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24 Abstract

25 The lower Moulouya River (NE Morocco) drains a tectonically active area related to the NW-SE 

26 convergence of the African and Eurasian plates. Fluvial deposits preserved in the lower Moulouya have 

27 been dated to ~1.5-1.1 Ma as part of a recent multi-technique geochronology study. The present work 

28 aims to verify and refine the existing Early Pleistocene (~1.8-0.8 Ma) ages for the Moulouya deposits 

29 using single-grain thermally transferred-OSL (TT-OSL) dating. The single-grain TT-OSL De 

30 distributions are characterised by high overdispersion (77-91 %), significant negative skewness, and 

31 several discrete populations can be identified when applying the finite mixture model (FMM). The 

32 lowest FMM dose components of the TT-OSL datasets comprise relatively dim grains that have very 

33 slow decays. The Fast Ratio (FR) was therefore used to explore whether the presence of slower-decaying 

34 TT-OSL components might have exerted a significant effect on our De values. Our samples show a 40-

35 50 % increase in weighted mean De and a 50-100 % decrease in overdispersion when applying a FR 

36 acceptance threshold of 2, resulting in the elimination of the lowest FMM component. Application of a 

37 higher FR value does not result in any additional change in TT-OSL De value. Dose recovery tests 

38 confirm the suitability of the single-grain TT-OSL protocol and use of an additional FR acceptance 

39 threshold of ≥2 for final age determination. Previous geomorphic interpretations suggested a capture 

40 event occurred at the Beni Snassen gorge between 1.04 and 1.36 Ma at the latest. This interpretation is 

41 supported by the newly obtained TT-OSL ages, which reveal that fluvial deposition occurred between 

42 ~1.09 and ~1.15 Ma.
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51 1. Introduction

52 The Moulouya River (~74.000 km²; Fig. 1a), drains an active tectonic setting resulting from the collision 

53 between the Eurasian and African plates, which leads to a complex geodynamic background in this 

54 convergence zone (Meghraoui et al., 1996; Barcos et al., 2014). Along the ~600 km-long Moulouya 

55 drainage, the sedimentary infill (including Quaternary fluvial deposits) of the lowermost Neogene basin 

56 (the so-called Triffa basin) is thus strongly deformed along a sub-continuous W-E striking thrust zone 

57 (Rixhon et al., 2017; Fig. 1b). As for the geochronology of the lower Moulouya, in addition to 14C dating 

58 of the Holocene sedimentary record (e.g., Zielhofer et al., 2010), a recent study based on a combination 

59 of electron spin resonance (ESR) dating of quartz using the multiple centres (MC) approach, post-

60 infrared infrared (pIRIR) stimulated luminescence dating of K-feldspar, and palaeomagnetic 

61 analysismagnetostratigraphy has yielded a reliable framework for the Pleistocene terrace deposits (Bartz 

62 et al., 2018). ESR numerical ages, all clustering between ~1.1 and 1.5 Ma, are supported by a reversed 

63 polarity in almost all river profiles; the presumed absence of Middle Pleistocene river sediments in the 

64 Triffa basin seems to rule out climate as the main driver for fluvial deposition (Bartz et al., 2018).

65 Against this background, the present study aims to verify and refine the existing chronostratigraphy of 

66 the lower Moulouya using single-grain thermally transferred-OSL (TT-OSL) dating. TT-OSL dating 

67 (Wang et al., 2006) makes use of a quartz luminescence signal that saturates at much higher radiation 

68 doses than the conventional OSL signal. In sedimentary archives, the TT-OSL signal has mostly been 

69 applied to aeolian (e.g., Stevens et al., 2009; Yi et al., 2012), marine (e.g., Jacobs et al., 2011) and 

70 archaeological (e.g., Sun et al., 2013; Demuro et al., 2014; Arnold et al., 2015) deposits spanning Early 

71 and Middle Pleistocene timescales. Nevertheless, establishing reliable TT-OSL chronologies over such 

72 ‘extended’ age ranges has often proved challenging due to a number of complications with multi-grain 

73 TT-OSL signal characteristics (e.g., signal sensitivity, bleachability, thermal stability; Duller and 

74 Wintle, 2012). 

75 Recently, single-grain TT-OSL dating has been reliably applied to several independently or semi-

76 independently dated sedimentary archives (e.g., Arnold et al., 2014; Demuro et al., 2015). For samples 

77 with sufficiently bright signals, single-grain TT-OSL offers a number of potential advantages over multi-

78 grain TT-OSL approaches; particularly the ability to isolate grains with favourable TT-OSL properties, 



79 the detection of inter-grain differences in problematic TT-OSL behaviours (including low thermal 

80 stabilities), and a means of circumventing averaging effects arising from simultaneously measuring 

81 grains with different bleaching histories, signal compositions or TT-OSL source trap properties (Arnold 

82 et al., 2014; Arnold and Demuro et al., 2015; Arnold et al., this volume). In the fluvial context, Arnold 

83 et al. (2013) compared the suitability of both single-grain and multi-grain TT-OSL dating on deposits 

84 from the Pico River in northern Spain, obtaining consistent ages of ~350 and ~330 ka, respectively. 

85 These TT-OSL ages were in agreement with ESR quartz ages, based on the aluminium centre, from 

86 adjacent river terraces (Moreno et al., 2012). Single-grain TT-OSL therefore offers a potentially viable 

87 means of dating the Moulouya quartz samples and may help further understand the Early Pleistocene 

88 depositional history. 

89

90 2. Sampling and luminescence dating procedures

91 Four >20 m-thick fluvial sections were investigated by Bartz et al. (2018) in the Triffa basin, the so-

92 called BOU, DOE, MRB and TOLL profiles (see Figs. 1b and 2). The initial geochronological 

93 framework was based on the MC approach in ESR dating, which involved measuring both the Al and 

94 Ti centres in each quartz sample (Fig. 2). The ages obtained using this approach were consistent with 

95 reversed magnetic polarities found in the fluvial deposits (Bartz et al., 2018), and revealed that fluvial 

96 aggradation took place between ~1.5 and ~1.1 Ma (Fig. 2). In addition, post-infrared infrared (pIRIR) 

97 stimulated luminescence measurements undertaken as part of the same study showed that both the 

98 pIRIR225 and pIRIR290 signals were saturated, yielding minimum ages between ~0.39 and ~0.80 Ma 

99 (Bartz et al., 2018).

100 In this study, two samples from the BOU section (C-L3824 and C-L3825) were investigated to test the 

101 applicability of single-grain TT-OSL (Fig. 2), which may yield non-saturated signals over these 

102 timescales and thus may provide further numerical age constraint on fluvial deposition in the Moulouya 

103 basin. 

104 Sample preparation for luminescence dating was undertaken at the Cologne Luminescence Laboratory 

105 (CLL), University of Cologne. Single-grain TT-OSL measurements (Arnold et al., 2014) were made at 

106 the Prescott Environmental Luminescence Laboratory, University of Adelaide. Full details of the sample 



107 preparation, measurement equipment and protocol (Tab. S1), as well as the laboratory experiments 

108 employed in this study, are provided in the supplementary material. Radionuclide data and dose rates 

109 (Tab. S2) for all samples are presented in supplementary material. 

110 The equivalent dose (De) quality assurance criteria used as part of the single-grain TT-OSL dating 

111 procedures followed Arnold et al. (2014). Grains were rejected from consideration if they displayed: (i) 

112 Tn <3σ background; (ii) Recycling ratio ≠ 1 at ±2σ; (iii) 0 Gy Lx/Tx >5% Ln/Tn ; (iv) OSL-IR depletion 

113 ratios <1 at ±2σ (Duller, 2003); (v) Non-intersecting grains (Ln/Tn > dose response curve saturation); 

114 (vi) Saturated grains (Ln/Tn ≥ dose response curve Imax at ±2σ); (vii) Extrapolated grains (Ln/Tn > highest 

115 Lx/Tx at ±2σ) and (viii) Anomalous dose response / unable to perform Monte Carlo fit. 

116 The Fast Ratio (FR) (see also supplementary material)The Fast Ratio (FR) (Durcan and Duller, 2011; 

117 Duller, 2012) has been applied to the two BOU samples to provide a proxy for TT-OSL charge transfer 

118 into the fast OSL component trap relative to the medium and slow OSL component traps, as well as for 

119 identifying the dominance of potentially interfering (non-transferred) residual slow OSL components in 

120 the TT-OSL signals (see Supplementary material). The FR has been calculated by comparing the counts 

121 in the initial part of the TT-OSL decay curve (L1) with those in the middle part of the decay (L2) after 

122 subtracting a late light background count (L3) according to the equation (L1-L3)/(L2-L3). The FRs for our 

123 single-grain De datasets were calculated using the approach described in Duller (2012), but with the 

124 integration intervals specified by Jacobs et al. (2013) (i.e., the first 0.017 s for the L1, 0.170-0.221 s for 

125 L2 and the last 0.068 s for L3), since these are based on the 90 % laser power used in the present study. 

126 Progressively higher FR thresholds have been applied to the single-grain TT-OSL De datasets, starting 

127 at a FR of 0 and increasing in FR increments of 0.5 until the culled dataset contained fewer than 10 

128 individual De values (i.e., the sample size became too limited to ensure precise single-grain De 

129 determination). In each instance, grains were only accepted for further De analysis if their individual FR 

130 value equalled or exceeded the corresponding FR threshold.

131 A single-grain TT-OSL dose-recovery test was performed on a batch of 1000 unbleached grains of 

132 sample C-L3824 owing to the long durations of light exposure needed to bleach natural TT-OSL signals 

133 down to low residual levels (e.g., Demuro et al., 2015; Arnold et al., this volume). A known (941 Gy) 

134 laboratory dose of similar magnitude to the expected De was added on top of the natural signal for these 



135 grains. The expected De was initially determined by undertaking a sub-set of natural De measurements 

136 on 300 grains of sample C-L3824 prior to performing the dose-recovery test. The recovered dose was 

137 then calculated by subtracting the weighted mean natural De of sample C-L3824 (i.e., as shown in Table 

138 1 determined from 1600 grains) from the weighted mean De of the unbleached and dosed grains.

139

140 3. Results and discussion

141 3.1 Single-grain TT-OSL properties and dose distributions

142 Between 1000 and 1600 single-grain TT-OSL De measurements were made on samples C-L3824 and 

143 C-L3825. Application of the SAR quality assurance criteria of Arnold et al. (2014) resulted in 2–4 % of 

144 measured De values being accepted for age calculation (Tab. S3). The vast majority of remaining De 

145 values (86-88 %) were eliminated for having very weak Tn signals (<3σ background), with smaller 

146 populations rejected for having poor recycling ratios that were not consistent with unity at 2σ (3 %) and 

147 anomalous/scattered dose-responses that could not be fitted with the Monte Carlo procedure (7 %). The 

148 TT-OSL decay curves of accepted grains have relatively low Tn intensities of 50–2000 cts/0.17 s, and 

149 the corresponding dose response curves are generally well represented by a single saturating exponential 

150 fitting function with high D0 values of 102-103 Gy (Fig. 3).

151 The single-grain TT-OSL De distributions (Fig. 4) are characterised by high overdispersion values of 

152 77-91 % (Tab. S4), which are well above the average reported value for ‘ideal’ single-grain TT-OSL 

153 samples (21±2 %; Arnold et al., this volume). Both De distributions are significantly negatively skewed 

154 according to the criteria outlined by Arnold and Roberts (2009) (Tab. S4), and both datasets contain 

155 several discrete dose populations when fitted with the finite mixture model (FMM; Galbraith and Green, 

156 1990) (Fig. 4a, c). The dominant FMM components (i.e., those containing the highest proportion of 

157 individual De values; n = 2734 and 3427 grains for C-L3824 and C-L3824L3825, respectively) yield 

158 ages in agreement with the ESR dating estimates of ~1.1-1.3 Ma for BOU (Bartz et al., 2018) (Fig. 2). 

159 However, the lower dose FMM components underestimate the existing site chronology by 68-96 % 

160 (Tab. S4). Similar low dose components were observed in the Early Pleistocene single-grain TT-OSL 

161 study of Arnold and Demuro (2015), and were attributed to inter-grain variations in TT-OSL signal 

162 characteristics. Given the well-stratified nature of these fluvial deposits, it seems unlikely that post-



163 depositional mixing could explain the multi-modal De distributions of samples C-L3824 and C-L3825. 

164 Similarly, beta dose heterogeneity is unlikely to give rise to such extreme and discrete low dose 

165 components in most typical sedimentary contexts (e.g., Nathan et al., 2003; Guérin et al., 2013). It seems 

166 possible therefore, that intrinsic sources of De scatter may partly or wholly explain these complex single-

167 grain TT-OSL datasets. 

168 Several of the accepted grains from samples C-L3824 and C-L3825 display very slowly decaying TT-

169 OSL signals (i.e., Tx signals that did not reach background after 2 s of laser stimulation) (e.g., Fig. 3d). 

170 Such slow-decay dominated signals have been shown to be associated with potentially problematic TT-

171 OSL behaviours (poor dose recovery test results, inferior thermal stabilities, experimentally sensitised 

172 components and unreliable TT-OSL De estimates) for some samples (e.g., Tsukamoto et al., 2008; 

173 Brown and Forman, 2012; Arnold and Demuro, 2015; Demuro et al., 2015). It may therefore be 

174 appropriate to introduce an additional signal quality assurance criterion to remove these slowly decaying 

175 signals, which we explore in the following sections.

176

177 3.2 Application of single-grain Fast Ratios (FR)

178 To examine whether TT-OSL charge transfer into slowly bleaching OSL traps or the presence of 

179 interfering (non-transferred) slow OSL signal components might have exerted a significant effect on our 

180 De datasets, we calculated single-grain Fast Ratios (FR) (Durcan and Duller, 2011; Duller, 2012) using 

181 the approach described in Demuro et al. (2013). Although TT-OSL signals are thermally transferred 

182 from a different source trap into the conventional OSL dating trap, any unfavourable behaviour 

183 associated with the latter (i.e., medium or slow component dominance, and hence low FR value) or 

184 interference from additional (non-conventional) OSL traps may be indicative of potentially unsuitable 

185 quartz behaviour. 

186 The range of FRs obtained for our TT-OSL datasets (0.2–54) are lower than those reported for single-

187 grain OSL datasets (e.g., 1.1–108 in Demuro et al., 2013). The lowest individual De values (<300 Gy) 

188 in both datasets yield correspondingly low FR values (Fig. 5a). In order to examine the potential of using 

189 the FR as an additional rejection criterion for single-grain data analysis, we applied increasingly 

190 stringent FR thresholds to the accepted De datasets, and examined the effects on weighted mean De and 



191 overdispersion (Fig. 5b-c). Both samples show a 40-50 % increase in weighted mean De and a 50-100 

192 % decrease in overdispersion when applying incrementally higher FR acceptance thresholds between 0 

193 and 2. Use of more stringent FR acceptance ratios >2 has no further discernible effect on De or 

194 overdispersion, other than causing a fourfold reduction in the number of accepted grains (Fig. 5b-c). 

195 These results suggest that slow decaying TT-OSL grains with FRs <2 exert an influence on the single-

196 grain TT-OSL datasets. It may therefore be beneficial to employ an additional SAR quality assurance 

197 criterion based on a FR threshold of ≥2 for these samples. This is supported by the resultant De 

198 distribution characteristics and FMM fitting results shown in Fig. 4b, d. Application of a FR acceptance 

199 threshold of ≥2 results in the elimination of the lowest FMM component for both samples. The revised 

200 De distribution of C-L3824 is no longer considered to be significantly negatively skewed, has an 

201 overdispersion of 0 %, and is well represented by a single dose population centred on the central age 

202 model (CAM) De value (Galbraith et al., 1999; Tab. S4). The initially identified low dose FMM 

203 component for this sample therefore seemingly originated from grains with slowly decaying TT-OSL 

204 signals that are poorly suited to being measured with a SAR protocol. The revised De distribution of C-

205 L3825 retains one of the two originally identified low dose FMM components and is still considered to 

206 be negatively skewed. However, its overdispersion is reduced by 50 % and the dominant FMM 

207 component now accounts for a significant proportion (~80 %) of measured grains (Tab. S4). The latter 

208 has therefore been used to derive the final age for this sample. As with sample C-L3824, it seems that 

209 the initially identified FMM K1 dose component originated from grains with slowly decaying TT-OSL 

210 signals. The minor low dose FMM component remaining after applying the FR ≥2 acceptance threshold 

211 potentially originates from other sources of intrinsic De scatter (e.g., fast-dominated grains that do not 

212 respond well to the SAR conditions or grains with thermally unstable TT-OSL signals) or unidentified 

213 extrinsic De scatter. As with sample C-L3824, it seems that the initially identified FMM K1 dose 

214 component originated from grains with slowly decaying TT-OSL signals. 

215

216 3.3 Dose recovery results

217 A TT-OSL dose recovery test performed on C-L3824 (Fig. S1) attests to the general suitability of the 

218 single-grain TT-OSL protocol and use of an additional FR acceptance threshold of ≥2 for final age 



219 determination. The FR characteristics and De distribution of the unbleached and dosed grains mirror 

220 those obtained for the natural De dataset of C-L3824 (Fig. S1). The low dose FFM component observed 

221 for the unbleached and dosed dataset also lies significantly below the administered dose of 941 Gy, 

222 confirming an intrinsic rather than extrinsic origin for the De scatter. A net (i.e., natural-subtracted) 

223 recovered-to-given ratio of 1.04±0.07 and an overdispersion value of 0 % was obtained for the 

224 unbleached and dosed grains of this sample when applying a FR acceptance threshold of ≥2. 

225

226 3.4 Consolidating the chronostratigraphy for the Lower Moulouya fluvial terraces

227 The single-grain TT-OSL ages obtained for the uppermost part of the BOU section are stratigraphically 

228 consistent: the lowermost sample (C-L3824) yielded an age of 1.09±0.10 Ma, while the upper sample 

229 (C-L3825) provided an age of 1.15±0.10 Ma (Fig. 2). The two new numerical ages are consistent at 1σ 

230 with the corresponding ESR ages of 1.26±0.10 and 1.10±0.11 Ma (Tab.1) derived from the same 

231 samples, and the reversed magnetic polarities identified at this section (Bartz et al., 2018). When 

232 combined with the existing ESR ages and palaeomagnetic analysesmagnetostratigraphy, the new TT-

233 OSL data provide a refined chronological framework for the evolution of the Moulouya terraces during 

234 the Early Pleistocene. Collectively, the former and new numerical age estimates unequivocally point to 

235 the occurrence of a major depositional event in the lowermost sedimentary basin during the Matuyama 

236 chron (>0.77 Ma; Okoda et al., 2017). The chronologies developed in this study strongly supports many 

237 of the geomorphological interpretations previously reached by Bartz et al. (2018). In particular, they 

238 confirm the time span over which the assumed capture event took place through the uplifting Beni 

239 Snassen (i.e., linking the Guercif and Triffa basins via the Beni Snassen gorge; Bartz et al., 2018); that 

240 is between 1.05 and 1.25 Ma at the latest (according to the TT-OSL age provided by the upper sample 

241 C-L3825). They also demonstrate the usefulness of cross-checking ages obtained from independent 

242 dating methods to establish a particularly robust chronological framework for reconstructing long-term 

243 landscape evolution. 

244

245 3.5 Reliability of the single-grain TT-OSL ages



246 In assessing the reliability of the final single-grain TT-OSL ages, it is worth briefly considering two 

247 issues: (i) the slow optical resetting rates of TT-OSL signals and the potential retention of unbleached 

248 residuals prior to deposition; (ii) the possible need for applying a thermal stability correction when 

249 applying TT-OSL signal over extended burial periods. The recent modern analogue study by Arnold et 

250 al. (this volume) revealed single-grain TT-OSL residual doses of 0-24 Gy for comparable dryland fluvial 

251 deposits from Spain and Australia. Such residual De values would be largely insignificant over the burial 

252 dose ranges considered here, and would be well within the existing 2σ TT-OSL De uncertainties for 

253 samples C-L3824 and C-L3825. Reported lifetime estimates for TT-OSL signals are highly variable 

254 (e.g., Adamiec et al., 2010; Brown and Forman, 2012) and have been exclusively derived using multi-

255 grain TL loss and isothermal decay datasets. Arnold and Demuro (2015) have shown that multi-grain 

256 assessments of TL signal loss may provide limited insights into single-grain TT-OSL source trap 

257 lifetimes due to averaging effects, the dominance of grain populations that do not produce TT-OSL, and 

258 interference from slowly bleaching OSL components. As we cannot be confident that existing (multi-

259 grain aliquot) laboratory lifetime predictions are of direct relevance to the specific grain populations 

260 isolated in our single-grain analysis, we have not applied an additional thermal stability correction to 

261 the final TT-OSL ages. This decision appears to be supported by the consistency of the single-grain TT-

262 OSL and ESR ages at BOU (cf., Bartz et al., 2018), which suggests that any potential age 

263 underestimations related to thermal instability are not significant beyond the existing uncertainty ranges 

264 of our final chronologies.

265

266 4. Conclusion

267 The existing geochronological framework for the lower Moulouya terraces, which is based on a 

268 combination of ESR, pIRIR and palaeomagnetism (cf., Bartz et al., 2018), has been successfully verified 

269 by quartz single-grain TT-OSL dating in this study. The consistency between the newly obtained single-

270 grain TT-OSL ages and the existing ESR and palaeomagnetism chronologies is particularly 

271 encouraging, and it indicates that massive fluvial deposition occurred in the lower Moulouya towards 

272 the end of the Early Pleistocene. Whilst application of conventional OSL and pIRIR dating remains 

273 unsuccessful over Early Pleistocene timescales due to signal saturation, our results show that single-



274 grain TT-OSL can successfully be applied over extended age ranges in some settings. The TT-OSL ages 

275 presented in this study are the oldest published so far and their reliability is supported by independent 

276 dating evidence. Importantly, suitable De determination was only achievable for these samples after 

277 undertaking grain-specific assessments of TT-OSL signal variability, and applying an additional quality 

278 assurance criterion based on a FR acceptance threshold of ≥2. This may not have been possible, at least 

279 to the same extent, if we had employed conventional, multi-grain TT-OSL dating on these fluvial 

280 deposits. 

281
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399 Figure captions



400 Fig. 1: The study area in NE Morocco (modified after Bartz et al., 2018). a) Relief map of the Moulouya 

401 catchment (delimited by dashed black lines) including the main geological structures (according to 

402 Barcos et al., 2014); b) The ~20 km-long studied valley reach of the lower Moulouya River with main 

403 morphological and geological features as well as the investigated section described in the text (BOU, 

404 red star) and investigated by Bartz et al. (2018) (TOLL, MRB and DOE, black stars) (satellite image: 

405 Google Earth CNES/Astrium 02.08.2014).

406 Fig. 2: Chronostratigraphy of the four investigated sections (cf., Bartz et al., 2018). The sections BOU, 

407 TOLL and MRB are in the footwall reach and the section DOE in the hanging wall reach of the fault 

408 zone (modified after Rixhon et al., 2017 and Bartz et al., 2018). The geochronological framework is 

409 based on a combination of ESR of quartz (black), single-grain TT-OSL of quartz (red), pIRIR225 of K-

410 feldspar (yellow) and pIRIR290 of K-feldspar (green). Palaeomagnetic polarities are shown as black 

411 (normal), white (reverse) and grey (inconclusive) bars.

412 Fig. 3: Representative single-grain TT-OSL decay and dose-response curves for quartz grains from 

413 samples C-L3824 and C-L3825. In the insets, the open circle denotes the sensitivity-corrected natural 

414 OSL signal, and filled circles denote the sensitivity-corrected regenerated OSL signals. The D0 value 

415 characterises the rate of signal saturation with respect to administered dose and equates to the dose value 

416 for which the saturating exponential dose-response curve slope is 1/e (or ~ 0.37) of its initial value. (a) 

417 Grain from sample C-L3825 with typical OSL signal brightness (Tn intensity = several hundred counts 

418 / 0.17 s) and a moderate-to-high Fast Ratio. (b) Grain from sample C-L3824 with a dim TT-OSL signal 

419 (Tn intensity <100 counts / 0.17 s), and a moderate-to-high Fast Ratio. (c) Relatively bright grain from 

420 sample C-L3825 (Tn intensity = several thousand counts / 0.17 s) with a moderate Fast Ratio. (d) Grain 

421 from C-L3824 with typical TT-OSL signal brightness (Tn intensity = several hundred counts / 0.17 s) 

422 and a low Fast Ratio. 

423 Fig. 4: Single-grain TT-OSL De distributions for samples C-L3824 and C-L3825, shown as radial plots. 

424 a) and c) show the De datasets obtained for these two samples after applying the routine SAR quality 

425 assurance criteria of Arnold et al. (2014); b) and d) show the De datasets obtained for the same two 

426 samples after applying an additional Fast Ratio acceptance threshold of ≥2 (determined specifically for 



427 each sample using the data shown in Fig. 45). In plot b), the grey band is centred on the weighted mean 

428 De value used to calculate the TT-OSL ages, which has been determined using the central age model 

429 (CAM). In plots a), c) and d), the weighted mean burial dose estimate of the dominant finite mixture 

430 model (FMM) component (i.e., that containing the highest proportion of individual De values) is shown 

431 as a dark grey shaded band on the radial plot. The additional dose components identified by the optimum 

432 FMM fits are shown as a light grey shaded band on these radial plots. The percentage of grains associated 

433 with each fitted FMM component is also shown on the radial plots.

434 Fig. 5: Relationship between single-grain TT-OSL De estimates and Fast Ratios for samples C-L3824 

435 and C-L3825. a) RegressionX-Y plot of TT-OSL De versus Fast Ratio for individual grains of C-L3824 

436 and C-L3825; b) Plot showing the weighted mean (CAM) De and overdispersion values obtained for C-

437 L3824 when applying different Fast Ratio thresholds; c) Plot showing the weighted mean (CAM) De 

438 and overdispersion values obtained for C-L3825 when applying different Fast Ratio thresholds. In plots 

439 b) and c), progressively higher Fast Ratio thresholds have been applied to the De dataset, starting at a 

440 Fast Ratio of 0 and increasing in Fast Ratio increments of 0.5 until the culled dataset contained fewer 

441 than 10 individual De values (i.e., the sample size became too limited to ensure precise single-grain De 

442 determination). In each instance, grains were only accepted for further De analysis if their individual 

443 Fast Ratio value equalled or exceeded the corresponding threshold shown on the x-axis. The values 

444 shown in brackets represent the number of grains remaining in the De dataset after applying each Fast 

445 Ratio threshold criterion.

446

447 Table captions

448 Tab. 1: Summary of the single-grain TT-OSL dating results obtained in the present work. Details can 

449 be found in supplementary material. ESR and pIRIR ages are also provided for comparison of all 

450 samples (C-L3824-3826) from the BOU section (cf., Bartz et al., 2018).

451
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24 Abstract

25 The lower Moulouya River (NE Morocco) drains a tectonically active area related to the NW-SE 

26 convergence of the African and Eurasian plates. Fluvial deposits preserved in the lower Moulouya have 

27 been dated to ~1.5-1.1 Ma as part of a recent multi-technique geochronology study. The present work 

28 aims to verify and refine the existing Early Pleistocene (~1.8-0.8 Ma) ages for the Moulouya deposits 

29 using single-grain thermally transferred-OSL (TT-OSL) dating. The single-grain TT-OSL De 

30 distributions are characterised by high overdispersion (77-91 %), significant negative skewness, and 

31 several discrete populations can be identified when applying the finite mixture model (FMM). The 

32 lowest FMM dose components of the TT-OSL datasets comprise relatively dim grains that have very 

33 slow decays. The Fast Ratio (FR) was therefore used to explore whether the presence of slower-decaying 

34 TT-OSL components might have exerted a significant effect on our De values. Our samples show a 40-

35 50 % increase in weighted mean De and a 50-100 % decrease in overdispersion when applying a FR 

36 acceptance threshold of 2, resulting in the elimination of the lowest FMM component. Application of a 

37 higher FR value does not result in any additional change in TT-OSL De value. Dose recovery tests 

38 confirm the suitability of the single-grain TT-OSL protocol and use of an additional FR acceptance 

39 threshold of ≥2 for final age determination. Previous geomorphic interpretations suggested a capture 

40 event occurred at the Beni Snassen gorge between 1.04 and 1.36 Ma at the latest. This interpretation is 

41 supported by the newly obtained TT-OSL ages, which reveal that fluvial deposition occurred between 

42 ~1.09 and ~1.15 Ma.

43
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51 1. Introduction

52 The Moulouya River (~74.000 km²; Fig. 1a), drains an active tectonic setting resulting from the collision 

53 between the Eurasian and African plates, which leads to a complex geodynamic background in this 

54 convergence zone (Meghraoui et al., 1996; Barcos et al., 2014). Along the ~600 km-long Moulouya 

55 drainage, the sedimentary infill (including Quaternary fluvial deposits) of the lowermost Neogene basin 

56 (the so-called Triffa basin) is thus strongly deformed along a sub-continuous W-E striking thrust zone 

57 (Rixhon et al., 2017; Fig. 1b). As for the geochronology of the lower Moulouya, in addition to 14C dating 

58 of the Holocene sedimentary record (e.g., Zielhofer et al., 2010), a recent study based on a combination 

59 of electron spin resonance (ESR) dating of quartz using the multiple centres (MC) approach, post-

60 infrared infrared (pIRIR) stimulated luminescence dating of K-feldspar, and magnetostratigraphy has 

61 yielded a reliable framework for the Pleistocene terrace deposits (Bartz et al., 2018). ESR numerical 

62 ages, all clustering between ~1.1 and 1.5 Ma, are supported by a reversed polarity in almost all river 

63 profiles; the presumed absence of Middle Pleistocene river sediments in the Triffa basin seems to rule 

64 out climate as the main driver for fluvial deposition (Bartz et al., 2018).

65 Against this background, the present study aims to verify and refine the existing chronostratigraphy of 

66 the lower Moulouya using single-grain thermally transferred-OSL (TT-OSL) dating. TT-OSL dating 

67 (Wang et al., 2006) makes use of a quartz luminescence signal that saturates at much higher radiation 

68 doses than the conventional OSL signal. In sedimentary archives, the TT-OSL signal has mostly been 

69 applied to aeolian (e.g., Stevens et al., 2009; Yi et al., 2012), marine (e.g., Jacobs et al., 2011) and 

70 archaeological (e.g., Sun et al., 2013; Demuro et al., 2014; Arnold et al., 2015) deposits spanning Early 

71 and Middle Pleistocene timescales. Nevertheless, establishing reliable TT-OSL chronologies over such 

72 ‘extended’ age ranges has often proved challenging due to a number of complications with multi-grain 

73 TT-OSL signal characteristics (e.g., signal sensitivity, bleachability, thermal stability; Duller and 

74 Wintle, 2012). 

75 Recently, single-grain TT-OSL dating has been reliably applied to several independently or semi-

76 independently dated sedimentary archives (e.g., Arnold et al., 2014; Demuro et al., 2015). For samples 

77 with sufficiently bright signals, single-grain TT-OSL offers a number of potential advantages over multi-

78 grain TT-OSL approaches; particularly the ability to isolate grains with favourable TT-OSL properties, 



79 the detection of inter-grain differences in problematic TT-OSL behaviours (including low thermal 

80 stabilities), and a means of circumventing averaging effects arising from simultaneously measuring 

81 grains with different bleaching histories, signal compositions or TT-OSL source trap properties (Arnold 

82 et al., 2014; Arnold and Demuro et al., 2015; Arnold et al., this volume). In the fluvial context, Arnold 

83 et al. (2013) compared the suitability of both single-grain and multi-grain TT-OSL dating on deposits 

84 from the Pico River in northern Spain, obtaining consistent ages of ~350 and ~330 ka, respectively. 

85 These TT-OSL ages were in agreement with ESR quartz ages, based on the aluminium centre, from 

86 adjacent river terraces (Moreno et al., 2012). Single-grain TT-OSL therefore offers a potentially viable 

87 means of dating the Moulouya quartz samples and may help further understand the Early Pleistocene 

88 depositional history. 

89

90 2. Sampling and luminescence dating procedures

91 Four >20 m-thick fluvial sections were investigated by Bartz et al. (2018) in the Triffa basin, the so-

92 called BOU, DOE, MRB and TOLL profiles (see Figs. 1b and 2). The initial geochronological 

93 framework was based on the MC approach in ESR dating, which involved measuring both the Al and 

94 Ti centres in each quartz sample (Fig. 2). The ages obtained using this approach were consistent with 

95 reversed magnetic polarities found in the fluvial deposits (Bartz et al., 2018), and revealed that fluvial 

96 aggradation took place between ~1.5 and ~1.1 Ma (Fig. 2). In addition, post-infrared infrared (pIRIR) 

97 stimulated luminescence measurements undertaken as part of the same study showed that both the 

98 pIRIR225 and pIRIR290 signals were saturated, yielding minimum ages between ~0.39 and ~0.80 Ma 

99 (Bartz et al., 2018).

100 In this study, two samples from the BOU section (C-L3824 and C-L3825) were investigated to test the 

101 applicability of single-grain TT-OSL (Fig. 2), which may yield non-saturated signals over these 

102 timescales and thus may provide further numerical age constraint on fluvial deposition in the Moulouya 

103 basin. 

104 Sample preparation for luminescence dating was undertaken at the Cologne Luminescence Laboratory 

105 (CLL), University of Cologne. Single-grain TT-OSL measurements (Arnold et al., 2014) were made at 

106 the Prescott Environmental Luminescence Laboratory, University of Adelaide. Full details of the sample 



107 preparation, measurement equipment and protocol (Tab. S1), as well as the laboratory experiments 

108 employed in this study, are provided in the supplementary material. Radionuclide data and dose rates 

109 (Tab. S2) for all samples are presented in supplementary material. 

110 The equivalent dose (De) quality assurance criteria used as part of the single-grain TT-OSL dating 

111 procedures followed Arnold et al. (2014). Grains were rejected from consideration if they displayed: (i) 

112 Tn <3σ background; (ii) Recycling ratio ≠ 1 at ±2σ; (iii) 0 Gy Lx/Tx >5% Ln/Tn ; (iv) OSL-IR depletion 

113 ratios <1 at ±2σ (Duller, 2003); (v) Non-intersecting grains (Ln/Tn > dose response curve saturation); 

114 (vi) Saturated grains (Ln/Tn ≥ dose response curve Imax at ±2σ); (vii) Extrapolated grains (Ln/Tn > highest 

115 Lx/Tx at ±2σ) and (viii) Anomalous dose response / unable to perform Monte Carlo fit. 

116 The Fast Ratio (FR) (Durcan and Duller, 2011; Duller, 2012) has been applied to the two BOU samples 

117 to provide a proxy for TT-OSL charge transfer into the fast OSL component trap relative to the medium 

118 and slow OSL component traps, as well as for identifying the dominance of potentially interfering (non-

119 transferred) residual slow OSL components in the TT-OSL signals (see Supplementary material). The 

120 FR has been calculated by comparing the counts in the initial part of the TT-OSL decay curve (L1) with 

121 those in the middle part of the decay (L2) after subtracting a late light background count (L3) according 

122 to the equation (L1-L3)/(L2-L3). The FRs for our single-grain De datasets were calculated using the 

123 approach described in Duller (2012), but with the integration intervals specified by Jacobs et al. (2013) 

124 (i.e., the first 0.017 s for the L1, 0.170-0.221 s for L2 and the last 0.068 s for L3), since these are based 

125 on the 90 % laser power used in the present study. Progressively higher FR thresholds have been applied 

126 to the single-grain TT-OSL De datasets, starting at a FR of 0 and increasing in FR increments of 0.5 

127 until the culled dataset contained fewer than 10 individual De values (i.e., the sample size became too 

128 limited to ensure precise single-grain De determination). In each instance, grains were only accepted for 

129 further De analysis if their individual FR value equalled or exceeded the corresponding FR threshold.

130 A single-grain TT-OSL dose-recovery test was performed on a batch of 1000 unbleached grains of 

131 sample C-L3824 owing to the long durations of light exposure needed to bleach natural TT-OSL signals 

132 down to low residual levels (e.g., Demuro et al., 2015; Arnold et al., this volume). A known (941 Gy) 

133 laboratory dose of similar magnitude to the expected De was added on top of the natural signal for these 

134 grains. The expected De was initially determined by undertaking a sub-set of natural De measurements 



135 on 300 grains of sample C-L3824 prior to performing the dose-recovery test. The recovered dose was 

136 calculated by subtracting the weighted mean natural De of sample C-L3824 (i.e., as shown in Table 1 

137 determined from 1600 grains) from the weighted mean De of the unbleached and dosed grains.

138

139 3. Results and discussion

140 3.1 Single-grain TT-OSL properties and dose distributions

141 Between 1000 and 1600 single-grain TT-OSL De measurements were made on samples C-L3824 and 

142 C-L3825. Application of the SAR quality assurance criteria of Arnold et al. (2014) resulted in 2–4 % of 

143 measured De values being accepted for age calculation (Tab. S3). The vast majority of remaining De 

144 values (86-88 %) were eliminated for having very weak Tn signals (<3σ background), with smaller 

145 populations rejected for having poor recycling ratios that were not consistent with unity at 2σ (3 %) and 

146 anomalous/scattered dose-responses that could not be fitted with the Monte Carlo procedure (7 %). The 

147 TT-OSL decay curves of accepted grains have relatively low Tn intensities of 50–2000 cts/0.17 s, and 

148 the corresponding dose response curves are generally well represented by a single saturating exponential 

149 fitting function with D0 values of 102-103 Gy (Fig. 3).

150 The single-grain TT-OSL De distributions (Fig. 4) are characterised by high overdispersion values of 

151 77-91 % (Tab. S4), which are well above the average reported value for ‘ideal’ single-grain TT-OSL 

152 samples (21±2 %; Arnold et al., this volume). Both De distributions are significantly negatively skewed 

153 according to the criteria outlined by Arnold and Roberts (2009) (Tab. S4), and both datasets contain 

154 several discrete dose populations when fitted with the finite mixture model (FMM; Galbraith and Green, 

155 1990) (Fig. 4a, c). The dominant FMM components (i.e., those containing the highest proportion of 

156 individual De values; n = 34 and 27 grains for C-L3824 and C-L3825, respectively) yield ages in 

157 agreement with the ESR dating estimates of ~1.1-1.3 Ma for BOU (Bartz et al., 2018) (Fig. 2). However, 

158 the lower dose FMM components underestimate the existing site chronology by 68-96 % (Tab. S4). 

159 Similar low dose components were observed in the Early Pleistocene single-grain TT-OSL study of 

160 Arnold and Demuro (2015), and were attributed to inter-grain variations in TT-OSL signal 

161 characteristics. Given the well-stratified nature of these fluvial deposits, it seems unlikely that post-

162 depositional mixing could explain the multi-modal De distributions of samples C-L3824 and C-L3825. 



163 Similarly, beta dose heterogeneity is unlikely to give rise to such extreme and discrete low dose 

164 components in most typical sedimentary contexts (e.g., Nathan et al., 2003; Guérin et al., 2013). It seems 

165 possible therefore, that intrinsic sources of De scatter may partly or wholly explain these complex single-

166 grain TT-OSL datasets. 

167 Several of the accepted grains from samples C-L3824 and C-L3825 display very slowly decaying TT-

168 OSL signals (i.e., Tx signals that did not reach background after 2 s of laser stimulation) (e.g., Fig. 3d). 

169 Such slow-decay dominated signals have been shown to be associated with potentially problematic TT-

170 OSL behaviours (poor dose recovery test results, inferior thermal stabilities, experimentally sensitised 

171 components and unreliable TT-OSL De estimates) for some samples (e.g., Tsukamoto et al., 2008; 

172 Brown and Forman, 2012; Arnold and Demuro, 2015; Demuro et al., 2015). It may therefore be 

173 appropriate to introduce an additional signal quality assurance criterion to remove these slowly decaying 

174 signals, which we explore in the following sections.

175

176 3.2 Application of single-grain Fast Ratios (FR)

177 To examine whether TT-OSL charge transfer into slowly bleaching OSL traps or the presence of 

178 interfering (non-transferred) slow OSL signal components might have exerted a significant effect on our 

179 De datasets, we calculated single-grain Fast Ratios (FR) (Durcan and Duller, 2011; Duller, 2012) using 

180 the approach described in Demuro et al. (2013). Although TT-OSL signals are thermally transferred 

181 from a different source trap into the conventional OSL dating trap, any unfavourable behaviour 

182 associated with the latter (i.e., medium or slow component dominance, and hence low FR value) or 

183 interference from additional (non-conventional) OSL traps may be indicative of potentially unsuitable 

184 quartz behaviour. 

185 The range of FRs obtained for our TT-OSL datasets (0.2–54) are lower than those reported for single-

186 grain OSL datasets (e.g., 1.1–108 in Demuro et al., 2013). The lowest individual De values (<300 Gy) 

187 in both datasets yield correspondingly low FR values (Fig. 5a). In order to examine the potential of using 

188 the FR as an additional rejection criterion for single-grain data analysis, we applied increasingly 

189 stringent FR thresholds to the accepted De datasets, and examined the effects on weighted mean De and 

190 overdispersion (Fig. 5b-c). Both samples show a 40-50 % increase in weighted mean De and a 50-100 



191 % decrease in overdispersion when applying incrementally higher FR acceptance thresholds between 0 

192 and 2. Use of more stringent FR acceptance ratios >2 has no further discernible effect on De or 

193 overdispersion, other than causing a fourfold reduction in the number of accepted grains (Fig. 5b-c). 

194 These results suggest that slow decaying TT-OSL grains with FRs <2 exert an influence on the single-

195 grain TT-OSL datasets. It may therefore be beneficial to employ an additional SAR quality assurance 

196 criterion based on a FR threshold of ≥2 for these samples. This is supported by the resultant De 

197 distribution characteristics and FMM fitting results shown in Fig. 4b, d. Application of a FR acceptance 

198 threshold of ≥2 results in the elimination of the lowest FMM component for both samples. The revised 

199 De distribution of C-L3824 is no longer considered to be significantly negatively skewed, has an 

200 overdispersion of 0 %, and is well represented by a single dose population centred on the central age 

201 model (CAM) De value (Galbraith et al., 1999; Tab. S4). The initially identified low dose FMM 

202 component for this sample therefore seemingly originated from grains with slowly decaying TT-OSL 

203 signals that are poorly suited to being measured with a SAR protocol. The revised De distribution of C-

204 L3825 retains one of the two originally identified low dose FMM components and is still considered to 

205 be negatively skewed. However, its overdispersion is reduced by 50 % and the dominant FMM 

206 component now accounts for a significant proportion (~80 %) of measured grains (Tab. S4). The latter 

207 has therefore been used to derive the final age for this sample. The minor low dose FMM component 

208 remaining after applying the FR ≥2 acceptance threshold potentially originates from other sources of 

209 intrinsic De scatter (e.g., fast-dominated grains that do not respond well to the SAR conditions or grains 

210 with thermally unstable TT-OSL signals) or unidentified extrinsic De scatter. As with sample C-L3824, 

211 it seems that the initially identified FMM K1 dose component originated from grains with slowly 

212 decaying TT-OSL signals. 

213

214 3.3 Dose recovery results

215 A TT-OSL dose recovery test performed on C-L3824 (Fig. S1) attests to the general suitability of the 

216 single-grain TT-OSL protocol and use of an additional FR acceptance threshold of ≥2 for final age 

217 determination. The FR characteristics and De distribution of the unbleached and dosed grains mirror 

218 those obtained for the natural De dataset of C-L3824 (Fig. S1). The low dose FFM component observed 



219 for the unbleached and dosed dataset also lies significantly below the administered dose of 941 Gy, 

220 confirming an intrinsic rather than extrinsic origin for the De scatter. A net (i.e., natural-subtracted) 

221 recovered-to-given ratio of 1.04±0.07 and an overdispersion value of 0 % was obtained for the 

222 unbleached and dosed grains of this sample when applying a FR acceptance threshold of ≥2. 

223

224 3.4 Consolidating the chronostratigraphy for the Lower Moulouya fluvial terraces

225 The single-grain TT-OSL ages obtained for the uppermost part of the BOU section are stratigraphically 

226 consistent: the lowermost sample (C-L3824) yielded an age of 1.09±0.10 Ma, while the upper sample 

227 (C-L3825) provided an age of 1.15±0.10 Ma (Fig. 2). The two new numerical ages are consistent at 1σ 

228 with the corresponding ESR ages of 1.26±0.10 and 1.10±0.11 Ma (Tab.1) derived from the same 

229 samples, and the reversed magnetic polarities identified at this section (Bartz et al., 2018). When 

230 combined with the existing ESR ages and magnetostratigraphy, the new TT-OSL data provide a refined 

231 chronological framework for the evolution of the Moulouya terraces during the Early Pleistocene. 

232 Collectively, the former and new numerical age estimates unequivocally point to the occurrence of a 

233 major depositional event in the lowermost sedimentary basin during the Matuyama chron (>0.77 Ma; 

234 Okoda et al., 2017). The chronologies developed in this study strongly supports many of the 

235 geomorphological interpretations previously reached by Bartz et al. (2018). In particular, they confirm 

236 the time span over which the assumed capture event took place through the uplifting Beni Snassen (i.e., 

237 linking the Guercif and Triffa basins via the Beni Snassen gorge; Bartz et al., 2018); that is between 

238 1.05 and 1.25 Ma at the latest (according to the TT-OSL age provided by the upper sample C-L3825). 

239 They also demonstrate the usefulness of cross-checking ages obtained from independent dating methods 

240 to establish a particularly robust chronological framework for reconstructing long-term landscape 

241 evolution. 

242

243 3.5 Reliability of the single-grain TT-OSL ages

244 In assessing the reliability of the final single-grain TT-OSL ages, it is worth briefly considering two 

245 issues: (i) the slow optical resetting rates of TT-OSL signals and the potential retention of unbleached 

246 residuals prior to deposition; (ii) the possible need for applying a thermal stability correction when 



247 applying TT-OSL signal over extended burial periods. The recent modern analogue study by Arnold et 

248 al. (this volume) revealed single-grain TT-OSL residual doses of 0-24 Gy for comparable dryland fluvial 

249 deposits from Spain and Australia. Such residual De values would be largely insignificant over the burial 

250 dose ranges considered here, and would be well within the existing 2σ TT-OSL De uncertainties for 

251 samples C-L3824 and C-L3825. Reported lifetime estimates for TT-OSL signals are highly variable 

252 (e.g., Adamiec et al., 2010; Brown and Forman, 2012) and have been exclusively derived using multi-

253 grain TL loss and isothermal decay datasets. Arnold and Demuro (2015) have shown that multi-grain 

254 assessments of TL signal loss may provide limited insights into single-grain TT-OSL source trap 

255 lifetimes due to averaging effects, the dominance of grain populations that do not produce TT-OSL, and 

256 interference from slowly bleaching OSL components. As we cannot be confident that existing (multi-

257 grain aliquot) laboratory lifetime predictions are of direct relevance to the specific grain populations 

258 isolated in our single-grain analysis, we have not applied an additional thermal stability correction to 

259 the final TT-OSL ages. This decision appears to be supported by the consistency of the single-grain TT-

260 OSL and ESR ages at BOU (cf., Bartz et al., 2018), which suggests that any potential age 

261 underestimations related to thermal instability are not significant beyond the existing uncertainty ranges 

262 of our final chronologies.

263

264 4. Conclusion

265 The existing geochronological framework for the lower Moulouya terraces, which is based on a 

266 combination of ESR, pIRIR and palaeomagnetism (cf., Bartz et al., 2018), has been successfully verified 

267 by quartz single-grain TT-OSL dating in this study. The consistency between the newly obtained single-

268 grain TT-OSL ages and the existing ESR and palaeomagnetism chronologies is particularly 

269 encouraging, and it indicates that massive fluvial deposition occurred in the lower Moulouya towards 

270 the end of the Early Pleistocene. Whilst application of conventional OSL and pIRIR dating remains 

271 unsuccessful over Early Pleistocene timescales due to signal saturation, our results show that single-

272 grain TT-OSL can successfully be applied over extended age ranges in some settings. The TT-OSL ages 

273 presented in this study are the oldest published so far and their reliability is supported by independent 

274 dating evidence. Importantly, suitable De determination was only achievable for these samples after 



275 undertaking grain-specific assessments of TT-OSL signal variability, and applying an additional quality 

276 assurance criterion based on a FR acceptance threshold of ≥2. This may not have been possible, at least 

277 to the same extent, if we had employed conventional, multi-grain TT-OSL dating on these fluvial 

278 deposits. 

279
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397 Figure captions

398 Fig. 1: The study area in NE Morocco (modified after Bartz et al., 2018). a) Relief map of the Moulouya 

399 catchment (delimited by dashed black lines) including the main geological structures (according to 

400 Barcos et al., 2014); b) The ~20 km-long studied valley reach of the lower Moulouya River with main 



401 morphological and geological features as well as the investigated section described in the text (BOU, 

402 red star) and investigated by Bartz et al. (2018) (TOLL, MRB and DOE, black stars) (satellite image: 

403 Google Earth CNES/Astrium 02.08.2014).

404 Fig. 2: Chronostratigraphy of the four investigated sections (cf., Bartz et al., 2018). The sections BOU, 

405 TOLL and MRB are in the footwall reach and the section DOE in the hanging wall reach of the fault 

406 zone (modified after Rixhon et al., 2017 and Bartz et al., 2018). The geochronological framework is 

407 based on a combination of ESR of quartz (black), single-grain TT-OSL of quartz (red), pIRIR225 of K-

408 feldspar (yellow) and pIRIR290 of K-feldspar (green). Palaeomagnetic polarities are shown as black 

409 (normal), white (reverse) and grey (inconclusive) bars.

410 Fig. 3: Representative single-grain TT-OSL decay and dose-response curves for quartz grains from 

411 samples C-L3824 and C-L3825. In the insets, the open circle denotes the sensitivity-corrected natural 

412 OSL signal, and filled circles denote the sensitivity-corrected regenerated OSL signals. The D0 value 

413 characterises the rate of signal saturation with respect to administered dose and equates to the dose value 

414 for which the saturating exponential dose-response curve slope is 1/e (or ~ 0.37) of its initial value. (a) 

415 Grain from sample C-L3825 with typical OSL signal brightness (Tn intensity = several hundred counts 

416 / 0.17 s) and a moderate-to-high Fast Ratio. (b) Grain from sample C-L3824 with a dim TT-OSL signal 

417 (Tn intensity <100 counts / 0.17 s), and a moderate-to-high Fast Ratio. (c) Relatively bright grain from 

418 sample C-L3825 (Tn intensity = several thousand counts / 0.17 s) with a moderate Fast Ratio. (d) Grain 

419 from C-L3824 with typical TT-OSL signal brightness (Tn intensity = several hundred counts / 0.17 s) 

420 and a low Fast Ratio. 

421 Fig. 4: Single-grain TT-OSL De distributions for samples C-L3824 and C-L3825, shown as radial plots. 

422 a) and c) show the De datasets obtained for these two samples after applying the routine SAR quality 

423 assurance criteria of Arnold et al. (2014); b) and d) show the De datasets obtained for the same two 

424 samples after applying an additional Fast Ratio acceptance threshold of ≥2 (determined specifically for 

425 each sample using the data shown in Fig. 5). In plot b), the grey band is centred on the weighted mean 

426 De value used to calculate the TT-OSL ages, which has been determined using the central age model 

427 (CAM). In plots a), c) and d), the weighted mean burial dose estimate of the dominant finite mixture 



428 model (FMM) component (i.e., that containing the highest proportion of individual De values) is shown 

429 as a dark grey shaded band on the radial plot. The additional dose components identified by the optimum 

430 FMM fits are shown as a light grey shaded band on these radial plots. The percentage of grains associated 

431 with each fitted FMM component is also shown on the radial plots.

432 Fig. 5: Relationship between single-grain TT-OSL De estimates and Fast Ratios for samples C-L3824 

433 and C-L3825. a) X-Y plot of TT-OSL De versus Fast Ratio for individual grains of C-L3824 and C-

434 L3825; b) Plot showing the weighted mean (CAM) De and overdispersion values obtained for C-L3824 

435 when applying different Fast Ratio thresholds; c) Plot showing the weighted mean (CAM) De and 

436 overdispersion values obtained for C-L3825 when applying different Fast Ratio thresholds. In plots b) 

437 and c), progressively higher Fast Ratio thresholds have been applied to the De dataset, starting at a Fast 

438 Ratio of 0 and increasing in Fast Ratio increments of 0.5 until the culled dataset contained fewer than 

439 10 individual De values (i.e., the sample size became too limited to ensure precise single-grain De 

440 determination). In each instance, grains were only accepted for further De analysis if their individual 

441 Fast Ratio value equalled or exceeded the corresponding threshold shown on the x-axis. The values 

442 shown in brackets represent the number of grains remaining in the De dataset after applying each Fast 

443 Ratio threshold criterion.

444

445 Table captions

446 Tab. 1: Summary of the single-grain TT-OSL dating results obtained in the present work. Details can 

447 be found in supplementary material. ESR and pIRIR ages are also provided for comparison of all 

448 samples (C-L3824-3826) from the BOU section (cf., Bartz et al., 2018).

449













(1) Actual depth in metres below surface (m b.s.).
(2) Values obtained for TT-OSL calculations. Details about the dose rate components can be found in supplementary material (Tab. S2).
(3) Based on the Ti centre (asterisk) or the weighted mean De values derived from both Al and Ti centres (cf., Bartz et al., 2018).
(4) cf. Bartz et al. (2018). 

Profile BOU
Sample ID C-L3824 C-L3825 C-L3826(4)

Grain size (µm) 100-150 100-150 100-150Unit Depth (m b.s.) (1) 5.3 1.5 0.5
Dose rate 
(Gy/ka) Total (2) 0.80±0.03 1.21±0.05 0.94±0.04

De (Gy) TT-OSL 871±72 1388±109 -
TT-OSL 1.09±0.10 1.15±0.10 -
ESR (3,4) 1.26±0.10* 1.10±0.11 1.13±0.09
pIR225 

(4) >0.80 - -Age (Ma)

pIR290 
(4) - - >0.63



Supplementary material

Single-grain TT-OSL dating results confirm an Early Pleistocene age for the lower Moulouya 

River deposits (NE Morocco)

M. Bartz1*, L.J. Arnold2, M. Demuro2, M. Duval3, G.E. King4, G. Rixhon5, C. Álvarez Posada6, J.M. 

Parés6 and H. Brückner1

Sample preparation

The samples analysed in the present study (C-L3824 and C-L3825) were prepared under subdued red 

light conditions following the standard luminescence dating procedure at the Cologne Luminescence 

Laboratory (CLL, University of Cologne), as described in Bartz et al. (2018). After wet sieving, coarse-

grained (100-200 µm) sediments were treated with H2O2 (10 %), HCl (10 %) and sodium oxalate to 

remove carbonates, organic material and clay remains. Density separation with sodium polytungstate 

was used to isolate quartz fractions (ρ1 = 2.62-2.68 g/cm3). The resulting quartz minerals were etched 

with HF (40 %) for 40 min, and subsequently washed with HCl (10 %). Finally, the etched quartz 

samples were sieved to grain sizes of 100-150 µm.

Measurement equipment and luminescence dating procedure

Single grain TT-OSL signals were optically stimulated using a focussed 10 mW green (532 nm) laser 

(stimulation power density at sample position ~45 W/cm2), and detected in the UV-blue spectrum using 

a 7.5 mm-thick Hoya U 340 glass filter. Single-grain TT-OSL measurements were made by loading 

100–150 μm grains into standard single-grain aluminium discs drilled with an array of 300 μm x 300 

μm holes. At this resolution, it is estimated that ~12 grains were placed in each grain-hole position 

(Arnold et al., 2012). However, we are reasonably confident that true single-grain resolution has been 

maintained in this study because of the particularly low frequency of grain-hole positions that produced 



TT-OSL signals when using this configuration (84–86 % of grain-hole positions did not produce any 

statistically distinguishable TT-OSL Tn signal when measuring ~12 grains per hole).

The single-grain TT-OSL SAR protocol (Tab. S1; Arnold et al., 2014) is based on the multi-grain aliquot 

approach proposed by Stevens et al. (2009) and makes use of a TT-OSL test dose correction for 

sensitivity changes, following the same single-grain suitability assessments performed by Arnold et al. 

(2014, 2015) and Demuro et al. (2014, 2015). Sensitivity-corrected dose-response curves were 

constructed using the first 0.17 s of each green laser stimulation after subtracting a mean background 

count obtained from the last 0.25 s of the TT-OSL signal.

Tab. S1: Single-aliquot regenerative (SAR) protocol used for single-grain (SG) TT-OSL De determination (Arnold et al., 2014). 
The SAR measurement cycle was repeated for the natural dose, four different sized regenerative doses, a 0 Gy regenerative 
dose (to measure OSL signal recuperation) and a replicate of the first regenerative dose cycle (to assess the suitability of the 
test dose sensitivity correction). The OSL IR depletion ratio of Duller (2003) was measured separately and used to check for 
the presence of feldspar contaminants.

SG TT-OSL (Arnold et al., 2014)

Step Treatment Signal

1 Dose (natural or laboratory)
2 Preheat 1 (260 °C for 10 s)
3 SG OSL stimulation (125 °C for 3 s)
4 Preheat 2 (260 °C for 10 s)
5 SG TT-OSL stimulation (125 °C for 3 s) Ln or Lx
6 OSL stimulation (280 °C for 400 s)
7 Test dose (200 Gy)
8 Preheat 3 (260 °C for 10 s)
9 SG OSL stimulation (125 °C for 3 s)
10 Preheat 4 (260 °C for 10 s)
11 SG TT-OSL stimulation (125 °C for 3 s) Tn or Tx
12 OSL stimulation (290 °C for 400 s)
13 Repeat measurement cycle for 4 different 

sized regenerative doses,
0 Gy dose (recuperation ratio), and 

repeated dose (recycling ratio).

The Fast Ratio (FR) (Durcan and Duller, 2011; Duller, 2012) has been used to provide a proxy for TT-

OSL charge transfer into the fast OSL component trap relative to the medium and slow OSL component 

traps, as well as for identifying the dominance of potentially interfering (non-transferred) residual slow 

OSL components in the TT-OSL signals. It is acknowledged that reliable application of the Fast Ratio 

(FR) to single-grain datasets is potentially complicated by the non-constant optical power densities 

delivered to different grains during optical stimulation (i.e., dissimilarities in direct and backscattered 



illumination densities related to variable grain geometries, grain surface properties, grain orientation, 

positioning and packing within individual grain-hole positions and reproducibility of the single-grain 

laser system). However, in the present study the FR has primarily been used as a quantitative means of 

identifying very slowly decaying TT-OSL signals, which are less likely to be explained solely by minor 

variations in optical stimulation conditions.

Dose rate evaluation and age calculation

Radioelement activities (U, Th and K) were obtained by high-resolution γ-spectrometry (HRGS) 

analysis and ICP-MS analysis, with the former being used to calculate the final dose rates and ages for 

the two samples considered in this study (cf., Bartz et al., 2018). The software DRAC v1.2 (Durcan et 

al., 2015) was used for dose rate and age calculation using the conversion factors of Guérin et al. (2011), 

and the alpha and beta attenuation factors of Bell (1980) and Guérin et al. (2012), respectively. The 

thickness of exterior grain surface removed by HF etching was assumed to be 20±10 µm. Water contents 

of 15±5 % were used in the dose rate calculations (Bartz et al., 2018). The cosmic dose rate contribution 

was assessed following the approach of Prescott and Hutton (1994), taking into account the altitude, 

latitude and longitude of the section, as well as the thickness and density of overlying sediments. The 

latter was assumed to be 1.90±0.05 g cm-3. For a matter of consistency with the previous study by Bartz 

et al (2018), we used the same values for most of the parameters of dose rate calculations, with two 

exceptions given the differences between luminescence and ESR signals: an alpha efficiency of 

0.04±0.01 was taken from Rees-Jones and Tite (1997), and an internal dose rate of 0.02±0.01 was 

considered based on Vandenberghe et al. (2008).



Tab. S2: Dose rate and age datasets. Summary of radionuclide activities of uranium (U), thorium (Th) and potassium (K) 
determined by high-resolution γ-spectrometry (HRGS) (cf., Bartz et al., 2018). DRAC v1.2 (Durcan et al., 2015) was used for 
dose rate and age calculation, with the conversion factors of Guérin et al. (2011), and alpha and beta attenuation factors of Bell 
(1980) and Guérin et al. (2012) for quartz. The cosmic dose rate contribution was assessed following the approach of Prescott 
and Hutton (1994).

(1) Actual depth in metres below surface (m b.s.).
(2) Assumed water content (Bartz et al., 2018).
(3) Assumed internal dose rate following Vandenberghe et al. (2008).
(4) Total dose rate includes an assumed a-value of 0.04±0.01 (Rees-Jones and Tite, 1997).

Single-grain TT-OSL results

Tab. S3: Single-grain OSL classification statistics. The proportion of grains that were rejected from the final De estimation after 
applying the various SAR quality assurance criteria of Arnold et al. (2014) are shown in rows 6-13.

Profile BOU
Sample ID C-L3824 C-L3825

Grain size (µm) 100-150 100-150
Depth (m b.s.) (1) 5.3 1.5U

ni
t

Water content (%) (2) 15±5 15±5
238U (Bq/kg) 9.33±0.50 17.16±0.87

232Th (Bq/kg) 6.21±0.45 11.97±0.77

H
R

G
S

40K (%) 0.49±0.01 0.65±0.01
Internal (3) 0.02±0.01 0.02±0.01
Ext. alpha 0.01±0.01 0.03±0.02
Ext. beta 0.42±0.02 0.61±0.03

Ext. gamma 0.24±0.01 0.39±0.02
Cosmic 0.11±0.01 0.17±0.02D

os
e 

 r
at

e 
(G

y/
ka

)

Total (4) 0.80±0.03 1.21±0.05

Sample name C-L3824 C-L3825 C-L3824

SAR measurement type De De Dose-recovery

Total measured grains 1600 1000 900

Reason for rejecting grains from De analysis

Standard SAR rejection criteria: % % %

Tn <3σ background 88 86 84

Recycling ratio ≠ 1 at ±2σ 3 3 3

OSL-IR depletion ratios <1 at ±2σ 0 0 0

0 Gy Lx/Tx >5% Ln/Tn 0 0 0

Non-intersecting grains (Ln/Tn > dose response curve saturation) 0 0 0

Saturated grains (Ln/Tn ≥ dose response curve Imax at ±2σ) 0 0 0

Extrapolated grains (Ln/Tn > highest Lx/Tx at ±2σ) 0 0 0

Anomalous dose response / unable to perform Monte Carlo fit 7 7 9

Sum of rejected grains (%) 98 96 96

Sum of accepted grains (%) 2 4 4
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Fig. S1: Single-grain TT-OSL dose-recovery test results for samples C-L3824. (a) Radial plot showing the dose-recovery test 
(natural + dosed) De values obtained for sample C-L3824 after applying the routine SAR quality assurance criteria of Arnold et al. 
(2014). (b) Radial plot showing the dose-recovery test (natural + dosed) De values obtained for sample C-L3824 after applying an 
additional Fast Ratio threshold criterion (determined specifically for this De dataset using the results shown in fig 4. (c) Plot 
showing the weighted mean (CAM) De and overdispersion values obtained for the C-L3824 dose-recovery dataset when applying 
different Fast Ratio thresholds. In plot (a), the weighted mean burial dose estimate of the dominant FMM component (i.e., that 
containing the highest proportion of individual De values) is shown as a dark grey shaded band on the radial plot. The additional 
dose component identified by the optimum FMM fit is shown as a light grey shaded band. The percentage of grains associated 
with each fitted FMM component is also shown on the radial plot. In plot (b), the grey band is centred on the weighted mean De 
value, determined using the central age model of Galbraith et al. (1999). In plot (c), progressively higher Fast Ratio thresholds 
have been applied to the dose-recovery De dataset, starting at a Fast ratio of 0 and increasing in Fast Ratio increments of 0.5 until 
the culled dataset contained fewer than 10 individual De values (i.e., the sample size became too limited to ensure precise single-
grain De determination). In each instance, grains were only accepted for further De analysis if their individual Fast Ratio value 
equalled or exceeded the corresponding threshold shown on the x-axis. The values shown in brackets represent the number of 
grains remaining in the De dataset after applying each Fast Ratio threshold criterion.   
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