(C). We use

the directed red line to mark this connection, indicating 2nd level

connection. Clearly, this directional graphical representation

uniquely illustrates the 1st-nearest-neighbor relationships.

The direction in the graph shows the closest element(s) to each

element based on their biological distances. For example, given a

virus A, virologists would like to know which virus B is closest to A.

An arrow from A to B in the graph represents this relation. Here

we need to point out that the natural graphical representation is

not necessarily a tree. As in the example, a cycle may exist in the

graphical representation which may show interesting biological

information.

Results

Predict Baltimore class label
For each virus we find its nearest neighbor in the 12-

dimensional NV genome space and check whether its label

matches that of its nearest neighbor. If we have a complete

genome space which contains all of the viruses it is reasonable

to assume any virus must have a neighbor sharing the same

label.

Firstly, given a nucleotide sequence along with its topological

information (DNA/RNA, single/double-stranded, linear/circu-

lar), we can use our method to predict its Baltimore class label. For

a single-stranded DNA sequence or double-stranded RNA

sequence, there is no need to predict since it exactly belongs to

class II (ssDNA) or III (dsRNA), respectively. For a double-

stranded DNA sequence, it may belong to class I (dsDNA) or VII

(dsDNA (RT)). For a single-stranded RNA sequence, it may

belong to class IV (ssRNA (+)), V (ssRNA (2)), or VI (ssRNA

(RT)). Here we use ‘‘#virus’’ to denote the number of viruses, and

‘‘#error’’ to denote the number of viruses with inconsistent

nearest neighbor labels. Then the inconsistency rate is defined by

#error/#virus 6100%. For classes I and VII, the inconsistency

rate for linear viruses is 0/599 = 0% since all class VII viruses are

Figure 1. The graph construction process of a distance matrix shown in Table 2. (A) From each element draw a directed line(s) to its closest
element(s). (B) Combine the connected elements in (A) using directed lines, resulting in two connected graphs, graph 1 and graph 2. (C) The final
graphical representation is obtained by connecting element A in graph1 and element G in graph2, based on the distance matrix in Table 2.
doi:10.1371/journal.pone.0064328.g001

Table 2. The distance matrix of 10 elements.

A B C D E F G H I J

A 0

B 9 0

C 13 4 0

D 23 21 23 0

E 27 34 38 30 0

F 26 36 39 39 12 0

G 18 26 30 25 12 16 0

H 19 8 9 18 34 25 25 0

I 20 14 11 30 43 44 35 12 0

J 28 21 20 18 20 47 37 17 20 0

doi:10.1371/journal.pone.0064328.t002
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circular, and the inconsistency rate for circular viruses is 3/

(177+44) = 3/221 = 1.36%. For classes IV, V, and VI, the

inconsistency rate for linear viruses is 45/(563+66+58) = 45/

687 = 6.55%, and the inconsistency rate for circular viruses is 0/

1 = 0%. Thus the overall inconsistency rate is (3+45)/

(599+221+687+1) = 3.18%.

The reason for the inconsistency is due to the sparsity of the

reference dataset, i.e., the dataset in this study does not cover all of

the viruses. In this case, prediction based on a distant neighbor is

not reliable. For example, the distance between virus #170 (class I)

and its nearest neighbor virus #62 (class VII) is 1265.021. To

measure the relative magnitude of 1265.021, we collect all the

distances D(A) between virus A in class VII and its nearest

neighbor within class VII. Then (1265.0212maximum)/

(Q32Q1) = 2.651, where ‘‘maximum’’, ‘‘Q3’’, ‘‘Q1’’ are the

maximum, .75th quantile, and .25th quantile of the collection of

D(A)’s, and equal to 808.147, 320.170, 147.861, respectively. Such

a big relative distance indicates that the distance from virus #170

to its nearest neighbor virus # 62 is much bigger than all the

nearest distances of the viruses belonging to class VII. The

prediction that virus #170 belongs to class VII based on the label

of virus #62 is thus unreliable.

In practice, for each class, we collect the nearest distance for

each virus within the class, and get the .75 quantile of those

nearest distances. To predict the class label of a virus, we first

find its nearest neighbor which belongs to class I, for example,

then compare its nearest distance with the .75th quantile of the

nearest distances of class I. We make the prediction only if the

nearest distance is less than the .75th quantile, called a

prediction with .75-cutoff. Based on this cut-off setting, for

classes I and VII, the inconsistency rate for circular viruses is

updated to 2/(177+44) = 2/221 = 0.90%. For classes IV, V,

and VI, the inconsistency rate for linear viruses is updated to

16/(563+66+58) = 16/687 = 2.33%. Thus the overall inconsis-

tency rate is 18/(599+221+687+1) = 1.19%. Therefore, in this

study we calculate a .75 cut-off for predicting Baltimore class,

family, subfamily, and genus labels to avoid unreliable

predictions. For cut-off quantile other than .75, see Tables

S4–S5 in File SI.

Secondly, given a virus with only sequence information, we can

predict its Baltimore class label with exceptional results. As shown

in Table 1, of the 2,044 viruses only 4+14+5+21+2+7+1 = 54 are

labelled by the nearest neighbor predictor with the incorrect

Table 3. The distance matrix of 2 graphs obtained from
Figure 1.

Graph 1 Graph 2

Graph 1 0

Graph 2 18 0

doi:10.1371/journal.pone.0064328.t003

Figure 2. The natural graphical representation for the 44 single-segment referenced viruses of Baltimore VII.
doi:10.1371/journal.pone.0064328.g002
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Baltimore class; an inconsistency rate of 2.64%. The inconsistency

rates for classes III (0.11) and VI (0.12) are much higher than other

classes due to their smaller class sizes (45 for III and 58 for VI).

With more virus samples added into the database, the inconsis-

tency rate could be reduced further. For any virus missing

Baltimore class information we check its nearest-neighbor’s label.

If the distance is sufficiently small we say with confidence that the

missing label is the same as that of its nearest-neighbor. Using this

method we obtain the Baltimore class prediction results presented

in Table S6 of File SI.

Predict family, subfamily, and genus label
We next go one level deeper and check the predictability of

family labels given their Baltimore classification with the NV using

the same nearest neighbor prediction framework. Given a virus

with only sequence information, we can predict its family label

according to Baltimore class as shown in Table 1. Of the 2,044

viruses, only 58+11 = 69 are assigned inconsistent family labels

relative to their nearest neighbors; an inconsistency rate of 3.38%.

We can again perform the same process with subfamily and genus

labels given the family information. Those results are presented in

Table S7 of File SI. Of the 2,044 viruses, only 6 are assigned

inconsistent subfamily labels relative to their nearest neighbors; an

inconsistency rate of 0.29%. Similarly, only 57 viruses are assigned

inconsistent genus labels; an inconsistency rate of 2.79%.

Using our method we are also able to make predictions for

viruses with no assigned family, subfamily, or genus labels. For any

virus missing any of the above information we check its nearest-

neighbor’s label. If the distance is sufficiently small we say with

confidence that the missing label is the same as that of its nearest-

neighbor. Using this method we obtain the results presented in

Tables S8–S10 in File SI.

Natural graphical representation of viral phylogeny
In Figure 2, we give the natural graphical representation for the

44 single-segment referenced viruses of Baltimore VII. Each

integer represents a virus (see Supporting Information) and each

real number on an arrow is the distance between the two viruses.

The two families Hepadnaviridae and Caulimoviridae are clearly

separated in the graph. In the Hepadnaviridae family there are two

genera Avihepadnavirus and Orthohepadnavirus. Viruses #1476 (Ross’s

goose hepatitis B), #1529 (Sheldgoose hepatitis B), and #1583

(Snow goose hepatitis B) are not assigned ICTV genus labels. In

the figure we can see their nearest neighbors are all in

Avihepadnavirus genus, thus we predict that they belong to the

genus Avihepadnavirus. These predictions are consistent with other

Figure 3. The natural graphical representation for the 45 single-segment referenced viruses of Baltimore III.
doi:10.1371/journal.pone.0064328.g003
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researchers’ work [18–20]. There are six genera (Badnavirus,

Petuvirus, Caulimovirus, Cavemovirus, Soymovirus, and Tungrovirus) in the

family Caulimoviridae. Virus #988 (Lucky bamboo bacilliform) has

no genus label and its nearest neighbor is virus #482 (Dracaena

mottle). The distance between the two viruses is only 14.52, far less

than the other distances, thus we predict confidently virus #988 is

also in the Badnavirus genus. This prediction is consistent with the

result obtained by Chen et al. [21]. Virus #217 (Bougainvillea

spectabilis chlorotic vein-banding) and virus #454 (Cycad leaf

necrosis) are labelled as Badnaviruses by ICTV. However, in our

genome space these two viruses are far away from all the other

Badnaviruses. Similarly, viruses #325 (Cestrum yellow leaf curling),

#616 (Eupatorium vein clearing), and #1481 (Rudbeckia flower

distortion) are far away from all the other Caulimoviruses. Thus we

question the ICTV genus classifications for these viruses as shown

in the figure.

In Figure 3, we also give the natural graphical representation for

the 45 single-segment referenced viruses of Baltimore III. The

three families Endornaviridae, Hypoviridae, and Totiviridae are clearly

separated in this graph. Virus #372 (Circulifer tenellus virus 1)

and #1611 (Spissistilus festinus virus 1) are not assigned with

ICTV family labels. They are very close together (distance

308.13), but far away from the other three families. Thus we

predict these two viruses belong to a new family. This prediction is

consistent with Spear et al.’s work [22]. ICTV puts virus #1317

(Phlebiopsis gigantean mycovirus dsRNA 1) into Totiviridae family,

however, in our 12-dimensional genome space it is far away from

the majority of Totiviridae family. Thus we question the family

classification for this virus. Similarly, Lim et al. [23] studied the

complete genome sequence of this virus and agree that it may be

from a novel family. Viruses #483 (Drosophila A), #1006

(Magnaporthe oryzae virus 2), #1460 (Rhododendron virus A),

and #1595 (Southern tomato) are not assigned ICTV genus

labels. Our predictions are consistent with the work of other

researchers [24–27]. Virus #704 (Gremmeniella abietina type B

RNA virus XL1) is put into Endornaviridae family and Endornavirus

genus by [28]. However, the authors make this decision by

analyzing the alignments of only conserved gene regions of viruses.

On the other hand, our NV is constructed using the entire genome

sequence leading us to question this classification result. Similarly,

we question the genus labels of viruses #197 (Black raspberry virus

F), #213 (Botryotinia fuckeliana totivirus 1), #703 (Gremmeniella

abietina RNA virus L2), and #1961 (Ustilago maydis virus H1) in

Totivirus. It should be noted that the Totiviridae family includes not

only single-segment but also multi-segment genomes (Helicobasi-

dium mompa No. 17 dsRNA virus). Here we only focus on our

dataset of single-segment viruses. Further study of multi-segment

viruses may provide an explanation for the scattering of the

Totiviridae family members.

In Figure 4, we give the natural graphical representation for the

67 single-segment referenced viruses of Baltimore V. The four

families Filoviridae, Rhabdoviridae, Bornaviridae, and Paramyxoviridae are

clearly separated in this graph. We predict that viruses #186

(Beilong virus) and #877 (J virus) form a new genus since these

two close viruses are far away from other genera in Paramyxoviridae

family. Actually, this prediction is precisely consistent with other

researchers’ work [29,30], and these authors have named this new

genus as Jeilongvirus. Viruse #634 (Fer de lance virus) also belongs

to a new genus according to our work, and other researchers [31]

have named this new genus as Ferlavirus. Viruses #1202

(Nyamanini virus) and #1058 (Midway virus) form a new genus

named Nyavirus according to the literature [32]. This is consistent

with our prediction. Similarly, according to our graphical

representation we also suggest several new genera. Viruses #290

Figure 4. The natural graphical representation for the 67 single-segment referenced viruses of Baltimore V.
doi:10.1371/journal.pone.0064328.g004
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(Canine distemper virus) and #481 (Dolphin morbillivirus) form a

new genus, we name it as Morbillivirus II; viruses #875 (Iranian

maize mosaic nucleorhabdovirus), #1011 (Maize mosaic virus),

and #1778 (Taro vein chlorosis virus) form a new genus; virus

#2011 (Wongabel virus) form a new genus, which is consistent

with Gubala et al.’s work [33]; virus #1336 (Pneumonia virus of

mice J3666) form a new genus. We also question genus

classifications for several viruses, including viruses #111 (Avian

paramyxovirus 6), #1521 (Sendai virus), #1355 (Porcine

rubulavirus). The authors [34–36] make these classification

decisions by analyzing specific gene coding regions or protein

sequences, while our natural vector uses the global sequence

information of genomes. Furthermore, for genera Ephemerovirus

and Jeilongvirus, we question their family classifications provided by

ICTV because they are closer to other families (Jeilongvirus to

family Filoviridae and Ephemerovirus to family Paramyxoviridae) based

on our graphical representation. For two Metapneumovirus meme-

bers #109 (Avian metapneumovirus) and #814 (Human metap-

neumovirus), ICTV puts them into the Paramyxoviridae family,

while our results show that they are closer to the Rhabdoviridae

family. In addition, these two viruses are not connected in our

graphical representation. One possible reason is that there might

be some metapneumovirus viruses from animals other than human

and avian that may be missing from our dataset.

For Baltimore classes I (776 viruses), II (328 viruses), IV (563

viruses), and VI (58 viruses), we provide complete nearest-

neighbor relationships in the graph description of Baltimore

classes at Supporting Information. It is computationally difficult, if

not infeasible, for multiple sequence alignment to handle these

large classes.

West Nile virus (WNv) is a single-stranded plus-sense RNA virus

that is classified within the family Flaviviridae and genus Flavivirus by

the ICTV. Recent reports of widespread transmission of this

mosquito-borne virus in humans in the United States highlight this

threat to public health. During August 2012, the Centers for

Disease Control and Prevention reported 1,590 human cases and

65 deaths nationwide [37]. To study the origin of this virus we use

our method to visualize 53 viruses of Flaviviridae family in our

dataset. In Figure 5, the three genera Hepacivirus, Flavivirus, and

Pestivirus are clearly separated. Viruses #1999 (NC_001563.2) and

#2000 (NC_009942.1) are two West Nile viruses, and viruses

#879 (Japanese encephalitis virus, NC_001437.1) and #1962

(Usutu virus, NC_006551.1) are closest to them, respectively. This

is consistent with [38] that both WNv and Usutu virus belong to

the Japanese encephalitis antigenic complex. Thus, the phyloge-

netic relationship of Flaviviridae family revealed in our findings

could provide more information helpful to public health officials

for prevention and treatment.

Discussion

As a comparison, we also do Multiple Sequence Alignment

(MSA) analysis for three small Baltimore classes (III, dsRNA; V,

ssRNA(2); VII, dsDNA(RT)) to test if each virus’ nearest neighbor

belongs to the same family as itself. We use the ClustalW program

from the MEGA 5.0 software [39] to do the alignment for these

Figure 5. The natural graphical representation for 53 viruses of the Flaviviridae family.
doi:10.1371/journal.pone.0064328.g005
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three groups and then check the label consistency of the viruses

with its nearest neighbor. There are no inconsistent family labels

found in Baltimore classes V and VII, and 1 inconsistent family

label in Baltimore class III. The inconsistency might be caused by

MSA’s inability to differentiate between families of viruses with

different mutation rates (3). However, one of the most serious

problems for MSA is the computational time. MSA requires

approximately 2 hours, 10 hours, and 1 hour to generate the

alignment results for Baltimore classes III, V and VII, respectively,

on a PC computer (CPU 1.67 GHz, 3 GB of RAM). Using our

method, it takes 2.1 seconds, 9.4 seconds, and 1.7 seconds

respectively to get similar results (see Table 1) on the same

computer. For Baltimore classes I (776 viruses), II (328 viruses),

and IV (563 viruses) it is computationally difficult, if not infeasible,

for MSA to handle these large classes. Using our method, it takes

about 76.7 minutes, 5.2 seconds, and 45.1 seconds, respectively.

Note that most of the computational time is spent calculating the

natural vectors. To classify a new virus, typically it takes less than

one second to calculate its natural vector and determine its

classifications. Our approach outperforms MSA with respect to

computational efficiency since there is no need to recalculate the

natural vectors again for the known viruses. As for Baltimore class

VI, there is no need for a check because all the 58 viruses belong to

one family.

In conclusion, there are four major advantages to our method:

(1) Once a virus’ NV has been calculated, it can be stored in a

database. It is unnecessary to recalculate the NV of a virus for any

subsequent applications, whereas in multiple alignment methods

realignment is necessary when additional sequences are added to

the previously aligned group. (2) Our method is much faster than

alignment methods and easier to manipulate. The complexity of

our method is O(nm2) with length n and number m of viral

genome sequences which is much faster in providing accurate

comparisons than other known methods such as multiple sequence

alignment with O(nm). (3) One can have a global comparison of all

viral genomes simultaneously. Using our new two-dimensional

phylogenetic graph, the results can be displayed and viewed

clearly; this is user-friendly and allows even non-experts to

understand the relationship among different genomes via the

graph of the genome space. (4) The NV method is robust with

respect to deletion, duplication, and inversion. Typically, the

change of natural vector measured in Euclidean distance is around

k with respect to mutations involving k letters (k is negligible with

respect to the length n). See Section 4 Simulated evaluation of (12-

dimensional) genome space including Table S11 in File SI for

more details.

Supporting Information
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sional) genome space, including Table S11; (5) Graph
descriptions of Baltimore I, II, IV, VI; (6) List of virus
information used in this paper; (7) Supplementary
references.
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