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Abstract 

In Australia, there is a scarcity of high resolution hyrdoclimate reconstructions for the last several 

millennia. Fluvial-marine sediments offer a potential avenue for examining trends in freshwater input 

to coastal settings and, by inference, past hydroclimates. Here, major elemental geochemistry, δ13C and 

C:N ratios of organic matter, grain size and diatom species abundance, measured in a 4.4 m long 

sediment core collected from Moreton Bay, in east coast Australia, are used to infer the relative 

freshwater discharge of the adjacent catchment over the last ~1500 years.  Reduced freshwater discharge 

into the Bay occurred from 630 to 1200 CE, especially between 1100 and 1200 CE. A broad increase 

in discharge is indicated after 1300 CE, extending to the present. The initial shift to the prolonged wet 

period coincides with both a decrease in the frequency of ‘dry’ El Niño events based on regional records 

from the austral Pacific, and a broad hemispheric-scale cooling trend. This record provides further 

insight into low amplitude climate variability in the Australian subtropics over the last 1000 years, 

supporting efforts in both forecasting current and future climates, and managing regional water 

resources. Importantly, instrumental records do not cover the full range of natural climate variability 

experienced in the region over the last 1000 years.  

 

 

1. Introduction  

 

The Australian subtropics are one of the most hydrologically variable regions of the continent 

(Rustomji et al., 2009). Variations in rainfall and river flow in these regions are strongly linked to major 

teleconnections such as the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation  

(PDO) (Kiem and Verdon-Kidd, 2012; Rodriguez-Ramirez et al., 2014). At the beginning of the 21st 

century, much of the region experienced one of the most severe droughts on the instrumental record, 

the millennium drought. This was followed from 2009-2013 by a wet phase, associated with the 

2010/2011 La Niña, one of the strongest events recorded in Australia, and which resulted in widespread 

flooding of coastal rivers including our study catchment (Cai and van Rensch, 2012). Placing such 

oscillations in a broader temporal context is difficult because in Australia there is a lack of well resolved 



(i.e. annual-decadal) climate reconstructions for the last millennia, with arguably greater focus on 

temperature reconstructions than hydroclimate (Gergis et al., 2016; PAGES 2k Consortium, 2013). 

Continuous rainfall and streamflow monitoring only began in Australia in the early 1800s. This limits 

our understanding of long term climate variability and the relative importance of major atmospheric 

and oceanic climate systems. 

 

In January 2011 rainfall associated with the 2010/2011 La Niña resulted in severe flooding 

within the Brisbane River catchment, south-east Queensland. Extensive floodplain inundation 

particularly within the Lockyer Valley and Brisbane City resulted in significant damage to 

infrastructure. The 2011 flood was one of the largest of the historical record, with a peak discharge of 

~12,400 m3 s-1 (Kemp et al., 2015).  High stream discharges over an extended wet season resulted in 

severe erosion of river banks (Grove et al., 2013; Thompson et al., 2013; McMahon et al., 2017), and 

the deposition of extensive muddy deposits in Moreton Bay, the receiving waters of the Brisbane River 

(Lockington et al., 2017).  The severity of this flood has promoted ongoing research into improving the 

understanding of the frequency of extreme floods in the region (Croke et al., 2016), their geomorphic 

impacts (Thompson and Croke, 2013; Kemp et al., 2015), and how such events relate to oscillations in 

climate (Haines and Olley, 2017; Lam et al., 2017).   

 

As the Earth’s climate warms, strong La Niña and El Niño events are predicted to increase in 

frequency (Cai et al., 2014, 2015).  These changes are likely to contribute to an increasing occurrence 

of severe droughts and floods (Power et al., 2017). However, accurately forecasting the impacts of 

future climatic changes on water resources for individual regions can be problematic in the absence of 

an understanding of the full range of natural variability.  Limited work has focused on resolving annual 

to decadal climatic trends of the more recent past (last 2,000 years) throughout a range of climatic zones 

across the continent (Cook et al., 2000, Yan et al., 2011; Barr et al., 2014; Haig et al., 2014). This can 

be credited in part to the limited geographic extent of palaeo-archives that lend themselves to high 

resolution inquiry (e.g. varved lake sediments, speleothems, long-lived trees and coral skeletons). In the 

few instances where high resolution records of climate have been developed, these have either been 



restricted to temperate (Saunders et al., 2012; Barr et al., 2014) or tropical (Haig et al., 2014; Lough et 

al., 2015) climatic zones, or based on atmospheric teleconnections (Vance et al., 2015), which can be 

problematic given these connections are unstable through time (Gallant et al. 2013). This limits our 

understating of natural climate variability in the Australian subtropics. Fluvial-marine settings, actively 

accreting Holocene-aged sediment, may offer new records of past climates.  

 

1.1 Fluvial-marine sediments as archives of climate 

 

Sheltered estuarine embayments that receive sediment often preserve thick sequences of 

Holocene-aged sediments (Lamb et al., 2006; Zong et al., 2006; Clement et al., 2017). These fluvial-

marine sedimentary environments are subject to both ocean processes (i.e. waves, currents, sea level 

variation) and riverine processes (i.e. river discharge, sediment load). High sedimentation rates also 

mean these environments are capable of recording relatively high frequency events including floods 

and storms. As a marginal environment where the deposition of both terrigenous and marine biological 

and mineral sediments occurs, proxies developed from fluvial marine sediments can offer insights into 

past fluvial and oceanic process and by inference, past climate (Zong et al., 2006; De Dekker et al., 

2014; Hanna et al., 2018). However, due to the dynamic nature of sediment reworking and transport 

within these settings, records may be interrupted by temporal hiatuses (Yi et al., 2003).   

 

Estuaries are ecotones that mark the transition between riverine and marine ecosystems (Roy 

et al., 2001). Estuaries also support a wide range of organisms, many of which are sensitive to salinity 

and can be well preserved in sediments. Diatoms are a diverse group of organisms that occur in a range 

of aquatic environments; including fresh, brackish and marine waters. Detailed investigation of diatom 

assemblages in freshwater and estuarine systems has shown that sensitivity to variations in water quality 

parameters such as pH, total phosphorus, temperature, salinity and water clarity are diverse and often 

species specific (Tibby and Reid, 2004; Grinham, 2011; Tibby and Taffs, 2011). This diversity and 

strong sensitivity to environmental fluctuations allows diatoms to be used to reconstruct climate-driven 

disturbances preserved in estuarine, coastal and shelf sediments (Owen et al., 1998; Zong et al., 2006; 



Taylor and McMinn, 2001). In proxy-use, these microfossils are ideally paired with biogeochemical 

indicators (i.e. δ13C, C/N, mineral ratios, grain size etc.) to further refine palaeoenvironmental shifts 

inferred from fossil assemblages.  

 

Organic matter in estuaries is derived from a mixture of allochthonous terrigenous and marine, 

and autochthonous estuarine sources. An effective means of differentiating marine plants (i.e. macro-

algae, phytoplankton, and seagrass), from terrestrial plants is by using δ13C values and C/N ratios of 

plant material (Fry et al., 1977).  The δ13C ratios for terrestrial plants typically range from -13 ‰ to -30 

‰, with C3 plants ranging between -23 ‰ and -30 ‰, and C4 plants (i.e. some grasses) averaging 

around -13 ‰ (Emery et al., 1967; Fry et al., 1977).  Terrestrial plants also have high C/N ratios 

(typically > 12), due to the presence of cellulose and lignin, which are poor in nitrogen (Emery et al., 

1967). Marine algae and plants have higher δ13C values, ranging from -10 to -20 ‰ and much lower 

C/N ratios, typically between 4 and 10 (Bird et al., 1995; Cloern et al., 2002). δ13C and C/N ratios of 

bottom sediments are typically between end-member values for marine and freshwater environments, 

which is a reflection of the relative proportion of carbon in sediment derived from distinct terrestrial 

and marine plant groups (Fontugne and Jouanneau, 1987; Thornton and McManus, 1994). Sheltered 

embayments also receive terrigenous mineral sediments in the form of clay, silt and sand from rivers. 

In addition to these allochthonous sediments, autochthonous sediments are produced in the form of 

calcium carbonates and biogenic silica derived from marine organisms; including diatoms, sponges, 

foraminiferans and molluscs. The relative contribution of terrestrial sediments and marine sediments 

may also provide evidence for the relative influence of these distinct sources in estuarine mixing zones. 

 

         In this study, diatom species relative abundance, δ13C and C/N ratios (weight basis) of organic 

matter, grain size, and major elemental geochemistry were measured in a sediment core collected from 

pro-delta sediments within a shallow protected bay. Shifts in sediment composition observed in 

response to the 2011 flood were used as a reference for identifying periods of past increased freshwater 

flow discharge. An index of freshwater discharge to the bay was then constructed based on the combined 

proxy signals measured in the sediment core, covering the last 1500 yrs.  



2. Regional setting  

 

Moreton Bay is a semi-enclosed subtropical estuarine embayment situated adjacent to the city 

of Brisbane in south-east Queensland, Australia (Fig. 1). The bay is shallow, with an average depth of 

7 m. To its east, the bay is bordered by two dune-barrier islands (Moreton Island and North Stradbroke 

Island), which act to confine bay waters and limit oceanic mixing (Dennison and Abal, 1999). A strong 

water quality gradient exists in the bay grading from turbid, brackish water in the west to clear, oceanic 

water in the east (Dennison and Abal, 1999).  Moreton Bay’s catchment consists of four major river 

systems (Brisbane, Logan, Pine, and Caboolture Rivers) with the Brisbane River catchment being the 

largest (13,100 km2). The watershed of Moreton Bay has experienced significant alteration following 

European settlement, beginning in the 1840s, when the introduction of European livestock initiated 

fundamental changes in catchment dynamics, later followed by clearing of native forest, cropping and 

the expansion of suburban residential land (Kemp et al., 2015; 2018).  

 

Broadly, the geology of the catchment of Moreton Bay is characterized by Mesozoic 

sedimentary rocks, including both Triassic and Jurassic sequences of sandstone and siltstone, with 

minor rhyolite and tuff. In the upper parts of the catchment, Tertiary basalts are also important, 

comprising major sections of the Great Dividing Range (Day et al., 1983). Within the Bay itself, 

Tertiary basalts and laterites form prominent coastal outcrops, while Holocene-aged fluvial-marine 

sediments form much of the coastal plain and modern coastline. The protection of this coastline from 

the open ocean has allowed for the development of a prominent fluvially-dominated delta at the mouth 

of the Brisbane River. The distribution of these Holocene sedimentary units within Moreton Bay has 

largely been controlled by the nature of sea level transgression and stabilization following the Last 

Glacial Maximum (Evans et al., 1992; Lewis et al., 2008). Western subtidal regions of the bay are 

comprised of fluvial deltaic sands with pro-delta muds extending eastward into the marine basin (Evans 

et al., 1992). Within the central bay area, Holocene pro-delta muds are ~10 m thick (Evans et al., 1992). 

High sedimentation rates of pro-delta muds in this setting provide potential for the development of high 

resolution palaeo records (Coates-Marnane et al., 2016). Postglacial sea level reached its highest point 



in southern Queensland at ~7000 years BP with a height of ~ +1.0 – 1.5 m (AHD).  Sea level then 

stabilized to its present position by ~2000 years BP (Lewis et al., 2008).  

 

The region is subtropical with predominantly summer rainfall. Mean annual rainfall throughout 

the 21,220 km2 catchment varies from 800 to 1200 mm, generally increasing toward the coast. The 

majority of summer rainfall is produced by the convection of onshore trade winds, with widespread 

rainfall also occurring in association with east coast troughs and storm cells. ENSO is the dominant 

driver of regional inter-annual rainfall variability (Chiew et al., 1998; Risbey et al., 2009), and is also 

modulated by longer term climate oscillations including the Pacific Decadal Oscillation (PDO) and the 

Interdecadal Pacific Oscillation (IPO) (Power et al; 2006; Rodriguez-Ramirez et al., 2014). The 

interactions of these climate phenomena results in multi-decadal wet and dry cycles observed in the 

instrumental record (Haines and Olley, 2017). Variability in annual rainfall is also strongly influenced 

by the activity of tropical cyclones and tropical low pressure systems which can propagate southward 

and bring sustained, intense rainfall to the region (Power and Callahan, 2016). In the east Australian 

tropics and subtropics the La Niña phase of ENSO is manifest as an increased likelihood of above 

average annual rainfall and flooding (Ramsay et al., 2012; Ward et al., 2014). 

 

3. Methods 

3.1 Bay-wide sediment survey 

 

In November 2013 subtidal sediments were collected using a Van Veen grab sampler from 37 

sites within Moreton Bay and the estuarine reach of the lower Brisbane River (Fig. 1). The sampling 

range spanned the estuarine mixing zone from the limit of tidal influence in the lower Brisbane River 

to the oceanic waters of central and eastern Moreton Bay. Sites were selected based on locations of 

previous water quality monitoring within the region which includes monthly measurements of salinity, 

turbidity, secchi depth, and pH as part of the Ecosystem Health Monitoring program (EHMP, 2011). 

Most sites sampled consisted of bioturbated muds, with three sites in the western bay region located in 



sandy calcareous sediments. Sediments were stored at 4 ºC until they could be prepared for analysis of 

δ13C and C/N ratios by isotope ratio mass spectrometry (IRMS).  

 

Sediments were first dried at 60 ºC, and ground using a zirconium shatter box grinder to achieve 

textural consistency before analysis. For δ13C, samples were pre-treated with dilute (10 %) hydrochloric 

acid to remove inorganic carbon (CaCO3), and dried at 60 C˚ for 48 hours. Then 80 mg of material was 

weighed and pelletized in silver capsules. Samples were combusted in a Sercon Europa elemental 

analyser with sample gases delivered to a Sercon Hydra IRMS at the Australian Rivers Institute, Griffith 

University. Results are expressed as the permil (‰) difference in isotope ratio relative to Pee Dee 

Belemnite (δ13C). The precision of δ13C (‰) was monitored with a sucrose standard over 20 runs, 

reporting δ13C = -11.7 ‰ (SD = 0.005, N = 84). 

 

3.2 Sediment core sampling 

 

In November 2011 a sediment core was collected from pro-deltaic sediments of the Central 

bay. A 4.4 m long sediment core (referred to from here as MB1L) was extracted using a purpose-built 

barge mounted hydraulic vibracorer designed to sample subtidal sediment profiles. On extraction, the 

core, sampled using steel coring barrels, was then extruded into soft black plastic tubing to preserve the 

luminescence properties of the sediment and stored at 4ºC until sectioning. In addition, a short core was 

taken from the less well-consolidated surficial sediments, positioned within 1 m of the long core 

(referred to from here as MB1S). This was done to ensure the recovery of the complete sediment profile 

that may not have been achieved using the vibra-corer alone. Divers using SCUBA, hammered a 1500 

mm diameter PVC pipe into the sediment and used suction to retrieve a section of sediment (55 cm). 

 

3.3 Geochronology 

 

The chronology of sediment deposition was determined using a combination of fallout 

radionuclides (137Cs and 210Pb), optically stimulated luminescence (OSL) and accelerated mass 



spectrometry radiocarbon (AMS 14C) dating.  Full details of the dating techniques and results are given 

in Coates-Marnane et al. (2016). In brief, four samples were taken for OSL burial age determination 

(50-55 cm, 100-105 cm, 351-356 cm, 439-444 cm). Single aliquot regeneration was performed with 

quartz sands (63 – 125 µm) on Riso instrumentation using the protocol outlined in Olley et al., (2004). 

Single aliquot equivalent doses (De) were used to determine the burial dose (Db) using the age modelling 

approach of Galbraith and co-workers (Galbraith et al., 1999). The dose rates (Dr) were determined by 

high resolution gamma spectrometry of sediments adjacent to the OSL samples in the core profile, 

accounting for β-attenuation factors, cosmic and internal alpha doses. The burial age was then calculated 

as Db/Dr.   

 

AMS 14C dating was performed on two intact bivalve shells from MB1L (260-265 cm, 439-444 

cm). Conventional 14C ages were calibrated using MARINE13. The calibration protocol corrects for a 

400 yr global marine reservoir effect and a regional reservoir effect (ΔR) (Reimer et al., 2013). Moreton 

Bay is shown to have a depletion of the marine reservoir effect (ΔR = −216 ± 94 yrs.) compared to the 

modelled global ocean due to the presence of terrestrial carbon (Ulm et al., 2009). 

 

More recent burial ages were determined using radionuclide dating. 137Cs measurements were 

used to define the pre/post 1959 boundary (Hughes et al., 2009). Additional measurements including, 

210Pb and trace elemental (Pb-total) and loss on ignition (LOI) trends were used to determine the 

stratigraphic relationship of cores MB1S and MB1L. Conventional 210Pb dating techniques (constant 

rate of supply (CRS) / constant initial concentration (CIC)) were not applicable this setting due to the 

inability to account for 210Pb supplied through both direct fallout and via sediments loads of rivers 

entering the bay.  

 

3.4 Geochemistry and grain size analysis  

 

For geochemistry, 2 cm intervals were sampled contiguously for MB1S, while from MB1L 5 

cm intervals were sampled from 0 to 100 cm and 10 cm intervals were sampled from 100 to 444 cm. 

https://www.sciencedirect.com/science/article/pii/S0272771416300683#bib87
https://www.sciencedirect.com/science/article/pii/S0272771416300683#bib100


Major elements were determined by inductively coupled plasma optical emission spectrometry (ICP-

OES) on samples digested by lithium metaborate fusion on a kantaxa automatic fluxer. 100 mg of 

sample was added to 1.0 g of lithium metaborate in a clean platinum crucible and placed in a furnace. 

Following heating in the furnace, the sample and molten flux was transferred to a PFA beaker containing 

100 ml of a 4.0 % HNO3 / 2.0 % HCl solution. The solution was diluted by 1:9 with reagent water into 

a 10 mL PPE tube. Aluminium and calcium were measured simultaneously on Agilent technologies 700 

Series ICP-OES (uncertainty: Al-10 %, Ca-10 %, Practical quantification limit (PQL): Al-0.01 %, Ca-

0.05 %), with PQL calculated based on the results of ten digest blanks; PQL = 3 (mean + 3 standard 

deviation). Calculated aluminium and calcium concentrations of dry sediment were then converted to 

weight percent oxides (Al2O3, CaO) based on loss on ignition (LOI) for individual samples.  For grain 

size, 5 cm intervals were sampled contiguously in both MB1S and MB1L. Grain size distribution was 

measured using laser diffraction (Mastersizer 2000 - Malvern Instruments Ltd, UK). Grain size statistics 

including; sorting, skewness and kurtosis were calculated using the software GRADISTAT version 8.0 

(Blott and Pye, 2001), and classified using the method of Folk and Ward (1957).  

 

3.5 δ13C and C/N ratios  

 

For δ13C 2 cm intervals were sampled contiguously for MB1S, while for MB1L 5 cm intervals 

were sampled. The δ13C and C/N ratios of organic matter preserved in core samples were determined 

by IRMS as described in section 3.1. 

 

3.6 Diatoms  

 

For diatoms, 1 cm intervals were sampled every other centimetre for MB1S (i.e. 0-1, 2-3, etc.). 

For MB1L, 1 cm intervals were sampled at 4 cm intervals from 0 to 134 cm depth and at 6 cm intervals 

from 134 to 254 cm depth. Treatment of diatom samples followed Battarbee et al. (2001) and used 

standard hydrochloric acid and hydrogen peroxide digestion techniques. The digested material was 

deposited on coverslips, dried at room temperature, and mounted on slides using a Naphrax mounting 



agent. Slides were traversed using a Nikon Eclipse E600 light microscope, under differential 

interference contrast (DIC) at 1500 x magnification, along vertical transects of known co-ordinates as 

recommended by Battarbee et al., (2001) to achieve counts of >200 valves per sample. References to 

Desikachary (1988a, b, 1989), Krammer and Lange-Bertalot (1986, 1988, 1991a, b) and Witkowski et 

al. (2001) were made for the identification of all taxa. Diatom species/groups were classified by their 

environment as continental (C) (live in fresh water), estuarine/brackish (E/B) (euryhaline) or marine 

(M). Estuarine/brackish and marine diatoms are assumed to be autochthonous in the bay and were also 

classified as predominantly benthic or planktonic based on available literature (e.g. Desikachary et al., 

(1988a)) Continental diatoms were also separated into their major growth forms including; planktonic, 

benthic and aerophilous.   

 

3.7 Record integration and indexation 

 

A simple indexation method based on the number of proxy records that indicated either 

increased or decreased discharge was employed to generate the final record of freshwater discharge. 

Values of each proxy for individual years were determined using linear interpolation based on the age-

depth relationship. This allowed direct comparisons to be made between individual years, and the 

development of an integrated climate record. For individual proxies the inferred degree of freshwater 

discharge was determined from the degree of deviation from the average of the data set in the direction 

that indicated increased freshwater discharge (e.g. Al2O3/CaO = > 0). The proxies included in the 

integration were;   Al2O3/CaO, < 10 μm, δ13C, C/N and the diatom Paralia fenestrate (P. fenestrata).  

P. fenestrata, a marine species, which was the most common diatom present in the record representing 

between ~60 ~85 % of the assemblage. Reduced abundances of this dominant diatom in the final record 

typically coincided with an increase in abundance of the typically estuarine diatom Cyclotella litoralis. 

Therefore, the relative abundance of P. fenestrata was likely to provide the most relevant estimate of 

altered average water salinity at this site through time. Values of 2 and 0 were assigned to individual 

years for each proxy, indicating high and low freshwater influence. Because the diatom record is not 

complete, an intermediate value (1) was assigned to the period with no data for P. fenestrata abundance.  



Summed scores for individual years of < 5 indicated a probable decrease in freshwater discharge and a 

drier climate overall was inferred, while scores > 5 indicated a probable increase in freshwater discharge 

and a wetter climate was inferred.  

 

4. Results 

4.1 Bay-wide survey  

 

The δ13C values ranged from -25.1 ‰ to -9.0 ‰ with an average of -20.9 ‰. The spatial 

variability of δ13C is typical of an estuarine mixing zone, ranging from relatively low values of  - 25 ‰  

to   -22.0 ‰ within the estuarine reach of the Brisbane River, and higher values of -21 to -18.0  % within 

western Moreton Bay and more oceanic sites. Three sites (BS 1, 2, 5) located within the sandy 

calcareous sediments of Waterloo Bay (Fig. 1), close to the Brisbane River mouth contrasted with this 

general trend with much lower values than the average for the data set (-14.9 ‰, -12.9 ‰, -9.0 ‰). 

TOC in sediments ranged from 0.19 - 2.38 % with an average of 0.92 %. TN ranged from 0.01 – 1.05 

% with an average of 0.11 %.  C/N ratios range from 7 - 29, averaging 12.2. Two outliers of 0.5 and 

0.67 were observed for BS 3 and BS 6, respectively.  

 

Bivariate correlations between δ13C (‰), TOC (%), TN (%) and C/N ratios of bottom sediments 

and 5 year average monthly water quality variables (Chlorophyll a (Chl a), Salinity, Secchi depth, TN, 

TP, DO, pH, Temperature and Turbidity) for equivalent sites are presented in Table 1. This analysis 

excludes the outliers (BS 1, 2, 3, 5, 6). The δ13C is significantly (p = < 0.005) positively correlated with 

salinity, secchi depth and pH (r = +0.72, +0.75, +0.71), and strongly negatively correlated with turbidity 

(r = -0.67). Non-linear regression also shows the strength of the relationship between salinity, secchi 

depth and the δ13C (‰) values of bottom sediments (with r2 = 0.64, and 0.65 respectively) (p = < 0.005) 

(Fig. 2). C/N ratios of organic matter in bottom sediments are also moderately negatively correlated 

with salinity, secchi depth and pH (r = -0.35, -0.39, -0.39) (p = < 0.005), while positively correlated 

with turbidity (r = 0.40 p = < 0.005). Moderately inverse relationships are seen between salinity, secchi 

depth and C/N ratios when regressed using non-linear methods (r2 = 0.24, 0.20) (Fig. 2). Ordinary 



kriging in Arc GIS was used to interpolate values to un-sampled sites to generate contour maps, with 

outliers excluded (Fig. 3).  

 

4.2 Geochronology  

 

The OSL and AMS 14C ages show good agreement (Table 2). The basal ages of MB1L are 

within one sigma error (OSL: 1445 ± 145, AMS 14C: 1430 ± 110 years ago). Figure 4 summarizes the 

dating methods and results. Sediment deposited after 1959 was identified by the detection of 137Cs, 

while a distinctive viscous layer at the sediment surface was determined to be sediment deposited during 

the 2011 flood. Intervening ages of the short core (MB1S) were determined using linear interpolation, 

in the absence of a more detailed (i.e. 210Pb based) chronology for young sediments. For deeper 

sediments, an age model was defined using linear regression of both the OSL and 14C ages, which was 

suggestive of long-term linear sedimentation at this site (Fig. 4b). The linear relationship between age 

and depth in core MB1L also suggests that there are no major hiatuses in the record.  However, it is 

possible that a hiatus exists between the top of the long (MB1L) and base of the short core (MB1S), and 

the basal sample of MB1S may not represent the maximum depth of detectable 137Cs (Fig 4a). The 

shallowest detection of 137Cs at neighbouring core site (MB2) occurred at 59 cm (Coates-Marnane et 

al., 2016).  Although, the base of MB1S may not represent the year 1959, based on core LOI and trace 

elements (Pb) profiles of the two cores  it is unlikely that a considerable gap (>10 years) has been missed 

in the record.  

 

4.3 Geochemistry and grain size analysis  

 

The entirety of the sediment profile consisted of organic rich medium silts, with accessory fine 

sand (63–125 µm), and occasional shell fragments (D50 ~ 8.2 µm).  Grain size analysis identified little 

variation down core with all samples classified as poorly sorted, coarsely skewed mesokurtic silt. Grain 

size analysis and geochemistry was used to investigate the contribution of terrestrial (aluminosilicate) 

and marine (calcium carbonates) components of the sediments to different grain size classes. Strong 



positive relationships are shown for Al2O3/CaO and sediments sized between 4 – 16 µm and < 10 µm, 

while strong inverse relationships are shown for Al2O3/CaO and sediments sized between 16 – 62.5 µm 

(Fig. 5). This implies that there is an increasing contribution of CaO in the silt fraction, and an increasing 

contribution of Al2O3 in clay sediments. Calcifying foraminiferans were observed in relatively high 

numbers in sediments < 63 µm. The presence of both foraminiferans and other shell fragments is 

increasing the CaO contribution in equivalent sediments. The ratio Al2O3/CaO can therefore be used as 

an indicator of the relative contribution of terrestrial (aluminosilicate) vs marine (calcium carbonate) 

material to the sediment mixture deposited on the bay floor. Similarly, the proportion of <10 µm 

material in sediments can be used as an indicator of the relative proportion of terrestrial aluminosilicate 

clays in bottom sediments – and, by inference, an indicator of river discharge.  

 

4.4 Core profile trends 

 

The record including measurements of sediments sized < 10 µm, Al2O3/CaO ratio, δ13C ‰ and 

C/N values, and the relative abundance of diatom species Paralia fenestrata, Cyclotella litoralis, and 

continental species extends from ~630 to 2011 CE (Figure 6). The scale of the ages of more recently 

deposited sediments, including those deposited after 1959 and as a result of the 2011, has been 

emphasized to highlight trends of this historical era. The diatom record does not extend prior to 1200 

CE. 

 

Sediments sized < 10 µm (%) ranged from 49.5 to 62.5 %, averaging 56.1 %. The Al2O3/CaO 

ratio ranged from 4.7 to 12.5 with an average of 6.8. The trend of the < 10 µm fraction of sediment 

exhibits a similar trend to the Al2O3/CaO ratio. Between 630 and 1200 CE both the < 10 µm (%) and 

the Al2O3/CaO ratio is generally below the average of the record. Between 1200 to ~1900 CE < 10 µm 

(%) and the Al2O3/CaO ratio are generally above average, with high values occurring between 1500 

and 1900 CE. The period of European settlement beginning ~1840, and particularly the period after 

1959, is characterized by dramatic shifts in sediment geochemistry and particle size. The < 10 µm 



fraction and the Al2O3/CaO ratio decrease significantly after 1959 followed by a sharp increase in the 

2011 flood layer.  

 

The δ13C values (‰) of sediments at the core site ranged from -21.3 ‰ to -19.4 ‰, with an 

average of - 20.1 ‰. C/N ratios ranged from 9.4 to 13.4 with an average of 10.6. These values are 

broadly consistent with the δ13C ‰ and C/N of bottom sediments sampled in the same region in 

November 2013 (Fig. 3). Down-core variations in δ13C and C/N ratios are subtle, though there are a few 

prominent features. The δ13C ratios of organic matter are generally relatively high between 630 and 

1200 CE (-20.1 ‰ to -19.3 ‰, average -19.7 ‰), peaking between ~1050 to ~1100 CE at ~19.3 ‰. 

The δ13C ratios decrease slightly between 1300 to 1500 CE, averaging ~20.0 ‰ between ~1500 to 1900 

CE. Values decrease significantly from ~1900 to the present, with a shift of – 1.1 ‰. Flood-derived 

sediment has the lowest δ13C values of 20.8 – 21.1 ‰. C/N ratios are significantly higher for flood 

sediments than the remainder of the record (11.1 – 13.4 ‰). However, there is no correlation between 

the C/N and δ13C ratios for the sediment profile (r2 = 0.04). 

 

The majority of diatoms observed in the sediment record were marine, and were dominated by 

the marine diatom Paralia fenestrata. Continental and estuarine/brackish diatoms were also a major 

component of the assemblage. The relative abundance of marine diatom P. fenestrata ranged from 1.5 

– 94 %. The highest abundances occurred early in the record between 1200 and 1500 CE (53 – 94 %). 

Between 1500 and 1700 CE the relative abundance of P. fenestrata falls below 40 % averaging 47 %. 

Their abundance remains relatively constant (~50 %), from ~1800 to 1990 CE. A rapid decrease in 

abundance is seen for sediment deposited after 1990 CE, particularly in 2011. Cyclotella litoralis is an 

estuarine diatom species that typically occurs within the littoral zone in brackish waters.  The decrease 

in abundance of the dominantly marine diatom P. fenestrata between 1500 and 1700 CE is paired with 

a marked increase in C. litoralis, increasing from < 20 % to 30 – 40 % for this period. The relative 

abundance of this diatom for the remainder of the record is relatively constant, typically < 20 %. 

Continental diatoms occur at greatest abundances between 1550 CE and 1750 and between 1850 and 

2011. High abundances of continental diatoms as seen in sediments derived from the 2011 flood (25 %) 



are also found at two key intervals corresponding to the years  1646 and 1683 CE (23 % and 16 % 

respectively). Key continental diatoms observed in the record included aerophilious Aulacoseira species 

and planktonic Luticola species. In 2011 the total abundance of both planktonic and benthic continental 

diatoms in sediments is comparable to the peaks observed in the 1600s (Fig. 7). However, the relative 

abundance of aerophilous diatoms, those typically originating from damp soils (i.e. river banks/ 

wetlands), was far greater in 2011 (1.8 to 6.4 %) than in the 1600s (0.5 to 1.0 %).    

 

5. Discussion 

5.1 Biogeochemical patterns in Moreton Bay 

 

The spatial trends of δ13C and C/N ratios in bed sediments in Moreton Bay reflect the mixing 

of terrestrial organic matter derived from C3 and C4 plants, with marine organic matter, principally 

from algae, cyanobacteria, and macrophytes. The mixing of these distinct sources produces a gradient, 

from more terrestrial influenced reaches in the Brisbane River estuary to more oceanic influenced sites 

within central Moreton Bay. This is consistent with patterns observed in similar settings in Australia 

and elsewhere (Zong et al., 2006). The link between this biogeochemical gradient and the physical 

mixing of fresh, estuarine and salt water is depicted by the relationship between δ13C values and salinity 

and secchi depth (Figs 2, 3). The turbid and brackish waters of the upper Brisbane River estuary are 

characterized by relatively low δ13C and high C/N values. Further downstream, δ13C values increase 

owing to the greater relative contribution from marine aquatic plants and algae. Sediment δ13C and C/N 

ratios reflect the mixing gradient between these two end members transitioning from freshwater 

terrestrial environments to saline, marine environments in Moreton Bay.   

 

5.2 Contextualizing the late Holocene record using 2011 flood-derived sediments 

 

The record developed at site MB1 encompasses the last ~1500 yr. As a result of the 2011 flood, 

5-10 million tonnes of sediment was deposited and western Moreton Bay became fresh-brackish (<10 

ppt salinity) for several days (EHMP, 2011; Stevens et al., 2014; Coates-Marnane et al., 2016).  This 



recent event allows for the characterization of the sedimentary signature of floods within the Moreton 

Bay record. Flood sediments from 2011 are rich in aluminosilicate clays, indicated by the high relative 

proportion of sediment < 10 µm, and increase in the Al2O3-CaO ratio (Fig. 6). Similarly, a relative 

decrease in δ13C and increase in the C/N ratio of sediment indicates the deposition of terrestrial organic 

matter (Fig. 6). In addition, the relative abundance of continental diatoms is higher in flood sediments 

compared to previously deposited sediments (Fig 6). It is therefore reasonable to use these relative 

changes in sediment composition to reconstruct the past variability of freshwater discharge into the bay 

over the last 1500 years, with the assumption that similar relative changes in the composition of 

sediments should have occurred in response to periods of high flow. However, historical land-use 

changes have likely altered the biogeochemical characteristics of suspended sediments delivered to the 

bay.  Similarly, the rate of fine sediment supply to the bay as a whole has increased since European 

settlement (Coates-Marnane et al., 2016). Given these changes, the signal of the 2011 flood in the bay 

is potentially unprecedented in terms of the depth of accretion of fine sediments in the central bay (0-

10 cm). Despite the increase in rate of fine sediment accretion in Moreton Bay, based on grain size 

analysis no increase in the proportion of silt to sands is observed at this site in response to an increase 

in sedimentation. Considering this, we assume the proxies used here at this specific site have maintained 

a consistent response to variable river discharge through time. However, it is likely that the scale of the 

shifts in the proxies in response to modern floods has altered since anthropogenic modification of the 

catchment.  

 

5.3 Long-term trends in river discharge 

5.3.1 630 – 1300 CE  

 

The integrated proxy record indicates a reduced river discharge between 630 and 1200 CE. The 

most probable explanation of this is below average rainfall in the catchment and a reduction in average 

freshwater discharge and frequency of flooding events, peaking in severity between 1050 to 1200 CE 

(Fig. 8). The occurrence of anomalously low rainfall and aridity across this period has been identified 

in a range of environments on the Australian mainland. Using diatom-inferred records of lake salinity 



from the western plains of Victoria (Lake Elingamite and Surprise) Barr et al., (2014) also identified a 

multi-decadal drought between 650 and 850 CE, and a period of high climate variability between 850 

and 1400 CE. After 1400 CE the climate became wetter with a significant reduction in inter-decadal 

variability (Fig. 8). In addition, a recent ice core record from Law Dome Ice Sheet in Antarctica has 

been used to develop a high-resolution long-term (1000 years) drought record for subtropical eastern 

Australia (Vance et al., 2015). Two dry epochs were identified between 1000-1260 CE and 1920-2009 

CE (Fig. 8).  Finally, a recent reconstruction of flood activity over the last two millennia from Fortescue 

Marsh in the arid subtropics of northwest Australia revealed the period between 700 – 1600 CE was 

characterized by floods of reduced magnitude compared to those after 1600 CE (Rouillard et al., 2016).  

 

5.3.2 Connections between regional drying and global climate  

 

The inferred broad dry phase in many regions of Australia at the turn of the last millennia 

coincides with an increase in El Niño frequency based on a record from the Eastern Pacific. Using 

sediment grain size analysis of a sediment core from El Junco Lagoon in the Galapagos, Conroy et al., 

(2008) inferred an increase in the frequency of El Niño events between ~600 to ~1300 CE. After 1,300 

CE, El Niño events decreased in frequency and showed less variability (Fig. 8).  Similarly, Moy et al., 

(2002) found a peak in the frequency of warm phase (El Niño) ENSO events at ~800 CE, with a 

subsequent decline toward the present. The overall drier, more variable climate between ~630 and 

~1300 CE also occurs during the medieval climate anomaly (MCA). In the Northern Hemisphere, the 

MCA occurred between 950 and 1200 CE (Mann et al., 2009), however no global coherent warm phase 

during medieval times was identified (Neukom et al., 2014). Despite this, there is some evidence for 

the occurrence of a significant climate anomaly in the Southern Hemisphere similar to that described as 

the MCA, characterized by anomalously warm conditions (Cook et al., 2002; Kemp et al., 2012; 

Neukom et al., 2014). Using multiple temperature reconstructions from Australasia spanning 1000 – 

2001 CE Gergis et al., (2016) also identified a peak in preindustrial warmth between 1150 and 1350 

CE. Drought frequency and severity in eastern Australia at this time may have been exacerbated by 



increased evaporation in response to anomalously warm conditions in combination with increased El 

Niño frequency and intensity.  

 

5.3.3 1300 – 1700 CE  

 

The record suggests an average increase in discharge to the bay between 1300 and 1900 

compared to prior to 1200 CE.  The peak in this wet period occurs between 1500 and 1700 CE as 

evidenced by the high abundance of continental diatoms at this time (Fig. 7). This is followed by a 

return to relatively dry conditions and reduced river discharge between 1700 and 1850 and subsequently 

by an onset of increased river discharge after 1850 continuing at least until 1900. Climate 

reconstructions in the austral Pacific also indicate an especially wet epoch extending from ~1400 to 

~1900 CE (Yan et al., 2011; Vance et al., 2015).  Croke et al., (2016) developed a millennial scale 

record of flooding in the Lockyer Valley catchment of the upper Brisbane River, based on OSL ages of 

flood deposits.   Their evidence indicates that floods comparable to the January 2011 event have 

occurred several times over the last 2,000 years, with flood activity peaking around 1730 CE. This 

finding is in broad agreement with the Moreton Bay record suggesting peak flooding activity in the late 

1600s.  

 

5.3.4 Connections between regional rainfall increases and global climate 

 

The decrease in frequency of strong El Niño phases of ENSO throughout the last millennia as 

identified in the Galapagos (Conroy et al., 2008) may partially explain the transition from a drier climate 

at the turn on the last millennia to a wetter climate in the latter half of the last millennia in the Moreton 

Bay catchment. In addition, the transition from ‘dry’ conditions at the turn of the last millennia to a 

‘wetter’ climate by 1300 to 1400 CE is also broadly synchronous with the transition from the MCA to 

the Little Ice Age (LIA). The LIA, characterized by hemispheric-scale cooling, occurred between 1400 

and 1850 CE in the North Atlantic region (Mann et al., 2009). Unlike the MCA, annually resolved 

temperature reconstructions of the Southern and Northern Hemispheres, suggests strong inter-



hemispheric coupling during the peak of the LIA (1600 – 1700 CE) (Neukom et al., 2014). A recent 

compilation of temperature records from the Australasian region also identified a shift toward cooler 

climates after 1500 CE (PAGES 2k Consortium, 2013). Similarly, Gergis et al., (2016) identified a 

transition to cooler conditions in Australasia after ~1350 CE.  

 

This mid-millennia cooling trend (LIA) was also characterized by a gradual southward 

displacement in the position of the inter-tropical convergence zone (ITCZ) (Haug et al., 2001; Sachs et 

al., 2009). The displacement of the ITCZ over the last millennia has strongly influenced rainfall 

variability in the tropics over the past millennia (Lechleitner et al., 2017).  Lechleitner et al., (2017) 

found that the most prominent period of southward (negative) deflection of the ITCZ occurred between 

1320 and 1820 CE and corresponded to increased rainfall in the Southern Hemisphere tropics.  A more 

pronounced influence of the ITCZ in the Southern Hemisphere during this period may have translated 

into an increase in rainfall in the Australian subtropics, through a greater southward influence of rain 

producing features associated with the Australian monsoon and tropical cyclones.  Elevated tropical 

cyclone activity in north eastern Australia (Chillagoe) is also indicated from ~1500 CE to ~1800 CE 

based on speleothems (Haig et al., 2014). Rouillard et al., (2016) also provides evidence for the 

initiation of a period of intense flooding coincident with the LIA, highlighting the southward deflection 

of the ITCZ as a potential mechanism for increased regional precipitation. Together, this is suggestive 

of geographically broad, synchronous, hrydoclimatic change in northern Australia in response to global 

cooling.   

 

The ITCZ displacement is also known to strongly influence the relative activity of modern 

ENSO, which may have influenced rainfall variability in east coast Australia (Rustic et al., 2015).  The 

interactions of ENSO, hemispheric cooling and the meridional displacement of the ITCZ over the past 

millennium remain challenging to investigate due to the scarcity of highly resolved records. The 

transition to a wetter La Niña -like climate from 1300 to 1680 CE observed in this record was likely 

caused by a combination of the dynamic interactions of several climate drivers. Other potential 

influences on subtropical and tropical rainfall which warrant further investigation into their variability 



over the last several millennia include the Southern Annular Mode (SAM) and the Madden Julian 

Oscillation (MJO) (Hall et al., 2001; Goodwin et al., 2014). 

 

The increase in river discharge over the last millennia is briefly interrupted by a period of 

reduced discharge between ~1700 and 1850 CE.  A reconstruction of river discharge into the Great 

Barrier Reef (GBR) lagoon in 1648 – 2011 CE based on coral luminescence also highlights a period of 

decreased freshwater input between 1700 and 1850 CE (Lough et al., 2015).  After the 1850s, freshwater 

flow into the GBR from its largest river, the Burdekin, increases. This coincides with a shift to a more 

La Niña like average climate state and an increase in ENSO variance. Rustic et al., (2015) also identified 

a mid-millennium shift (MMS) in ocean-atmosphere circulation at ~1500 to ~1650 CE, which is 

suggested to correspond to an increase in general ENSO activity between ~1600 and ~1800 CE.  

 

5.3.5 1900 to the Present 

 

Deforestation of the catchment was initiated by the expansion of agriculture in the region in the 

early 20th century. Currently, < 25 % of the catchment’s original vegetation remains (Capelin et al., 

1998). This change in land cover, and expansion of grazing and cropping, has significantly transformed 

the hydrology and geomorphology of the catchment (Kemp et al., 2015; 2018).  Inferences drawn from 

the relative changes of various proxies across this period are confounded this transformation. It remains 

challenging to decouple the effect of an increase in river influence as a result of either; 1) a climatic 

shift or 2) an increase in run-off efficiency and erosion associated with anthropogenic land use changes.  

In addition, the use of δ13C values of sediments to infer the relative input of terrestrial carbon becomes 

problematic after 1900 due to the Suess effect (Keeling, 1979). The Suess effect describes the shifting 

ratio of atmospheric concentrations of heavy isotopes of carbon (14C, 13C) as a result of an increased 

supply of 13C and 14C depleted carbon sources from the anthropogenic burning of fossil fuels. As a 

consequence, most of the observed depleted δ13C record after 1900 CE could arise from shifts in 

atmospheric δ13C.  

 



Historical flood records provide evidence that the late 1800s period were characterized by a 

greater frequency of major floods compared to the early to mid-20th century (Kemp et al., 2015). 

Considering this, the resumption of above average river discharges for the region that occurred after 

1850 as identified by this record and others has likely extended to the present day (Kemp et al., 2015; 

Lough et al., 2015). It is likely that natural increases in sediment yield of the catchment due to increased 

precipitation and run-off were also paired with increases related to land-use changes following 

European settlement (Coates-Marnane et al., 2016).  

 

Three distinct peaks in total continental diatoms abundances occur in the record, corresponding 

to the 2011 flood and the years 1646 and 1683 CE. The major difference in these three peaks is ratio of 

aerophilous diatoms in the assemblages. A far greater contribution of the aerophilous growth forms is 

seen for the 2011 peak. Aerophilous diatoms often inhabit damp soils (Johansen, 1999). This suggests 

the floods earlier in the record although were likely to be of a similar magnitude to the 2011 flood, they 

were far less erosive.  An increase in the quantity of eroded soils mobilized during high magnitude 

floods as a result of extensive land-use changes over the last 150 to 200 years is the most probable 

explanation for this distinction (Olley et al., 2013; Thompson et al., 2013; Kemp et al., 2015; 2018). 

Indeed, since European settlement in the region fine sediment accretion in the bay has increased by 3 

to 9 fold (Coates-Marnane et al., 2016).  

 

5.4 Record limitations 

 

The long-term age depth relationship based on OSL and 14C is suggestive of linear 

sedimentation over the long term. However, sedimentation at this site over the short term is clearly 

sporadic evidenced by rapid sedimentation following the recent 2011 flood. The long term linear age 

model may over or underestimate the depth of sediment deposited at certain intervals between each 

dated sediment horizon – increasing the uncertainty of the exact timing of shifts in the record. In 

addition, the relatively coarse long-term sampling resolution (i.e. 15 yr.) may be masking trends at the 

finer temporal scale. This record could be improved through additional OSL and 14C dating of key 



events or transitions identified by the proxies, especially the peaks of continental diatoms at ~1646 and 

~1683 CE, with the aim of determining the precise age of past flood events.  

 

5.5 Implications for water resource management in south-east Queensland  

 

Climate records for the east coast of Australia over the last millennia suggest that the 

instrumental record does not cover the full range of climatic extremes experienced within the last 1500 

years (Barr et al., 2014; Vance et al., 2015; Gergis et al., 2016). This conclusion is also supported by 

the current study. Water resource use in eastern Australia, for the purposes of agriculture, industry and 

urbanisation has grown rapidly within a relatively short time period (< 200 yrs.). As a result both public 

infrastructure and governing policies have been inherently tailored to suit a narrow range of natural 

climate variability in the context of the last 1500 years.  Widespread flooding has caused significant 

damage to infrastructure in strong La Niña years such as 2011. Though similar magnitude floods have 

occurred in the recent past (< 500 yrs) evidence indicates that the highly erosive nature of the 2011 

flood is potentially unprecedented in the last 1000 years, with complementary lines of evidence 

suggesting ongoing land cover/use changes in the catchment may be driving a trend toward more abrupt 

and erosive floods (Kemp et al., 2015). During flooding events in the south-east Queensland region 

high suspended sediment loads of rivers supplying major water treatment facilities have presented 

significant challenges in guaranteeing the adequate supply of portable water in the short term (SEQ 

Water, 2013). Not only do high magnitude floods threaten infrastructure but also the regions ability to 

secure a stable portable water supply.  

 

The millennium drought also highlighted major deficiencies in the ability of eastern Australia’s 

water planning policies and infrastructure to mitigate against widespread water shortages (van Dijk et 

al., 2013). Prolonged dry periods of greater magnitude than the millennial drought are also a natural 

feature of the climate of the region over the last 1500 years (Vance et al., 2015). It is evident that 

increased drying at the turn of the last millennia was accompanied by anomalously warm conditions. 

However, the warmest 30 year period in the Australasian region over the last millennia occurred after 



the 1950s in response to anthropogenic greenhouse gases (Gergis et al., 2016). This implies that future 

anthropogenic climatic change may be compounded by already high natural long term (centennial scale) 

climate variability in Australia (Gergis et al., 2016), especially within the Australian subtropics.  

 

  The policy responses of local governing organisations to the water resource challenges faced 

in south-east Queensland since the 1970s are detailed by Head, (2014). The implementation of policy, 

by way of investments in new infrastructure and water efficiency initiatives were typically made 

following water crisis including the floods of 1974 and 2011, and the millennium drought. These events 

prompted new policy innovations and challenged old paradigms, however, Head (2014) suggests that 

despite the debate these crisis did not consolidate institutional capacity to plan collaboratively for the 

future. McGowan, (2012) also highlights that following the 2011 flood the Queensland Floods 

Commission of Inquiry produced recommendations focused on regulation and modelling and largely 

disregarded discourse around community resilience, disaster prevention and mitigation. The 

governance response to water resource challenges faced in the region in this instance could be 

considered as reactive - responding to immediate short term risks. A proactive approach that builds real 

resilience within catchments to both droughts and floods is now required to meet future water resource 

challenges. This approach requires a broad awareness of the inherent high variability of climate of the 

region, characterized by periods of intense flooding and severe droughts.  The incorporation of this 

longer term perspective of regional climate and water availability into water governance will ultimately 

allow for more prudent and adaptable policy and planning. 

 

6. Conclusions 

 

This multi-proxy reconstruction of river discharge in central Moreton Bay over the last 1500 

years identifies a prominent shift towards a wetter climate and increase in river discharge after 1300 

CE, continuing to the present. The initial shift toward a cool Southern Hemisphere climate after 1300 

CE accompanied a decrease in El Niño events and a reduction in ENSO overall activity, which most 

likely translated to an increase in average rainfall in the Australian subtropics. This shift is briefly 



interrupted by a minor decrease in river discharge and return to a drier climate between ~1700 CE and 

1850 CE. A return to a more La Niña like climate state after 1850 resulted in increased average rainfall 

and river discharges in the region. Resolving relative trends in river discharge in relation to climate 

variability after the 1850s in the region is confounded by the geomorphic transformation of the 

catchment following the clearing of forests and the introduction of agriculture.  However, additional 

regional records suggest similar magnitude floods to that experienced in January 2011 have occurred 

several times within the last 1000 years peaking in frequency between 1500 CE and 1700 CE. In 

addition, prolonged dry periods similar, or of higher magnitude to the millennium drought are 

significant features of the climate of the region over the last 1000 years.  

 

The paucity of data of low amplitude climate variability for the Australian continent limits our 

capacity to manage water resources under a changing climate. This research has demonstrated that 

coastal deltaic and shelf sediments can offer novel insights into climate variability of the recent past. 

Deltaic settings that are likely to show the greatest potential for inferring past river discharge include 

those that are protected from high energy oceanic conditions and within tectonically stable coastal 

margins, such as Moreton Bay. The understanding of climate over the last 1000 years would benefit 

from a greater number of climate reconstructions from tropical and subtropical climate zones. This 

would greatly improve our mechanistic understanding of present climate variability and the likely 

effects of continued global warming on shifts in ocean-atmosphere systems and the resulting impact on 

regional climates and water resources.  
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Figure 1. A) Moreton Bay and catchment detailing. B) Moreton Bay detailing major rivers draining into the 

Bay, (Caboolture, Pine Brisbane and Logan), islands (Moreton Is., North Stradbroke Is.),  major subtidal 

sedimentary features mapped by Day et al., 1983  (fluvial delta sand, marine basin, pro delta, tidal delta sand, 

fringing coral reef), and sampling locations of bottom sediments within the Brisbane River and Moreton Bay 

(BS 1- 37). Core site location MB1 is also indicated by the star. Background image source: DNRM, 2016. C) 

True colour LANDSAT 5 image of the Moreton Bay region after a minor flood event (May 2015) c) 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A) δ13C versus secchi depth B) ) δ13C  versus salinity. C)  C/N versus secchi 

depth. D) C/N versus salinity.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Contour plots of A) δ13C ratios (‰) of bottom sediments. B) average salinity (ppt). C) secchi depth (m).  



Figure 4. Summary of chronology at site MB1. Detailing OSL burial ages, AMS 14C dates and the linear age 

(showing 95 % confidence interval) model for sediments deposited between ~600 to ~1959 CE. 137Cs is used 

to define the post 1959 boundary with a linear age model used to define ages of samples between 1959 and 

2010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Relationship between major geochemistry (Al2O3/CaO) and grain size fractions measured for 

equivalent samples in the sediment profile at site MB1. A)  Al2O3/CaO versus 4-8 µm. B) Al2O3/CaO 

versus 8-16 µm. C)  Al2O3/CaO versus <10 µm. D)  Al2O3/CaO versus 16-31 µm. E)  Al2O3/CaO versus 

31-62 µm. F) Al2O3/CaO versus <63 µm. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The multi-proxy record of freshwater influence in Moreton Bay for the last ~1500 years.  Proxies of 

terrestrial input are presented on the y axis including; A) Al2O3/CaO, B) grain size (< 10 μm %). C) C/N ratios D) 

δ13C ratios. E)  P. fenestrate (%) F) C. litoralis G) Continental diatoms. The integrated record of freshwater input 

(indexed freshwater discharge (H)) including a moving average showing high and low periods associated with 

inferred wet and dry climates  are also depicted (inferred climate (I)). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Continental diatom abundance from 1200 to 2011 including total planktonic and benthic, and 

aerophilous forms. The indexed freshwater flow is also shown. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison with regional climate records. A) Southern Hemisphere temperature anomalies (Neukom et 

al., 2014). B) Relative deflection of the ITCZ (-ive = southward, +ve = northward) (Lechleitner et al., 2017). C) 

Diatom-inferred trends in salinity of Lake Elingamite and Surprise in southern Australia (Barr et al., 2014). D) El 

Junco lake sediment % sand (Conroy et al., 2008). E) Freshwater discharge into the GBR Lagoon (Lough et al., 

2015). F) Indexed freshwater flow and inferred climate (this study) 



Table 1. Pearson’s r values of bivariate correlations for δ13C, C/N and major water quality attributes^ 

 Chl a 

(mg/L) 

Sal (ppt) Secchi 

(m) 

TN 

(mg/L) 

TP 

(mg/Kg) 

DO 

(%) 

pH Temp (C) Turbidity 

(STU) 

δ13C -0.377* 0.720** 0.757** -0.708** -0.693 0.009 0.712** -0.759** -0.671** 

C/N -0.081 -0.352* -0.399* 0.388* 0.389* 0.098 -0.395* 0.462** 0.401* 

*p = < 0.005, ** p = < 0.001 

^ Outliers excluded 

 

Table 2. Age estimates of deposited sediment based on OSL and AMS 14C dating 

a) OSL burial ages and associated measurements including; saturated water content (ϴs), burial dose (Db) and 

dose rate (Dr). 

 

 

 

Sample Code ϴs (%) 

 

Db  (1σ) Dr (1σ) 

 

Burial age (Cal. yrs before 2011) 

(1σ). 

MB1L  50_55 91 

 

0.31 (0.07) 1.41 (0.12) 215 (51) 

MB1L 100_105 87 0.52 (0.01) 1.49 (0.13) 346 (34) 

MB1L 351_356 85 1.76 (0.16) 1.70 (0.18) 1029 (144) 

MB1L 439_444 81 2.2 (0.07) 1.52 (0.14) 1444 (143) 

b) Calibrated radiocarbon ages of shell material at given depths within MB1L 

Sample Code Lab code 

(BETA) 

Material Calibrated  age* 

(Cal. yrs before 2011) (1σ) 

MB1L 260_265 394745 Shell 885 (100) 

 MB1L 439_444 394746 Shell 1427 (107) 

 * Calibrated using MARINE13 and corrected for regional reservoir effect (∆R = -219±94) (Ulm et al., 2009). 

 

 


