
Essays on Self-ful�lling Expectations
and Business Cycles

By

Wei Dai

THESIS

Submitted to the University of Adelaide
in partial ful�llment of the
requirements for the degree of

Doctor of Philosophy
in

Economics

February 2018



Table of Contents

List of Tables ii

List of Figures iii

Abstract iv

Declaration vi

Acknowledgements vii

1 Introduction 1

2 Endogenous Business Cycles with Financial Frictions 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Households . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Equilibrium and Dynamics . . . . . . . . . . . . . . . . . . 10

2.3 Computing belief shocks . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Belief shocks . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Shocks and empirical proxies . . . . . . . . . . . . . . . . . 15

2.4 Empirical results and model comparison . . . . . . . . . . . . . . 16

2.4.1 Second moments . . . . . . . . . . . . . . . . . . . . . . . 17

i



2.4.2 Impulse response functions . . . . . . . . . . . . . . . . . . 19

2.4.3 Pictures of the data . . . . . . . . . . . . . . . . . . . . . . 21

2.4.4 Forecasting exercise . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.A.1 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Animal Spirits, Financial Markets and Aggregate Instability 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Government . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.5 Self-ful�lling dynamics . . . . . . . . . . . . . . . . . . . . 37

3.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Animal spirits in the rational expectations model . . . . . 39

3.3.2 Data and measurement equation . . . . . . . . . . . . . . . 39

3.3.3 Calibrations and priors . . . . . . . . . . . . . . . . . . . . 41

3.3.4 Estimation results . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.5 Are shocks meaningfully labeled? . . . . . . . . . . . . . . 45

3.4 Robustness checks . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 A closer look at the Great Recession . . . . . . . . . . . . . . . . 53

3.6 Does data prefer indeterminacy? . . . . . . . . . . . . . . . . . . . 57

3.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.A.1 Model equations and equilibrium dynamics . . . . . . . . . 62

ii



3.A.2 Wedges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.A.3 Bianchi and Nicolò (2017) . . . . . . . . . . . . . . . . . . 69

3.A.4 Determinacy versus indeterminacy . . . . . . . . . . . . . 71

3.A.5 Data description . . . . . . . . . . . . . . . . . . . . . . . 73

4 Do Animal Spirits Models Really Exhibit Business Cycle Be-

havior? 76

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Burns-Mitchell methodology . . . . . . . . . . . . . . . . . . . . . 78

4.3 U.S. business cycle behavior . . . . . . . . . . . . . . . . . . . . . 81

4.4 Cyclical behavior of an animal spirits model . . . . . . . . . . . . 87

4.4.1 An animal spirits model . . . . . . . . . . . . . . . . . . . 87

4.4.2 Cyclical properties of the simulated data . . . . . . . . . . 91

4.5 Comparing alternative business cycle measurements . . . . . . . . 94

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References 97

iii



List of Tables

2.1 Breusch-Godfrey serial correlation LM test . . . . . . . . . . . . . 15

2.2 U.S. sample and model moments . . . . . . . . . . . . . . . . . . 18

2.3 Forecast comparison of RBC and SFE models . . . . . . . . . . . 23

3.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Business cycle dynamics (band-pass �ltered) . . . . . . . . . . . . 44

3.4 Unconditional variance decomposition . . . . . . . . . . . . . . . . 45

3.5 Posterior distribution comparison . . . . . . . . . . . . . . . . . . 48

3.6 Unconditional variance decomposition (Baa-Aaa spread) . . . . . 49

3.7 Unconditional variance decomposition (Baa-FF spread) . . . . . . 49

3.8 Unconditional variance decomposition (Fernald TFP) . . . . . . . 50

3.9 Unconditional variance decomposition (transitory TFP) . . . . . . 51

3.10 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.11 Unconditional variance decomposition (MEI shock) . . . . . . . . 53

3.12 Determinacy versus Indeterminacy . . . . . . . . . . . . . . . . . 58

3.13 Estimation (transitory TFP) . . . . . . . . . . . . . . . . . . . . . 64

3.14 Estimation (Determinacy vs Indeterminacy) . . . . . . . . . . . . 72

3.15 Unconditional variance decomposition (Determinacy, MEI shock) 72

4.1 Turning points in the post-war period (1955-2014) . . . . . . . . . 83

4.2 Burns and Mitchell business cycle measures (U.S. data) . . . . . . 86

iv



4.3 Parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Parameters of the log-linear system . . . . . . . . . . . . . . . . . 91

4.5 Burns and Mitchell business cycle measures (simulated data) . . . 94

4.6 Comparison of business cycle summary measures . . . . . . . . . . 95

v



List of Figures

2.1 Belief shock as identi�ed from arti�cial economy . . . . . . . . . . 15

2.2 Consumer con�dence index vs Belief shocks . . . . . . . . . . . . 16

2.3 Fernald�s TFP vs Model�s TFP . . . . . . . . . . . . . . . . . . . 17

2.4 Impulse responses of output, consumption, investment and hours.

Solid lines are responses to a belief shock, dashed lines are re-

sponses to a technology shock. . . . . . . . . . . . . . . . . . . . . 19

2.5 The SFE economy . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 The RBC economy . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 U.S. GDP and credit spread (on right-hand scale) at business

cycle frequencies. Shaded areas indicate NBER recessions. . . . . 30

3.2 Parameter spaces of dynamics. . . . . . . . . . . . . . . . . . . . . 38

3.3 Fernald�s vs model�s total factor productivity (annual data). . . . 46

3.4 Business con�dence index vs animal spirits shocks (normalized

data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Counterfactual path of output, conditional on estimated belief

shocks. Parameters are set at the posterior mean. . . . . . . . . . 54

3.6 The arti�cial labor wedge during the Great Recession. . . . . . . . 55

vi



3.7 Financial wedges during the Great Recession: the initial obser-

vations have been normalized to 100 (capital wedges measured

on left-hand axis). Right-hand panel shows Romer and Romer

(2017) index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Fernald�s vs model�s total factor productivity (annual data). . . . 65

3.9 Business con�dence index vs animal spirits shocks (normalized

data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.10 Fernald�s vs model�s total factor productivity (annual data). . . . 66

3.11 Business con�dence index vs animal spirits shocks (normalized

data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Average behavior over 12 business cycle stages for 4 macroeco-

nomic time series . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Characteristics generated by the animal spirits model . . . . . . . 93

vii



Abstract

This thesis studies the self-ful�lling business cycles in a dynamic stochastic

general equilibrium model with �nancial market frictions. It consists of three

papers.

The �rst paper uncovers a series of belief shocks (a.k.a animal spirits) that

drive the U.S. economy from both �nancial markets data and the structure of

a �nancial accelerator model with borrowing constraint. It �nds that the com-

puted belief shocks are well identi�ed and resemble the observable proxy in the

real world. Furthermore, the model economy in which only sunspot shocks mat-

ter performs at least as well as a standard real business cycle model driven by

technology shocks in replicating major U.S. business cycle facts and it outper-

forms the real business cycle model in some other dimensions.

The second paper investigates the role of people�s animal spirits in an esti-

mated arti�cial economy with �nancial market frictions via Bayesian methods.

It demonstrates that people�s animal spirits are prime drivers of U.S. business

cycle �uctuations. Animal spirits shocks account for well over a third of output

�uctuations over the period from 1955 to 2014. Financial friction and tech-

nology shocks are considerably less important. It also �nds that a substantial

part of aggregate output�s contraction during the Great Recession was caused

by adverse shocks to expectations.

The third paper follows the path of Adelman and Adelman (1959), applying

the classical business cycle method proposed by Burns and Mitchell (1946) to

evaluate the cyclical properties of an animal spirits model that is estimated

in the second paper. In particular, the paper examines whether the model

can reproduce qualitative features of U.S. business cycle. The results indicate

viii



an adequately high degree of coincidence in main macroeconomic aggregates

between the business cycle features identi�ed in actual time series data and

those found in model economy.
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Chapter 1

Introduction

�The indeterminacy of equilibrium is not a problem to be avoided

by clever assumptions; it is a fact that can be exploit to explain the

world.�[Farmer, 1997, 605]

This thesis empirically explores the role of self-ful�lling expectations in U.S.

aggregate �uctuations and aims at contributing to the understanding of the Key-

nesian idea of �uctuations driven by animal spirits. The following three papers

provide empirical evidence in support of belief-driven business cycle �uctuations.

�Animal spirits�, �self-ful�lling expectations� or �sunspots� represent un-

explained waves of optimism and pessimism of agents which may give rise to

economic instability. If the animal spirits are high, con�dence will be boosted

among participants of the economy then economic growth will be stimulated.

Similarly, if the spirits are low, people are in bad faith then a promising market

will be driven down even though the economic fundamentals stay strong. An

example is the 1990-91 recession in which consumer and business con�dence de-

preciated as a result of oil price shock, coupled with an already weak economy.

The 2007-08 �nancial crisis triggered the renewed interest in the role that animal

1



spirits play in the �nancial markets. From over-credulity in ever-increasing hous-

ing prices to plunging con�dence in capital markets, animal spirits are driving

�nancial events worldwide.

The theoretical framework of this thesis is a dynamic stochastic general equi-

librium model incorporating both multiple equilibria and �nancial market fric-

tions. Particularly, the analysis is implemented by building on a variant of Ben-

habib and Wang (2013) in which the interaction between collateral constraint

and endogenous markup give rise to equilibrium indeterminacy, a condition that

allows aggregate �uctuations to be caused by extrinsic changes to people�s ex-

pectations. There are two main reasons that motivate the choice of such a

theoretical cornerstone: (i) The early endogenous business cycle models involve

strong economy-wide increasing returns to scale for sunspot equilibria to exist

that are not suggested by empirical studies such as Basu and Fernald (1997).

Moreover, Lubik (2016) suggests that the model with other mechanisms than

production externality seems a more promising candidature in studying sunspot

business cycles. (ii) The global �nancial crisis of 2007-2008 forced macroecono-

mists to rethink about their analytical frameworks. Hence models featuring

�nancial frictions are promptly entering the mainstream of macro modeling.

Benhabib and Wang (2013) is a notable sample of the recent studies in the �eld.

The remainder of the introduction provides a more detailed description of each

core paper.

The �rst paper uncovers a sequence of belief shocks that impinges on the

economy and examines the empirical validity of sunspot-driven business cycle

models in some aspects. Speci�cally, following Sayler and She¤rin (1998) who

conceive of the idea that belief shocks that drive the economic �uctuations also

drive asset return, the paper identi�es belief shocks from a discrete time version

2



of Benhabib and Wang�s �nancial accelerator model that features self-ful�lling

prophecies. I use actual time series to compute the implied values of the belief

shock and the sample period is quarterly spanning the period from 1967:I to

2015:IV. The paper �nds that the computed belief shocks and technology shocks

are meaningfully labeled and have the resemblance to observable proxies in the

real world. I also feed the estimated shocks into the model and compare the

e¢ cacy of the sunspot-driven model with the standard RBC model. The results

show that: (i) Self-ful�lling beliefs can generate dynamics that resemble the

empirical ordering of cyclical volatilities and contemporaneous correlations which

are comparable to predictions of standard RBC model. (ii) The arti�cial model

driven by i.i.d belief shocks can generate hump-shaped impulse response pattern

that traditional RBC models fail to explain. (iii) By running a Fair and Shiller

(1990) test, the model with self-ful�lling expectations outperforms the standard

RBC model. (iv) The counterfactual exercise implies that the model driven

by self-ful�lling beliefs matches the U.S. time series data reasonably well which

contrasts with the standard RBC model driven by technology shocks.

The second paper asks: what are the shocks that cause observed business

cycle �uctuations? The paper attends to this question by presenting evidence

on sources of business cycles for the post-Korean War American economy. The

undertaking is implemented by building on a variant of Benhabib and Wang

(2013). We modify the original model by incorporating a parade of fundamental

shocks which are frequently considered as key drivers of business cycles. The

model is estimated by full information Bayesian methods using quarterly U.S.

data covering the period from 1955:I to 2014:IV. The estimation results support

the view that people�s animal spirits play a signi�cant role in the U.S. business

cycle. In particular, variance decomposition suggest that animal spirits are be-

3



hind around forty percent of output growth variations and they explain an even

larger portion of �uctuations in investment spending. Technology shocks and

�nancial shocks are signi�cantly less important and they explain no more than

twenty percent of the oscillations in aggregate real economic activity. Besides,

our counterfactual exercise reveals that the Great Recession, for the most part,

was caused by adverse shocks to expectations. Finally, we compare the empir-

ical �t of the model with determinacy versus indeterminacy. We �nd that the

indeterminate model in which animal spirits play a signi�cant role turns out to

be empirically superior.

The third paper conducts Adelman tests for a self-ful�lling business cycle

model using Burns and Mitchell approach. Burns and Mitchell investigate the

central characteristics of the business cycle of time series by constructing the

reference-cycle pattern which is a necessary tool to examine the cyclical behav-

ior of di¤erent economic time series. The common strategy for assessing a model

is to compare the second-moment behavior of arti�cial series with their actual

counterparts. The classical method of Burns and Mitchell, instead, provides

both visual evaluations (e.g. nine-point plot) and descriptive statistics (e.g. am-

plitudes and conformity) of business cycle properties. I use a series of belief

shocks estimated from the second chapter as model driving forces and evaluate

the cyclical properties of this animal spirits model. Especially, the paper exam-

ines if one could distinguish between the actual historical time series and the

arti�cial series generated by a stochastically perturbed economic model. The

results indicate that the arti�cial series generated by animal spirits model shows

a high degree of coincidence with the data series not only for the general shape

but also for the volatility and coherence.

4



Chapter 2

Endogenous Business Cycles

with Financial Frictions

2.1 Introduction

Since the pathbreaking work of Benhabib and Farmer (1994), there is a

rapidly growing interest in studying expectations-driven macroeconomic �uctu-

ations. The main reason for this is that it provides the possibility of quantitative

analysis of sunspot equilibria within the framework of Kydland and Prescott

(1982). The existence of a continuum of equilibria in Benhabib-Farmer model

relies on two mechanisms, one with increasing returns to scale at the aggregate

level via external e¤ects and the other one with increasing returns to scale at

the �rm level by way of monopolistic competition. The postulated degrees of

economies of scale that are required to obtain indeterminacy, however, has been

widely criticized as being unrealistic (see Aiyagari, 1995; Basu and Fernald,

1997). Since then, a line of research has been devoted to bringing the degree
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of returns to scale for indeterminacy down to an empirically plausible range.1

A more recent generation of RBC models shows that production externalities

are not at all needed for indeterminacy to arise plausibly (for example, Bennett

and Farmer, 2000; Nakajima, 2006; Jaimovich, 2007; Krause and Lubik, 2010;

Benhabib and Wang, 2013; Liu and Wang, 2014). The current paper stands in

line with these studies.

One implication of indeterminacy for the theory of business cycle is that the

existence of a continuum of equilibria o¤ers an alternative source of impulses

to business �uctuations � disturbances to expectations (a.k.a. beliefs or ani-

mal spirits). As the seminal research of Farmer and Guo (1994) showed, the

economy may display �uctuations at the business cycle frequencies even in the

absence of any underlying fundamental uncertainty. Measuring belief shocks

is problematic since they are unobservable much like preference. One possible

way is to use Monte Carlo methods to generate belief shocks and then compute

model statistics (e.g. Farmer and Guo, 1994). An alternative approach is to

use actual time series data and additional model information to pin down the

belief shock once the belief function of agents has been speci�ed (e.g. Salyer and

She¤rin, 1998). Chauvet and Guo (2003) and Harrison and Weder (2006) try

to extract idiosyncratic sunspot shocks by constructing a vector autoregression

(VAR) model in which the residual from a regression of the empirical proxy for

con�dence on fundamentals serve as belief shocks.

This paper pursues the second approach to identify an observable counterpart

to the non-fundamental shock that impinges on the economy. In particular, I

follow Salyer and She¤rin (1998) who conceive of the idea that belief shocks

that drive the economic �uctuations also drive asset return. While the method
1Examples include, among others, Benhabib and Farmer (1996), Wen (1998), Weder (2000)

and Guo and Harrison (2001).
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of computing beliefs remains the same, the underlying theoretical model of this

study is di¤erent from theirs. They uncover belief shocks from a version of

the Farmer and Guo model while I identify belief shocks from a discrete time

version of Benhabib and Wang�s (2013) �nancial accelerator model that features

self-ful�lling prophecies. The reason is twofold. First, the Farmer-Guo economy

requires unrealistically large increasing returns to scale while indeterminacy can

arise in the Benhabib-Wang model with constant social returns. Second, the

general equilibrium models with �nancial constraints initiated by Kiyotaki and

Moore (1997) and others have been widely used after the recent �nancial crisis

of 2007-2008. I use actual data to compute the implied values of the belief shock

to study the role of beliefs empirically in the U.S. economy. The sample period

is quarterly over the period 1967:I-2015:IV. The computed belief shocks are well

identi�ed and resemble the observable proxy in the real world.

I feed the estimated shocks into the model and assess the sunspots-driven

�uctuations. I also compare the e¢ cacy of the self-ful�lling expectations model

with the standard real business cycle model in several dimensions. The paper

�nds that: (a) The animal spirits model is able to replicate the regular features

of U.S. business cycles and is comfortably comparable to the standard RBC

model under technology shocks. (b) The model is driven by i.i.d expectational

shocks contains a strong endogenous propagation mechanism, and it can generate

hump-shaped impulse response pattern of the U.S. business cycle that traditional

RBC models driven by technology shocks fail to explain. (c) By running a Fair

and Shiller (1990) test, the model with self-ful�lling beliefs outperforms the

standard RBC model. (d) The counterfactuals provide some empirical support

for the role of non-fundamental rational expectations in economic �uctuations.

Arti�cial business cycles of belief-driven model match the U.S. time series data

7



well which is in sharp contrast to that of RBC paradigm.

The remainder of the paper proceeds as follows. Section 2.2 outlines the

model. Belief shocks are computed and compared with empirical proxies in

Section 2.3. Section 2.4 makes a comparison between self-ful�lling expectation

model and standard real business cycle model in various dimensions. Section 2.5

concludes.

2.2 The Model

The arti�cial economy is a discrete-time version of Benhabib and Wang

(2013). The model framework closely follows the original paper; hence, exposi-

tory comments will be brief. The critical feature of their model is that intermedi-

ate good producing �rms are collateral constrained in how much they can borrow

to �nance their working capitals. The mechanism generating a self-ful�lling ex-

planation stands on an endogenous and countercyclical markup channel.

2.2.1 Firms

The economy consists of two sectors. Perfectly competitive �rms produce

�nal output yt combining a continuum of intermediate inputs yt(i) according to

the technology

yt =

�Z 1

0

yt(i)
��1
� di

� �
��1

; (2.1)

where � � 1 controls the elasticity of substitution between input varieties. Each

monopolistic competitors i produce intermediate goods and has access to a con-

stant returns technology given by,

yt(i) = ztkt(i)
�ht(i)

1��; (2.2)
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where 0 < � < 1. All �rms are equally a¤ected by aggregate total factor

productivity, zt, whose law of motion is given by

ln zt = (1� �) ln z + � ln zt�1 + wt 0 < � < 1; (2.3)

where wt � N(0; �2w) is the innovation term driving this process. Unlike �nal

good producers, these intermediate �rms are credit constrained for working cap-

ital needs. Imperfect enforcement requires a process to constrain borrowing by

the value of the collateral. Speci�cally, the total amount of debt (i.e. an in-

traperiod loan) bt(i) is constrained by the value of the collateral which assume

is the end-of-period of assets, i.e.

bt(i) = wtht(i) + rtkt(i) � �pt(i)yt(i)� f: (2.4)

Under this credit constraint, if there is a default event, the household has the

right to recover a fraction � < 1 of �rm�s output being produced by incurring

a liquidation cost f . Denoting marginal cost �t = 1=At(rt=�)
�(wt=(1 � �))1��,

the �nancial constraint becomes

�tyt(i) � �pt(i)yt(i)� f: (2.5)

2.2.2 Households

The representative household chooses paths for consumption ct and total

hours of work ht so as to maximize its lifetime utility,

E0
1P
t=0

�t

"
log(ct)� '

h
(1+�)
t

1 + �

#
; (2.6)
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subject to the period-by-period budget constraint

kt+1 = (1� �t)kt + wtht + rtutkt � ct + �t; (2.7)

�t = �0
u1+�t

1 + �
; (2.8)

where 0 < � < 1 is the subjective discount factor, � � 0 measures the inverse

Frisch elasticity of substitution for labour supply and ' measures the disutility

for working. The rate of capital depreciation, �t, is an increasing and convex

function of capacity utilization. �0 2 (0; 1) is a constant and � > 0 measures

the elasticity of the depreciation rate with respect to capacity utilization. With

higher capital utilization, capital depreciates faster.

2.2.3 Equilibrium and Dynamics

In symmetric equilibrium, kt(i) = utkt, ht(i) = ht, pt(i) = pt, yt(i) = yt,

�t(i) = �t = yt�wtht�rtutkt and the collateral constraint binds. A competitive

equilibrium in this model is characterized by the following necessary conditions:

1

ct
= �Et

�
1

ct+1
(1� �t+1 + �t+1

�yt+1
kt+1

)

�
; (2.9)

kt+1 = yt + (1� �t)kt � ct; (2.10)

'h1+�t = �t
(1� �)yt

ct
; (2.11)

yt = zt(utkt)
�h

(1��)
t ; (2.12)

�0u
1+�
t = �t

�yt
kt
; (2.13)

�t = � � f

yt
: (2.14)
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The �rst equation is the intertemporal Euler condition. The second expres-

sion depicts the economy-wide resource constraint as re�ected in the law of mo-

tion for the aggregate capital stock. Equation (2.11) describes the consumption-

leisure trade-o¤. Equation (2.12) is the production function. Equation (2.13)

determines the e¢ cient level of capacity utilization and the last equation is the

binding collateral constraint. Notice that the model is reduced to a standard

RBC model if f = 0 (i.e., �t is constant).

I take log-linear approximation to the equilibrium conditions to obtain the

following dynamic system:

266664
ĉt+1

ŷt+1

ẑt+1

377775 = J

266664
ĉt

ŷt

ẑt

377775+M

264 "̂t+1

ŵt+1

375 ; (2.15)

where hat variables denote percent deviations from their steady-state values.

The local dynamics are determined by the roots of Jocobian Matrix J . Here "̂t+1

is the belief shock which is assumed independently and identically distributed

over time. Indeterminacy of rational expectations requires that both eigenvalues

of J are inside the unit circle. When indeterminacy arises, equilibria may be

driven by belief shocks. Since all variables have now been log-linearized, the

remaining endogenous variables can be expressed as a linear combination of
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consumption, output and TFP:

266666666664

k̂t

{̂t

ĥt

ût

�̂t

377777777775
= Q

266664
ĉt

ŷt

ẑt

377775 ; (2.16)

where Q is a matrix determined by the log-linearization.

2.3 Computing belief shocks

2.3.1 Belief shocks

I �rstly generate the technology shock as residuals from a Solow decompo-

sition. Measurement takes place within the structure of a production function,

adjusting for capital utilization.2 The total factor productivity is given by

zt =
yt

(utkt)�h
1��
t

; (2.17)

where yt, kt, ht and ut are real per capita GDP, capital stock, labour supply

and capacity utilization.3 The log-linearly detrend series, ẑt, is used as the

technology shock which is well described by a �rst order autoregressive process

with � = 0:96.

Once the technology shocks are pinned down, the model structure allows the

identi�cation of belief noise. Since �nancial market is believed to be driven in
2The calibration uses the parameter values in Benhabib and Wang (2013): � = 0:99;

� = 1=3; � = 0; � = 10; � = 0:0333; � = 0:3; � = 0:88; � = 0:9768; f = 0:1908:
3The capital stock was constructed by the perpetual inventory mehod, taking into account

the variable depreciation rate. See Appendix for the source and construction of U.S. data.
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part by expectations, using realized asset returns may help us to better under-

stand and isolate the source of the belief shocks.

Assuming that shares held during period (t� 1), st�1, yield a dividend pay-

ment dt at time t; time�t equity prices are qt. Households maximize expected

lifetime utility by �nancing consumption ct from an exogenous stochastic divi-

dend stream, proceeds from sales of share, and an exogenous stochastic endow-

ment mt. The optimization is subject to

ct + qt(st � st�1) = dtst�1 +mt: (2.18)

The necessary condition is the familiar intertemporal condition

qt
1

ct
= �Et

�
1

ct+1
(qt+1 + dt+1)

�
: (2.19)

Setting Rt as the gross return on equity, equation (2.19) can be written as

1

ct
= Et

�
�

ct+1
(Rt+1)

�
: (2.20)

Then, denoting linearized variables with hats, equation (2.20) becomes

ct = Etĉt+1 � EtR̂t+1: (2.21)

The equilibrium function for consumption in the calibrated model is

ĉt+1 = 0:89ĉt + 0:013ŷt + 0:21ẑt + "̂t+1; (2.22)
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Since "̂t+1 = ĉt+1 � Etĉt+1, we can get

Etĉt+1 = 0:89ĉt + 0:013ŷt + 0:21ẑt: (2.23)

The linearized structure of the economy implies that realized equity returns

will be a linear function of last period�s state variables and the current belief

and technology shocks. Setting

R̂t+1 = �0ĉt + �1ŷt + �2ẑt + �3"̂t+1 + �4ẑt+1; (2.24)

then

EtR̂t+1 = �0ĉt + �1ŷt + (�2 + ��4)ẑt: (2.25)

Substituting equation (2.23) and equation (2.25) into equation (2.21), one

can solve �0 = �0:11, �1 = 0:013, and �2+��4 = 0:21. As a result, the realized

returns on equity implies that the belief shock can be observed by calculating

(�3 � 1)"̂t+1 = ĉt + R̂t+1 � ĉt+1 � �4ŵt+1: (2.26)

I assume that the coe¢ cient on the belief shock in equation (2.26) is equal

to unity. The value of �4 is chosen so that the belief shock and the innovation

to technology are orthogonal. Using U.S. data on gross return on equity, con-

sumption and technology innovation, one can get the value of �4 by regressing

�̂t+1 = ĉt + R̂t+1 � ĉt+1 on ŵt+1 and uncover the belief shock. Over the sample

period 1967:I to 2015:IV, this regression implies �4 = 1:78.4

Figure 2.1 shows the estimated belief shocks over the sample along with the

4Since the model variables are de�ned as percentage deviation from the steady state, I use
the deviation from a common linear trend estimated for all series except for gross return on
equity. Equity returns are expressed as deviations from the mean.
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Figure 2.1: Belief shock as identi�ed from arti�cial economy

NBER recession dates. As can be seen from the �gure, the process appears

to be the white noise, which is required for the rational expectation models.

The recessions in the U.S. economy usually correspond to decrease in beliefs.

Besides, I also employ the Breusch-Godfrey test to check the serial correlation.

As evidenced in Table 2.1, the sequence of implied belief shocks is in line with the

white noise assumption. For serial correlation up to fourth-order, the Breusch-

Godfrey test statistics do not reject the null of no serial correlation.

Table 2.1: Breusch-Godfrey serial correlation LM test

Lags F-statistic p-values

4 1.76 0.14

2.3.2 Shocks and empirical proxies

In the preceding analysis, a series of animal spirits shocks and technology

shocks are identi�ed from the structure of the model. I now compare the cal-

culated shocks with the observable proxies in the real world to check whether
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Figure 2.2: Consumer con�dence index vs Belief shocks

they are meaningfully identi�ed. In particular, the implied belief shock and

total factor productivity are compared with the University of Michigan�s Con-

sumer Con�dence Index and Fernald�s (2014) utilization-adjusted TFP measure,

respectively. All series are bandpass-�ltered to capture business cycle frequen-

cies only. Figures 2.2 and 2.3 shows that all theoretical shocks are positively

correlated with their empirical counterparts. Furthermore, belief shocks and

con�dence typically drop during recessions.

2.4 Empirical results and model comparison

In this section, the calculated shocks are fed into the linearized version of

the theoretical model. I investigate and compare the dynamic properties of

macroeconomic time series generated by the self-ful�lling expectation (SFE)

model and real business cycle (RBC) model in four dimensions.
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Figure 2.3: Fernald�s TFP vs Model�s TFP

2.4.1 Second moments

I �rst examine whether the model-generated time series �t post-war U.S.

business cycles �uctuations by investigating the contemporaneous moments. The

predicted second moments of business cycles as implied by the model and as

measured in U.S. data are reported in Table 2.2. The main stylized facts of

business cycles can be observed from the U.S. sample moments: (1) consumption,

investment and labour hours are positively correlated with aggregate output; (2)

the detrended components in these aggregate quantities are all highly persistent;

(3) consumption �uctuates less than output, investment displays more volatile

than output, and labour hours are roughly as volatile as output.

The performance of the self-ful�lling expectation model relative to a standard

RBC model with variable capital utilization in explaining the cyclical properties

of U.S. data can be summarized as follows. In both models, the variance of

the shocks can be chosen so that the predicted variance of simulated output

matches the actual data exactly. Therefore, the persistence is the only thing
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Table 2.2: U.S. sample and model moments

Relative volatilities �y=�y �c=�y �i=�y �h=�y
U.S. economy 1.00 0.39 2.50 0.85
SFE model 1.00 0.06 4.32 1.08
RBC model 1.00 0.22 3.78 0.81
Correlations cor(yt;yt) cor(ct;yt) cor(it;yt) cor(ht;yt)
U.S. economy 1.00 0.85 0.98 0.88
SFE model 1.00 0.53 0.99 0.99
RBC model 1.00 0.87 0.99 0.99
Autocorrelations cor(yt;yt�1) cor(ct;ct�1) cor(it;it�1) cor(ht;ht�1)
U.S. economy 0.94 0.92 0.93 0.95
SFE model 0.94 0.96 0.94 0.94
RBC model 0.91 0.93 0.91 0.91
Notes: U.S. sample period: 1967:I - 2015:IV. (y, c, i, h) stand for output, consumption,
investment and labour hours. Both U.S. sample and model series are detrended by bandpass
�lter.

that matters to output and both models predict the autocorrelation fairly well.

With respect to consumption, the RBCmodel can explain the relative volatilities

close to the data whereas the indeterminate model substantially underpredicts

it. With respect to investment, both models can explain its excess volatility

relative to output. With respect to labour hours volatility, the two models

basically can match the data reasonably well while the SFE model is a slightly

over-predict the relative volatility. Besides, both models are quite successful in

matching the positive comovement between consumption, investment, hours and

output as well as the serial correlations. In particular, the animal spirits or SFE

model possesses a strong internal propagation mechanism which generates highly

autocorrelated variable. In opposition to existing RBC models, this persistence

arises without the help of highly autocorrelated forcing variables.

Overall, therefore, in terms of the conventional measures of the business cycle,

it is fair to say that the model in which i.i.d belief shocks are the sole disturbances

performs equally as well as real business cycle paradigm. The distinct features

of data can be replicated.
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2.4.2 Impulse response functions

To check another dimension of the dynamic properties of the two models, I

look at the impulse response functions that trace out how a dynamical system

reacts to an initial shock. Figure 2.4 shows impulse responses of the model�s

key variables to a one-time positive belief shock (solid lines) as well as to an

innovation of one standard deviation to the technology shock (dashed lines) for

the �rst 40 quarters.
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Figure 2.4: Impulse responses of output, consumption, investment and hours.
Solid lines are responses to a belief shock, dashed lines are responses to a tech-
nology shock.

By comparison, some features of Figure 2.4 deserve particular attention.

First, an increase in both belief shocks and technology shocks can induce positive

comovement among output, consumption, investment and hours. Second, the

model with self-ful�lling beliefs generates endogenous, highly persistent, and

19



hump-shaped dynamics. Third, without indeterminacy, the impulse response of

macroeconomic variables to technology shocks monotonically declines with time.

The monotonic response in the RBC model implies that it will not be able to

generate cyclical and autocorrelated behavior similar to that seen in the actual

data unless the technology shock itself is highly autocorrelated. Such failure has

been criticized by the researcher over a long time.

The impulse for the self-ful�lling economy is a spontaneous change in agents�

expectations. The optimistic representative household expects higher future out-

put and thus the higher value of collateral. Regarding the collateral constraints

equation (2.14), the increase in the value of the collateral, other things being

equal, eases the borrowing constraint raising the �rms�borrowing ability so that

the unit marginal cost can rise and markup can fall. The factor payments will

be pushed up with output due to the �erce competition for labour and capital

among �rms. The labour demand curve is upward sloping and steeper than

that of labour supply curve due to the counter-cyclical markup channel in this

economy. A rise in output creates a positive wealth e¤ect, which increases the

demand for both consumption and leisure. The labour supply curve shifts in-

wards with the income e¤ect, thereby raising employment robustly. The increase

in hours, as well as the accumulation of capital, raise the level of output, allowing

the initial beliefs about higher output to become self-ful�lling. This sequence

of impact events is quite di¤erent from the origins of the cycle within a real

business cycle economy, where a positive technology shock shifts the marginal

product of labour schedule outward, causing higher equilibrium employment,

output, consumption, and investment.
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2.4.3 Pictures of the data

For expectational shocks to be an acceptable explanation for business cycles,

however, it is vital that the implications be supported by empirical evidence. In

this part, I present the simulated times series of SEF model and RBC model and

compare them with the actual U.S. time series. I adjust the standard deviation of

shocks in a way that causes volatility of output is the same for the model and the

data over the whole sample. Figures 2.5 and 2.6 present the responses of output,

consumption, investment and hours worked in these two model economies for a

single simulation experiment, and I plot the series for each model alongside the

actual U.S. time series. All series have been passed through the bandpass �lter.
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Figure 2.5: The SFE economy
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Figure 2.6: The RBC economy

As can be seen from the Figure 2.5, the SFE model tracks all the series

reasonably well except that the predicted volatility of consumption by the model

is too smooth relative to the data. The smoothness of consumption in the

model is expected, given the inclusion of variable capacity utilization in the

model. Variable capital utilization allow for an extra margin of adjustment,

making risk-averse agents extremely smooth consumption (see also Wen, 1998

and Benhabib and Wen, 2004). Although the match is far from perfect, it is

encouraging. In particular, the analysis shows that self-ful�lling pessimism may

have played a nontrivial role in the 1973-1975 recession, the 2001 recession, and

the 2007-2008 global �nancial crisis. The RBC model driven by the estimate

technology shocks, however, do not match the U.S. time series data well because
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the estimated Solow residual tend to be uncorrelated with the aggregate output

(see Burnside et al, 1996). These �gures provide some empirical support for the

role of nonfundamental rational expectations in economic �uctuations.

2.4.4 Forecasting exercise

In this part, I apply a test that aims to assess the forecasting ability and

additional power that each model provides. I employ the spirit of Fair and

Shiller (1990) and compare the information content implied by the endogenous

variables of the model through the lens of a regression. For instance, the SFE and

RBC model�s forecasts for model variables can be compared via the regression:

xust = �+ �1xsfet + �2xrbct + �t; (2.27)

where xt = (y; c; i; h), us denotes US data, sfe represents SFE model, and rbc

means RBC mode. Throughout, all variables are deviations from the steady-

state which is de�ned as the trend predicted by the bandpass �lter. The null

hypothesis is that neither model provides information, �1 = �2 = 0; if the SFE

model provides information while the RBC model does not, the null is �1 6= 0,

�2 = 0; and vice versa.

Table 2.3: Forecast comparison of RBC and SFE models

Output Consumption Investment Hours

�1 (SFE model) 0.37* 2.97* 0.23* 0.14*

(0.00) (0.00) (0.00) (0.01)

�2 (RBC model) -0.10 0.28* -0.10* -0.52*

(0.18) (0.02) (0.03) (0.00)

Notes: A * indicates signi�cance at the 5 percent level (P-values are in parentheses).
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From Table 2.3, it can be noticed that the SFE model provides statistically

signi�cant information for the behavior of all series. Speci�cally, SFE model

contributes positively and signi�cantly to U.S. output. The RBC model, how-

ever, provides no statistically signi�cant additional help in explaining output

above and beyond the SFE model. In terms of consumption, the coe¢ cient is

positive and signi�cant in both models. With respect to investment and labour

hours, SFE model provides additional positive explanation power while RBC

model contributes negatively. In a nutshell, the results from this exercise imply

that the model with self-ful�lling beliefs dominates the RBC model disturbed

by technology shocks.

2.5 Conclusion

This paper uncovers a series of non-fundamental shock that impinges on the

economy. The result of the paper indicates that the belief shocks are well identi-

�ed and resemble the observable proxy in the real world. Furthermore, the model

that beliefs are the only source of �uctuation is quite successful in replicating

major U.S. business cycle facts. This implies that the possibility that cycles

may be driven, at least in part, by self-ful�lling beliefs is plausible. In contrast

to a standard Real Business Cycle models, the animal spirits model contains a

strong internal propagation mechanism and has more forecasting ability. The

results provide some empirical support for the class of macroeconomic model

with multiple equilibria whereby agent�s self-ful�lling beliefs exert an important

role in economic �uctuations.
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2.A Appendix

2.A.1 Data Sources

This appendix provides detailed information about the source and construc-

tion of the data used in the paper. All data are quarterly and are in real, per

capita terms for the sample period 1967:I-2015:IV.

1. Personal Consumption Expenditures, Nondurable Goods. Seasonally ad-

justed at annual rates, billions of dollars. Source: Bureau of Economic Analysis,

NIPA Table 1.1.5.

2. Personal Consumption Expenditures, Services. Seasonally adjusted at

annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA

Table 1.1.5.

3. Personal Consumption Expenditures, Durable Goods. Seasonally adjusted

at annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA

Table 1.1.5.

4. Gross Private Domestic Investment. Seasonally adjusted at annual rates,

billions of dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

5. Gross Domestic Product. Seasonally adjusted at annual rates, billions of

dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

6. Gross Domestic Product. Seasonally adjusted at annual rates, billions

of chained (2009) dollars. Source: Bureau of Economic Analysis, NIPA Table

1.1.6.

7. Nonfarm Business Hours. Index 2009=100, seasonally adjusted. Source:

Bureau of Labour Statistics, Series Id: PRS85006033.

8. Civilian Noninstitutional Population. 16 years and over, thousands.

Source: Bureau of Labour Statistics, Series Id: LNU00000000Q.
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9. GDP De�ator = (5)/(6).

10. Real Per Capita Consumption, ct = [(1) + (2)]=(9)=(8).

11. Real Per Capita Investment, it = [(3) + (4)]=(9)=(8).

12. Real Per Capita Output, yt = (10) + (11).

13. Per Capita Hours Worked, ht = (7)=(8).

14. Capacity Utilization: Total Industry (TCU), Percent of Capacity, Sea-

sonally Adjusted, Source: Board of Governors of the Federal Reserve System.

15. Stock Market Data (S&P 500), retrieved from Shiller�s website

(http://www.econ.yale.edu/~shiller/data.htm).
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Chapter 3

Animal Spirits, Financial

Markets and Aggregate

Instability

3.1 Introduction

What are the shocks that cause macroeconomies to experience recurrent se-

quences of booms and slumps? The current paper pursues this question by

presenting evidence on the sources of business cycles for the post-Korean War

American economy. The results support the view that people�s psychological

motivations, a.k.a. animal spirits, provoke a signi�cant portion of the �uctu-

ations in aggregate real economic activity, causing well over one third of U.S.

output volatility. This �nding is demonstrated within an arti�cial economy of

�nancial market frictions. Our exercise also suggests that it was chie�y adverse

shocks to expectations that led to the Great Recession.
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Models with credit market frictions have become popular since the Great

Recession, re�ecting the notion that disruptions to �nancial markets were the

key factors behind this contraction. Building on earlier work, such as Kiyotaki

and Moore (1997) as well as Bernanke et al. (1999), this research has shown how

�nancial market frictions can amplify shocks to macroeconomic fundamentals by

transforming small economic disturbances into large business cycles.1 Christiano

et al. (2015), for example, extend New Keynesian models by �nancial market

frictions to explain some key aspects of the Great Recession.

We depart from the aforementioned works twofold. First, the parametric

space of our model includes multiple equilibria. This multiplicity will be cleared

up by people�s animal spirits that select from the possible equilibrium outcomes.

Second, unlike most existing work on such indeterminacy, the analysis concen-

trates on estimating the arti�cial economy: we focus on the empirical impli-

cations of the multiplicity by explicitly analyzing the business cycle variance

contributions of animal spirits or belief shocks. The undertaking is implemented

by building on a variant of Benhabib and Wang (2013).2 Indeterminacy in this

model is linked to the empirically observed countercyclical movement of �nan-

cial market tightness. Figure 3.1 plots the cyclical pattern of �nancial market

health. It measures �nancial health by the Baa Corporate Bond spread which

is displayed on an inverted scale and is plotted opposite the �uctuations of per

capita GDP. The shaded areas in the �gure correspond to NBER recessions.

They highlight that �nancial conditions are not only cyclical, but also deterio-

rate markedly during most slumps.

In the arti�cial economy, countercyclical �nancial health is a key mechanism

1See also Liu et al. (2013) and Nolan and Thoenissen (2009).
2Azariadis et al. (2016), Liu and Wang (2014) and Harrison and Weder (2013) are other

models of various stripes that combine multiple equilibria and �nancial frictions.
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Figure 3.1: U.S. GDP and credit spread (on right-hand scale) at business cycle
frequencies. Shaded areas indicate NBER recessions.

to multiplicity. It is the endogenous interaction of a time varying (�ow) collateral

constraint and a countercyclical markup that spawns equilibrium indeterminacy,

a condition that allows aggregate �uctuations to be caused by extrinsic changes

in people�s expectations. Moreover, in addition to such animal spirits shocks, the

economy is bu¤eted by an array of fundamental shocks. The model is estimated

by full information Bayesian methods using quarterly U.S. data covering the

period from 1955:I to 2014:IV. This approach follows for example Justiniano et

al. (2011) as well as Schmitt-Grohé and Uribe (2012), who, however, only explore

the role of fundamental shocks as the engines of business cycles. The key result

that ensues from the Bayesian estimation is that animal spirits are important

drivers of the repeated �uctuations of the U.S. macroeconomy. Speci�cally, by

computing forecast error variance decompositions, we �nd that animal spirits

account for about 40 percent of U.S. output variations and for about two thirds

of the �uctuations in investment. Disturbances that originate in the �nancial

sector explain less than ten percent of output �uctuations. Moreover, we show
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that belief shocks have played an important role in the sharp contraction in

economic activity of the Great Recession that began at the end of 2007.

Previous work on multiple equilibria in real economies has overwhelmingly re-

mained in the theoretical realm and estimation exercises have been rare. Farmer

and Guo (1995) is an early attempt to estimate a sunspot model using classical

simultaneous equations methods. It is only Pintus et al. (2016) and Pavlov

and Weder (2017) who perform full-information Bayesian estimations as in the

present paper. Pintus et al. (2016) build a model with �nancial market frictions

and loan contracts that are arranged with variable-rates of interest. The model�s

indeterminacy a¤ects the propagation mechanism in particular of (fundamental)

�nancial shocks. These shocks then explain about one quarter of business cycles

�uctuations. Financial markets are not featured in Pavlov and Weder (2017)

and their study excludes the Great Recession. Lastly,while the exact de�nitions

of con�dence do not completely overlap, our result also parallels Angeletos et

al. (2016) and Milani (2017) who maintain that sentiment swings drive a large

fraction of U.S. aggregate �uctuations.

Next, we will lay out the arti�cial economy. This is followed by the presen-

tation of the estimation, discussions of results and various robustness checks.

Finally, we provide a theory of the Great Recession.

3.2 The Model

The arti�cial economy features credit frictions in the form of endogenous bor-

rowing constraints in a model of monopolistic competition in which, as usual,

perfectly competitive �rms produce �nal output by combining a continuum

of di¤erentiated intermediate inputs. Intermediate goods producing �rms are

collateral-constrained in how much they can borrow to �nance their working
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capital needs. We modify the original model by incorporating a set of funda-

mental shocks which are frequently considered as key drivers of business cycles.

Time proceeds in discrete steps. The model�s discussion will be relatively brief

and it will concentrate on the alterations to Benhabib and Wang (2013).

3.2.1 Technology

A unit mass of monopolistic competitive �rms has access to a constant re-

turns technology that transforms capital services �t(i) and labor hours Nt(i) into

intermediate, di¤erentiated outputs Yt(i)

Yt(i) = �t(i)
�(XtNt(i))

1�� 0 < � < 1:

Exogenous labor-augmenting technological progress Xt a¤ects all �rms equally.

Its growth rate �xt � Xt=Xt�1 evolves as a �rst-order autoregressive process

ln�xt = (1� �x) ln�
x + �x ln�

x
t�1 + "x;t 0 < �x < 1

with "x;t v N(0; �2x) and ln�
x is average growth rate. The �rms rent the two

factor services from the households at perfectly competitive prices wt and rt.

Final output Yt is a constant elasticity of substitution aggregator of a basket of

intermediate inputs

Yt =
�R 1

0
Yt(i)

��1
� di

� �
��1

� > 1:

Here � denotes the elasticity of substitution between the di¤erentiated varieties.

The monopolistic competitive �rms generate pro�ts by charging a mark-up over

marginal costs. Following Barth and Ramey (2001) who report that a substantial
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portion of U.S. �rms raise working capital, we assume that �rms�two variable

inputs must be �nanced by short-run loans. Imperfect enforcement requires a

process to constrain borrowing by the value of the collateral. Speci�cally, �rm

i�s total amount of debt is an intraperiod loan Bt(i) and it is constrained by the

value of the collateral, which is the �rms�pledge of the period-earnings, i.e.

Bt(i) = wtNt(i) + rt�t(i) � �t�tPt(i)Yt(i):

Under this credit constraint, if there is a default event, the lender has the right

to recover a fraction of the �rm�s end-of-period revenues Pt(i)Yt(i).3 The model

features two �nancial frictions and their product �t�t represents the arti�cial

economy�s �nancial tightness. Concretely, �t refers to an endogenous credit

constraint: the borrowing constrictions vary with the aggregate state of economic

activity which re�ects creditors�ability to pay back loans. In particular, �t is an

increasing function of the deviation of actual output Yt from balanced-growth

output �Yt

�t = �

�
Yt
�Yt

�

in which we restrict the parameter to 0 < � < 1 and 
 > 0, an assumption in line

with Figure 3.1. The parsimonious formulation of �t entails many micro-founded

makeups without the need to con�ne itself to a particular one.4 For example, it

can stand in for Benhabib andWang�s (2013) setup with �xed liquidation costs or

�t can also describe howmarket conditions determine the probability that lenders

can recover as well as resell collateral. In addition to the endogenous component,

3Unlike in the original Benhabib and Wang (2013) model, our setup does not include �xed
liquidation costs. Indeterminacy still holds. When we compare the two models using the
Bayesian estimation method, we �nd that the model without �xed costs is favored by the
data.

4Eisfeldt and Rampini (2006) o¤er some evidence about the cyclical properties of �t.
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exogenous disturbances �t a¤ect �nancial health. These shocks originate in the

�nancial sector as in Jermann and Quadrini (2012) or Liu et al. (2013). The

exogenous collateral or �nancial shock �t evolves as

ln �t = (1� ��) ln � + �� ln �t�1 + "�;t 0 < �� < 1

with "�;t v N(0; �2�) and steady state value � = 1. The corresponding �rst-order

conditions for the pro�t maximization problem involve

rt�t(i) = ��tYt(i)

wtNt(i) = (1� �)�tYt(i)

and
�� 1
�

Pt(i)� �t + �t(i)

�
�t�t

�� 1
�

Pt(i)� �t

�
= 0 (3.1)

where �t stands for monopolistic �rms�marginal costs and �t(i) denotes the

multiplier associated with the borrowing constraint.

3.2.2 Preferences

Households are represented by an agent with the lifetime utility

E0
1P
t=0

�t
�
ln(Ct � �t)� '

N1+�
t

1 + �

�
0 < � < 1; � � 0 and ' > 0

where � is the discount factor, Ct stands for consumption, and Nt for total hours

worked. The functional form of the period utility ensures that the economy is

consistent with balanced growth. The parameter ' denotes the disutility of

working. The term �t represents perturbations to the agent�s utility of con-
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sumption that generate urges to consume, as in Baxter and King (1991) and

Weder (2006). This element comes in two parts. One part grows with econ-

omy�s consumption trend and the other one is a transitory shock that follows

the autoregressive process

ln�t = �� ln�t�1 + "�;t 0 < �� < 1

with "�;t v N(0; �2�): This shock is also one of the drivers of the economy�s

labor wedge, i.e. the gap between the marginal rate of consumption-leisure

substitution and the marginal product of labor. Hence, our estimation will

allow a wider interpretation than mere shocks to preferences. A more agnostic

reading includes, for example, wage or price stickiness, changes to monetary

policy, taxes, or labor market frictions. Households own the physical capital

stock Kt and decide on its utilization rate, ut, thus �t = utKt. The agent faces

the period budget constraint

Ct + AtIt + Tt = wtNt + rtutKt +�t

and the law of motion for capital is

Kt+1 = (1� �t)Kt + It:

The term It is investment spending andAt represents a non-stationary investment-

speci�c technology shock which a¤ects the transformation of consumption goods

into investment goods. In the model, the concept corresponds to the relative

price of new investment goods in terms of consumption goods. The shock�s
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growth rate �at evolves as

ln�at = (1� �a) ln�
a + �a ln�

a
t�1 + "a;t 0 < �a < 1

with "a;t v N(0; �2a), and ln�
a is the average growth rate. Lump-sum taxes are

denoted by Tt. The rate of physical capital depreciation

�t = �0
u1+�t

1 + �
0 < �0 < 1 and � > 0

is an increasing function in the utilization and � > 0 measures the elasticity of

the depreciation rate with respect to capacity used. The �rst-order conditions

are standard and delegated to the Appendix.

3.2.3 Government

The government purchases Gt units of the �nal output. Gt is neither produc-

tive nor does it provide any utility. The spending is �nanced by the lump-sum

taxes. We model government�s spending with a stochastic trend

XG
t = (X

G
t�1)

 yg(XY
t�1)

1� yg 0 <  yg < 1

where  yg governs the smoothness of the government spending trend relative to

the trend in output. Then, detrended government spending is gt � Gt=X
G
t and

this follows the process

ln gt = (1� �g) ln g + �g ln gt�1 + "g;t 0 < �g < 1

with the shock�s variance �2g.
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3.2.4 Equilibrium

In symmetric equilibrium, �t(i) = utKt, Nt(i) = Nt, Pt(i) = Pt = 1, Yt(i) =

Yt and �t(i) = �t = Yt � wtNt � rtutKt, hold and (3.1) becomes

�� 1
�

� �t + �t

�
�t�t

�� 1
�

� �t

�
= 0: (3.2)

From (3.2), and if �t�t
��1
�

< �t <
��1
�
, the �nancial constraint binds, thus,

marginal costs equal

�t = �t�t = ��t

�
Yt
�Yt

�

:

In the steady state, � equals marginal costs �, i.e. the inverse of the markup,

thus it is not a free parameter.

3.2.5 Self-ful�lling dynamics

The detrended and linearized economy is solved numerically (using standard

parameters as listed in Table 3.1). We assume a certain degree of market power

such that the credit constraint is always binding, i.e. ��1t > �
��1 . Figure 3.2

maps the local dynamics�zones in the 
���1�space. If the credit limit is close

to constant, i.e. the parameter 
 is small, the economy�s dynamics are unique.

However, combinations of market power and a procyclical credit limit delivers

indeterminacy. The indeterminacy mechanism operates via an upwardly sloping

wage-hours locus similar to many animal spirits models.5 Then, how can, say,

pessimistic expectations about the future create problems? The storyline would

go as follows: if people believe that the future is worse, they will attempt to

work more hours. In terms of the labor market equilibrium, this change in

5See for example, Farmer and Guo (1994) or Wen (1998).
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expectations will shift the labor supply curve outwards. But their pessimistic

expectations will also lead households to decrease the lending to �rms. This

contraction of credit will tighten the �rms� borrowing constraints; given the

cost structure, the markup will rise and the individual labor demand schedules

move leftwards. As a consequence, the economy�s wage-hours-locus is upwardly

sloping. In equilibrium, the outward shift of labor supply will result in lower

employment and in a drop in aggregate production. In sum, the low animal

spirits will be self-ful�lling.
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Figure 3.2: Parameter spaces of dynamics.

3.3 Estimation

Our next step is to discuss how animal spirits are introduced into the model,

to present the data that is employed in the analysis, as well as to outline the

full information Bayesian estimation of the arti�cial economy. We quantify the

contribution of animal spirits shocks to business cycle �uctuations. Finally, we

compare the estimated shocks to corresponding empirical measures.
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3.3.1 Animal spirits in the rational expectations model

If there are many rational expectations equilibria in the model economy,

this continuum is a device to introduce animal spirits. In fact, we treat them as

quasi-fundamentals as they select from the many possible outcomes. Concretely,

we break down the forecast error of output in the linearized model

�yt � ŷt � Et�1ŷt

(hats denote percentage deviations from steady states) into �ve fundamental

and one non-fundamental components, as suggested by Lubik and Schorfheide

(2003):

�yt = 
x"
x
t + 
a"

a
t + 
�"

�
t + 
g"

g
t + 
�"

�
t + "bt :

The parameters 
x, 
a, 
�, 
g and 
� determine the e¤ect of technological

progress, investment-speci�c technology, preferences, government spending and

collateral shocks on the expectations error. This break-down leaves the belief

shock "bt as a residual. The last equation then promulgates a strict de�nition of

animal spirits: they are orthogonal to the other disturbances, thus independent

of economic fundamentals.

3.3.2 Data and measurement equation

The estimation uses quarterly U.S. data running from 1955:I to 2014:IV and

includes seven observable time series: (i) the log di¤erence of real per capita

GDP, (ii) real per capita consumption, (iii) real per capita investment, (iv) real

per capita government spending, (v) the relative price of investment, (vi) the log

di¤erence of per capita hours worked from its sample mean, as well as (vii) the
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credit spread from its sample mean. We instrument �nancial market conditions

by a credit spread similar to Christiano et al. (2014). In particular, Christiano

et al. make use of the di¤erence between the interest rate on Baa corporate

bonds and the ten-year US government bond rate. The Appendix provides

the full description of the data used and its construction. The corresponding

measurement equation is

2666666666666666664

lnYt � lnYt�1

lnCt � lnCt�1

lnAtIt � lnAt�1It�1

lnGt � lnGt�1

lnAt � lnAt�1

lnNt � ln �N

credit spread

3777777777777777775

=

2666666666666666664

ŷt � ŷt�1 + �̂yt

ĉt � ĉt�1 + �̂yt

{̂t � {̂t�1 + �̂yt

ĝt � ĝt�1 + âgt � âgt�1 + �̂yt

�̂at

N̂t

�x � � � �̂t

3777777777777777775

+

2666666666666666664

ln�y

ln�y

ln�y

ln�y

ln�a

0

0

3777777777777777775

+

2666666666666666664

"mey;t

0

0

0

0

0

"mes;t

3777777777777777775
where agt � XG

t =X
Y
t = (a

g
t�1)

 yg(�yt )
�1. In the last measurement equation, x is

the scale parameter only appearing in the measurement equation to adjust the

di¤erence of the volatilities (that is, units) between the model frictions and the

observable variable. Both output growth and credit spread are measured with

errors "mey;t and "
me
s;t which are i.i.d. innovations with mean zero and standard

deviation �mey and �mes , respectively. Allowing for a measurement error to output

is a way to circumvent stochastic singularity (e.g. Schmitt-Grohé and Uribe,

2012). The measurement error to the spread can reconcile any mis-measurement

in the data, especially since only a proxy is observed (e.g. Justiniano et al., 2011).

Both measurement errors are restricted to absorb no more than ten percent of the

variance of the corresponding observables. We estimate the model by allowing

all fundamental and the animal spirits shocks to matter.
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3.3.3 Calibrations and priors

We group the model parameters into two categories: calibrated and esti-

mated. The �rst set of parameters is calibrated following the literature and

is based on national accounts data averages. We only address some of these

calibrations (all are listed in completion in Table 3.1). The elasticity of sub-

stitution parameter � is set at ten, as in Dotsey and King (2005) and Cogley

and Sbordone (2008). The average government spending share in GDP, G=Y ,

is calibrated at 21 percent, a number which matches national accounts average.

The quarterly growth rates of per capita output �y and the relative price of in-

vestment �a are set equal to their sample averages of 1.0041 and 0.9949. Finally,

the household�s �rst-order conditions determine the elasticity of the depreciation

rate from � = (�k=� � 1)=�.

Table 3.1: Calibration

Parameters Values Description

� 0.99 Subjective discount factor

� 1/3 Capital share

� 0 Labor supply elasticity parameter

� 10 Elasticity of substitution between goods

� 0.0333 Steady-state depreciation rate

u 1 Steady-state capacity utilization rate

G=Y 0.21 Steady-state government expenditure share of GDP

�y 1.0041 Steady-state gross per capita GDP growth rate

�a 0.9949 Steady-state gross growth rate of price of investment

All other model parameters are estimated. Our prior assumptions are sum-
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Table 3.2: Estimation

Prior distribution Posterior distribution
Estimated parameters Range Density[mean,std] Mean 90% Interval
Steady-state marginal cost, � [0.83,0.90] Beta[0.88,0.01] 0.833 [0.831,0.834]
Elasticity of collateral, 
 [0.160,0.607] Uniform 0.322 [0.315,0.329]
Gov. trend smoothness,  yg [0,1) Beta[0.5,0.2] 0.965 [0.953,0.977]
Scale parameter, x R+ IGam[44,Inf] 47.33 [44.28,50.46]
AR technology shock, �x [0,1) Beta[0.5,0.2] 0.025 [0.008,0.041]
AR investment shock, �a [0,1) Beta[0.5,0.2] 0.029 [0.013,0.045]
AR preference shock, �� [0,1) Beta[0.5,0.2] 0.984 [0.981,0.988]
AR government shock, �g [0,1) Beta[0.5,0.2] 0.986 [0.982,0.989]
AR collateral shock, �� [0,1) Beta[0.5,0.2] 0.992 [0.990,0.994]
Belief shock volatility, �b R+ IGam[0.1,Inf] 0.640 [0.615,0.665]
SE technology shock, �x R+ IGam[0.1,Inf] 0.690 [0.646,0.733]
SE investment shock, �a R+ IGam[0.1,Inf] 0.562 [0.525,0.598]
SE preference shock, �� R+ IGam[0.1,Inf] 0.386 [0.364,0.407]
SE government shock, �g R+ IGam[0.1,Inf] 0.944 [0.896,0.992]
SE collateral shocks, �� R+ IGam[0.1,Inf] 0.132 [0.121,0.143]
SE measurement error, �mey [0,0.29] Uniform 0.290 [0.289,0.290]
SE measurement error, �mes [0,27.42] Uniform 27.28 [27.11,27.42]
Technology shock e¤ect, 
x [-3,3] Uniform -0.514 [-0.590,-0.438]
Investment shock e¤ect, 
a [-3,3] Uniform 0.271 [0.176,0.367]
Preference shock e¤ect, 
� [-3,3] Uniform 0.872 [0.756,0.994]
Government shock e¤ect, 
g [-3,3] Uniform 0.256 [0.205,0.305]
Collateral shock e¤ect, 
� [-3,3] Uniform 0.999 [0.610,1.393]
Log-data density 4064:98

marized in Table 3.2. The parameters estimated here include the steady state

marginal cost � (or equivalently the inverse of the mark-up), the elasticity of

collateral 
, the scale parameter x, the parameters that describe the stochas-

tic processes and the standard deviation of the measurement error. A beta

distribution is adopted for the steady-state marginal cost � and its value falls

between 0.83 and 0.9, so that the steady-state markup varies from around eleven

to twenty percent. The range of marginal costs is chosen for two reasons. First,

the empirically estimated markup falls in this range (see for example Cogley and

Sbordone, 2008, and De Loecker and Eeckhout, 2017). Second, the upper value

of � is further restricted by the inequality constraints � ��1
�

< � < ��1
�
for the

�nancial constraint to bind.6 We set the prior mean for x to match the standard

6The prior distribution of 
 guarantees that the complete indeterminacy region is cov-
ered. Since we concentrate on this region, during the MCMC, all proposed draws from the
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deviation of the smoothed endogenous �nancial frictions in the model without

any �nancial information (data and shock) and the standard deviation of the

demeaned spread data. We adopt an inverse gamma distribution for the prior.

For the persistence parameters we use a beta distribution and the standard

deviations of the shocks follow an inverse gamma distribution. The prior distri-

butions for the expectational parameters 
x, 
a, 
�, 
g and 
� are uniform,

thus agnostic about their values. Endogenous priors prevent overpredicting the

model variances as in Christiano et al. (2011). We use the Metropolis-Hastings

algorithm to generate one million draws from the posterior for each of the two

chains, discard the initial half of the draws as burn-in, and adjust the scale in

the jumping distribution to achieve a 25 to 30 percent acceptance rate for each

chain.

3.3.4 Estimation results

The last two columns of Table 3.2 present the posterior means of the esti-

mated parameters, along with their 90 percent posterior probability intervals.

The parameters are precisely estimated as is evidenced by the percentiles. The

estimated steady state of marginal cost implies a steady state markup of twenty

percent. The table also reveals a signi�cantly time-varying character of �nan-

cial frictions. Disturbances to preference, government spending and collateral

exhibit a high degree of persistence. The autocorrelation of the non-stationary

technology shock is low, but it is not inconsistent with the moderate values

commonly found in the literature.

determinacy and source regions were discarded.
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Table 3.3: Business cycle dynamics (band-pass �ltered)

Data Model

x �x=�Y �(x; Y ) ACF �x=�Y �(x; Y ) ACF

Yt 1.00 1.00 0.93 1.00 1.00 0.91

Ct 0.58 0.85 0.92 0.63 0.75 0.90

It 3.25 0.89 0.94 3.09 0.88 0.92

Gt 0.99 0.01 0.94 0.96 0.21 0.90

Nt 1.24 0.87 0.94 1.01 0.98 0.92

Table 3.3 reports second moments of the main macroeconomic variables cal-

culated using U.S. data and compares these moments to those obtained from

model simulations at the posterior mean, both at business cycle frequencies.

The model matches fairly well the relative standard deviations, autocorrelations

and the variables�cross-correlations with output. Table 3.4 displays the contri-

bution of each structural shock, which we list in the top row, to the variances of

key macroeconomic variables. Through the lens of our theory, the decomposi-

tion suggests that animal spirits shocks "bt are a major source of U.S. aggregate

�uctuations. These shocks account for over 40 percent of output growth �uctu-

ations. The ensemble of other aggregate demand shocks plays a lesser role and

the contribution of the two technology shocks is small at no more than twenty

percent. For investment, the vast majority of its variations comes from animal

spirits suggesting that much of the spending is driven by entrepreneurial sen-

timents. The credit spread is mainly driven by stochastic �nancial factors as

well as by the three demand side disturbances (i.e. animal spirits, preferences

and government spending).7 We re-ran the estimation, but halted in 2007:III,

7We estimate the model using loan data and animal spirits remain signi�cant. Furthermore,

44



i.e. just before the onset of the Great Recession. This alteration does not a¤ect

the results as the parameter estimates as well as the variance decompositions

remain virtually unchanged.

Table 3.4: Unconditional variance decomposition

Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t

ln (Y t=Y t�1) 43.43 11.17 5.72 15.70 9.93 6.71 6.80 0.00

ln (Ct=Ct�1) 6.18 40.42 2.76 39.84 1.96 8.82 0.00 0.00

ln (AtIt=At�1It�1) 66.53 2.41 7.06 9.34 7.09 7.57 0.00 0.00

ln (N t=
�N) 21.24 2.54 9.37 26.50 22.06 18.30 0.00 0.00

ln (Gt=Gt�1) 0.00 0.98 0.16 0.00 98.85 0.00 0.00 0.00

ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00

Credit spread 12.26 2.06 4.85 17.99 15.06 43.49 0.00 3.30

In sum, the estimation suggests that psychological motivations are behind a

signi�cant portion of the �uctuations in U.S. aggregate real economic activity.

While the de�nitions of con�dence shocks do not exactly overlap, this result

parallels recent �ndings by Angeletos et al. (2016), Milani (2017) and Nam

and Wang (2016) who, while arguing within theoretical frameworks that involve

uniqueness, also �nd that bouts of optimism and pessimism are driving a large

fraction of U.S. aggregate �uctuations.

3.3.5 Are shocks meaningfully labeled?

We identify the shocks by estimating in a system and it is thus fair to ask if

the estimated shocks are meaningfully labelled. Speci�cally, do the shocks share

resemblance with empirical series that are computed with orthogonal information

variance decompositions at business cycle frequencies deliver almost identical results.
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Figure 3.3: Fernald�s vs model�s total factor productivity (annual data).

sets? To begin with, the estimated model�s total factor productivity (TFP) series

is compared with Fernald�s (2014) TFP series for the United States.8 Fernald�s

TFP series are widely considered as the gold standard for this variable for which

he adjusts for variations in factor utilization (labor e¤ort and the workweek

of capital) as well as labor skills. The results of this exogenous validation are

reassuring as shown in Figure 3.3. Both productivity series not only have similar

amplitudes, but their contemporaneous correlation comes in at 0:68. Hence, the

model is successful in extracting productivity shocks. Next, Figure 3.4 compares

the index of estimated con�dence and the U.S. Business Con�dence index (band-

pass �ltered to concentrate on the relevant frequencies). Clearly, the empirical

con�dence index is in�uenced by a raft of fundamentals and non-fundamentals,

thus, it is not exactly clear how the empirical data would map our theoretical

notion of animal spirits. Yet, one would expect that the animal spirits and

con�dence data display a certain similarity. In fact, the two sentiment series are

strongly correlated and we interpret the relationship in Figure 3.4 as endorsing

8Growth of total factor productivity in our model is given by (1� �)(�̂xt + ln�x):
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our estimation and as supporting the case that estimated belief shocks re�ect

variations in people�s expectations about the future path of the economy.9
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Figure 3.4: Business con�dence index vs animal spirits shocks (normalized data).

3.4 Robustness checks

In this Section, we report several robustness checks. First, we leave Lubik

and Schorfheide�s (2003) representation of a belief shock and follow Farmer et

al.�s (2015) formulation. Next, we go through alternative observables to mea-

sure �nancial markets�health. This is followed by adding Fernald�s (2014) TFP

data to the observables. We also replace permanent technology shocks by tran-

sitory shocks and consider the presence of shocks to the marginal e¢ ciency of

investment as in Justiniano et al. (2011).

We begin the chain of robustness checks by following the approach of Farmer

et al. (2015) in which the animals spirits shock is simply the forecast error,

i.e. �yt = "bt ; with a variance �
2
�. Intuitively, since output is forward looking,

9The correlation of the estimated sunspot shocks and Fernald�s TFP series is insigni�cant
at 0:2.
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Table 3.5: Posterior distribution comparison

Model with �yt = "bt
Prior distribution Posterior distribution

Parameters Range Density[mean,std] Mean 90% Interval
� [0.83,0.90] Beta[0.88,0.01] 0.833 [0.831,0.834]

 [0.160,0.607] Uniform 0.322 [0.315,0.329]
 yg [0,1) Beta[0.5,0.2] 0.965 [0.954,0.977]
x R+ IGam[44,Inf] 47.30 [44.18,50.35]
�x [0,1) Beta[0.5,0.2] 0.025 [0.008,0.042]
�a [0,1) Beta[0.5,0.2] 0.029 [0.014,0.045]
�� [0,1) Beta[0.5,0.2] 0.984 [0.981,0.988]
�g [0,1) Beta[0.5,0.2] 0.986 [0.982,0.989]
�� [0,1) Beta[0.5,0.2] 0.992 [0.990,0.994]
�� R+ IGam[0.1,Inf] 0.862 [0.821,0.902]
�x R+ IGam[0.1,Inf] 0.690 [0.647,0.733]
�a R+ IGam[0.1,Inf] 0.562 [0.525,0.598]
�� R+ IGam[0.1,Inf] 0.385 [0.364,0.407]
�g R+ IGam[0.1,Inf] 0.945 [0.897,0.993]
�� R+ IGam[0.1,Inf] 0.132 [0.121,0.143]
�mey [0,0.29] Uniform 0.290 [0.289,0.290]
�mes [0,27.42] Uniform 27.28 [27.11,27.42]

�(x; �y) [-1,1] Uniform -0.406 [-0.465,-0.349]
�(a; �y) [-1,1] Uniform 0.172 [0.110,0.233]
�(�; �y) [-1,1] Uniform 0.388 [0.338,0.438]
�(g; �y) [-1,1] Uniform 0.275 [0.226,0.327]
�(�; �y) [-1,1] Uniform 0.151 [0.091,0.213]

Log-data density 4066.02

this expectation error should be correlated with fundamental shocks. Yet, it is

also a sunspot shock, as it can cause movements in economic activity without

any shifts to fundamentals. Assuming a uniform distribution, we thus estimate

the correlations between �yt and the fundamental shocks. The priors for the

other parameters are kept the same as in the baseline model. As can be seen by

comparing Tables 3.2 and 3.5, our estimation results are robust to the formation

of the expectation error. The posterior distributions are almost identical and

the closeness of the log-data densities con�rms that the goodness of �t between
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Table 3.6: Unconditional variance decomposition (Baa-Aaa spread)

Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t
ln (Y t=Y t�1) 45.46 11.34 5.34 15.63 9.12 6.31 6.80 0.00
ln (Ct=Ct�1) 6.67 41.08 2.65 38.98 1.84 8.78 0.00 0.00
ln (AtIt=At�1It�1) 68.22 2.32 6.45 9.04 6.24 7.73 0.00 0.00
ln (N t=

�N) 23.25 2.31 9.08 25.25 20.31 19.79 0.00 0.00
ln (Gt=Gt�1) 0.00 1.07 0.17 0.00 98.76 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 13.12 1.87 4.59 16.51 13.48 47.13 0.00 3.30

the models is equivalent.10

The next robustness check concerns the choice of the observed spread when

instrumenting �nancial markets� conditions as we consider the sensitivity to

using various alternative spreads. In particular, we ask if using the Baa-Aaa

spread or the Baa-Federal funds rate spread leads to signi�cantly di¤erent results

in the estimation. We report the variance decompositions only. The results for

the alternative spreads are documented in Tables 3.6 and 3.7. Animal spirits

continue to stand out as the main driver of the business cycle.11

Table 3.7: Unconditional variance decomposition (Baa-FF spread)

Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t

ln (Y t=Y t�1) 42.35 12.38 6.10 17.45 9.40 4.97 7.34 0.00

ln (Ct=Ct�1) 5.93 43.61 3.01 39.50 1.86 6.09 0.00 0.00

ln (AtIt=At�1It�1) 65.43 2.62 7.51 10.04 7.00 7.40 0.00 0.00

ln (N t=
�N) 22.11 2.33 10.53 26.72 22.55 15.76 0.00 0.00

ln (Gt=Gt�1) 0.00 1.02 0.17 0.00 98.81 0.00 0.00 0.00

ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00

Credit spread 14.32 2.19 6.08 20.38 17.16 34.61 0.00 5.26

10Second moments and variance decompositions are virtually identical and are not presented
to conserve space.
11We considered other interest spreads and the results repeat.
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Next, we add total factor productivity to the catalog of observables. Fernald�s

(2014) data is the natural series to choose from. Fernald adjusts for variations

in factor utilization (labor and capital) and includes adjustment for quality or

composition of inputs. Most of these in�uences are not part of the present

arti�cial economy and we thus add one more measurement error on total factor

productivity (at not more than ten percent). Table 3.8 shows that the previous

results remain robust. Animal spirits continue to cause the bulk of U.S. output

�uctuations. The technology shocks�contributions are lower, with a best point

estimate near ten percent.

Table 3.8: Unconditional variance decomposition (Fernald TFP)

Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t "metfp;t

ln (Y t=Y t�1) 39.02 10.35 5.10 12.63 9.13 17.01 6.77 0.00 0.00

ln (Ct=Ct�1) 4.63 38.01 2.18 34.21 1.49 19.48 0.00 0.00 0.00

ln (AtIt=At�1It�1) 59.56 2.09 6.31 8.56 6.12 17.36 0.00 0.00 0.00

ln (N t=
�N) 16.00 2.35 7.14 21.74 16.70 36.07 0.00 0.00 0.00

ln (Gt=Gt�1) 0.00 1.08 0.15 0.00 98.76 0.00 0.00 0.00 0.00

ln (At=At�1) 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00

Credit spread 6.54 1.34 2.61 10.38 8.13 67.28 0.00 3.71 0.00

ln (TFP t=TFP t�1) 0.00 92.29 0.00 0.00 0.00 0.00 0.00 0.00 7.71

So far, we have assumed that technology follows a stochastic trend. We

now replace permanent technology shocks by transitory shocks. Hence, the

production technology is given by

Yt = ZtK
�
t (�

tNt)
1��

and the growth rate of labor augmenting technological progress is deterministic

at the constant rate �, as in King et al. (1988). We permit temporary changes
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in total factor productivity through Zt, which follows a �rst-order autoregressive

process

lnZt = (1� �z) lnZ + �z lnZt�1 + "z;t 0 < �z < 1:

The presence of (one more) transitory shock will also make it (even) harder

for animal spirits shocks to explain data�s transitory �uctuations. Nevertheless,

the model estimation delivers similar posterior means of the parameters as the

baseline estimation and they are reported in the Appendix. Noteworthy is the

estimate for �z at 0:997 which is arguably very close to a unit root. While

high, this number is consistent with Ireland (2001), for example. The variance

decompositions of the stationary technology shocks model are reported in Table

3.9. Technology shocks account for about 17 percent of GDP volatility. Animal

spirits remain the most critical driver of aggregate �uctuations and they continue

to explain roughly 40 percent of output growth variations.12

Table 3.9: Unconditional variance decomposition (transitory TFP)

Series/shocks "bt "zt "at "�t "gt "�t "mey;t "mes;t

ln (Y t=Y t�1) 39.18 16.79 5.28 15.64 8.21 8.69 6.22 0.00

ln (Ct=Ct�1) 3.78 43.19 2.19 40.98 1.13 8.73 0.00 0.00

ln (AtIt=At�1It�1) 57.92 11.81 6.28 10.25 5.64 8.10 0.00 0.00

ln (N t=
�N) 16.08 17.47 8.35 26.25 15.10 16.75 0.00 0.00

ln (Gt=Gt�1) 0.00 0.00 0.22 0.00 99.78 0.00 0.00 0.00

ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00

Credit spread 5.63 41.34 2.59 10.61 6.17 30.37 0.00 3.30

12The posterior means of the parameters in the model with transitory technology produc-
tivity are shown in the Appendix as Table 3.13. There, we also report an external validation
as in Figures 3.3 and 3.4 and, again, estimated shocks are very similar to Fernald�s series as
well as U.S. con�dence data.
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The natural question arises which speci�cation of technology is favored by

data? This question is answered in Table 3.10 which compares the model �ts

of the two alternatively speci�ed models. Data strongly prefers a version of the

model in which total factor productivity has a stochastic trend.13

Table 3.10: Model comparison

Baseline: permanent TFP Alternative: transitory TFP

Log-data density 4064.98 3811.89

Justiniano et al. (2011) push for shocks that a¤ect the production of installed

capital from investment goods or the transformation of savings into the future

capital input. This is an alternative way to model exogenous �nancial frictions.

The concept of shocks to the marginal e¢ ciency to investment (MEI) goes back

to Greenwood et al. (1988) who formulate the ideas as

Kt+1 = (1� �t)Kt + �tIt

where we abstract from adjustment costs to not mess with the indeterminacy

properties of the arti�cial economy. The shock �t a¤ects the marginal e¢ ciency

of capital and it follows an autoregressive process with persistence parameter

�� . The MEI shocks are likely a

�might proxy for more fundamental disturbances to the inter-

mediation ability of the �nancial system.� [Justiniano et al., 2011,

103]

We estimate the amended model and associate the observed spread with

the value of the MEI to impose discipline on the inference of the shock as in
13We conduct a similar exercise with respect to the form of the preference shock. Data does

strongly prefer the current setup over a version with a stochastic discount factor.
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Justiniano et al. (2011).14 Again, we add a measurement error to the spread

equation. Table 3.11 shows, in line with our previous �ndings, that the animal

spirits shocks remain a most prominent driver of U.S. output �uctuations.15 An

external validation exercise akin to Figures 3.3 and 3.4 �nds that estimated

shocks are again very similar to their empirical counterparts (see Appendix).

Table 3.11: Unconditional variance decomposition (MEI shock)

Series/shocks "bt "xt "at "�t "gt "MEI
t "mey;t "mes;t

ln (Y t=Y t�1) 46.82 10.15 5.51 15.76 11.18 2.08 8.49 0.00

ln (Ct=Ct�1) 8.77 40.93 2.92 43.77 2.96 0.66 0.00 0.00

ln (AtIt=At�1It�1) 69.61 2.35 6.77 9.82 8.68 2.77 0.00 0.00

ln (N t=
�N) 25.57 3.62 10.02 31.30 27.17 2.31 0.00 0.00

ln (Gt=Gt�1) 0.00 0.75 0.13 0.00 99.12 0.00 0.00 0.00

ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00

Credit spread 0.00 0.00 0.00 0.00 0.00 99.95 0.00 0.05

3.5 A closer look at the Great Recession

From 2007 to 2009, the U.S. economy was in a severe slump. The Great

Recession was the single-worst economic contraction since the 1930s, with eco-

nomic activity diving after various �nancial institutions collapsed. One of the

aims of the recent �nancial friction models is to identify the sources of the crisis.

14Given the occurance of �nancial frictions in two places, we are only able to connect one
model friction to the spread�s measurement equation. The series of animal spirits remains
highly correlation to earlier estimations, thus, our result is not the consequence of putting less
restictions on the psychological shocks.
15We considered the hypothesis that sunspot shocks are in fact news shocks. In the spirit of

Beaudry and Portier (2006), we looked into �nding a relation of the belief shocks with future
movements of technology. In particular, we compute the correlations of the estimated animal
spirits with Fernald�s TFP data at four to sixteen quarters out. The correlations are negligible
at never more than 0:04.
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To what extent can animal spirits explain the downturn in GDP observed in this

recession?
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Figure 3.5: Counterfactual path of output, conditional on estimated belief
shocks. Parameters are set at the posterior mean.

We begin with a counterfactual exercise in which we shut down all but the

animal spirits shocks (using Section 3.3�s model). Figure 3.5 plots the counter-

factual path of output driven solely by these belief shocks along with the actual

series over the Great Recession period. The U.S. data has been detrended by re-

moving long-run productivity trend and also population growth, as we abstract

from it in the model. We re-scale both model and U.S. data so that outputs are

equal to 100 in 2008:I. The model economy virtually coincides in both timing and

depth with the actual economy during the crisis period and the measured drop

in con�dence can account for most of the decline in output. The counterfactual

exercise favors the interpretation that the fall of aggregate output during the

Great Recession was closely associated with self-ful�lling beliefs. Our reading

of events goes like this: adverse expectations led to a drop in aggregate demand

which curbed lending and tightened credit (similar to Kahle and Stulz, 2013).

This tightening occurred because people were expecting worsening business con-
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ditions and higher defaults. In other words, people became pessimistic and, as

a consequence of the e¤ect on �nancial markets, the reduced investment spend-

ing lowered productivity which then made pessimistic expectations self-ful�lled.

Our results do not necessarily contradict Christiano et al.�s (2015) account of the

Great Recession. Their study �nds that the steep decline of aggregate economic

activity was overwhelmingly caused by exogenous �nancial frictions. What our

analysis suggests is, however, that it was a drop in people�s animal spirits af-

fected aggregate demand and then found its catalyst in �nancial markets. The

endogenous reaction of the �nancial sector helped in propagating gloomy animal

spirits into the full-blown crisis and macroeconomic collapse.
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Figure 3.6: The arti�cial labor wedge during the Great Recession.

A useful way of thinking about the Great Recession is in terms of Chari et

al.�s (2007) business cycle accounting framework which decomposes distortions

in the economy into sets of residuals or wedges. When applying this framework,

Brinca et al. (2016) assert that

�[...] considering the period from 2008 until the end of 2011, [our]

results imply that the Great Recession in the United States should be
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thought of as primarily a labor wedge recession, with an important

secondary role for the investment wedge.�[Brinca et al., 2016, 1042]

This diagnostic �nding leads to the question of what would the these wedges

look like in the arti�cial economy? In a benchmark prototype economy, the labor

wedge 1� �nt shows up in the budget constraint as

::: = (1� �nt )wtNt + rtutKt

thus it is like a tax on labor services.16 The labor wedge is plotted along with

its data equivalent in Figure 3.6. Clearly, the two series show high conformity.

The arti�cial wedge explains about three-fourths of the data wedge�s plunge

during 2008 and 2009 and it charts a tepid recovery over the 2010 to 2014 pe-

riod. Our model estimation also suggests an important role for �nancial market

imperfections. Thus, given Brinca et al.�s (2016) assertion, we report a wedge

that measures these sort of distortions: it is like a tax on capital income as in

Kobayashi and Inaba (2006) or Cavalcanti et al. (2008) and in a benchmark pro-

totype economy it would show up on the right hand side of the budget constraint

as 1� � kt :

::: = wtNt + (1� � kt )rtutKt:

Figure 3.7 maps out both the empirical and the model implied capital wedges

next to the investment wedge as in Brinca et al. (2016). Note that we report the

�� ts�rather than the full wedges. These distortions are shown alongside Romer

and Romer�s (2017) semi-annual index of �nancial stress which focusses

�on disruptions to credit supply, rather than on broader concep-
16In the Appendix, we describe the construction of wedges in terms of the arti�cial economy.

Kobayashi and Inaba (2006) prove an equivalence of the capital wedge as well as the investment
wedge.
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tions of �nancial problems�[Romer and Romer, 2017, 3073].

We take three insights from this accounting. Firstly, capital and investment

wedges display very similar patterns and they indeed point to a worsening of

�nancial market health after 2007. This mirrors Romer and Romer�s (2017)

�ndings. Second, our model lines up well with Brinca et al.�s (2016) interpreta-

tion of the Great Recession in terms of both the labor as well as �nancial wedges.

Thirdly, Romer and Romer�s (2017) index suggests that �nancial distress in the

U.S. ended by 2011 and this is at some odds with the pattern of both �nancial

wedges which are signi�cantly more persistent. Our take on this picture is that

investment spending remained subdued for factors other than �nancial ones.

From our analysis, it appears that the tepid spending re�ects a lack of animal

spirits, i.e. businesses were not con�dent about future demand to justify more

investment.
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Figure 3.7: Financial wedges during the Great Recession: the initial observations
have been normalized to 100 (capital wedges measured on left-hand axis). Right-
hand panel shows Romer and Romer (2017) index.

3.6 Does data prefer indeterminacy?

So far we have restricted the estimation to the parameter space with multiple

equilibria, yet a natural question arises: does data in fact favor a model with
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indeterminacy? To answer this question, we now estimate the economy over the

entire parameter space using the methodology proposed in Bianchi and Nicolò

(2017).17 Their procedure can be implemented without knowing the analytical

expressions for the boundaries between the three dynamic regions (recall Figure

3.2).

Table 3.12: Determinacy versus Indeterminacy

Determinacy Indeterminacy

Model prior probabilities 0.52 0.47

Permanent TFP

Log-data density 3470.07 4065.42

Model posterior probability 0.00 1.00

Transitory TFP

Log-data density 3441.67 3812.86

Model posterior probability 0.00 1.00

MEI

Log-data density 3601.05 4305.71

Model posterior probability 0.00 1.00

The estimation process begins by setting the priors so that determinacy,

indeterminacy and source probabilities are at 52:47:1 (in percent). To do this, we

adjust the prior of the elasticity of the collateral 
, which is now beta-distributed,

to being centered at 0.17 with a standard deviation of 0.1 and truncated to

be no more than 0.61.18 All parameters that pertain to the solution under

indeterminacy are restricted to be zero when the estimation for draws is taking

17The Appendix explains their methodology in more detail.
18All other priors are as above. Details of the estimation procedure are delegated to the

Appendix 3.A.3.
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place in the determinacy region of the model. Draws from the source region

were discarded. In line with Bianchi and Nicolò (2017), we follow the approach

proposed in Farmer et al. (2015) and construct the forecast errors of output �yt as

a belief shock with variance �2� and allow the expectation errors to be correlated

with the fundamental shocks. As would be reasonable, for these correlations we

assume �at priors that are uniform between -1 and 1. Table 3.12 presents the

results for model versions discussed earlier involving i) permanent technology

shocks, ii) transitory technology shocks and iii) shocks to the marginal e¢ ciency

to investment. The observable variables are the same as in Sections 3.3 and

3.4. The log data densities in Table 3.12 suggest that U.S. data strongly favours

the indeterminacy model over all three versions of the economy in which animal

spirits cannot play a role.

Three further observations are worthwhile mentioning. First, the estimated

parameters under indeterminacy that arise when we implement the methodology

developed in Bianchi and Nicolò (2017) are essentially equivalent to our previ-

ous results. Thus, estimating via their procedure leaves results una¤ected and

the implications regarding the important role of animal spirits carry over (see

for example Table 3.14 in the Appendix). Second, in addition to being favored

by data, the indeterminacy model is superior in identifying shocks for which

empirical counterparts exist. For example, the model-based technology shocks

track the empirical TFP series better under indeterminacy: when comparing the

estimated sequence as done in the external validation of Figure 3.3, then the con-

temporaneous correlation with Fernald�s series drops slightly from 0.68 to 0.65

under determinacy. Third, the key di¤erence in the parameter estimates across

the two regions applies to the parameter 
 that controls the endogenous compo-

nent of credit market tightness: 
 approaches zero for the determinacy versions
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of the model. The endogeneous aspect of the collateral constraint disappears.

How can we make sense of the �nding that the indeterminacy model is

preferred by U.S. data? The absence of the endogenous feedback of �nancial

market conditions to the state of the economy implies that other fundamental

shocks�ampli�cation mechanisms are curtailed and movements of the collateral

constraint (and of marginal costs) are determined by the exogenous �nancial

friction shocks. For example, as is shown in the Appendix�Table 3.15, under

determinacy the MEI shock explains about thirty percent of output �uctuations

and the spread�s variations in almost their entirety. These numbers are quite

similar to Justiniano et al. (2011, Table 4) while at somewhat di¤erent frequen-

cies. However, the rigid collateral constraints imply that the other fundamental

shocks are no longer able to contribute towards the procyclical variations of �-

nancial health. In other words, the pattern that was reported in Figure 3.1 �

namely that �nancial conditions are cyclical and deteriorate during basically all

slumps � is more e¤ortlessly accommodated by an arti�cial economy with an

endogenously varying collateral constraint, however, this then implies that the

economy becomes indeterminate and, consequently, animal spirits are assigned

an important role.

3.7 Concluding remarks

This paper has presented evidence on the sources of U.S. aggregate �uctu-

ations over the period 1955 to 2014. We perform a Bayesian estimation of a

�nancial accelerator model which features an indeterminacy of rational expecta-

tions equilibria. Indeterminacy in the model is linked to the empirically observed

countercyclical movement of �nancial market tightness. The arti�cial economy is

driven both by fundamental shocks as well as by animal spirits. U.S. data favours
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the indeterminacy model over versions of the economy in which sunspots do not

play a role. The estimation supports the view that people�s animal spirits play

a signi�cant role for the U.S. business cycle. Variance decompositions suggest

that animal spirits are behind a substantial fraction of output growth variations

and they explain an even larger portion of �uctuations in investment spending.

Technology shocks and �nancial frictions shocks are signi�cantly less important

in explaining the oscillations in aggregate real economic activity. The 2007-2009

recession appears to have been chie�y caused by adverse con�dence shocks.

Admittedly, we have left out various aspects of the economy that could be

considered relevant. For example, the economy is real and nominal variables

are absent. Thus, we exclude the potential e¤ects of price stickiness and any

in�uence of a monetary authority. Also, the absence of monetary policy as

well as the exogenous character of the �scal side precludes from addressing how

policy could potentially in�uence the dynamics of this economy. The small-

scale character of our model, however, provides the advantage of tractability

speci�cally when conducting the various robustness exercises. This being said,

mentioned extensions are beyond the scope and the goals of the current paper,

but we plan to work out a medium-scale version of the indeterminacy model in

the future.
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3.A Appendix

The Appendix sets out the complete model, a discussion of the wedges, and

it lists the data sources and de�nitions. We begin with collecting the model�s

equations.

3.A.1 Model equations and equilibrium dynamics

The �rst-order conditions for the household�s optimization problems are

'N�
t =

1

Ct � �t
Wt

rt = At�0u
�
t

and
At

Ct � �t
= �Et

�
1

Ct+1 � �t+1
(rt+1ut+1 + At+1(1� �t+1))

�
:

In the model, output, consumption, and real wage �uctuate around the same

stochastic growth trend XY
t = XtA

�=(��1)
t , the growth rate of which is �yt �
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XY
t =X

Y
t�1 = �xt (�

a
t )

�
��1 . The trend in capital stock, which is also the trend in

investment equals XK
t = XY

t =At, the growth rate of which is �
k
t � XK

t =X
K
t�1 =

�xt (�
a
t )

1
��1 . Besides, the government expenditure �uctuates around its own trend

XG
t . There is no growth trend in hours, utilization and marginal cost. We

�rst derive the detrended dynamic equilibrium equations and then log-linearly

approximate them around the deterministic steady state. Let yt = Yt=X
Y
t , ct =

Ct=X
Y
t , wt = Wt=X

Y
t , it = It=X

K
t , kt = Kt=X

K
t�1, gt = Gt=X

G
t , �t = �t=X

Y
t

and yt=�y approximately equal to Yt= �Yt, where �y represents the steady state of

detrended output. The log-linearized system is summarized by

ŷt = �k̂t + �ût � ��̂kt + (1� �)N̂t

ŷt = [1�
��(�k � 1 + �)

�(1 + �)
� G

Y
]ĉt +

��(�k � 1 + �)
�(1 + �)

{̂t +
G

Y
(âgt + ĝt)

ŷt = (1 + �)N̂t + ĉt � �̂t � �̂t

ŷt = (1 + �)ût + k̂t � �̂t � �̂kt

k̂t+1 =
(1� �)

�k
(k̂t � �̂kt ) +

(�k � 1 + �)
�k

{̂t �
�(1 + �)

�k
ût

ĉt+1 = ĉt��̂t� [1�
��(1 + �)

�k
]�̂kt+1+�̂t+1+

��(1 + �)

�k
(ŷt+1� k̂t+1+ �̂t+1� ût+1)

and

�̂t = 
ŷt + �̂t:

In these equations, variables without time subscripts refer to steady state values

while the hatted variables denote percent deviations from their corresponding

steady-state, e.g., ŷt � log(yt=�y). The last equation shows that if 
 ! 0, then

marginal cost and the credit constraint are determined by the exogenous �nancial

shocks only.
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The following table shows the estimation results for transitory technology

shocks.

Table 3.13: Estimation (transitory TFP)

Prior distribution Posterior distribution

Estimated parameters Range Density[mean,std] Mean 90% Interval

Steady-state marginal cost, � [0.83,0.90] Beta[0.88,0.01] 0.832 [0.831,0.833]

Elasticity of collateral, 
 [0.160,0.607] Uniform 0.296 [0.291,0.301]

Gov. trend smoothness,  yg [0,1) Beta[0.5,0.2] 0.953 [0.932,0.975]

Scale parameter, x R+ IGam[44,Inf] 44.38 [42.62,46.24]

AR technology shock, �z [0,1) Beta[0.5,0.2] 0.997 [0.996,0.998]

AR investment shock, �a [0,1) Beta[0.5,0.2] 0.020 [0.008,0.032]

AR preference shock, �� [0,1) Beta[0.5,0.2] 0.979 [0.974,0.983]

AR government shock, �g [0,1) Beta[0.5,0.2] 0.981 [0.976,0.987]

AR collateral shock, �� [0,1) Beta[0.5,0.2] 0.992 [0.991,0.994]

Belief shock volatility, �b R+ IGam[0.1,Inf] 0.662 [0.640,0.685]

SE technology shock, �z R+ IGam[0.1,Inf] 0.321 [0.306,0.334]

SE investment shock, �a R+ IGam[0.1,Inf] 0.564 [0.527,0.600]

SE preference shock, �� R+ IGam[0.1,Inf] 0.467 [0.445,0.488]

SE government shock, �g R+ IGam[0.1,Inf] 0.943 [0.894,0.992]

SE collateral shocks, �� R+ IGam[0.1,Inf] 0.145 [0.133,0.156]

SE measurement error, �mey [0,0.29] Uniform 0.290 [0.289,0.290]

SE measurement error, �mes [0,27.42] Uniform 27.29 [27.12,27.42]

Technology shock e¤ect, 
z [-3,3] Uniform 1.054 [0.924,1.187]

Investment shock e¤ect, 
a [-3,3] Uniform 0.277 [0.188,0.371]

Preference shock e¤ect, 
� [-3,3] Uniform 0.729 [0.644,0.818]

Government shock e¤ect, 
g [-3,3] Uniform 0.255 [0.203,0.305]

Collateral shock e¤ect, 
� [-3,3] Uniform 1.546 [1.186,1.931]

Figure 3.8 and 3.9 show the estimated model�s total factor productivity series

compared with Fernald�s (2014) total productivity series, as well as the index of

64



estimated con�dence compared with the U.S. Business Con�dence index for the

estimation with transitory technology shock.
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Figure 3.8: Fernald�s vs model�s total factor productivity (annual data).
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Figure 3.9: Business con�dence index vs animal spirits shocks (normalized data).

Figure 3.10 and 3.11 show the estimated model�s total factor productivity

series compared with Fernald�s (2014) total productivity series, as well as the

index of estimated con�dence compared with the U.S. Business Con�dence index
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for the estimation with MEI shock.

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
­3

­2

­1

0

1

2

3

4

Growth rate of Fernald TFP Growth rate of model TFP

corr=0.67

Figure 3.10: Fernald�s vs model�s total factor productivity (annual data).

3.A.2 Wedges

Business cycle accounting has been introduced by Chari et al. (2007). Brinca

et al.�s (2016) interpretation of the Great Recession in terms of both the labor

as well as �nancial wedges (denoted by �xt ). In terms of a benchmark proto-

type economy, the labor wedge is introduced via the household�s period budget

constraint

::: = (1� �nt )wtNt + rtutKt:

hence it is like a tax on labor services. The labor wedge 1��nt is constructed from

the intratemporal �rst-order condition that is a wedge between the marginal rate

of substitution and the marginal product of labor. In log-linear form, it would

write as

(� bNt + bct)| {z }�
MRSC;l

�byt � bNt

�
| {z }

MPL

=
�n

�n � 1b�nt .
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Figure 3.11: Business con�dence index vs animal spirits shocks (normalized
data).

The model�s labor wedge is driven by �uctuations of both the markup as well

as stochastic preferences. Chari et al. (2007) introduce in their business cycle

accounting framework an investment wedge to measure distortions that would

occur capital and �nancial markets. It is like a tax on investment. As the

relative price (that we use as observable) maps exactly into this wedge in our

arti�cial economy, we decided to turn to a slightly di¤erent measure of capital

market distortions as do Kobayashi and Inaba (2006) as well as Cavalcanti et al.

(2008).19 The capital wedge � kt is introduced via the household�s period budget

constraint

::: = wtNt + (1� � kt )rtutKt:

19In fact, Kobayashi and Inaba (2006) prove an equivalence of the capital wedge as well as
the investment wedge.
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Hence it is like a tax on capital services. This then implies from capital utiliza-

tion�s �rst order condition that

1� � kt =
�0
�
Atu

1+�
t Kt=Yt

which allows to compute the empirical wedge from available data of the right

hand side variables (rather than using the intertemporal Euler equation). In

terms of our original model, the capital wedge equals the inverse of the markup.

In a log-linearized world, we have a relation of the arti�cial wedge b�m;kt and

marginal costs b�t as b�m;kt = �1� �m;k

�m;k
b�t:

In the steady state, 1 � �m;k equals � which, of course, is the inverse of the

markup. Given data on the relative price, utilization rates, output and capital

constructed using

Kt+1 =

�
1� �0

u1+�t

1 + �

�
Kt + It

as well as a parameter calibration, one can compute an empirical series for the

capital wedge. We then use the estimated model and the implied series for b�m;kt

to construct a series of the model-wedge �m;kt . The model wedge replicates the

overall empirical pattern as well as the depth of the distortions associated with

the market of capital. The investment wedge in Figure 3.7 is computed from the

original Chari et al. (2007) formulation, that is the wedge shows up as

1

1 + e�xt :
From this we construct a series for 1��xt � (1 + e�xt )�1 and report the realizations
for �xt in Figure 3.7. While, by construction, not identical, the two series �

�
� kt
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and f�xt g �are very similar.

3.A.3 Bianchi and Nicolò (2017)

We brie�y set out the methodology that we apply in Section 3.6. It closely

follows Bianchi and Nicolò (2017) and it does not require to know the (analytical

solution) of the boundaries of the determinacy region.20 The parameters of the

log-linearized benchmark model are contained in the vector

�� [�; �; �y; �a; �k; �; �; �; �; 
;G=Y; �x; �a; ��; �g; ��; �x; �a; ��; �g; ��]:

The linear rational expectations (LRE) model can be rewritten in the canonical

form

�0(�)st = �1(�)st�1 +	(�)"t +�(�)�t; (3.3)

where

st = [ŷt; ĉt; {̂t; N̂t; k̂t+1; ût; �̂t; Et(ŷt+1); Et(ĉt+1); Et(�̂t+1); Et(ût+1); â
g
t ; �̂

y
t ; �̂

k
t ; �̂

x
t ; �̂

a
t ; �̂; ĝt; �̂t]

0

is a vector of endogenous variables, "t = ["xt ; "
a
t ; "

�
t ; "

g
t ; "

�
t ]
0
is a vector of exogenous

shocks, and �t = [�yt ; �
c
t ; �

�
t ; �

u
t ]
0
collects the one-step ahead forecast errors for

the expectational variables of the system. Since our model can generate at most

one degree of indeterminacy, Bianchi and Nicolò suggest to append the original

linear rational expectations model (3.3) with the autoregressive process

!t = '�!t�1 + �t � �f;t (3.4)

20Bianchi and Nicolò (2017) show that their characterization of indeterminate equilibria is
equivalent to Lubik and Schorfheide (2003).
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where �t is the sunspot shock and �f;t can be any element of the forecast errors

vector �t. We choose �f;t = �yt . The variable '
� belongs to the interval (-1,1)

when the model is determinate or it is outside the unit circle under indeter-

minacy. Under determinacy the Blanchard-Kahn condition is satis�ed and the

absolute value of '� is inside the unit circle since the number of explosive roots

of the original LRE model in (3.3) already equals the number of expectational

variables in the model. Then the autoregressive process !t does not a¤ect the so-

lution for the endogenous variables st. On the other hand, under indeterminacy

the Blanchard-Kahn condition is not satis�ed. The system is characterized by

one degree of indeterminacy and it is necessary to introduce another explosive

root to ful�ll the Blanchard-Kahn condition �the absolute value of '� falls out-

side the unit circle. Denoting the newly-de�ned vector of endogenous variables

ŝt � (st; !t)
0
and the vector of exogenous shocks "̂t � ("t; �t)

0
, then the system

(3.3) and (3.4) can be condensed into

�̂0ŝt = �̂1ŝt�1 + 	̂"̂t + �̂�t;

where

�̂0 �

264 �0(�) 0

0 I

375 ; �̂1 �
264 �1(�) 0

0 '�

375
and

	̂ �

264 	(�) 0

0 I

375 ; �̂ �
264 �n(�) �f (�)

0 �I

375 :
The matrix �(�) in (3.3) is partitioned as �(�) = [�n(�) �f (�)] without

loss of generality. Figure 3.2 shows that the model�s (in-)determinacy regions.

To start with, the prior probability of determinacy or indeterminacy is set. The

prior probability for determinacy, indeterminacy and source is 52:47:1 in percent.
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All priors are as in benchmark cases with the exception of the prior for the

elasticity of the collateral constraint 
 which is now beta-distributed, centered

at 0.17 with standard deviation 0.1 and we truncate it to be no more than 0.61.

Following Bianchi and Nicolò (2017), the determinacy model is estimated by

�xing the parameter '� to a value smaller than one (e.g. 0.5) in a way that

the model is solved only under determinacy while the indeterminacy model is

estimated by �xing '� greater than one (e.g. 1.5) in a way that the model is

solved only under indeterminacy. All parameters that pertain to the solution

under indeterminacy are restricted to zero when we estimate the determinacy

model. Lastly, we report the estimation results for the two versions of the

model. The �Indeterminacy�column shows that using the alternative estimation

method has only a very small e¤ect on the paper�s main results in regards to

parameter estimates.

3.A.4 Determinacy versus indeterminacy

Table 3.14 shows, the estimated parameters that arise from applying Bianchi

and Nicolò (2017) are essentially equivalent to our previous results (e.g. Table

3.2) and thus the implications regarding the important role of animal spirits

persist.

Table 3.15 shows the variance decomposition for the determinacy model with

technology and MEI shocks.
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Table 3.14: Estimation (Determinacy vs Indeterminacy)

Determinacy Indeterminacy
Parameters Density[mean,std] Mean 90% Interval Mean 90% Interval

� Beta[0.88,0.01] 0.891 [0.884,0.899] 0.833 [0.831,0.834]

 Beta[0.17,0.10] 0.001 [0.000,0.002] 0.322 [0.315,0.329]
 yg Beta[0.5,0.2] 0.997 [0.996,0.998] 0.965 [0.953,0.977]
x IGam[44,Inf] 10.48 [9.57,11.34] 47.37 [44.24,50.43]
�x Beta[0.5,0.2] 0.042 [0.031,0.053] 0.025 [0.008,0.042]
�a Beta[0.5,0.2] 0.083 [0.073,0.092] 0.029 [0.013,0.045]
�� Beta[0.5,0.2] 0.961 [0.955,0.966] 0.984 [0.981,0.988]
�g Beta[0.5,0.2] 0.935 [0.923,0.946] 0.986 [0.982,0.989]
�� Beta[0.5,0.2] 0.982 [0.978,0.985] 0.992 [0.990,0.994]
�� IGam[0.1,Inf] � � 0.862 [0.823,0.904]
�x IGam[0.1,Inf] 0.546 [0.520,0.572] 0.690 [0.645,0.733]
�a IGam[0.1,Inf] 0.544 [0.510,0.578] 0.562 [0.525,0.598]
�� IGam[0.1,Inf] 0.608 [0.582,0.633] 0.386 [0.364,0.407]
�g IGam[0.1,Inf] 1.106 [1.049,1.166] 0.945 [0.896,0.993]
�� IGam[0.1,Inf] 0.258 [0.245,0.270] 0.132 [0.121,0.143]
�mey Uniform 0.290 [0.289,0.290] 0.290 [0.289,0.290]
�mes Uniform 27.40 [27.37,27.42] 27.28 [27.10,27.42]

�(x; �y) Uniform � � -0.406 [-0.466,-0.347]
�(a; �y) Uniform � � 0.173 [0.112,0.234]
�(�; �y) Uniform � � 0.387 [0.336,0.437]
�(g; �y) Uniform � � 0.275 [0.225,0.326]
�(�; �y) Uniform � � 0.151 [0.090,0.212]

Table 3.15: Unconditional variance decomposition (Determinacy, MEI shock)

Series/shocks "xt "at "�t "gt "MEI
t "mey;t "mes;t

ln (Y t=Y t�1) 25.93 11.24 16.37 10.60 30.49 5.36 0.00

ln (Ct=Ct�1) 44.73 2.73 49.00 0.99 2.56 0.00 0.00

ln (AtIt=At�1It�1) 18.65 17.13 5.87 6.08 52.28 0.00 0.00

ln (N t=
�N) 2.57 3.79 7.51 13.40 72.73 0.00 0.00

ln (Gt=Gt�1) 19.39 3.53 0.00 77.08 0.00 0.00 0.00

ln (At=At�1) 0.00 100 0.00 0.00 0.00 0.00 0.00

Credit spread 0.00 0.00 0.00 0.00 93.87 0.00 6.13
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3.A.5 Data description

This appendix is to describe the details of the source and construction of

the data used in estimation. The sample period covers the �rst quarter of 1955

through the fourth quarter of 2014:

1. Real Gross Domestic Product. Billions of Chained 2009 Dollars, Season-

ally Adjusted Annual Rate. Source: Bureau of Economic Analysis, NIPA Table

1.1.6.

2. Gross Domestic Product. Billions of Dollars, Seasonally Adjusted Annual

Rate. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

3. Personal Consumption Expenditures, Nondurable Goods. Billions of Dol-

lars, Seasonally Adjusted Annual Rate. Source: Bureau of Economic Analysis,

NIPA Table 1.1.5.

4. Personal Consumption Expenditures, Services. Billions of Dollars, Sea-

sonally Adjusted Annual Rate. Source: Bureau of Economic Analysis, NIPA

Table 1.1.5.

5. Gross Private Domestic Investment, Fixed Investment, Residential. Bil-

lions of Dollars, Seasonally Adjusted Annual Rate. Source: Bureau of Economic

Analysis, NIPA Table 1.1.5.

6. Gross Private Domestic Investment, Fixed Investment, Nonresidential.

Billions of Dollars, Seasonally Adjusted Annual Rate. Source: Bureau of Eco-

nomic Analysis, NIPA Table 1.1.5.

7. Government Consumption Expenditure. Billions of Dollars, Seasonally

Adjusted Annual Rate. Source: Bureau of Economic Analysis, NIPA Table

3.9.5.

8. Government Gross Investment. Billions of Dollars, Seasonally Adjusted

Annual Rate. Source: Bureau of Economic Analysis, NIPA Table 3.9.5.
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9. Nonfarm Business Hours. Index 2009=100, Seasonally Adjusted. Source:

Bureau of Labor Statistics, Series Id: PRS85006033.

10. Relative Price of Investment Goods. Index 2009=1, Seasonally Adjusted.

Source: Federal Reserve Economic Data, Series Id: PIRIC.

11. Civilian Noninstitutional Population. 16 years and over, thousands.

Source: Bureau of Labor Statistics, Series Id: LNU00000000Q.

12. Con�dence: Business Tendency Survey for Manufacturing, Composite In-

dicators, OECD Indicator for the United States, Series Id: BSCICP03USM665S.

13. Total Factor Productivity. �A Quarterly, Utilization-Adjusted Series on

Total Factor Productivity�, retrieved from

http://www.frbsf.org/economicresearch/economists/john-fernald/.

14. Moody�s Seasoned Baa Corporate Bond Yield, Not Seasonally Adjusted,

Average of Daily Data, Percent. Source: Board of Governors of the Federal

Reserve System.

15. Moody�s Seasoned Aaa Corporate Bond Yield, Not Seasonally Adjusted,

Average of Daily Data, Percent. Source: Board of Governors of the Federal

Reserve System.

16. 10 Year Treasury Constant Maturity Rate, Not Seasonally Adjusted,

Average of Daily Data, Percent. Source: Board of Governors of the Federal

Reserve System.

17. E¤ective Federal Funds Rate, Not Seasonally Adjusted, Average of Daily

Data, Percent. Source: Board of Governors of the Federal Reserve System.

18. Capacity Utilization: Total Industry (TCU), Percent of Capacity, Sea-

sonally Adjusted, Source: Board of Governors of the Federal Reserve System.

19. GDP de�ator= (2)=(1).

20. Real Per Capita Output, Yt = (1)=(11).
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21. Real Per Capita Consumption, Ct = [(3) + (4)]=(19)=(11).

22. Real Per Capita Investment, It = [(5) + (6)]=(19)=(11).

23. Real Per Capita Government Expenditure, Gt = [(7) + (8)]=(19)=(11).

24. Per Capita Hours Worked, Nt = (9)=(11).

25. Credit spread = (14)� (16).
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Chapter 4

Do Animal Spirits Models Really

Exhibit Business Cycle

Behavior?

4.1 Introduction

The empirical work on the modern business cycle theory is usually linked to

the pioneering studies of Arthur F. Burns and Wesley C. Mitchell who provide

the concept of the business cycle and introduce a system of descriptive statistics

to capture key business cycle features. Their methods of business cycle analysis

which is articulated in the book Measuring Business Cycles (1946), has played

a central role in the historical development of theoretical and quantitative de-

scriptions of business cycle behavior. Burns and Mitchell introduce statistical

tools to analyze a various of macro- as well as micro-economic time series, and

their classical de�nition of the business cycles continue to be used to this day. In
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particular, their work forms the basis of the work by the NBER to help compile

an o¢ cial business cycle chronology for the United States.

Insights provided by Burns-Mitchell methods of business cycle analysis has

guided the development of economic models and given a standard to evaluate

theoretical models. The most well-known example is the so-called Adelman test,

which Adelman and Adelman (1959) analyzed the early Keynesian models of

Klein and Goldberger (1959). They were interested in the question if the time

series generated by a stochastically perturbed variant of the Klein and Gold-

berger model can replicate the stylized facts of business cycles using Burns and

Mitchell�s methodology. Their �ndings have proved that the Klein-Goldberger

model is quantitatively successful and pass the test. Similar macroeconomic

model tests can be found in King and Plosser (1994) and Simkins (1994) in

which they constructed Adelman tests for a representative real business cycle

model that is driven by the stochastic process for total factor productivity.

The question asked in this paper is whether or not the animal spirits models

would meet the standards laid down by the Adelman�s. The motivation for this

study originates from two observations in the previous literature. One is that

previous work on model assessment has focused on the unique equilibrium model

such as real business cycle model. However, multiple equilibrium models that

are driven by i.i.d. animal spirits shocks have not been subjected to scrutiny

by Burns and Mitchell methodology; the other one is that the early studies

use arti�cially simulated shocks as model driving forces. Instead, the paper

uses a sequence of estimated belief shock data. The common strategy used to

assess a model is to compare the second-moment behavior of simulated series and

actual economy. Here, I employ the methods of business cycle analysis developed

by Burns and Mitchell to appraise the capacity of the arti�cial animal spirits
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economy in terms of whether the model can reproduce qualitative features of

U.S. business cycle experience.

The paper evolves as follows. Section 4.2 provides a brief overview of Burns-

Mitchell approach. This methodology is applied to the growth cycle of the

post-war U.S. data in section 4.3. Section 4.4 provides an overview of a multiple

equilibrium models driven by animal spirits shocks with stochastic growth. In

this section, I also compare the business cycle behavior of U.S. and model gen-

erated time series using the methods developed by Burns and Mitchell. Section

4.5 makes a crude comparison between the stochastic properties of business cycle

analysis such as standard deviation and correlation and the summary measure

proposed by Burns and Mitchell. Section 4.6 concludes.

4.2 Burns-Mitchell methodology

The Burns and Mitchell�s methodological approach is completely well doc-

umented in their 1946 treatise, Measuring Business Cycles and a concise sum-

mary of it as well as its implementation in a general equilibrium context can be

found in the published papers of King and Plosser (1994) and Simkins (1994). I

therefore brie�y describe main ideas of the Burns and Mitchell method and my

implementation of their procedures.

Burns and Mitchell investigated the central characteristics of the business

cycle of economic time series by constructing reference-cycle patterns. In their

analysis, these reference-cycle patterns are the necessary tool used to examine

the cyclical behavior of di¤erent economic time series. The �rst step in con-

structing these reference-cycle patterns is to determine the periods of expansion

and contraction or, namely, to specify the turning points (peaks and troughs) in

the reference cycle. The business cycle series consists of a sequence of reference

78



cycles, measured trough-to-trough by convention.

With the reference cycle de�ned by the turning point, each complete reference

cycle is divided into nine stages (I to IX). For quarterly data, I simply set each

month of the quarter equal to the quarterly value and proceeding to treat the

series as monthly. Stage I centered on the initial trough; Stage V centered on the

reference peak, and stage IX centered on the terminal trough. The expansion

phase (stages I to V) is divided into three substages (II, III, and IV) of equal

length (excluding months contained in stages I and V). The contraction phase

(stages V to IX) is measured in an analogous fashion. Next, each observation

in the cycle is expressed as a percentage of the cycle base called cycle relatives,

where the cycle base is the mean monthly value assumed between stage I and IX.

Thus a value of 100 is attributed to the average value of the series over the cycle;

all other values are compared with 100. This procedure removes the inter-cycle

trend while leaves the intra-cycle trend unaltered. Last, mean cycle relatives per

stage are averaged across all reference cycles to yield a graphical summary of an

average business cycle in the nine-point-plot. Besides the visually appraising the

key business cycle characteristics of economic time series, the nine-point graph

also provide descriptive statistics about (1) the lead-lag relationship between

individual time series and aggregate economic activity, (2) the volatility of a

series over the business cycle (i.e. amplitudes), and (3) the coherence of a time

series with business cycle �uctuations (i.e. conformity).

(1) Lead-Lag relationship. For individual series that is closely related to busi-

ness cycle movement, the maximum value occurs in stage V (peak) in nine-point

graphs. This is based on the business cycle measure through-to-through. Depar-

ture from this pattern indicates that the individual time series has a particular

lead-lag relationship with the aggregate economic activity. For instance, if a
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series peaks in stage IV rather than in stage V, this implies that this series

typically lead at business cycle peaks.

(2) Amplitudes. The amplitude summarizes the volatility of the series over

the business cycle and is measured for both expansions and contractions as well

as the full cycle. The amplitude over the expansion phase is simply calculated

as the cycle relative at the peak (stage V) minus the initial trough (stage I)

cycle relative, while the amplitude over the contraction phase is calculated as

the cycle relative at the terminal trough (stage IX) minus the stage V cycle rela-

tive. The amplitude will be positive for expansion and negative for contractions

if a series typically rise during expansions and falls during contractions. The

amplitude over the business cycle is simply the di¤erence between the expansion

and contraction amplitudes.

(3) Conformity. Burns and Mitchell use the indexes of conformity to quan-

titatively measure the degree to which a speci�c time series coincides with the

business cycle. Indexes of conformity are computed for expansions, contraction,

and the full cycle. A series�expansion conformity index is calculated by assign-

ing a value of +100 to each expansion for which the average per month change

in the cycle relative from stage I to stage V is positive and assigning a value of

-100 for each cycle in which the average per month change is negative (the series

falls during an expansion). Taking the average of these values over all reference

cycles gives the conformity index. Basically, an expansion index value near +100

indicates that a variable moves procyclical in the expansion phase and -100 if it

moves anticyclically with business cycle expansions. Values close to zero implies

that the series lacks the cyclical correlation with business cycle expansions. The

contraction conformity index is measured analogously (e.g. a value of +100 is

assigned if the average per month change in the cycle relative from stage V to
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stage IX is negative). The full cycle conformity is determined by the relative

behavior of the series during both expansion and contraction phases. A value of

+100 is assigned if the rate of change in the cycle relatives during the expansion

phase is greater than the rate of change in the cycle relatives during a reference

cycle contraction and -100 if not. Therefore, a series may continue rising during

a contraction, that is, conformity is +100 during expansions and -100 during

contractions, but if the rate of monthly increase in contractions is less quickly

than during an expansion, the full cycle conformity would be +100.

4.3 U.S. business cycle behavior

In this section, I employ the Burns and Mitchell�s methodology described

above to characterize the cyclical �uctuations of a set of post-war U.S. macro-

economic data. The main focus is on four commonly discussed macroeconomic

time series: real GDP, consumption of nondurables and services, gross �xed

investment, nonfarm business hours worked. These data are quarterly, season-

ally adjusted, per capita and cover the period 1955.2-2014.4. Following Simkins

(1994), I focus on the cyclical behavior of growth cycle (trend-adjusted cycle)

rather than on classical business cycle (absolute value) of series which devel-

oped by Burns and Mitchell. To characterize �uctuations in economic activity

in a growing economy, in which there may be long periods in which no classi-

cal business cycle are observed (e.g. there was no classical contraction in the

U.S. between February 1961 and December 1969, a period of 106 months) or

there may be insu¢ cient number of classical business cycles (e.g. there was

no conventional business cycle in the West German economy between 1950 and

1966), Mintz (1969) suggested to concentrate on growth cycle instead. Hence, I

will keep the analysis in the same framework developed by Burns and Mitchell

81



by simply removing the long-run trends from data. For the simulated model,

the generated series are represented as percentage deviations from the long run

growth path, suggesting the growth cycle framework. Thus an Adelman-test

for growth cycles can be constructed to evaluate the performance of the animal

spirits models. I use the Hodrick and Prescott �lter to eliminate the stochastic

trend from all U.S. time series.

I use OECD �growth cycle�reference turning points for United States to de-

termine the peak and troughs of the reference cycle for both U.S. and arti�cially

generated data. Table 4.1 sets out both the �classical�business cycle turning

points selected by the NBER and the �growth�cycle chronologies constructed by

the OECD. It also presents the duration (in months) of the classical and growth

cycles. The classical cycles must be no less than 15 months long and both expan-

sions and contractions phases must have a duration of at least six months. The

completed growth cycles must be at least 18 months in duration, and growth

cycle phases must last at least nine months. As can be seen from the table, there

are clearly more turning points in the growth cycle than in the classical cycle,

with eight completed (trough-peak-trough) classical cycles and twelve growth

cycles over our sample period. In general, peaks in growth cycles tend to lead

those observed by the classical approach. Some of these growth cycles merge

into the well-known recessions of aggregate economic activity, while others do

not. The U.S. classical cycle is asymmetric� average contraction (12 months)

is considerably shorter in duration than expansion (65 months). By contrast,

the U.S. growth cycle is much more symmetrical in expansion and contraction

phase durations. Typical contraction phases last about 22 months, while typical

expansion phases are slightly longer at about 33 months.
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The growth cycle turning point chronologies shown in Table 4.1 are used to

construct Burns andMitchell cyclical measures for postwar U.S. economy. Figure

4.1 displays the average behavior, in cycle relatives, over the nine stages of the

business cycle for each of the four macroeconomic time series. Each of these

�gures is constructed in the same manner and drawn to the same scale. The

plot shows the average cycle relative for each stage where the average is taken

over the 12 complete trough-peak-trough cycles beginning with the trough in

1958:II and ending with the trough in 2013:II. Stage I coincides with the initial

trough, stage V with the peak, and stage IX corresponds to the terminal trough.
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(b) Real Per Capita Consumption
Average of 12 Complete Cycles: 1958 II­2013 II
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(c) Real Per Capita Investment
Average of 12 Complete Cycles: 1958 II­2013 II
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(d) Real Per Capita Hours
Average of 12 Complete Cycles: 1958 II­2013 II

Figure 4.1: Average behavior over 12 business cycle stages for 4 macroeconomic
time series

The four series all exhibit a distinct pro-cyclical pattern, rising during busi-

ness cycle expansions and falling during contractions and they show little evi-

dence of leads or lags at business cycle peaks or troughs. Consumption series is

much smoother, and the investment displays a greater amplitude. The invest-

ment tends to rise (decline) more sharply during expansion (contraction) phases

than other series do across the business cycle.
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Table 4.2 presents the key characteristics of the business cycle for all four

U.S. macroeconomic series. These summary measures verify what is observed

in the �gure and provide additional information about the cyclical behavior of

the aggregates. The �rst group of statistics measures the amplitude of each

series over the business cycle. Looking at the full cycle amplitudes, the well-

known business cycle facts can be observed. That is, the investment is the most

volatile sector; consumption �uctuates less than output does and its amplitude

is approximately one-half that of output. Hours worked is roughly as volatile

as output. Conformity indexes for the U.S. series are also summarized in Table

4.2. The output, consumption, investment and hours worked series all exhibit

+100 coherence, indicating that they are strongly procyclical series.

Table 4.2: Burns and Mitchell business cycle measures (U.S. data)

Cyclical amplitude Cyclical conformitya

Series Expansions Contractions Cycle Expansions Contractions Cycle

Output 4.1 -3.8 7.9 +100 +100 +100

Consumption 1.6 -1.6 3.2 +100 +100 +100

Investment 11.1 -10.1 21.2 +100 +100 +100

Hours 4.0 -3.6 7.6 +100 +83 +100

a A conformity index value near +100 says that cyclical movements in the data are closely

correlated with business cycle activity, while lower values indicate a lower degree of correlation

with business cycle movements.

This section has used the Burns and Mitchell techniques to investigate the

post-war U.S. economy. Analogous measures will be conducted in the following

section for the arti�cial economy in the spirit of Adelman.
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4.4 Cyclical behavior of an animal spirits

model

There is a long tradition that attempts to explain business cycle by assigning

purely extrinsic psychological factors a central role. In contrast to the standard

framework with a unique equilibrium, multiple-equilibria macroeconomic models

suggest that agent�s self-ful�lling beliefs or animal spirits can be an important

independent factor for business cycles �uctuations. One of the most in�uential

quantitative support for animal spirits model was presented by Farmer and Guo

(1994). Their work shows explicitly that a sunspots model, driven by i.i.d.

animal spirits shock was capable of generating time series that mimic real-world

phenomena. The volatility of simulated economy as well as contemporaneous

covariances between output and other variables in the model appears to match up

well with broad features of the dynamic responses in the data. In the following

section, I will evaluate a particular animal spirits model in terms of whether

it mimics the business cycle characteristics of post-war U.S. data when viewed

through the eyes of Burns and Mitchell.

4.4.1 An animal spirits model

The arti�cial economy that we study here is a discrete-time adaptation of

Benhabib and Wang (2013). The model features credit frictions in the form

of endogenous borrowing constraints in a model of monopolistic competition in

which, as usual, perfectly competitive �rms produce �nal output by combining a

continuum of di¤erentiated intermediate inputs. Intermediate goods-producing

�rms are collateral-constrained in how much they can borrow to �nance their
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working capital needs. The mechanism generating a self-ful�lling explanation

stands on an endogenous and countercyclical markup channel. The economy

is perturbed by a multitude of shocks, namely, permanent technology shocks,

investment-speci�c technology shocks, preference shocks, government spending

shocks, collateral shocks as well as animal spirits shocks. The model is estimated

by standard Bayesian methods using U.S. data at the quarterly frequency, from

1955:I to 2014:IV. The full model economy and estimation strategy have explored

in detail in Chapter 3 so that the presentation is deliberately brief.

A competitive equilibrium in this model is characterized by the following

necessary conditions:

Yt = (utKt)
�(XtNt)

1�� (4.1)

Yt = Ct + It +Gt (4.2)

N1+�
t (Ct � �t) =

1� �

'
�tYt (4.3)

At�0u
1+�
t = ��t

Yt
Kt

(4.4)

Kt+1 = (1� �t)Kt + It (4.5)

At
Ct � �t

= �Et

�
At+1

Ct+1 � �t+1
�
�0u

1+�
t+1 + 1� �t+1

��
(4.6)

�t = ��t(
Yt
�Yt
)
 (4.7)

In the above equations, the �rst expression is a constant returns to scale

Cobb-Douglas production function with capital share parameter � 2 (0; 1). Xt

denotes the exogenous labor-augmenting technological progress. Equation (4.2)

depicts the economy-wide resource constraint. The term At represents a non-

stationary investment-speci�c technology shock which a¤ects the transforma-

tion of consumption goods into investment goods. Equation (4.3) shows the
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intratemporal labour-consumption trade-o¤, where � � 0 represents the elas-

ticity of labour supply, and the parameter ' denotes the disutility of working.

The term �t represents preference shocks and �t stands for monopolistic �rms�

marginal cost. Equation (4.4) determines the e¢ cient level of capacity utiliza-

tion ut and � > 0 measures the elasticity of the depreciation rate with respect

to capacity used. Law of motion for the aggregate capital stock is expressed in

equation (4.5) and equation (4.6) is the consumption Euler equation. The last

expression is the binding collateral constraint with the parameter restrictions

0 < � < 1 and 
 > 0. �t represents the exogenous collateral shocks which a¤ect

�nancial health.

Table 4.3: Parameter values

Subjective discount factor � = 0:99

Capital share � = 1=3

Labor supply elasticity parameter � = 0

Steady-state depreciation rate � = 0:0333

Steady-state capacity utilization rate u = 1

Elasticity of depreciation rate parameter � = 0:5824

Steady-state marginal cost � = 0:8327

Elasticity of collateral parameter 
 = 0:3216

Steady-state government expenditure share of GDP G=Y = 0:21

Steady-state gross per capita GDP growth rate �y = 1:0041

Steady-state gross growth rate of price of investment �a = 0:9949

The model is then detrended and log-linearized around the steady state.

Some parameters are calibrated while others are estimated (see Chapter 3). I

list all the parameter values used in this paper in Table 4.3. After estimation,
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a real time series of animal spirits shocks were obtained. Since the goal of this

paper is to evaluate the validity of the animal spirits model by comparing the

resulting model-generated sequences of variables to true data, we are therefore

working under the assumption that randomness in this economy is only due to

agents�belief shocks. Then the dynamic system becomes

264 ŷt+1

k̂t+1

375 = J

264 ŷt

k̂t

375+R

264 "̂t+1

0

375 ; (4.8)

where hat variables denote percentage deviations from their steady-state values.

Here "̂t+1 is our animal spirits shocks, which is by de�nition serially uncorrelated

and mean zero. Given the behavior of output and capital, the remaining endoge-

nous variables can be expressed as a linear combination of these two variables

266666666664

ĉt

{̂t

n̂t

ût

�̂t

377777777775
= Q

264 ŷt

k̂t

375 : (4.9)

By solving the model, coe¢ cients in the matrices J and Q, implied by the

parameters in Table 4.3, are given in Table 4.4. Using a sequence of belief shocks

generated in previous chapter as the driving force, the model was dynamically

solved over the sample period 1955:II to 2014:IV (All remaining variables were

initially set to zero).
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Table 4.4: Parameters of the log-linear system

Output ŷt Capital k̂t

Output (next period) ŷt+1 1.0046 -0.0616

Capital stock (next period) k̂t+1 0.1190 0.9713

Consumption ĉt 0.2392 0.1840

Investment {̂t 3.8620 -0.4654

Labor input n̂t 1.0824 -0.1840

Capital utilization ût 0.8352 -0.6320

Marginal cost �̂t 0.3216 0

4.4.2 Cyclical properties of the simulated data

The nine-point plot can be used as a mean of visually judging how closely

the cyclical behavior of the U.S. data and simulated economies match up. A

visual impression of the business cycle characteristics generated by an animal

spirits model is provided in �gures 4.2(a)-4.2(d). These business cycle plots

using the methods described previously and had the same scale as those for the

data. The simulated series are also H-P �ltered. Comparing the pictures with

�gures 4.1(a)-4.1(d), it would be di¢ cult to distinguish the simulated data�s

characteristics from those of the actual data. The �gures show that the model

series all move procyclically and reach the summit exactly the peak stage in

the reference cycle. The similar general shape of the data and model series

demonstrates that arti�cial series matches well postwar U.S. cycles.
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(b) Model Consumption
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(c) Model Investment
Average of 12 Complete Cycles: 1958 II­2013 II
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(d) Model Hours
Average of 12 Complete Cycles: 1958 II­2013 II

Figure 4.2: Characteristics generated by the animal spirits model

I have also computed the measures of amplitude and conformity index for

the di¤erent simulated series. These statistics are displayed in Table 4.5. The

investment sector clearly exhibits the largest volatility over the reference cycle,

while the consumption is the least variation sector of the simulate economy.

Output �uctuates as volatile as labour hours. Compared to the full-cycle am-

plitude statistics presented in Table 4.2 for the U.S. economy, the simulated

model is slightly less variable than those appear in the real economy except for

the investment series, but the relative order for these aggregates is similar to

that found in the data. For cyclical conformity, simulated investment and hours

series all exhibit +100 conformity in an average full cycle and simulated out-

put and consumption series are also procyclical but do not conform perfectly.

These statistics indicate that the model series are well-conforming series, that

is, generally rise during expansions and fall during contractions.
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Table 4.5: Burns and Mitchell business cycle measures (simulated data)

Cyclical amplitude Cyclical conformity

Series Expansions Contractions Cycle Expansions Contractions Cycle

Output 3.0 -2.8 5.8 +100 +83 +83

Consumption 0.7 -0.7 1.4 +83 +83 +83

Investment 11.4 -10.7 22.1 +100 +67 +100

Hours 3.2 -3.0 6.2 +100 +67 +100

Overall, above analysis illustrate that the model, driven only by a series

of belief shocks, is capable of reproducing main features of U.S. business cycle

behavior by employing Burns and Mitchell techniques.

4.5 Comparing alternative business cycle

measurements

The previous section illustrates that an animal spirits model can replicate

major business cycle features found in the data using the techniques of Burns

and Mitchell. Now I transform my focus from evaluating a model to a more

systematic investigation of the Burns and Mitchell procedures themselves. In

particular, I will make a crude comparison between the summary measure pro-

posed by Burns and Mitchell and the more common business cycle statistics

emphasized in the business cycle literature, such as standard deviations and

cross-correlations.
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Table 4.6: Comparison of business cycle summary measures

United States Simulated United States Simulated

(A) Cyclical variabilitya

Series Standard deviations Amplitude

Output 1.51 1.61 7.9 5.8

Consumption 0.87 0.50 3.2 1.4

Investment 4.96 6.16 21.2 22.1

Hours 1.88 1.72 7.6 6.2

(B) Cyclical conformity

Series Correlation with output Conformity

Output 1.00 1.00 +100 +83

Consumption 0.81 0.86 +100 +83

Investment 0.88 0.99 +100 +100

Hours 0.86 0.99 +100 +100

a The sample period is 1958:II to 2009:II.

The comparison results of these two procedures can be found in Table 4.6.

One characteristic of Burns and Mitchell procedures is that the measures are

computed without regard to whether the moments of the series exist or not.

Hence, how to interpret the statistical properties of these measures is an im-

portant question. Nevertheless, one can compare these measures with common

statistical measures of second moments. The standard deviations along with the

corresponding amplitude measures of both simulated series and the U.S. data are

reported in part A of Table 4.6. An easy way of comparing the two procedures

is to look at the rank of the variability of the series. As is veri�ed by Table 4.6,

the ranking of the key series is essentially identical no matter one uses standard

deviation or amplitude. Investment is the most volatile series, and hours worked
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roughly has the same volatility as output and consumption is less variable than

output.

In part B of this table, I compare the correlation coe¢ cient of each series with

output and Burn and Mitchell�s measure of conformity. Although the conformity

measure is rather crude, it does not necessarily mean a poorer measure. The

full cycle conformity may be +100 even though a series may rise during the

contraction phase as long as per month change during the expansion exceeded

the per month change during the contraction. It is apparent that correlation

and conformity di¤er with reference to what they measure. Thus, I could not

say which method dominates the other. The answer depends on the situation

at hand.

4.6 Conclusion

This paper follows the path of Adelman and Adelman (1959), employing the

classical business cycle methods of Burns and Mitchell (1946) to evaluate the

cyclical properties of a particular animal spirits model. In particular, the paper

evaluates if one could distinguish between the actual historical time series and

the arti�cial series generated by a stochastically perturbed economic model. The

upshot of this analysis is that animal spirits model are capable of reproducing

many of the salient features of actual economies. Burns and Mitchell�s methods

of business cycle analysis were successfully applied to the early Keynesian model

as well as the real business cycle model. As indicated here, these methods can

be used pro�tably to analyze the cyclical behavior of animal spirits models as

well.
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