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Abstract 20 

This study presents single-grain optically stimulated luminescence (OSL) chronologies for the 21 

archaeological site of Galería de las Estatuas – the first systematically excavated Middle 22 

Palaeolithic site within the karst system of the Sierra de Atapuerca archaeological complex, 23 

northern Spain. The single-grain OSL ages are compared with paired single-grain thermally 24 

transferred OSL (TT-OSL) dating results for a selection of samples in order to better assess quartz 25 

signal bleaching characteristics of endokarstic deposits preserved at Atapuerca. In total, seven 26 

luminescence dating samples were collected from four lithostratigraphic units exposed in two 27 

excavation pits (GE-I and GE-II). The single-grain OSL equivalent dose (De) distributions are 28 

characterised by generally low overdispersion (20-30%), suggesting appropriate bleaching at 29 

deposition. The resultant single-grain OSL ages reveal that the sediment sequence and 30 

archaeological remains excavated in pit GE-I accumulated 80-112 ka, while the upper layers of 31 

excavation area GE-II were deposited 70-79 ka. The replicate single-grain TT-OSL ages are in 32 

agreement with the OSL chronologies at 2σ for three of the four samples investigated; although in 33 

all cases the TT-OSL ages were systematically older than their single-grain counterparts. Apparent 34 

TT-OSL residual doses (i.e., TT-OSL De values in excess of their corresponding OSL De values) of 35 

9 to 65 Gy were observed for all samples. These excess TT-OSL De values are generally low in 36 

comparison to the natural dose ranges of TT-OSL dating applications undertaken elsewhere in the 37 

Atapuerca karst system. The single-grain TT-OSL and OSL dating comparisons build on daylight 38 

bleaching experiments and modern analogue studies performed on other Atapuerca exogeneous 39 
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infill deposits and suggest reasonable potential for TT-OSL signal resetting down to relatively low 1 

levels for at least some sediments preserved in the Atapuerca karstic cavities. The quartz single-2 

grain OSL chronologies obtained in this study place the Middle Palaeolithic sequence of Galería de 3 

las Estatuas within marine isotope stage (MIS) 5 and the beginning of MIS 4, and provide firm 4 

evidence for human occupation of the Sierra de Atapuerca during a previously unreported time 5 

period. 6 

 7 

Keywords Single-grain OSL, TT-OSL, Atapuerca, Middle Palaeolithic, Neandertal, Iberia, Spain. 8 

 9 

1. Introduction 10 

The extensive karst system of the Sierra de Atapuerca (northern Iberian Plateau, Spain; Figure 1a) 11 

preserves several Early and Middle Pleistocene allochthonous infill sites (e.g., Gran Dolina, Galería 12 

complex, Sima del Elefante and Sima de los Huesos), which showcase important 13 

palaeoanthropological (Homo antecessor and early representatives of the Neandertal lineage; 14 

Bermúdez de Castro et al., 1997; Arsuaga et al., 2014), mammal faunal (Rodríguez et al., 2011) and 15 

Lower Palaeolithic records (Carbonell et al., 2008; Ollé et al., 2013), as well as extensive Upper 16 

Palaeolithic and Neolithic sequences (Carretero et al., 2008; Bañuls-Cardona et al., 2017). More 17 

than 30 Middle Palaeolithic open-air sites have additionally been discovered in the vicinity (<2 km) 18 

of the Atapuerca hills and surrounding river valleys (Navazo and Carbonell, 2014), and several of 19 

these sites have revealed rich Middle Palaeolithic assemblages (Navazo et al., 2011; Arnold et al., 20 

2013). Until recently, however, equivalent Middle Palaeolithic records have not been reported from 21 

within the karst system (Aranburu et al., 2012). In this regard, Galería de las Estatuas represents an 22 

important new archaeological sequence within the Sierra de Atapuerca complex. It is the first 23 

Middle Palaeolithic site (<200 ka) to be systematically excavated within the endokarstic infill 24 

deposits of Atapuerca, and it is invaluable for providing improved insights into Neandertal 25 

occupational histories and subsistence/exploitation strategies in the region (Arsuaga et al., 2017).  26 

 27 

The main archaeological and palaeoecological findings at Galería de las Estatuas have been 28 

summarised in Arsuaga et al. (2017) and include: (i) a lithic assemblage composed of 499 objects 29 

showing clear Mousterian affinities (e.g., centripetal flake cores, side-scrapers, denticulates), with 30 

some products displaying characteristic Levallois débitage; (ii) a detailed pollen record revealing, 31 

from the base upwards, a change from an open environment and dry/cool climate to a phase of 32 

shrub expansion, followed by an incremental increase in wooded species, and a more humid and 33 

warmer climate at the top of the sequence; and (iii) an extensive micro- and macro-mammal faunal 34 

record, with the latter being dominated by ungulates and displaying abundant evidence of human 35 
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modification (cut marks and anthropogenic breakage). The only chronological constraint available 1 

for this new site is a series of eight radiocarbon (14C) ages obtained on faunal remains from levels 2 

LU1 and LU3, which range from 43.5 to >46.3 14C ka BP (uncalibrated), and a U-series age of ~14 3 

ka obtained for the base of a stalagmitic crust capping the entire sedimentary sequence (Martínez-4 

Pillado et al., 2014; Arsuaga et al., 2017). All of the 14C ages are close to the analytical limits of the 5 

technique; five out of the eight samples yield infinite uncalibrated age ranges, and all eight samples 6 

yield non-finite 95.4% calibrated age ranges. Consequently, Arsuaga et al. (2017) cautiously 7 

interpreted these 14C results as minimum ages and were only able to suggest that the archaeological 8 

accumulation at Galería de las Estatuas is likely of Late Pleistocene age. Given these problems, and 9 

the limited stratigraphic coverage of existing age control, there remains a need for a more 10 

comprehensive chronological study of the site. 11 

 12 

The main aim of this study is to provide the first detailed chronological constraint on the various 13 

sediment layers at Galería de las Estatuas using single-grain optically stimulated luminescence 14 

(OSL) dating. We also present paired single-grain thermally transferred OSL (TT-OSL) dating 15 

comparisons for a subset of samples, with the aim of investigating the applicability of this approach 16 

for the Late Pleistocene infill karst deposits at Galería de las Estatuas. The majority of luminescence 17 

dating studies undertaken elsewhere on (>200 ka) sedimentary sequences at Atapuerca have used 18 

alternative ‘extended-range’ luminescence signals with higher dose saturation limits (Berger et al., 19 

2008), including single-grain TT-OSL and post infrared IRSL dating (Demuro et al., 2014; Arnold 20 

et al., 2014; 2015; Arnold and Demuro, 2015). However, the relatively slow bleaching 21 

characteristics of TT-OSL signals (on the order of days, compared to seconds for the conventional 22 

OSL dating signal; Duller and Wintle, 2012; Duval et al., 2017) means that higher residual doses 23 

and age overestimation are a potential problem in this setting (Wang et al., 2006; Tsukamoto et al., 24 

2008; Jacobs et al., 2011). An additional aim of this study is therefore to gain insights into TT-OSL 25 

signal resetting experienced by some of the younger Atapuerca karstic sediments, via assessments 26 

of quartz luminescence signals that bleach at different rates. 27 

 28 

2. Site description and luminescence dating samples  29 

The site of Galería de las Estatuas is situated 1020 masl in the uppermost level of the Cueva 30 

Mayor–Cueva del Silo karst system (Figure S1), adjacent to a palaeoentrance that has been sealed 31 

by a stalagmitic flowstone. Two test pits (<2 m-deep), denoted GE-I (9 m2; ca. 2 m-deep) and GE-II 32 

(6 m2; ca. 1.5 m-deep), have been excavated at this site. These test pits are located c. 18-20 m from 33 

the ancient cave entrance (Ortega, 2009). In GE-I, five lithostratigraphic units (LU) have been 34 

identified within the sedimentary sequence below the capping flowstone, while in GE-II, which has 35 
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been less extensively excavated, only two LUs have currently been identified (Arsuaga et al., 2017). 1 

Archaeological and palaeontological remains have been recovered from all LUs, although the 2 

material recovered from LU1 and LU5 in pit GE-I was relatively scarce. Sedimentological analyses 3 

of the LUs from both excavation pits indicate that the preserved sediment is allochthonous to the 4 

karst system (Aranburu et al., 2012; see Supplementary Information for further description of each 5 

LU). Transportation of these deposits into the cave interior is thought to have occurred via 6 

gravitational mass movement of water-saturated clays (i.e., debris flows), which simultaneously 7 

carried various proportions of clasts into the cavity (Arsuaga et al., 2017). The morphology of the 8 

gallery, as well as the position of the karstic infill deposits in relation to the cave entrance, suggest 9 

that the opening was a shallow ramp that allowed the progressive accumulation of fine-grain 10 

sediments and clasts under direct or indirect daylight, and ensured their subsequent transportation 11 

20 m towards the cave interior during discrete runoff events (ramp inclination at the points of 12 

excavation is 5-8°). The allochthonous cave infill deposits being dated in this study originate from 13 

surface soils immediately surrounding the cave entrance, which contain a significant proportion of 14 

wind-blown silts and sands (Berger et al., 2008). Aeolian transportation and continued sub-aerial 15 

surface reworking of these sediments is likely to have favoured prolonged exposure to sunlight and 16 

full OSL signal resetting prior to being washed into the cave; as borne out by the very low residual 17 

De value obtained for modern surface sediments collected adjacent to several of the Atapuerca 18 

endokarst entrances (-0.03 ± 0.04 to 0.18 ± 0.07 Gy; see Arnold et al., in press). The relatively close 19 

proximity of the studied excavation pits to the original cave entrance is also thought to have 20 

favoured minimal sediment transportation residence times within the cavity prior to final 21 

deposition.  22 

 23 

In total, seven luminescence dating samples were collected from the karstic infill deposits of 24 

Galería de las Estatuas as part of the present study: five samples were obtained from excavation pit 25 

GE-I (Figure 1b) and two samples were taken from pit GE-II (Figure 1c).  26 

 27 

3. Luminescence dating methods 28 

3.1 Instrumentation, dose rates and equivalent dose (De) estimation 29 

Full details of the luminescence dating procedures employed in this study, including sample 30 

preparation, instrumentation, dose rate estimation, single-grain rejection criteria, and De 31 

measurement procedures, are provided in the Supplementary Information. Single-grain OSL dating 32 

was undertaken on all seven samples, while additional single-grain TT-OSL measurements were 33 

made on selected samples (GE16-1, GE16-4, GE16-6 and GE16-7). Environmental dose rates 34 

(Table S1) have been determined using a combination of in situ gamma spectrometry and low-level 35 
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beta counting. Cosmic-ray dose rates have been calculated using the approach described in Prescott 1 

and Hutton (1994).  2 

 3 

Single-grain OSL and TT-OSL De measurements were made using the single-aliquot regenerative-4 

dose (SAR) protocols described in Murray and Wintle (2000) and Stevens et al. (2009), 5 

respectively, which were modified to enable measurements of individual grains (e.g., Arnold et al., 6 

2016; Demuro et al., 2014; Table S3). Single-grain dose recovery tests performed on both the OSL 7 

and TT-OSL signals support the suitability of the SAR protocols for dating these samples 8 

(corresponding dose recovery ratios = 0.98 ± 0.03 and 1.12 ± 0.14; see Supplementary Information, 9 

Figure S2 and Table S4). 10 

 11 

4. Results  12 

4.1 Single-grain OSL signal characteristics and De estimates  13 

Approximately 30-70% of the measured grains produced detectable OSL signals, with the brightest 14 

grains (1-3%) having 100-10,000 net counts / Gy in the first 0.09 s stimulation (Figure 2a). The 15 

measured OSL signals were also fast-decaying and were generally depleted by >90% within the 16 

first 0.18 s of stimulation. After applying the SAR rejection criteria, 4-9% of the measured grains 17 

were considered suitable for De estimation (Table S5). An example of a sensitivity-corrected dose-18 

response and OSL decay curve for a moderately bright grain that passed the rejection criteria is 19 

shown in Figure 2b.  20 

 21 

The single-grain OSL De distributions display relatively low scatter, with six out of the seven 22 

samples producing overdispersion values of 20-26% and one sample (GE16-7) producing a slightly 23 

higher, albeit consistent, overdispersion of 30 ± 4% (Figure 3 and Figure S4; Table 1). None of the 24 

samples are considered to be significantly positively skewed according to the criterion outlined by 25 

Arnold and Roberts (2009). The overdispersion values of these karstic infill samples are also in 26 

agreement at 2σ with what is typically observed for well-bleached samples (~20%; Arnold and 27 

Roberts, 2009) and, with the exception of GE16-7, they are consistent at 2σ with the overdispersion 28 

value obtained in the dose-recovery test (10 ± 5%). Representative single-grain OSL burial dose 29 

estimates have therefore been calculated using the central age model (CAM) of Galbraith et al. 30 

(1999). The single-grain CAM De values obtained for the Galería de las Estatuas samples range 31 

between 85 to 145 Gy (Table 1).  32 

 33 

The reliability of the single-grain OSL De estimates, as well as their usefulness for undertaking 34 

comparative TT-OSL bleaching assessments, will partly depend on whether the accepted grain 35 
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populations have sufficiently high dose saturation limits to ensure finite De estimation over the true 1 

natural burial dose ranges of interest (particularly as the measured De values typically exceed 100 2 

Gy). To examine whether the single-grain OSL CAM De values have been compromised by dose 3 

saturation, we analysed the characteristic saturation dose (D0) value for each accepted grain. The 4 

weighted mean (CAM) D0 value for the combined Galería de las Estatuas sample dataset, calculated 5 

from all grains (n = 521), is 87 ± 1 Gy (Figure S5). The majority of accepted grains (~90%) 6 

produced D0 values in the range of 40 to 160 Gy, with the remaining grains (~10%) having D0 7 

values of >160 Gy. In general, these D0 values are high enough to enable finite De determination 8 

over the burial dose ranges of these samples (50-250 Gy); hence we do not consider that the single-9 

grain OSL ages have been negatively affected by dose saturation. To explore this issue further, we 10 

applied the 2 × D0 acceptance threshold criterion outlined by Demuro et al. (2015), which ensures 11 

that only grains with 2 × D0 values higher than a specific burial dose are accepted for final De 12 

estimation. This additional quality assurance criterion is designed to eliminate grains that produce 13 

unrealistically low De values purely as a result of insufficient dose saturation limits, thus avoiding 14 

potential age underestimation arising from inherently unsuitable grains. Progressively higher 2 × D0 15 

thresholds of 140 to 260 Gy (increasing in 40 Gy increments) were applied to all the samples, and 16 

the effects on weighted mean De were examined after taking into consideration associated 2σ 17 

uncertainty ranges (see details in Arnold et al., 2016). For all seven samples, it was found that 18 

selecting grains with progressively higher D0 values did not result in significantly higher CAM De 19 

values (Figure S6). Instead, both the CAM De and overdispersion (data not shown) remained within 20 

2σ of the original values. Although a slight decrease in De is observed in samples GE16-4 and 21 

GE16-5 after a 2 × D0 threshold of 220 Gy is applied, this trend is not deemed statistically 22 

significant since the resulting ages do not deviate beyond the 1σ ranges of the original values. These 23 

results indicate that the original single-grain OSL De values (and ages) calculated using all accepted 24 

grains were not adversely affected by OSL dose saturation.  25 

 26 

4.2 Single-grain OSL ages  27 

The single-grain OSL ages obtained for excavation pit GE-I are stratigraphically consistent and 28 

range between ~112 ka and ~80 ka (Table 1). These ages indicate that the sequence at GE-I was 29 

deposited during marine isotope stage (MIS) 5. The sedimentary sequence in excavation pit GE16-30 

II (upper units) has a similar, albeit slightly younger, chronology, which extends from the end of 31 

MIS 5 to the beginning of MIS 4; stratigraphically consistent ages of 79 ± 5 ka (GE16-7) and 70 ± 5 32 

ka (GE16-6) were obtained for LU2 and LU1, respectively. These single-grain OSL dating results 33 

suggest that the two sedimentary sequences excavated at Galería de las Estatuas potentially cover 34 
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the same time period (when considering their 2σ age ranges). The upper half of LU2 and LU1 in 1 

excavation pit GE-I are therefore likely correlative with LU2 from excavation pit GE-II.  2 

 3 

4.3 Single-grain TT-OSL dating results 4 

The majority of measured grains (60-80%) did not produce detectable TT-OSL signals (Table S6). 5 

Grains that did produce TT-OSL signals were generally very dim (e.g., the brightest 1% of grains 6 

produced 0.5-1 net counts / Gy / 0.09 s; Figure 2a), with only 1-5% of measured grains being 7 

accepted for final De estimation (Table S6). An example of a representative TT-OSL dose response 8 

and decay curve for an accepted grain is shown in Figure 2c. The single-grain TT-OSL De 9 

distributions of samples GE16-1, GE16-4 and GE16-7 were generally less scattered than their OSL 10 

counterparts (overdispersion values were 18-21%), with only sample GE16-6 having a higher 11 

overdispersion (45%) (Table 1; Figure S7). All four samples produced CAM De values that were 12 

higher (by 9 to 65 Gy) than their corresponding single-grain OSL CAM De values (after correcting 13 

for dose rate differences related to the different grain sizes being measured). However, three of the 14 

four samples (GE16-4, GE16-6 and GE16-7) produced final single-grain TT-OSL ages in 15 

agreement with their paired single-grain OSL ages at 2σ (Table 1).  16 

 17 

The TT-OSL age of GE16-7 (84 ± 7 ka) was in closest agreement with its OSL counterpart (79 ± 5 18 

ka), and this sample may be regarded as having experienced adequate TT-OSL signal bleaching at 19 

deposition. The low number of De values obtained for GE16-4 (n = 14; Table 1), and the large 20 

uncertainty associated with the final age estimate, potentially complicate the interpretations of TT-21 

OSL bleaching adequacy for this sample. The TT-OSL and OSL ages of this sample are in 22 

agreement at 2σ but additional single-grain TT-OSL measurements would be needed to confirm its 23 

TT-OSL bleaching history. For sample GE16-6, the CAM TT-OSL age (86 ± 8 ka) is within 2σ of 24 

the OSL age (70 ± 5 ka) but the large overdispersion obtained for the TT-OSL dataset (45 ± 7%) 25 

(Table 1) may indicate additional, extrinsic De scatter related to minor populations of partially 26 

bleached grains (Figure 3). Application of the 3-parameter and 4-parameter minimum age models 27 

(MAM-3 and MAM-4; Galbraith et al., 1999) to this TT-OSL De dataset produced ages that were 28 

systematically younger than (though within 2σ of) the single-grain OSL age of GE16-6 (in italics 29 

Table 1). Sample GE16-1 displays the highest offset between its replicate single-grain TT-OSL and 30 

OSL ages. Although the TT-OSL De dataset for this sample has a low overdispersion of 20 ± 6%, 31 

which may indicate full signal resetting, the TT-OSL CAM De is ~50% higher than its OSL 32 

counterpart, and the resulting TT-OSL age (123 ± 10 ka) overestimates the OSL age (83 ± 5 ka) 33 

beyond its 2σ uncertainty ranges. It may be worth noting that the single-grain TT-OSL dose 34 

recovery test performed on this sample yielded a measured-to-given dose ratio that was 35 
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systematically in excess of unity by ~12% (albeit consistent with the given dose at 2σ). The higher 1 

TT-OSL age for sample GE16-1 may therefore partly originate from intrinsic De scatter related to 2 

the chosen SAR measurement protocol. 3 

 4 

5. Discussion and conclusion 5 

The single-grain TT-OSL and OSL dating comparisons undertaken in this study build on daylight 6 

bleaching experiments and modern analogue studies performed elsewhere on Atapuerca exogeneous 7 

infill deposits (Demuro et al., 2015, Arnold et al., in press), and suggest reasonable potential for TT-8 

OSL signal resetting down to relatively low levels for some sediments preserved in the Atapuerca 9 

karstic cavities. All four samples contained large populations of grains with seemingly well-10 

bleached TT-OSL signals, indicating prolonged (>6 weeks; Demuro et al., 2015, Arnold et al., in 11 

press) exposure to sunlight prior to burial within the cave. The single-grain TT-OSL ages are in 12 

agreement with the replicate OSL chronologies at 2σ for three of the four samples investigated; 13 

although in all cases the TT-OSL ages were systematically older than their single-grain 14 

counterparts. Mean TT-OSL residual doses (calculated as the difference between paired OSL and 15 

TT-OSL CAM De values) varied widely for the four samples, ranging between ~9 and ~65 Gy after 16 

correcting for grain-size dosimetric effects. These results suggest that it may be unsuitable to 17 

generalise about TT-OSL dating adequacy for allochthonous cave infill deposits without 18 

undertaking site-specific assessments. As our dating comparisons demonstrate, a useful approach 19 

for assessing TT-OSL bleaching adequacy involves simultaneously applying a suite of 20 

luminescence signals that are optically reset at different rates (i.e., OSL, pIR-IR), particularly when 21 

reliable independent age control is unavailable (e.g., Demuro et al., 2014; 2015; Hamm et al., 2016; 22 

Jacobs et al., 2017; Arnold et al., in press). In general, the mean TT-OSL residual doses observed at 23 

Galería de las Estatuas are relatively low in comparison to the natural dose ranges of TT-OSL 24 

dating applications undertaken elsewhere in the Atapuerca karst system (either due to their high 25 

environmental dose rates or older depositional ages). Residual De values on the order of several Gy 26 

or tens of Gy are likely to be well within the existing 2σ TT-OSL age uncertainties for most Middle 27 

or Early Pleistocene samples, and therefore are unlikely to have major effects on extended-range 28 

TT-OSL dating reliability. 29 

 30 

Our single-grain OSL ages for Galería de las Estatuas place the sedimentary sequence of excavation 31 

pit GE-I (Figure 4) within MIS 5 (80 ± 5 ka to 112 ± 7 ka) and the sequence at excavation pit GE-II 32 

(upper section) within late MIS 5 and early MIS 4 (70 ± 5 ka to 79 ± 5 ka); though the chronologies 33 

of GE-I and GE-II are statistically indistinguishable at 2σ. As expected, these luminescence 34 

chronologies are older than the preliminary 14C ages reported for the site (>45 cal ka BP – >49.5 cal 35 
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ka BP; Table S7), confirming the original interpretation of Arsuaga et al. (2017) that their 14C 1 

results should be considered as minimum age estimates. Our ages for GE-I and GE-II are 2 

stratigraphically consistent and suggest that the two sequences excavated at Galería de las Estatuas 3 

are likely temporally correlative, although further dating at the base of pit GE-II is required to 4 

determine the lower chronological range of this sequence. It is worth noting that the age of sample 5 

GE16-3 (113 ± 8 ka), which was collected from a localised sub-layer at the base of LU2, is in closer 6 

agreement with the age obtained for the underlying level (LU3) (107 ± 8 ka; GE16-4), rather than 7 

the age obtained for the upper section of LU2 (83 ± 5 ka; GE16-1). Further dating efforts and more 8 

detailed sedimentological studies of this sub-layer may be necessary to ascertain its exact 9 

chronostratigraphic relationship with LU2 and LU3. Together, the single-grain OSL ages obtained 10 

for GE-I indicate that the pollen-based climatic reconstructions at this excavation pit – which show 11 

a change from an open environment and dry/cool conditions (lower LU3 and LU4) towards a phase 12 

of shrub expansion (upper LU3) and a more humid and warmer climate, followed by an increase in 13 

wooded species (LU2) at the top of the sequence – may be associated with MIS 5.4 (LU3-4) and 14 

MIS 5.1 (LU2), respectively (Lisiecki and Raymo, 2005; Figure 4). Although it is difficult to make 15 

more precise correlations between the climatic reconstructions at Galería de las Estatuas and global 16 

δ18O isotope stages, both the pollen record and the chronologies obtained suggest that LU4 was 17 

deposited post-MIS 5.5 (Figure 4).  18 

 19 

Galería de las Estatuas is the first archaeological site within the Sierra de Atapuerca karst system to 20 

be dated to MIS 4/5. Within a regional context, several other Middle Palaeolithic and Neandertal 21 

sites from the surrounding valleys of the northern Iberian meseta region could be considered to be 22 

chronologically equivalent to Galería de las Estatuas (Table S7). The open-air sequences of Hotel 23 

California and Hundidero, located in the vicinity of the Atapuerca hills, have chronologies of 70-45 24 

ka based on single-grain OSL and TL dating of sedimentary grains, respectively (Arnold et al., 25 

2013; Navazo et al., 2011), and may be partially correlative with, albeit slightly younger than, 26 

Galería de las Estatuas. The Neandertal cave site of Valdegoba located a short (<30 km) distance 27 

from Atapeurca may also have a similar chronology. The sequence is capped by a speleothem that 28 

has been U-series dated to <73.2 ± 5 ka (Quam et al., 2001). An additional AMS 14C ultrafiltration 29 

age of 48.4 ± 3.3 ka (uncalibrated) has been obtained from the human-bearing layers of Valdegoba 30 

Dalén et al. (2008), which may be regarded as a minimum age due to its antiquity. La Ermita, 31 

another nearby cave site (Díez et al., 2008), could also be dated to MIS 5. This site has a 14C age of 32 

32.1–34.2  ka cal BP (Díez et al., 2008), but a U-series age of 95-102 ka has been recently reported 33 

for a speleothem capping the sediment sequence (Sánchez Yustos and Diez Martín, 2016). Other 34 

sites with similar chronologies on the Iberian plateau include San Quirce (73 ± 10 ka; Terradillos-35 
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Bernal et al., 2017) and Cueva del Camino, near Madrid (74-140 ka; Arsuaga et al., 2012). While in 1 

the Cantabrian Range to the north, the site of El Castillo also covers a similar time span (level 23 2 

~90 ka; Bischoff et al., 1992). However, further dating studies are required at some of these sites to 3 

fully elucidate the Late Pleistocene Neandertal occupation histories in the region, especially in cases 4 

where 14C dating appear to have reached its upper limits (Table S7). The chronological results 5 

obtained in the present study for Galería de las Estatuas indicate that single-grain OSL dating has 6 

the potential to make important contributions towards this effort.  7 

 8 
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Figure captions 21 
 22 
Figure 1. (A) Map of the Iberian Peninsula showing the location of the Galería de las Estatuas 23 
archaeological site (Atapuerca). (B) Photo of excavation pit GE-I showing the profile exposed on 24 
the western and northern faces and the position of the five samples collected for luminescence 25 
dating. (C) Photo of excavation pit GE-II showing the profile on the southern face and the position 26 
of the two luminescence dating samples collected. 27 
 28 
Figure 2. (A) OSL signal brightness plot showing absolute net intensities expressed as counts / Gy / 29 
0.09 s. The data shown are for single-grain OSL measurements made using the 212-250 µm quartz 30 
fraction for all samples except GE16-4, for which the 250-300 um fraction was used; also shown is 31 
the single-grain TT-OSL signal brightness plot for the 250-300 µm fraction of sample GE16-4 (1 32 
grain per hole). Examples of (B) OSL and (C) TT-OSL decay curves and sensitivity-corrected dose-33 
response curves (inset) for two grains from samples GE16-1 and GE16-6. 34 
 35 
Figure 3. Radial plots showing the paired single-grain OSL and single-grain TT-OSL De 36 
distributions obtained for samples (A) GE16-1 and (B) GE16-6 (De errors are shown at 1σ). The 37 
grey band is centred on the central age model De obtained for the OSL dataset. 38 
 39 
Figure 4. Single-grain OSL ages (and associated 1σ errors) for the seven luminescence samples 40 
collected from Galería de las Estatuas (black circles), plotted against and the δ18O isotope curves for 41 
the last glacial cycle (NGRIP and Intermediate North Atlantic records). The ages obtained for each 42 
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excavation pit are shown on separate panels (GE-I in lower panel; GE-II in upper panel) because the 1 
lithostratigraphic unit (LU) numbering systems have been assigned independently for each 2 
excavated sequence (Arsuaga et al., 2017). Also shown are the single-grain TT-OSL ages obtained 3 
using the central age model (CAM) (white triangles). The continuous capping speleothem extends 4 
across both excavation pits, and its age (white circle) is based on previously published data 5 
(Martínez-Pillado et al., 2014). The grey hashed lines indicate tentative (spatially averaged) 6 
positions of the LU boundaries. 7 
 8 
 9 
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a LU = Lithostratigraphic unit 
b Measurements were made on single-grain discs containing 300 x 300 µm grain-hole positions. The number of grains contained in each grain-hole position is expected to be as follows: 90-125 µm grains = 18 grains per hole; 212-
250 µm grains = 1-2 grains per hole; 250-300 µm grains = 1 grains per hole (Arnold et al., 2012). 
c Number of De measurements that passed the SAR rejection criteria / total number of grains or multi-grain aliquots analysed. 
d CAM = central age model; MAM-3 = three-parameter minimum model; MAM-4 = four-parameter minimum age model (Galbraith et al., 1999); Overdispersion parameter has been calculated using the CAM. 
e MAM-3 and MAM-4 De estimates have been calculated after adding, in quadrature, a relative error of 15% to each individual De measurement error to approximate underlying dose overdispersion observed in typical sedimentary 
samples (Arnold and Roberts, 2009; Arnold et al., submitted). 
f Mean ± total uncertainty (68% confidence interval), calculated as the quadratic sum of the random and systematic uncertainties. 
g Total uncertainty includes a systematic component of ±2% associated with laboratory beta-source calibration. 
 
Table 1. Single-grain OSL ages for Galería de las Estatuas. Also shown are the comparative single-grain TT-OSL ages obtained for four of the samples. Ages shown in bold have been used to derive the final chronologies for each 
sample (see main text for further discussions). 
 
 
 
 
 
 
 
 
 

  Single-grain OSL Single-grain TT-OSL 

Sample LU a 
Grain 
size 

(µm) b 

Total dose 
rate  

(Gy/ka) 

Accepted/
measured 
grains c 

Overdisper
-sion (%) d 

Age 
Model d 

De (Gy) f 
Age (ka) 

f,g  

Grain 
size 

(µm) b 

Total dose 
rate 

(Gy/ka) 

Accepted/
measured 
grains c 

Overdisper-
sion (%) d 

Age 
Model d,e De (Gy) f Age (ka) f,g

Excavation 
GE-II                

GE16-6 1 212-250 1.88 ± 0.09 80/1400 26 ± 4 CAM 132 ± 5 70 ± 5 90-125 1.97 ± 0.09 43/1400 45 ± 7 CAM 169 ± 14 86 ± 8 

             MAM-3 115 ± 15 58 ± 8 

             MAM-4 110 ± 21 56 ± 11 

GE16-7 2 212-250 1.82 ± 0.09 79/900 30 ± 4 CAM 145 ± 6 79 ± 5 90-125 1.91 ± 0.10 35/700 21 ± 8 CAM 161 ± 10 84 ± 7 

Excavation 
GE-I                

GE16-2 1 212-250 1.22 ± 0.06 52/1300 20 ± 4 CAM 97 ± 4 80 ± 5        

GE16-1 2 212-250 1.53 ± 0.08 94/1700 26 ± 3 CAM 127 ± 5 83 ± 5 90-125 1.61 ± 0.08 28/1100 20 ± 6 CAM 198 ± 13 123 ± 10 

GE16-3 2 212-250 0.75 ± 0.04 53/900 21 ± 4 CAM 85 ± 4 113 ± 8        

GE16-4 3 250-300 1.04 ± 0.06 62/700 26 ± 4 CAM 111 ± 5 107 ± 8 250-300 1.04 ± 0.06 14/1400 18 ± 12 CAM 131 ± 13 126 ± 14 

GE16-5 4 212-250 1.13 ± 0.06 101/1500 22 ± 3 CAM 126 ± 4 112 ± 7        
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Supplementary Information 
 
Sedimentary sequence  
Two sedimentary sequences exposed in separate excavation pits (GE-I and GE-II; located ~ 6 m apart) 
have been dated in this study (Figure 1). The lithostratigraphic units (LU) described for each excavation 
pit (see below) have been independently assigned and are not necessarily correlative due to lateral 
variations in sediment composition and differences in the position of the two pits relative to the cave 
opening (see Arsuaga et al., 2017 for further details). 
 
The ~2 m-deep excavated sequence at GE-I comprises a 1.5–1.75 m-thick allochthonous sedimentary 
deposit capped by a 20 cm-thick stalagmitic speleothem. The sequence is sub-divided into five LUs, 
which are ordered, from the base upwards, as follows: LU5 – primarily comprises degraded speleothem 
fragments; LU4 (~60 cm thick) – composed of dark clays with heterometric angular clasts (cobble size 
>10 cm); LU3 (~40 cm thick) – composed of orange silty-clays, which become increasingly brown in 
colour and contain decimetric planar clasts towards the base. These deposits transition into sub-rounded, 
pebble-supported debris with a silty-clay matrix towards the top; LU2 (~20 cm thick) – made up of dark 
clays with orange sublevels and more clasts at the base; and LU1 (15-20 cm thick) – composed of orange 
clays and small (<1 cm diameter) pebbles.  
 
Excavation pit GE-II, located closer to the ancient cave entrance, is ~1.5 m deep and the top 20 cm is 
made up of the same stalagmitic speleothem present in GE-I. Only two LUs have been identified in the 
GE-I sedimentary sequence: LU 2 – composed of dark clays with abundant angular planar-clasts (>10 cm 
long); and LU1 (~30 cm thick) – composed, from the base upwards, of orange clays and sporadic clasts 
(>10 cm long), and light sands with altered white clasts (possibly speleothem fragments).  
 
In total, seven luminescence dating samples were collected from the sedimentary deposits exposed in pits 
GE-I and GE-II at Galería de las Estatuas. In pit GE-I, a single sample was collected from each of LU4 
and LU3 (GE16-5 and GE16-4, respectively); two samples were collected from the base and upper half of 
LU2 (GE16-3 and GE16-1, respectively); and one sample was collected from the middle of LU1 (GE16-
2). In pit GE-II, one sample was collected from LU1 (GE16-6) and a second sample was taken from LU2 
(GE16-7). 
 
Instrumentation and dose rate estimation  
Purified coarse-grained quartz fractions were prepared for burial dose estimation using standard 
preparation procedures (Aitken, 1998), including a 48% HF etch for 40 mins to remove the alpha-
irradiated outer layer of the quartz extracts. Single-grain OSL measurements were performed on 212-250 
µm quartz grains for all seven samples. Additional single-grain TT-OSL measurements were made on 
selected samples using either the 90-125 µm (GE16-1, GE16-6 and GE16-7) or 250-300 µm quartz grain 
fractions (GE16-4), depending on grain-size availability. OSL and TT-OSL signals have been measured 
on a Risø TL/OSL-DA-20 reader equipped with a a 10 mW Nd:YVO4 (532 nm) single-grain laser 
attachment, an EMI 9235QB PMT and a spatially calibrated 90Sr / 90Y β source (~6.7 Gy / min). Single-
grain OSL and TT-OSL UV emissions were detected through a 7.5 mm-thick U-340 Hoya filter. All 
single-grain De measurements in this study have been made using standard single-grain aluminium discs 
drilled with an array of 300 μm x 300 μm holes. It is expected that ~18 grains were placed in each grain-
hole position of the single-grain discs when undertaking TT-OSL measurements on the 90-125 μm quartz 
fractions of samples GE16-1, GE16-6 and GE16-7 (Arnold et al., 2012a). Arnold et al. (2014) and 
Demuro et al (2014) have shown that the Atapuerca infill deposits contain relatively low proportions of 
TT-OSL-producing quartz grains. We have therefore chosen to measure the 90-125 μm fractions of these 
samples to enhance the number of usable grains per disc while minimising any 'pseudo' single-grain 



averaging effects. The feasibility of this approach is supported by the TT-OSL grain rejection statistics 
for sample GE16-4, which were obtained at the true single-grain resolution (i.e., by loading 212-250 μm 
quartz into the 300 μm x 300 μm grain hole positions). For this sample, only 19% of individually 
measured grains produced a statistically distinguishable TT-OSL Tn signal (Table S6). Demuro et al. 
(2013) have shown that pseudo single-grain De measurements are not likely to induce any significant 
grain-hole averaging effects for samples characterised by such low yields (<30%) of luminescent grains. 
  
Environmental dose rates (Table S1) have been calculated using a combination of in situ gamma 
spectrometry and low-level beta counting. Concentrations of K, U and Th were determined from field 
gamma spectra using the ‘energy windows’ method (Arnold et al., 2012b) and external gamma dose rates 
were calculated using the conversion factors of Guerin et al. (2011). The external beta dose rates were 
calculated from measurements made on a Risø GM-25-5 beta counter, using homogenised sediment sub-
samples collected from the main luminescence dating sample positions. Cosmic-ray dose rates have been 
calculated using the approach described in Prescott and Hutton (1994) after taking into consideration site 
altitude, geomagnetic latitude, and density, thickness and geometry of sediment and bedrock overburden. 
The beta, gamma and cosmic-ray dose rates have been corrected for long-term sediment moisture 
contents (Aitken, 1985), which are taken to be equivalent to the present-day measured water contents. 
The latter ranged between 8% and 28% of dry weight, and have been assigned a relative uncertainty of 
20% to accommodate any minor variations in hydrologic conditions during burial. 
 
High-resolution gamma spectrometry (HRGS) was additionally performed on all samples to assess the 
state of secular equilibrium in the 238U and 232Th decay series (Table S2). Daughter-parent isotopic ratios 
for 238U, 226Ra, 210Pb, 228Ra and 228Th are consistent with unity at either 1σ or 2σ for samples GE16-1, 
GE16-2, GE16-5, GE16-6 and GE16-7, confirming that the 238U and 232Th chains are in present-day 
secular equilibrium. For samples GE16-3 and GE16-4, there is evidence for disequilibrium in the upper 
part of the 238U decay chain, as the 226Ra:238U ratios do not overlap with unity at 2σ (0.71 ± 0.13 and 0.57 
± 0.15, respectively). This disequilibrium may reflect the uptake of unsupported 238U following burial 
(potentially related to the incorporation of bones in the sediment deposits). Alternatively, since we have 
used the post-radon daughter emissions of 214Pb and 214Bi to derive 226Ra activities, the apparent excess of 
238U with respect to 226Ra may reflect loss of radon (222Rn) gas to the cave atmosphere. Additional 
insights into the likely cause of this uranium series disequilibrium can be gleaned from the lithogenic 
230Th:232Th ratios for these two samples (approximated from the measured 238U:228Ra ratios, assuming 
equilibrium between 238U and 230Th at the head of the uranium decay series, and assuming equilibrium 
between 232Th and 228Ra at the head of the thorium decay series). The deposits preserved at Galería de las 
Estatuas are expected to have broadly similar 230Th:232Th ratios, all else being equal, since they are 
thought to have originated from a common sediment source (see justification in Olley et al., 1997). This 
expectation is confirmed for samples GE16-1, GE16-2, GE16-5, GE16-6 and GE16-7, which exhibit a 
relatively narrow range of 230Th:232Th (238U:228Ra) ratios (0.8 to 1.3). In contrast, samples GE16-3 and 
GE16-4 exhibit significantly higher 238U:228Ra values (2.3), consistent with the uptake of additional, 
unsupported parental 238U at the head of the uranium decay series. This interpretation is further supported 
by considering the 226Ra:228Ra ratios of samples GE16-3 and GE16-4 as a proxy for their lithogenic 
230Th:232Th ratios. Using this alternative assessment, the two samples yield 230Th:232Th ratios of 1.3 – 1.6, 
which are in closer agreement with the 230Th:232Th ratios of the five samples that are in present-day 
secular equilibrium. 
 
The excess 238U activities of samples GE16-3 and GE16-4 are not considered to have a significant effect 
on the final dose rate estimates, as borne out by the stratigraphic consistency of the single-grain OSL ages 
obtained for excavation pit GE-I (see main text and Figure 4). Dosimetry modelling studies undertaken 
elsewhere have demonstrated that isotopic disequilibria of similar magnitudes are only likely to give rise 
to minor deviations (<5%) in long-term dose rate estimates (e.g., Olley et al., 1996, 1997; Preusser and 
Degering, 2007). Such systematic biases would be significantly less than the existing uncertainty ranges 
on our final dose rate estimates. The effects of 238U disequilibrium will be further diminished for samples 



GE16-3 and GE16-4 because the 238U decay series only contributes 33-36% to the total quartz dose rate 
(calculated using the high resolution gamma spectrometry results). In this study, the gamma dose rates of 
the 238U series have also been derived from post-radon emissions of 214Bi daughter isotopes using field 
gamma spectrometry. This approach is likely to provide a more accurate assessment of the present-day 
dose rate if secular disequilibrium has occurred at the head of the decay series because ~98% of the 238U 
series gamma dose rate originates from post-radon decays in the lower part of the chain (namely 226Ra 
and its daughters; Stokes et al. 2003). Similarly, the beta counting results obtained in this study are not 
critically dependent on the assumption of 238U secular equilibrium because ~60% of the beta particle 
emissions measured in the uranium decay series will have originated from 226Ra and its daughters near the 
bottom of the decay chain.  
 
Equivalent dose (De) measurements and estimation  
Single-grain OSL and TT-OSL De measurements were made using the single-aliquot regenerative-dose 
(SAR) protocols described in Murray and Wintle (2000) and Stevens et al. (2009), respectively, which 
were modified to enable measurements of individual grains (e.g., Arnold et al., 2016; Demuro et al., 
2014; Table S3. Single grain OSL and TT-OSL De values were calculated after interpolating the 
sensitivity-corrected natural signal onto a sensitivity-corrected dose response curve that had been fitted 
with a single saturating exponential function. In all cases, the characteristic saturation dose (D0) value of 
the saturating exponential dose response curve was calculated for each grain. Sensitivity-corrected OSL 
and TT-OSL responses were constructed from the first 0.09 s and 0.24 s of laser stimulation, respectively, 
with a background subtraction derived from the last 0.25 s of stimulation. Individual De uncertainty 
ranges comprise from three sources of error: (i) a random uncertainty term arising from photon counting 
statistics for each OSL or TT-OSL measurement, calculated using Eq. 3 of Galbraith (2002); (ii) an 
empirically determined instrument reproducibility uncertainty of 1.9% for each single-grain measurement 
(calculated for the specific Risø reader used in this study according to the approach outlined in Jacobs et 
al., 2006a); and (iii) a dose-response curve fitting uncertainty determined using 1000 iterations of the 
Monte Carlo method described by Duller (2007) and implemented in Analyst. 
 
Single-grain OSL and TT-OSL De estimates were not considered suitable for final age calculation if they 
exhibited one or more of the following properties: (i) their net Tn signals were <3σ above the late-light 
background; (ii) recycling ratios (sensitivity-corrected luminescence responses (Lx/Tx) for two identical 
regenerative doses) were not consistent with unity at 2σ. For the single-grain OSL measurements, the 
recycling ratio test was performed using both a low-dose and high-dose regenerative dose cycle; (iii) the 
OSL-IR depletion ratio (Duller, 2003) was less than unity at 2σ; (iv) the recuperation ratio, calculated as 
the ratio of the sensitivity-corrected 0 Gy dose point (L0/Tx) to the sensitivity-corrected natural (Ln/Tn), 
was >5%; (v) the net Tn signal had a relative error of >30%; (vi) the sensitivity-corrected natural signal 
(Ln/Tn) did not intercept the sensitivity-corrected dose-response curve; (vii) the dose-response curve 
displayed anomalous properties (i.e., zero or negative response with increasing dose) or very scattered 
Lx/Tx values that could not be successfully fitted with the Monte Carlo procedure and, hence, did not 
yield finite De values and uncertainty ranges; (viii) the Ln/Tn value intercepted the saturated part of the 
dose-response curve (Ln/Tn values were equal to the Imax saturation limit of the dose-response curve at 
2σ). The single-grain OSL and TT-OSL rejection statistics for the measured samples are shown in Table 
S5 and Table S6, respectively. Additionally, during analysis of the single-grain TT-OSL datasets it was 
found that a number of initially accepted grains displayed non-negligible, slow-decaying TT-OSL signals 
(i.e., their Tx signals did not reach background after 2 s of laser stimulation). Further examination showed 
that the signals of these grains did not originate from genuine thermal transfer of charge into the fast OSL 
trap, but rather they corresponded to interfering (non-transferred) slow OSL components from the 
previous OSL stimulation, which had not reached background levels prior to commencing the TT-OSL 
measurements. As such these grains were not included in the final De estimation, and they have been 
assigned to an additional TT-OSL rejection category in Table S6. 
 



It is noteworthy that 3-12% of measured single-grain OSL De values were rejected because their 
sensitivity-corrected natural signals intercepted the saturated region of their corresponding sensitivity-
corrected dose response curves. If these rejected De values relate to genuinely old grains that are in dose 
saturation, then their exclusion may have acted to artificially truncate the upper tails of our empirical De 
distributions. However, there is reasonable evidence to suggest that these rejected saturated grains reflect 
intrinsically unfavourable OSL characteristics and / or non-optimal grain responses to the De 
measurement procedure. In particular, these rejected saturated grain populations exhibit below-average 
dose saturation characteristics, which are significantly lower than the corresponding dose saturation 
ranges observed for the accepted grains. The majority (70%) of rejected saturated grains have D0 values 
of <50 Gy (Figure S5). The CAM D0 value calculated for these rejected grains is 42 ± 1 Gy (n = 372), 
which is 50% lower than the mean D0 value of accepted grains. The dose recovery and natural De datasets 
of GE16-1 also share similar proportions of saturated grains (3-5%), confirming that these behaviours are 
not exclusive to natural burial dose measurements. Taken together, these observations suggest that the 
rejected saturated grain populations have an experimental origin and that they may reflect unfavourable 
grain responses to the chosen SAR protocols. The exclusion of these grain populations from the final De 
datasets is therefore warranted and unlikely to exert any undue effects on the single-grain OSL age 
calculations.   
 
Single-grain OSL and TT-OSL dose recovery tests were undertaken on samples GE16-1 and GE16-7, 
respectively, to assess the suitability of the chosen SAR protocols. Single-grain OSL dose recovery test 
measurements were made after administering a dose of 100 Gy to grains that had previously been 
bleached with two exposures of 1,000 s to blue LEDs, separated by a 10,000 s pause. Regenerative dose 
and test dose preheat treatments of 240°C for 10 s and 160°C for 10 s, respectively, were used in the 
single-grain dose recovery test (Figure S2). These preheat conditions were determined to be optimal for 
sample GE16-1 from initial multi-grain OSL dose recovery tests (Figure S3), which were conducted 
using blue LED OSL stimulation instead of green laser stimulation in steps 4 and 7 of the SAR sequence 
shown in Table S3a. The single-grain TT-OSL dose recovery tests were performed on GE16-7 by adding 
a dose of 148 Gy on top of the naturally accumulated dose for a sub-set of grains. This approach was 
adopted owing to the long durations of light exposure needed to bleach natural TT-OSL signals down to 
low residual levels. The recovered dose ratio was then calculated by subtracting the weighted mean 
natural De of sample GE16-7 from the weighted mean De of the unbleached and dosed grains (Table S4). 
Single-grain OSL and TT-OSL measured-to-given dose ratios of 0.98 ± 0.03 and 1.12 ± 0.14 were 
obtained using these procedures. Both dose recovery ratios are within 2σ of unity, and support the 
suitability of the De measurement conditions used in this study. 
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Figure S1. Maps showing the location of the Galería de las Estatuas site within the multi-level Cueva 
Mayor-Cueva del Silo cave system at Atapuerca (modified from Ortega et al., 2013). (A) Plan view of the 
endokarst system. The red box highlights the location of Galería de las Estatuas site. (B) Cross-sectional 
view of the cave system. The red circle highlights the location of Galería de las Estatuas site. 
 



 
Figure S2. Radial plot showing single-grain OSL dose recovery test results obtained for 212-250 µm 
quartz grains of sample GE16-1 using SAR protocol A in Table S3 (De errors are shown at 1σ). Grains 
were bleached within the Risø reader chamber using blue LEDs prior to administering a dose of 100 Gy. 
The central age model (CAM) measured-to-given dose ratio is 0.98 ± 0.03 and the overdispersion is 10 ± 
5%. 
 
 



 
 
Figure S3. Multi-grain dose recovery test results obtained for sample GE16-1 after administering a dose 
of 45 Gy (errors are shown at 1σ). Plots show (A) the recovered doses, (B) the recycling ratios and (C) 
the recuperation values obtained for different preheat conditions. De measurements were made with a 
modified version of SAR protocol A (replacing single-grain laser stimulations in steps 4 and 7 with blue 
LED OSL stimulations performed at 125 oC for 60 s) using various regenerative-dose preheat (PH1) and 
test-dose preheat (PH2) combinations. De measurements were made on multi-grain aliquots containing 
~900 quartz grains.  



 
 
Figure S4. Radial plots showing the single-grain OSL De distributions obtained for the Galería de las 
Estatuas samples (De errors are shown at 1σ). The dark grey bands are centred on the weighted mean De 
values, which have been calculated using the CAM. 
 



 
 
Figure S5. Histograms showing the range of single-grain OSL D0 values obtained for accepted and 
saturated grains (D0 errors are shown at 1σ). The D0 value characterises the rate of signal saturation with 
respect to administered dose and equates to the dose value for which the saturating exponential dose-
response curve slope is 1/e (or ~ 0.37) of its initial value. D0 values have been calculated using saturating 
exponential dose response curve fits in all cases. 



 
 
Figure S6. Changes in single-grain CAM De values observed after applying the indicated 2*D0 threshold 
values (Demuro et al., 2015; Arnold et al., 2016) to the originally accepted De datasets of three 
representative samples (De errors are shown at 1σ). Similar plots were obtained for the remaining 
samples. The number of accepted grains remaining after applying progressively higher 2*D0 thresholds is 
shown for each sample.  
 



 
Figure S7. Radial plots showing the single-grain TT-OSL De distributions obtained for a subset of the 
Galería de las Estatuas samples; (A) GE16-1, (B) GE16-4, (C) GE16-6 and (D) GE16-7 (De errors are 
shown at 1σ). The dark grey bands are centred on the weighted mean De values, which have been 
calculated using the CAM. In (C) the open band is centred on the mean De obtained using the 3-parameter 
minimum age model (MAM-3). 



 
 

Sample 
Sample 
depth 
(cm) 

 Water 
content a 

 

Grain 
fraction 

(µm) 

Gamma 
dose rate 
(Gy/ka) b, c 

Beta dose 
rate  

(Gy/ka) d 

Cosmic 
dose rate 
(Gy/ka) e 

Internal 
dose rate 
(U+Th) 

(Gy/ka) f  

Total dose 
rate 

(Gy/ka) g 

GE16-1 57 24.5  212-250 0.46±0.02 1.02±0.05 0.02±0.01 0.03±0.01 1.53±0.08 
GE16-1 57 24.5  90-125 0.46±0.02 1.09±0.05 0.02±0.01 0.03±0.01 1.61±0.08 
GE16-2 38 8.1  212-250 0.43±0.02 0.73±0.04 0.02±0.01 0.03±0.01 1.22±0.06 
GE16-3 72 24.2  212-250 0.25±0.02 0.46±0.02 0.02±0.01 0.03±0.01 0.75±0.04 
GE16-4 97 28.2  250-300 0.21±0.01 0.79±0.04 0.02±0.01 0.03±0.01 1.05±0.06 
GE16-5 155 23.2  212-250 0.33±0.02 0.75±0.04 0.02±0.01 0.03±0.01 1.13±0.06 
GE16-6 32 15.3  212-250 0.64±0.02 1.19±0.06 0.02±0.01 0.03±0.01 1.89±0.09 
GE16-6 32 24.5  90-125 0.64±0.02 1.27±0.06 0.02±0.01 0.03±0.01 1.97±0.09 
GE16-7 76 21.3  212-250 0.54±0.02 1.23±0.06 0.02±0.01 0.03±0.01 1.82±0.09 
GE16-7 76 21.3  90-125 0.54±0.02 1.31±0.07 0.02±0.01 0.03±0.01 1.91±0.10 

a Water content, expressed as % of dry mass of sample and assigned a relative uncertainty of ± 20%.  
b Radionuclide concentrations and specific activities have been converted to dose rates using the conversion 
factors given in Guérin et al. (2011) and Readhead (2002), making allowance for beta-dose attenuation (Mejdahl, 
1979; Brennan, 2003). 
c Gamma dose rates were calculated from in situ measurements made at each sample position with a NaI:Tl 
detector using the ‘energy windows’ method detailed in Arnold et al. (2012b).  
d Beta dose rates were determined using a Risø GM-25-5 low-level beta counter (Bøtter-Jensen and Mejdahl, 
1988), after making allowance for beta dose attenuation due to grain-size effects and HF etching (Brennan, 2003). 
e Cosmic-ray dose rates were calculated following Prescott and Hutton (1994) and assigned a relative uncertainty 
of ± 10%. 
f Assumed internal (alpha plus beta) dose rate for the quartz fractions are based on published 238U and 232Th 
measurements for etched quartz grains from a range of locations (e.g. Mejdahl, 1987; Bowler et al., 2003; Jacobs 
et al., 2006b; Pawley et al., 2008) and an alpha efficiency factor (a-value) of 0.04 ± 0.01 (Rees-Jones, 1995; 
Rees-Jones and Tite, 1997).  
g Mean ± total uncertainty (68% confidence interval), calculated as the quadratic sum of the random and 
systematic uncertainties. 

 

Table S1. Environmental dose rate values calculated for the quartz fractions of the Galería de las Estatuas 
samples. 
 
 
 
 
 



 
 

Sample 

Radionuclide specific activities (Bq/kg) a, b Daughter: parent isotopic ratio 

238U 226Ra 210Pb 228Ra 228Th 40K 226Ra:238U 210Pb:226Ra 228Th:228Ra

          

GE16-1 51.4 ± 6.6 46.2 ± 3.1 43.2 ± 4.9 40.5 ± 3.6 43.2 ± 3.2 342 ± 12 0.90 ± 0.13 0.94 ± 0.13 1.07 ± 0.13

GE16-2 19.5 ± 2.6 18.3 ± 1.3 18.8 ± 2.2 16.3 ± 1.5 16.4 ± 1.3 134 ± 5 0.94 ± 0.14 1.03 ± 0.14 1.00 ± 0.12

GE16-3 32.4 ± 4.1 22.9 ± 3.2 18.8 ± 2.2 14.2 ± 1.4 14.7± 1.2 123 ± 5 0.71 ± 0.13 0.82 ± 0.15 1.03 ± 0.13

GE16-4 62.3 ± 7.6 35.3 ± 8.2 26.6 ± 3.0 26.7 ± 2.4 27.8 ± 2.1 232 ± 8 0.57 ± 0.15 0.75 ± 0.19 1.04 ± 0.12

GE16-5 29.8 ± 3.8 24.1 ± 1.9 21.5 ± 2.5 31.4 ± 2.8 31.3 ± 2.3 271 ± 9 0.81 ± 0.12 0.89 ± 0.13 1.00 ± 0.12

GE16-6 37.1 ± 4.7 36.6 ± 2.5 36.1 ± 4.1 47.6 ± 4.1 47.9 ± 3.5 393 ± 13 0.99 ± 0.14 0.99 ± 0.13 1.00 ± 0.11

GE16-7 62.0 ± 7.8 46.3 ± 5.4 40.8 ± 4.7 46.4 ± 4.2 48.6 ± 3.7 372 ± 13 0.75 ± 0.13 0.88 ± 0.14 1.05 ± 0.12

          
a Measurements made on dried and powdered sediment sub-samples of ~120 g.  
b Mean ± total uncertainty (68% confidence interval), calculated as the quadratic sum of the random and systematic uncertainties. 

 
Table S2. High-resolution gamma spectrometry (HRGS) results for luminescence dating samples 
collected from Galería de las Estatuas. The specific activities of 238U (determined from 235U emissions 
after correcting for 226Ra interference), 226Ra (derived from 214Pb and 214Bi emissions), 210Pb, 228Ra 
(derived from 228Ac emissions), 228Th (derived from 212Pb, 212Bi and 208Tl emissions) and 40K were 
measured for each sediment sample, and used to calculate daughter-to-parent isotope ratios for 226Ra:238U, 
210Pb:226Ra and 228Th:228Ra. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a Step omitted when measuring the natural signal (Ln).  
b Step added only when measuring the OSL-IR depletion ratio described in Duller (2003). 

 
Table S3. SAR protocols used in this study to obtain single-grain OSL (protocol A) and single-grain TT-
OSL (protocol B) ages. Ln and Lx refer to the natural and regenerative-dose signal measurements, 
respectively. Tn and Tx refer to the test dose signals measured after the Ln and Lx signals, respectively. 
 
 

A   B    

Step Single-grain OSL  Step Single-grain TT-OSL   

1a Give dose  
 1a Give dose  

 

2 b Stimulate with infrared diodes at 
50ºC for 40 s (90% power) 

 
 

2 Preheat to 260ºC for 10 s  
 

3 Preheat to 240ºC for 10 s  
 

3 
Stimulate with green 
laser at 125ºC for 2 s 
(90% power) 

 
 

4 
Stimulate with green laser at 
125ºC for 2 s (90% power) 

OSL  
Ln or Lx 

 
4 Preheat to 260ºC for 10 s  

 

5 Give test dose  
 

5 
Stimulate with green 
laser at 125ºC for 3 s 
(90% power) 

TT-OSL  
Ln or Lx 

 

6 Preheat to 160ºC for 10 s   
 

6 
Stimulate with blue LEDs 
at 280ºC for 400 s 

 
 

7 
Stimulate with green laser at 
125ºC for 2 s (90% power) 

OSL  
Tn or Tx 

 
7 Give test dose  

 

8 Return to 1  
 

8 Preheat to 260ºC for 10 s  
 

   

 
9 

Stimulate with green 
laser at 125ºC for 2 s 
(90% power) 

 
 

   
 

10 Preheat to 260ºC for 10 s  
 

   
 

11 
Stimulate with green 
laser at 125ºC for 3 s 
(90% power) 

TT-OSL 
Tn or Tx 

 

   
 

12 
Stimulate with blue LEDs 
at 290ºC for 400 s 

 
 

   
 

13 Return to 1  
 



 
 

Sample Given dose (Gy) 
accepted/
measured 

Recycling ratio a CAM De (Gy) a OD (%) a 

GE16-7 None (natural) 35 / 700 1.03 ± 0.05 161 ± 10 21 ± 8 

GE16-7 148 ± 3 40 / 600 0.96 ± 0.04 327 ± 19 19 ± 7 

  

Measured De (after natural dose 
subtraction) 

166 ± 22 

 

Dose recovery ratio 1.12 ± 0.14 

a Mean ± total uncertainty (68% confidence interval), calculated as the quadratic sum of the random and systematic 
uncertainties. 

 
 
Table S4. Single-grain TT-OSL dose recovery test results obtained for 90-125 µm quartz grains of 
sample GE16-7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table S5. Single-grain OSL statistics showing proportion of rejected and accepted grains after applying the SAR rejection criteria. Data are also shown 
for the single-grain OSL dose recovery test (DRT) measurements made on sample GE16-1 (second row). 

 
 
 
 
 
 

Table S6. Single-grain TT-OSL statistics showing proportion of rejected and accepted grains after applying the SAR rejection criteria. 
 
 
 

   Rejected grains (%)   

Sample  
Grains 

measured 
(n) 

 
Tn signal 
<3xBG 

Poor low dose 
recycling ratio 

Poor high dose 
recycling ratio 

IR depletion 
ratio 

Recuperati
on >5% 

Net Tn error 
>30% 

Ln/Tn not 
intercepting 

DRC 

Anomalous 
dose-

response 
curve 

Saturated 

 
Accepted grains 

(%) 

GE16-1 1700  60 9 4 2 <1 11 1 3 5  5 
GE16-1 
(DRT) 

800 
 

60 7 6 4 0 11 0 4 3 
 

5 

GE16-2 1300  66 9 4 2 <1 10 <1 3 3  4 
GE16-3 900  62 9 5 2 <1 10 <1 2 4  6 
GE16-4 700  32 10 5 5 0 17 2 9 12  9 
GE16-5 1500  58 8 3 4 <1 13 <1 3 5  7 
GE16-6 1400  57 8 4 5 <1 12 <1 3 5  6 
GE16-7 900  42 6 6 4 <1 15 2 6 9  9 

    Rejected grains (%)   

Sample  Grain size 
Grains 

measured 
(n) 

 
Tn signal 
<3xBG 

Poor low 
dose 

recycling 
ratio 

IR depletion 
ratio 

Recuperation 
>5% 

Net Tn error 
>30% 

Ln/Tn not 
intercepting 

DRC 

Anomalous 
dose-response 

curve 
Saturated Slow decay

 
Accepted 
grains (%) 

GE16-1 90-125 1100  73 6 <1 <1 16 <1 1 <1 1  3 
GE16-4 250-300 1400  81 5 <1 <1 12 <1 1 <1 <1  1 
GE16-6 90-125 1400  70 6 <1 <1 17 <1 2 <1 1  3 
GE16-7 90-125 700  60 9 <1 1 21 <1 3 <1 2  5 



 
Site Region Site 

type 
Level Sample Age a 14C cal. age 

(cal ka BP) b 
Method Reference 

Prado 
Vargas 

Cornejo, 
Burgos 

Cave 4 Horse tooth 46.4 ka   AAR Navazo et al. (2005) 

Cueva 
Millan 

Hortigüela, 
Burgos 

Cave 1a 
1b 

Charcoal (GrN-11021) 
Charcoal (GrN-1161) 
 

37.6 ± 0.7 ka 
37.4 ± 0.6 ka 
 

38.9–41.1 ka 
38.9–40.9 ka 
 

conv. 14C 
(uncalibrated) 
conv. 14C 
(uncalibrated) 
 

Moure and García (1982) 
Moure and García (1982) 
 

La Mina Hortigüela, 
Burgos 

Cave  Tooth (LEB-6012) 52.5 ka  AAR Díez et al. (2008) 

Valdegoba Huérmeces, 
Burgos 

Cave 7 
5 
 

Capping stalagmitic flowstone 
Bone (OxA-21970) 
 

<73.2 ± 5 ka 
48.4 ± 3.3 ka 
 

 
>48 ka 
 

U-series 
AMS 14C ultrafiltration 
(uncalibrated) 
 

Quam et al. (2001) 
Dalen et al. (2012) 
 

Hotel 
California 

Atapuerca, 
Burgos 

Open-air V 
V 
II 
I 

Sedimentary quartz grains (HC10-1) 
Sedimentary quartz grains (HC10-4) 
Sedimentary quartz grains (HC10-2) 
Sedimentary quartz grains (HC10-3) 

48.2 ± 3.3 ka 
48.2 ± 3.9 ka 
57.6 ± 5.7 ka 
71.0 ± 5.6 ka 

 Single-grain OSL 
Single-grain OSL 
Single-grain OSL 
Single-grain OSL 

Arnold et al. (2013) 
Arnold et al. (2013) 
Arnold et al. (2013) 
Arnold et al. (2013) 
 

Hundidero Atapuerca, 
Burgos 

Open-air 2 
2 
3 
4 

Sedimentary quartz grains 
Sedimentary quartz grains 
Sedimentary quartz grains 
Sedimentary quartz grains 
 

30.2 ± 3.6 ka 
58.8 ± 4.9 ka 
56.2 ± 4.4 ka 
70.6 ± 11 ka 

 OSL 
TL 
OSL 
TL 

Navazo et al. (2011) 
Navazo et al. (2011) 
Navazo et al. (2011) 
Navazo et al. (2011) 

Galería de 
las 
Estatuas 

Atapuerca, 
Burgos 

Cave Base  
GE-I, LU1 
GE-I, LU1 
GE-I, LU1 
 
GE-I, LU2 
GE-I, LU2 
GE-I, LU2 
GE-I, LU2 
 
GE-I, LU3 
GE-I, LU3 
GE-I, LU3 
 
GE-I, LU4 
 
GE-II, LU1b 
GE-II, LU1 
 
GE-II, LU2 
GE-II, LU2 

Capping flowstone 
Bone (Beta - 247621) 
Bone (OxA-21523) 
Sedimentary quartz grains (GE16-2) 
 
Bone (Beta - 247672) 
Bone (OxA-21524) 
Sedimentary quartz grains (GE16-1) 
Sedimentary quartz grains (GE16-3) 
 
Bone (Beta - 247628) 
Bone (OxA-21525) 
Sedimentary quartz grains (GE16-4) 
 
Sedimentary quartz grains (GE16-5) 
 
Bone (OxA-24563) 
Sedimentary quartz grains (GE16-6) 
 
Bone (OxA-24564) 
Sedimentary quartz grains (GE16-6) 
 

14. 2 ± 0.3 ka 
>45 ka 
43.5 ± 1.8 ka 
80 ± 5 ka 
 
>45 ka 
>45.6 ka 
80 ± 5 ka 
113 ± 8 ka 
 
>45 ka 
44.0 ± 1.9 ka 
107 ± 8 ka 
 
111 ± 7 ka 
 
44.2 ± 2.0 ka 
69 ± 4 ka 
 
>46.3 ka 
80 ± 5 ka 
 

 
 
44.7–>48 ka 
 
 
 
 
 
 
 
 
43.0–>48 ka 
 
 
 
 
43.2–>48 ka 
 

U-series 
AMS 14C standard 
AMS 14C ultrafiltration 
Single-grain OSL 
 
AMS 14C standard 
AMS 14C ultrafiltration 
Single-grain OSL 
Single-grain OSL 
 
AMS 14C standard 
AMS 14C ultrafiltration 
Single-grain OSL 
 
Single-grain OSL 
 
AMS 14C ultrafiltration 
Single-grain OSL 
 
AMS 14C ultrafiltration 
Single-grain OSL 
 

Martinez-Pillado et al. (2014) 
Arsuaga et al. (2017) 
Arsuaga et al. (2017) 
This study 
 
Arsuaga et al. (2017) 
Arsuaga et al. (2017) 
This study 
This study 
 
Arsuaga et al. (2017) 
Arsuaga et al. (2017) 
This study 
 
This study 
 
Arsuaga et al. (2017) 
This study 
 
Arsuaga et al. (2017) 
This study 
 

La Ermita Hortigüela, 
Burgos 

Cave  
 
5a 

Capping flowstone 
Capping flowstone 
Charcoal (OxA-4603) 

95 ± 6 ka 
102 ± 4 ka 
31.1 ± 0.6 ka 

 
 
32.1–34.2 ka 

U-series 
U-series 
AMS 14C (uncalibrated) 

Sánchez Yustos and Diez Martín (2016) 
Sánchez Yustos and Diez Martín (2016) 
Díez et al. (2008) 



5a 
5a 

Tooth  
Tooth 
 

114 ± 42 ka 
129 ± 39 ka 
 

 AAR 
AAR 
 

Díez et al. (2008) 
Díez et al. (2008) 
 

San Quirce San Quirce, 
Palencia 

Open-air Bed 6 Sedimentary quartz grains (SQ 1; C-L 
3066) 

73 ± 10 ka  Single-grain OSL Terradillos-Bernal et al. (2017) 

Cueva 
Corazon 

Mave, 
Palencia 

Cave 2 
2 

Burned lithic (MAD-4712BIN) 
Burned lithic (MAD-4715BIN) 

97 ± 8 ka 
96 ± 7 ka 

 TL  
TL  

Diez Martín et al. (2011) 
Diez Martín et al. (2011) 

El Castillo Puente 
Viesgo, 
Cantabria 

Cave 23c Travertine  89 ± 10 ka  U-series 
 

Bischoff et al. (1992) 

Cueva del 
Camino 

Pinilla del 
Valle, 
Madrid 

Cave South sector 
8 
5 
3 (fluvial) 
 

Sedimentary quartz grains 
Sedimentary quartz grains 
Sedimentary quartz grains 
Sedimentary quartz grains 

74.5 ± 6.3 ka 
91.6 ± 8.1 ka 
90.9 ± 7.8 ka 
140.4 ± 11.3 
ka 
 

 TL 
TL 
TL 
TL 

Arsuaga et al. (2012) 
Arsuaga et al. (2012) 
Arsuaga et al. (2012) 
Arsuaga et al. (2012) 

Las 
Callejuelas 

Monteagudo 
del Castillo, 
Teruel 

 91 cm 
94 cm 
164 cm 
Uncertain 
Uncertain 

(LEB 8533) 
(LEB 8529) 
(LEB 8532) 
(LEB 8530) 
(LEB 8531) 
 

116 ka 
122 ka 
135 ka 
190 ka 
252 ka 

 AAR 
AAR 
AAR 
AAR 
AAR 
 

Domingo et al. (2017) 
Domingo et al. (2017) 
Domingo et al. (2017) 
Domingo et al. (2017) 
Domingo et al. (2017) 

         
a Age uncertainties presented at 1σ. 
b Calibrated age presented at 95.4% probability range 
AAR = amino acid racemisation; AMS 14C = accelerator mass spectrometry; conv. 14C = conventional 14C; ESR = electron spin resonance; OSL = optically stimulated luminescence; TL = thermoluminescence. 14C dates were 
calibrated using OxCal 4.2 (Bronk Ramsey and Lee, 2013) and the Intal13 atmospheric curve (Reimer et al., 2013). 

 
Table S7. Regional dating context of Middle Palaeolithic sites across northern Spain mentioned in the text.  
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