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Abstract The algorithms used by the ATLAS Collabora-
tion to reconstruct and identify prompt photons are described.
Measurements of the photon identification efficiencies are
reported, using 4.9 fb−1 of pp collision data collected at the
LHC at

√
s = 7 TeV and 20.3 fb−1 at

√
s = 8 TeV. The effi-

ciencies are measured separately for converted and uncon-
verted photons, in four different pseudorapidity regions,
for transverse momenta between 10 GeV and 1.5 TeV.
The results from the combination of three data-driven tech-
niques are compared to the predictions from a simulation
of the detector response, after correcting the electromagnetic
shower momenta in the simulation for the average differences
observed with respect to data. Data-to-simulation efficiency
ratios used as correction factors in physics measurements are
determined to account for the small residual efficiency differ-
ences. These factors are measured with uncertainties between
0.5% and 10% in 7 TeV data and between 0.5% and 5.6% in
8 TeV data, depending on the photon transverse momentum
and pseudorapidity.
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1 Introduction

Several physics processes occurring in proton–proton col-
lisions at the Large Hadron Collider (LHC) produce final
states with prompt photons, i.e. photons not originating from
hadron decays. The main contributions come from non-
resonant production of photons in association with jets or
of photon pairs, with cross sections respectively of the order
of tens of nanobarns or picobarns [1–6]. The study of such
final states, and the measurement of their production cross
sections, are of great interest as they probe the perturbative
regime of QCD and can provide useful information about
the parton distribution functions of the proton [7]. Prompt
photons are also produced in rarer processes that are key
to the LHC physics programme, such as diphoton decays
of the Higgs boson discovered with a mass near 125 GeV,
produced with a cross section times branching ratio of about
20 fb at

√
s = 8 TeV [8]. Finally, some expected signatures of

physics beyond the Standard Model (SM) are characterised
by the presence of prompt photons in the final state. These
include resonant photon pairs from graviton decays in models
with extra spatial dimensions [9], pairs of photons accompa-
nied by large missing transverse momentum produced in the
decays of pairs of supersymmetric particles [10] and events
with highly energetic photons and jets from decays of excited
quarks or other exotic scenarios [11].

The identification of prompt photons in hadronic col-
lisions is particularly challenging since an overwhelming
majority of reconstructed photons is due to background
photons. These are usually real photons originating from

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4507-9&domain=pdf
mailto:atlas.publications@cern.ch


666 Page 2 of 42 Eur. Phys. J. C (2016) 76 :666

hadron decays in processes with larger cross sections than
prompt-photon production. An additional smaller component
of background photon candidates is due to hadrons produc-
ing in the detector energy deposits that have characteristics
similar to those of real photons.

Prompt photons are separated from background photons in
the ATLAS experiment by means of selections on quantities
describing the shape and properties of the associated electro-
magnetic showers and by requiring them to be isolated from
other particles in the event. An estimate of the efficiency
of the photon identification criteria can be obtained from
Monte Carlo (MC) simulation. Such an estimate, however,
is subject to large, O(10%), systematic uncertainties. These
uncertainties arise from limited knowledge of the detector
material, from an imperfect description of the shower devel-
opment and from the detector response [1]. Ultimately, for
high-precision measurements and for accurate comparisons
with the predictions from the SM or from theories beyond the
SM, a determination of the photon identification efficiency
with an uncertainty of O(1%) or smaller is needed in a large
energy range from 10 GeV to several TeV. This can only be
achieved through the use of data control samples. However,
this can present several difficulties since there is no single
physics process that produces a pure sample of prompt pho-
tons in a large transverse momentum (ET) range.

In this document, the reconstruction and identification of
photons by the ATLAS detector are described, as well as
the measurements of the identification efficiency. This study
considers both photons that do (called converted photons in
the following) or do not convert (called unconverted photons
in the following) to electron–positron pairs in the detector
material upstream of the ATLAS electromagnetic calorime-
ter. The measurements use the full Run-1 pp collision dataset
recorded at centre-of-mass energies of 7 and 8 TeV. The
details of the selections and the results are given for the data
collected in 2012 at

√
s = 8 TeV. The same algorithms are

applied with minor differences to the
√
s = 7 TeV data col-

lected in 2011.
To overcome the difficulties arising from the absence

of a single, pure control sample of prompt photons over a
large ET range, three different data-driven techniques are
used. A first method selects photons from radiative decays
of the Z boson, i.e. Z → ��γ (Radiative Z method).
A second one extrapolates photon properties from elec-
trons and positrons from Z boson decays by exploiting
the similarity of the photon and electron interactions with
the ATLAS electromagnetic calorimeter (Electron Extrap-
olation method). A third approach exploits a technique to
determine the fraction of background present in a sample of
isolated photon candidates (Matrix Method). Each of these
techniques can measure the photon identification efficiency
in complementary but overlapping ET regions with varying
precision.

This document is organised as follows. After an overview
of the ATLAS detector in Sect. 2, the photon reconstruction
and identification algorithms used in ATLAS are detailed in
Sect. 3. Section 4 summarises the data and simulation sam-
ples used and describes the corrections applied to the simu-
lated photon shower shapes in order to improve agreement
with the data. In Sect. 5 the three data-driven approaches to
the measurement of the photon identification efficiency are
described, listing their respective sources of uncertainty and
the precision reached in the relevant ET ranges. The results
obtained with the

√
s = 8 TeV data collected in 2012, their

consistency in the overlapping ET intervals and the compar-
ison to the MC predictions are presented in Sect. 6. Results
obtained for the identification criteria used during the 2011
data-taking period at

√
s = 7 TeV are described in Sect. 7.

Finally, Sect. 8 discusses the impact of multiple inelastic
interactions in the same beam crossing on the photon identi-
fication efficiency.

2 ATLAS detector

The ATLAS experiment [12] is a multi-purpose particle
detector with approximately forward-backward symmetric
cylindrical geometry and nearly 4π coverage in solid angle.1

The inner tracking detector (ID), surrounded by a thin
superconducting solenoid providing a 2 T axial magnetic
field, provides precise reconstruction of tracks within a pseu-
dorapidity range |η| � 2.5. The innermost part of the ID con-
sists of a silicon pixel detector (50.5 mm < r < 150 mm)

providing typically three measurement points for charged
particles originating in the beam-interaction region. The layer
closest to the beam pipe (referred to as the b-layer in this
paper) contributes significantly to precision vertexing and
provides discrimination between prompt tracks and photon
conversions. A semiconductor tracker (SCT) consisting of
modules with two layers of silicon microstrip sensors sur-
rounds the pixel detector, providing typically eight hits per
track at intermediate radii (275 mm < r < 560 mm). The
outermost region of the ID (563 mm < r < 1066 mm) is
covered by a transition radiation tracker (TRT) consisting of
straw drift tubes filled with a xenon gas mixture, interleaved
with polypropylene/polyethylene transition radiators. For
charged particles with transverse momentum pT > 0.5 GeV
within its pseudorapidity coverage (|η| � 2), the TRT pro-

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre
of the LHC ring, and the y-axis points upward. Cylindrical coordinates
(r, φ) are used in the transverse plane, φ being the azimuthal angle
around the beam pipe. The pseudorapidity is defined in terms of the
polar angle θ as η = − ln tan(θ/2). The photon transverse momentum
is ET = E/ cosh(η), where E is its energy.
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vides typically 35 hits per track. The distinction between
transition radiation (low-energy photons emitted by electrons
traversing the radiators) and tracking signals is obtained on
a straw-by-straw basis using separate low and high thresh-
olds in the front-end electronics. The inner detector allows
an accurate reconstruction and transverse momentum mea-
surement of tracks from the primary proton–proton collision
region. It also identifies tracks from secondary vertices, per-
mitting the efficient reconstruction of photon conversions up
to a radial distance of about 80 cm from the beamline.

The solenoid is surrounded by a high-granularity lead/
liquid-argon (LAr) sampling electromagnetic (EM) calorime-
ter with an accordion geometry. The EM calorimeter mea-
sures the energy and the position of electromagnetic showers
with |η| < 3.2. It is divided into a barrel section, covering the
pseudorapidity region |η| < 1.475, and two end-cap sections,
covering the pseudorapidity regions 1.375 < |η| < 3.2.
The transition region between the barrel and the end-caps,
1.37 < |η| < 1.52, has a large amount of material upstream
of the first active calorimeter layer. The EM calorimeter is
composed, for |η| < 2.5, of three sampling layers, longi-
tudinal in shower depth. The first layer has a thickness of
about 4.4 radiation lengths (X0). In the ranges |η| < 1.4
and 1.5 < |η| < 2.4, the first layer is segmented into high-
granularity strips in the η direction, with a typical cell size of
0.003×0.0982 in 	η×	φ in the barrel. For 1.4 < |η| < 1.5
and 2.4 < |η| < 2.5 the η-segmentation of the first layer is
coarser, and the cell size is 	η×	φ = 0.025×0.0982. The
fine η granularity of the strips is sufficient to provide, for
transverse momenta up to O(100 GeV), an event-by-event
discrimination between single photon showers and two over-
lapping showers coming from the decays of neutral hadrons,
mostly π0 and η mesons, in jets in the fiducial pseudorapid-
ity region |η| < 1.37 or 1.52 < |η| < 2.37. The second
layer has a thickness of about 17 X0 and a granularity of
0.025 × 0.0245 in 	η × 	φ. It collects most of the energy
deposited in the calorimeter by photon and electron show-
ers. The third layer has a granularity of 0.05 × 0.0245 in
	η × 	φ and a depth of about 2 X0. It is used to correct for
leakage beyond the EM calorimeter of high-energy show-
ers. In front of the accordion calorimeter, a thin presampler
layer, covering the pseudorapidity interval |η| < 1.8, is used
to correct for energy loss upstream of the calorimeter. The
presampler consists of an active LAr layer with a thickness of
1.1 cm (0.5 cm) in the barrel (end-cap) and has a granularity
of 	η×	φ = 0.025×0.0982. The material upstream of the
presampler has a thickness of about 2 X0 for |η| < 0.6. In the
region 0.6 < |η| < 0.8 this thickness increases linearly from
2 X0 to 3 X0. For 0.8 < |η| < 1.8 the material thickness is
about or slightly larger than 3 X0, with the exception of the
transition region between the barrel and the end-caps and the
region near |η| = 1.7, where it reaches 5–6 X0. A sketch of

a barrel module of the electromagnetic calorimeter is shown
in Fig. 1.

The hadronic calorimeter surrounds the EM calorimeter. It
consists of an iron–scintillator tile calorimeter in the central
region (|η| < 1.7), and LAr sampling calorimeters with cop-
per and tungsten absorbers in the end-cap (1.5 < |η| < 3.2)
and forward (3.1 < |η| < 4.9) regions.

The muon spectrometer surrounds the calorimeters. It con-
sists of three large superconducting air-core toroid magnets,
each with eight coils, a system of precision tracking cham-
bers (|η| < 2.7), and fast tracking chambers (|η| < 2.4) for
triggering.

A three-level trigger system selects events to be recorded
for offline analysis. A coarser readout granularity (corre-
sponding to the “towers” of Fig. 1) is used by the first-level
trigger, while the full detector granularity is exploited by
the higher-level trigger. To reduce the data acquisition rate
of low-threshold triggers, used for collecting various control
samples, prescale factors (N ) can be applied to each trigger,
such that only 1 in N events passing the trigger causes an
event to be accepted at that trigger level.

3 Photon reconstruction and identification

3.1 Photon reconstruction

The electromagnetic shower, originating from an energetic
photon’s interaction with the EM calorimeter, deposits a sig-
nificant amount of energy in a small number of neighbouring
calorimeter cells. As photons and electrons have very similar
signatures in the EM calorimeter, their reconstruction pro-
ceeds in parallel. The electron reconstruction, including a
dedicated, cluster-seeded track-finding algorithm to increase
the efficiency for the reconstruction of low-momentum elec-
tron tracks, is described in Ref. [13]. The reconstruction of
unconverted and converted photons proceeds in the following
way:

• seed clusters of EM calorimeter cells are searched for;
• tracks reconstructed in the inner detector are loosely

matched to seed clusters;
• tracks consistent with originating from a photon conver-

sion are used to create conversion vertex candidates;
• conversion vertex candidates are matched to seed clus-

ters;
• a final algorithm decides whether a seed cluster corre-

sponds to an unconverted photon, a converted photon or
a single electron based on the matching to conversion
vertices or tracks and on the cluster and track(s) four-
momenta.

In the following the various steps of the reconstruction algo-
rithms are described in more detail.
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Fig. 1 Sketch of a barrel module (located at η = 0) of the ATLAS
electromagnetic calorimeter. The different longitudinal layers (one pre-
sampler, PS, and three layers in the accordion calorimeter) are depicted.

The granularity in η and φ of the cells of each layer and of the trigger
towers is also shown

The reconstruction of photon candidates in the region
|η| < 2.5 begins with the creation of a preliminary set
of seed clusters of EM calorimeter cells. Seed clusters of
size 	η × 	φ = 0.075 × 0.123 with transverse momen-
tum above 2.5 GeV are formed by a sliding-window algo-
rithm [14]. After an energy comparison, duplicate clusters of
lower energy are removed from nearby seed clusters. From
MC simulations, the efficiency of the initial cluster recon-
struction is estimated to be greater than 99% for photons
with ET > 20 GeV.

Once seed clusters are reconstructed, a search is performed
for inner detector tracks [15,16] that are loosely matched to
the clusters, in order to identify and reconstruct electrons and
photon conversions. Tracks are loosely matched to a cluster
if the angular distance between the cluster barycentre and the
extrapolated track’s intersection point with the second sam-
pling layer of the calorimeter is smaller than 0.05 (0.2) along
φ in the direction of (opposite to) the bending of the tracks
in the magnetic field of the ATLAS solenoid, and smaller
than 0.05 along η for tracks with hits in the silicon detec-
tors, i.e. the pixel and SCT detectors. Tracks with hits in
the silicon detectors are extrapolated from the point of clos-
est approach to the primary vertex, while tracks without hits

in the silicon detectors are extrapolated from the last mea-
sured point. The track is extrapolated to the position corre-
sponding to the expected maximum energy deposit for EM
showers. To efficiently select low-momentum tracks that may
have suffered significant bremsstrahlung losses before reach-
ing the calorimeter, a similar matching procedure is applied
after rescaling the track momentum to the measured clus-
ter energy. The previous matching requirements are applied
except that the φ difference in the direction of bending should
be smaller than 0.1. Tracks that are loosely matched to a clus-
ter and with hits in the silicon detectors are refitted with a
Gaussian-sum-filter technique [17,18], to improve the track
parameter resolution, and are retained for the reconstruction
of electrons and converted photons.

“Double-track” conversion vertex candidates are recon-
structed from pairs of oppositely charged tracks in the ID
that are likely to be electrons. For each track the likelihood
to be an electron, based on high-threshold hits and time-over-
threshold of low-threshold hits in the TRT, is required to be at
least 10% (80%) for tracks with (without) hits in the silicon
detectors. Since the tracks of a photon conversion are parallel
at the place of conversion, geometric requirements are used
to select the track pairs. Track pairs are classified into three
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categories, whether both tracks (Si–Si), none (TRT–TRT) or
only one of them (Si–TRT) have hits in the silicon detectors.
Track pairs fulfilling the following requirements are retained:

• 	 cot θ between the two tracks (taken at the tracks’ points
of closest approach to the primary vertex) is less than
0.3 for Si–Si track pairs and 0.5 for track pairs with at
least one track without hits in the silicon detectors. This
requirement is not applied for TRT–TRT track pairs with
both tracks within |η| < 0.6.

• The distance of closest approach between the two tracks
is less than 10 mm for Si–Si track pairs and 50 mm for
track pairs with at least one track without hits in the sili-
con detectors.

• The difference between the sum of the radii of the helices
that can be constructed from the electron and positron
tracks and the distance between the centres of the two
helices is between −5 and 5 mm, between −50 and
10 mm, or between −25 and 10 mm, for Si–Si, TRT–
TRT and Si–TRT track pairs, respectively.

• 	φ between the two tracks (taken at the estimated vertex
position before the conversion vertex fit) is less than 0.05
for Si–Si track pairs and 0.2 for tracks pairs with at least
one track without hits in the silicon detectors.

A constrained conversion vertex fit with three degrees of free-
dom is performed using the five measured helix parameters
of each of the two participating tracks with the constraint
that the tracks are parallel at the vertex. Only the vertices
satisfying the following requirements are retained:

• The χ2 of the conversion vertex fit is less than 50. This
loose requirement suppresses fake candidates from ran-
dom combination of tracks while being highly efficient
for true photon conversions.

• The radius of the conversion vertex, defined as the dis-
tance from the vertex to the beamline in the transverse
plane, is greater than 20 mm, 50 mm or 250 mm for
vertices from Si–Si, Si–TRT and TRT–TRT track pairs,
respectively.

• The difference in φ between the vertex position and the
direction of the reconstructed conversion is less than 0.2.

The efficiency to reconstruct photon conversions as double-
track vertex candidates decreases significantly for conver-
sions taking place in the outermost layers of the ID. This
effect is due to photon conversions in which one of the two
produced electron tracks is not reconstructed either because
it is very soft (asymmetric conversions where one of the two
tracks has pT < 0.5 GeV), or because the two tracks are very
close to each other and cannot be adequately separated. For
this reason, tracks without hits in the b-layer that either have
an electron likelihood greater than 95%, or have no hits in

the TRT, are considered as “single-track” conversion vertex
candidates. In this case, since a conversion vertex fit cannot
be performed, the conversion vertex is defined to be the loca-
tion of the first measurement of the track. Tracks which pass
through a passive region of the b-layer are not considered as
single-track conversions unless they are missing a hit in the
second pixel layer.

As in the loose track matching, the matching of the con-
version vertices to the clusters relies on an extrapolation of
the conversion candidates to the second sampling layer of the
calorimeter, and the comparison of the extrapolated η and φ

coordinates to the η and φ coordinates of the cluster centre.
The details of the extrapolation depend on the type of the
conversion vertex candidate.

• For double-track conversion vertex candidates for which
the track transverse momenta differ by less than a factor
of four from each other, each track is extrapolated to the
second sampling layer of the calorimeter and is required
to be matched to the cluster.

• For double-track conversion vertex candidates for which
the track transverse momenta differ by more than a factor
of four from each other, the photon direction is recon-
structed from the electron and positron directions deter-
mined by the conversion vertex fit, and used to perform
a straight-line extrapolation to the second sampling layer
of the calorimeter, as expected for a neutral particle.

• For single-track conversion vertex candidates, the track
is extrapolated from its last measurement.

Conversion vertex candidates built from tracks with hits in
the silicon detectors are considered matched to a cluster if the
angular distance between the extrapolated conversion vertex
candidate and the cluster centre is smaller than 0.05 in both η

and φ. If the extrapolation is performed for single-track con-
versions, the window in φ is increased to 0.1 in the direction
of the bending. For tracks without hits in the silicon detectors,
the matching requirements are tighter:

• The distance in φ between the extrapolated track(s) and
the cluster is less than 0.02 (0.03) in the direction of
(opposite to) the bending. In the case where the conver-
sion vertex candidate is extrapolated as a neutral particle,
the distance is required to be less than 0.03 on both sides.

• The distance in η between the extrapolated track(s) and
the cluster is less than 0.35 and 0.2 in the barrel and end-
cap sections of the TRT, respectively. The criteria are
significantly looser than in the φ direction since the TRT
does not provide a measurement of the pseudorapidity in
its barrel section. In the case that the conversion vertex
candidate is extrapolated as a neutral particle, the distance
is required to be less than 0.35.
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In the case of multiple conversion vertex candidates matched
to the same cluster, the final conversion vertex candidate is
chosen as follows:

• preference is given to double-track candidates over
single-track candidates;

• if both conversion vertex candidates are formed from the
same number of tracks, preference is given to the candi-
date with more tracks with hits in the silicon detectors;

• if the conversion vertex candidates are formed from the
same number of tracks with hits in the silicon detectors,
preference is given to the vertex candidate with smaller
radius.

The final arbitration between the unconverted photon, con-
verted photon and electron hypotheses for the reconstructed
EM clusters is performed in the following way [19]:

• Clusters to which neither a conversion vertex candidate
nor any track has been matched during the electron recon-
struction are considered unconverted photon candidates.

• Electromagnetic clusters matched to a conversion ver-
tex candidate are considered converted photon candi-
dates. For converted photon candidates that are also
reconstructed as electrons, the electron track is evalu-
ated against the track(s) originating from the conversion
vertex candidate matched to the same cluster:

1. If the track coincides with a track coming from the
conversion vertex, the converted photon candidate is
retained.

2. The only exception to the previous rule is the case
of a double-track conversion vertex candidate where
the coinciding track has a hit in the b-layer, while the
other track lacks one (for this purpose, a missing hit
in a disabled b-layer module is counted as a hit2).

3. If the track does not coincide with any of the tracks
assigned to the conversion vertex candidate, the con-
verted photon candidate is removed, unless the track
pT is smaller than the pT of the converted photon
candidate.

• Single-track converted photon candidates are recovered
from objects that are only reconstructed as electron can-
didates with pT > 2 GeV and E/p < 10 (E being the
cluster energy and p the track momentum), if the track
has no hits in the silicon detectors.

• Unconverted photon candidates are recovered from recon-
structed electron candidates if the electron candidate has

2 About 6.3% of the b-layer modules were disabled at the end of Run 1
due to individual module failures like low-voltage or high-voltage pow-
ering faults or data transmission faults. During the shutdown following
the end of Run 1, repairs reduced the b-layer fault fraction to 1.4%

a corresponding track without hits in the silicon detec-
tors and with pT < 2 GeV, or if the electron candidate
is not considered as single-track converted photon and
its matched track has a transverse momentum lower than
2 GeV or E/p greater than 10. The corresponding elec-
tron candidate is then removed from the event. Using
this procedure around 85% of the unconverted photons
erroneously categorised as electrons are recovered.

From MC simulations, 96% of prompt photons with
ET > 25 GeV are expected to be reconstructed as photon
candidates, while the remaining 4% are incorrectly recon-
structed as electrons but not as photons. The reconstruction
efficiencies of photons with transverse momenta of a few tens
of GeV (relevant for the search for Higgs boson decays to
two photons) are checked in data with a technique described
in Ref. [20]. The results point to inefficiencies and fake rates
that exceed by up to a few percent the predictions from MC
simulation. The efficiency to reconstruct photon conversions
decreases at high ET (>150 GeV), where it becomes more
difficult to separate the two tracks from the conversions. Such
conversions with very close-by tracks are often not recov-
ered as single-track conversions because of the tighter selec-
tions, including the transition radiation requirement, applied
to single-track conversion candidates. The overall photon
reconstruction efficiency is thus reduced to about 90% for
ET around 1 TeV.

The final photon energy measurement is performed using
information from the calorimeter, with a cluster size that
depends on the photon classification.3 In the barrel, a cluster
of size 	η × 	φ = 0.075 × 0.123 is used for unconverted
photon candidates, while a cluster of size 0.075 × 0.172 is
used for converted photon candidates to compensate for the
opening between the conversion products in the φ direction
due to the magnetic field of the ATLAS solenoid. In the end-
cap, a cluster size of 0.125×0.123 is used for all candidates.
The photon energy calibration, which accounts for upstream
energy loss and both lateral and longitudinal leakage, is based
on the same procedure that is used for electrons [20,21] but
with different calibration factors for converted and uncon-
verted photon candidates. In the following the photon trans-
verse momentum ET is computed from the photon cluster’s
calibrated energy E and the pseudorapidity η2 of the barycen-
tre of the cluster in the second layer of the EM calorimeter
as ET = E/ cosh(η2).

3 For converted photon candidates, the energy calibration procedure
uses the following as additional inputs: (i) pT/ET and the momentum
balance of the two conversion tracks if both tracks are reconstructed by
the silicon detectors, and (ii) the conversion radius for photon candidates
with transverse momentum above 3 GeV.
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Table 1 Discriminating variables used for loose and tight photon identification

Category Description Name Loose Tight

Acceptance |η| < 2.37, with 1.37 < |η| < 1.52 excluded – � �
Hadronic leakage Ratio of ET in the first sampling layer of the

hadronic calorimeter to ET of the EM cluster
(used over the range |η| < 0.8 or |η| > 1.37)

Rhad1 � �

Ratio of ET in the hadronic calorimeter to ET of
the EM cluster (used over the range
0.8 < |η| < 1.37)

Rhad � �

EM middle layer Ratio of 3 × 7 η × φ to 7 × 7 cell energies Rη � �
Lateral width of the shower wη2 � �
Ratio of 3×3 η × φ to 3×7 cell energies Rφ �

EM strip layer Shower width calculated from three strips around
the strip with maximum energy deposit

ws 3 �

Total lateral shower width ws tot �
Energy outside the core of the three central strips

but within seven strips divided by energy
within the three central strips

Fside �

Difference between the energy associated with
the second maximum in the strip layer and the
energy reconstructed in the strip with the
minimum value found between the first and
second maxima

	E �

Ratio of the energy difference associated with the
largest and second largest energy deposits to
the sum of these energies

Eratio �

3.2 Photon identification

To distinguish prompt photons from background photons,
photon identification with high signal efficiency and high
background rejection is required for transverse momenta
from 10 GeV to the TeV scale. Photon identification in
ATLAS is based on a set of cuts on several discriminating
variables. Such variables, listed in Table 1 and described
in Appendix A, characterise the lateral and longitudinal
shower development in the electromagnetic calorimeter and
the shower leakage fraction in the hadronic calorimeter.
Prompt photons typically produce narrower energy deposits
in the electromagnetic calorimeter and have smaller leakage
to the hadronic one compared to background photons from
jets, due to the presence of additional hadrons near the photon
candidate in the latter case. In addition, background candi-
dates from isolated π0 → γ γ decays – unlike prompt pho-
tons – are often characterised by two separate local energy
maxima in the finely segmented strips of the first layer, due to
the small separation between the two photons. The distribu-
tions of the discriminating variables for both the prompt and
background photons are affected by additional soft pp inter-
actions that may accompany the hard-scattering collision,
referred to as in-time pile-up, as well as by out-of-time pile-
up arising from bunches before or after the bunch where the

event of interest was triggered. Pile-up results in the presence
of low-ET activity in the detector, including energy depo-
sition in the electromagnetic calorimeter. This effect tends
to broaden the distributions of the discriminating variables
and thus to reduce the separation between prompt and back-
ground photon candidates.

Two reference selections, a loose one and a tight one, are
defined. The loose selection is based only on shower shapes
in the second layer of the electromagnetic calorimeter and
on the energy deposited in the hadronic calorimeter, and
is used by the photon triggers. The loose requirements are
designed to provide a high prompt-photon identification effi-
ciency with respect to reconstruction. Their efficiency rises
from 97% at Eγ

T = 20 GeV to above 99% for Eγ
T > 40 GeV

for both the converted and unconverted photons, and the cor-
responding background rejection factor is about 1000 [19].
The rejection factor is defined as the ratio of the number
of initial jets with pT > 40 GeV in the acceptance of the
calorimeter to the number of reconstructed background pho-
ton candidates satisfying the identification criteria. The tight
selection adds information from the finely segmented strip
layer of the calorimeter, which provides good rejection of
hadronic jets where a neutral meson carries most of the jet
energy. The tight criteria are separately optimised for uncon-
verted and converted photons to provide a photon identifi-
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cation efficiency of about 85% for photon candidates with
transverse energy ET > 40 GeV and a corresponding back-
ground rejection factor of about 5000 [19].

The selection criteria are different in seven intervals of
the reconstructed photon pseudorapidity (0.0–0.6, 0.6–0.8,
0.8–1.15, 1.15–1.37, 1.52–1.81, 1.81–2.01, 2.01–2.37) to
account for the calorimeter geometry and for different effects
on the shower shapes from the material upstream of the
calorimeter, which is highly non-uniform as a function of
|η|.

The photon identification criteria were first optimised
prior to the start of the data-taking in 2010, on simu-
lated samples of prompt photons from γ+jet, diphoton and
H → γ γ events and samples of background photons in
QCD multi-jet events [19]. Before the 2011 data-taking, the
loose and the tight selections were loosened, without fur-
ther re-optimisation, in order to reduce the systematic effects
associated to the differences between the calorimetric vari-
ables measured from data and their description by the ATLAS
simulation. Prior to the 8 TeV run in 2012, the identification
criteria were reoptimised based on improved simulations in
which the values of the shower shape variables are slightly
shifted to improve the agreement with the data shower shapes,
as described in the next section. To cope with the higher pile-
up expected during the 2012 data taking, the criteria on the
shower shapes more sensitive to pile-up were relaxed while
the others were tightened.

The discriminating variables that are most sensitive to
pile-up are found to be the energy leakage in the hadronic
calorimeter and the shower width in the second sampling
layer of the EM calorimeter.

3.3 Photon isolation

The identification efficiencies presented in this article are
measured for photon candidates passing an isolation require-
ment, similar to those applied to reduce hadronic background
in cross-section measurements or searches for exotic pro-
cesses with photons [1–6,8,9,11,22]. In the data taken at√
s = 8 TeV, the calorimeter isolation transverse energy

E iso
T [23] is required to be lower than 4 GeV. This quantity is

computed from positive-energy three-dimensional topologi-
cal clusters of calorimeter cells [14] reconstructed in a cone
of size 	R = √

(	η)2 + (	φ)2 = 0.4 around the photon
candidate.

The contributions to E iso
T from the photon itself and from

the underlying event and pile-up are subtracted. The cor-
rection for the photon energy outside the cluster is com-
puted as the product of the photon transverse energy and
a coefficient determined from separate simulations of con-
verted and unconverted photons. The underlying event and
pile-up energy correction is computed on an event-by-event
basis using the method described in Refs. [24,25]. A kT

jet-finding algorithm [26,27] of size parameter R = 0.5 is
used to reconstruct all jets without any explicit transverse
momentum threshold, starting from the three-dimensional
topological clusters reconstructed in the calorimeter. Each
jet is assigned an area Ajet via a Voronoi tessellation [28]
of the η–φ space. According to this algorithm, every point
within a jet’s assigned area is closer to the axis of that jet than
to the axis of any other jet. The ambient transverse energy
density ρUE(η) from pile-up and the underlying event is taken
to be the median of the transverse energy densities pjet

T /Ajet

of jets with pseudorapidity |η| < 1.5 or 1.5 < |η| < 3.0.
The area of the photon isolation cone is then multiplied by
ρUE to compute the correction to E iso

T . The estimated ambi-
ent transverse energy fluctuates significantly event-by-event,
reflecting the fluctuations in the underlying event and pile-up
activity in the data. The typical size of the correction is 2 GeV
in the central region and 1.5 GeV in the forward region.

A slight dependence of the identification efficiency on the
isolation requirement is observed, as discussed in Sect. 6.2.

4 Data and Monte Carlo samples

The data used in this study consist of the 7 and 8 TeV proton–
proton collisions recorded by the ATLAS detector during
2011 and 2012 in LHC Run 1. They correspond respec-
tively to 4.9 fb−1 and 20.3 fb−1 of integrated luminosity
after requiring good data quality. The mean number of inter-
actions per bunch crossing, μ, was 9 and 21 on average in
the

√
s = 7 and 8 TeV datasets, respectively.

The Z boson radiative decay and the electron extrapolation
methods use data collected with the lowest-threshold lepton
triggers with prescale factors equal to one and thus exploit
the full luminosity of Run 1. For the data collected in 2012
at

√
s = 8 TeV, the transverse momentum thresholds for

single-lepton triggers are 25 (24) GeV for � = e (μ), while
those for dilepton triggers are 12 (13) GeV. For the data
collected in 2011 at

√
s = 7 TeV, the transverse momen-

tum thresholds for single-lepton triggers are 20 (18) GeV
for � = e (μ), while those for dilepton triggers are 12
(10) GeV. The matrix method uses events collected with
single-photon triggers with loose identification requirements
and large prescale factors, and thus exploits only a fraction
of the total luminosity. Photons reconstructed near regions of
the calorimeter affected by read-out or high-voltage failures
[29] are rejected.

Monte Carlo samples are processed through a full simu-
lation of the ATLAS detector response [30] using Geant4
[31] 4.9.4-patch04. Pile-up pp interactions in the same and
nearby bunch crossings are included in the simulation. The
MC samples are reweighted to reproduce the distribution
of μ and the length of the luminous region observed in
data (approximately 54 cm and 48 cm in the data taken at√
s = 7 and 8 TeV, respectively). Samples of prompt pho-
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tons are generated with PYTHIA8 [32,33]. Such samples
include the leading-order γ + jet events from qg → qγ

and qq̄ → gγ hard scattering, as well as prompt photons
from quark fragmentation in QCD dijet events. About 107

events are generated, covering the whole transverse momen-
tum spectrum under study. Samples of background photons in
jets are produced by generating with PYTHIA8 all tree-level
2→2 QCD processes, removing γ + jet events from quark
fragmentation. Between 1.2 × 106 and 5 × 106 Z → ��γ

(� = e, μ) events are generated with SHERPA [34] or with
POWHEG [35,36] interfaced to PHOTOS [37] for the mod-
elling of QED final-state radiation and to PYTHIA8 for show-
ering, hadronisation and modelling of the underlying event.
About 107 Z(→ ��)+jet events are generated for both � = e
and � = μ with each of the following three event generators:
POWHEG interfaced to PYTHIA8; ALPGEN [38] interfaced
to HERWIG [39] and JIMMY [40] for showering, hadronisa-
tion and modelling of the underlying event; and SHERPA. A
sample of MC H → Zγ events [41] is also used to compute
the efficiency in the simulation for photons with transverse
momentum between 10 and 15 GeV, since the Z → ��γ

samples have a generator-level requirement on the minimum
true photon transverse momentum of 10 GeV which biases
the reconstructed transverse momentum near the threshold.
A two-dimensional reweighting of the pseudorapidity and
transverse momentum spectra of the photons is applied to
match the distributions of those reconstructed in Z → ��γ

events. For the analysis of
√
s = 7 TeV data, all simu-

lated samples (photon+jet, QCD multi-jet, Z(→ ��)+jet and
Z → ��γ ) are generated with PYTHIA6.

For the analysis of 8 TeV data, the events are simulated
and reconstructed using the model of the ATLAS detector
described in Ref. [20], based on an improved in situ deter-
mination of the passive material upstream of the electromag-
netic calorimeter. This model is characterised by the presence
of additional material (up to 0.6 radiation lengths) in the end-
cap and a 50% smaller uncertainty in the material budget with
respect to the previous model, which is used for the study of
7 TeV data.

The distributions of the photon transverse shower shapes
in the ATLAS MC simulation do not perfectly match the
ones observed in data. While the shapes of these distribu-
tions in the simulation are rather similar to those found in the
data, small systematic differences in their average values are
observed. On the other hand, the longitudinal electromag-
netic shower profiles are well described by the simulation.
The differences between the data and MC distributions are
parameterised as simple shifts and applied to the MC simu-
lated values to match the distributions in data. These shifts
are calculated by minimising the χ2 between the data and
the shifted MC distributions of photon candidates satisfying
the tight identification criteria and the calorimeter isolation
requirement described in the previous section. The shifts are

computed in intervals of the reconstructed photon pseudora-
pidity and transverse momentum. The pseudorapidity inter-
vals are the same as those used to define the photon selec-
tion criteria. The ET bin boundaries are 0, 15, 20, 25, 30,
40, 50, 60, 80, 100 and 1000 GeV. The typical size of the
correction factors is 10% of the RMS of the distribution of
the corresponding variable in data. For the variable Rη, for
which the level of agreement between the data and the simu-
lation is worst, the size of the correction factors is 50% of the
RMS of the distribution. The corresponding correction to the
prompt-photon efficiency predicted by the simulation varies
with pseudorapidity between −10% and −5% for photon
transverse momenta close to 10 GeV, and approaches zero
for transverse momenta above 50 GeV.

Two examples of the simulated discriminating variable
distributions before and after corrections, for converted pho-
ton candidates originating from Z boson radiative decays, are
shown in Fig. 2. For comparison, the distributions observed
in data for candidates passing the Z boson radiative decay
selection illustrated in Sect. 5.1, are also shown. Better agree-
ment between the shower shape distributions in data and in
the simulation after applying such corrections is clearly vis-
ible.

5 Techniques to measure the photon identification
efficiency

The photon identification efficiency, εID, is defined as the
ratio of the number of isolated photons passing the tight iden-
tification selection to the total number of isolated photons.
Three data-driven techniques are developed in order to mea-
sure this efficiency for reconstructed photons over a wide
transverse momentum range.

The Radiative Z method uses a clean sample of prompt,
isolated photons from radiative leptonic decays of the Z
boson, Z → ��γ , in which a photon produced from the final-
state radiation of one of the two leptons is selected without
imposing any criteria on the photon discriminating variables.
Given the luminosity of the data collected in Run 1, this
method allows the measurement of the photon identification
efficiency only for 10 GeV � ET � 80 GeV.

In the Electron Extrapolation method, a large and pure
sample of electrons selected from Z → ee decays with a
tag-and-probe technique is used to deduce the distributions
of the discriminating variables for photons by exploiting the
similarity between the electron and the photon EM showers.
Given the typical ET distribution of electrons from Z boson
decays and the Run-1 luminosity, this method provides pre-
cise results for 30 GeV � ET � 100 GeV.

The Matrix Method uses the discrimination between
prompt photons and background photons provided by their
isolation from tracks in the ID to extract the sample purity
before and after applying the tight identification require-
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Fig. 2 Distributions of the calorimetric discriminating variablesa Fside
and b ws 3 for converted photon candidates with ET > 20 GeV and
|η| < 2.37 (excluding 1.37 < |η| < 1.52) selected from Z → ��γ

events obtained from the 2012 data sample (dots). The distributions
for true photons from simulated Z → ��γ events (blue hatched and
red hollow histograms) are also shown, after reweighting their two-
dimensional ET vs η distributions to match that of the data candidates.
The blue hatched histogram corresponds to the uncorrected simulation

and the red hollow one to the simulation corrected by the average shift
between data and simulation distributions determined from the inclu-
sive sample of isolated photon candidates passing the tight selection per
bin of (η, ET) and for converted and unconverted photons separately.
The photon candidates must be isolated but no shower-shape criteria
are applied. The photon purity of the data sample, i.e. the fraction of
prompt photons, is estimated to be approximately 99%

ments. This method provides results for transverse momenta
from 20 GeV to 1.5 TeV.

The three measurements are performed for photons with
pseudorapidity in the fiducial region of the EM calorimeter in
which the first layer is finely segmented along η: |η| < 1.37
or 1.52 < |η| < 2.37. The identification efficiency is mea-
sured as a function of ET in four pseudorapidity intervals:
|η| < 0.6, 0.6 < |η| < 1.37, 1.52 < |η| < 1.81 and
1.81 < |η| < 2.37. Since there are not many data events
with high-ET photons, the highest ET bin in which the mea-
surement with the matrix method is performed corresponds
to the large interval 250 GeV< ET < 1500 GeV (the upper
limit corresponding to the transverse energy of the highest-
ET selected photon candidate). In this range a majority of
the photon candidates have transverse momenta below about
400 GeV (the ET distribution of the selected photon candi-
dates in this interval has an average value of 300 GeV and an
RMS value of 70 GeV). However, from the simulation the
photon identification efficiency is expected to be constant at
the few per-mil level in this ET range.

5.1 Photons from Z boson radiative decays

Radiative Z → ��γ decays are selected by placing kine-
matic requirements on the dilepton pair, the invariant mass of
the three particles in the final state and quality requirements
on the two leptons. The reconstructed photon candidates are
required to be isolated in the calorimeter but no selection is
applied to their discriminating variables.

Events are collected using the lowest-threshold unpre-
scaled single-lepton or dilepton triggers.

Muon candidates are formed from tracks reconstructed
both in the ID and in the muon spectrometer [42], with trans-
verse momentum larger than 15 GeV and pseudorapidity
|η| < 2.4. The muon tracks are required to have at least
one hit in the innermost pixel layer, one hit in the other two
pixel layers, five hits in the SCT, and at most two missing
hits in the two silicon detectors. The muon track isolation,
defined as the sum of the transverse momenta of the tracks
inside a cone of size 	R = √

(	η)2 + (	φ)2 = 0.2 around
the muon, excluding the muon track, is required to be smaller
than 10% of the muon pT.

Electron candidates are required to have ET > 15 GeV,
and |η| < 1.37 or 1.52 < |η| < 2.47. Electrons are required
to satisfy medium identification criteria [43] based on track-
ing and transition radiation information from the ID, shower
shape variables computed from the lateral and longitudinal
profiles of the energy deposited in the EM calorimeter, and
track–cluster matching quantities.

For both the electron and muon candidates, the longitudi-
nal (z0) and transverse (d0) impact parameters of the recon-
structed tracks with respect to the primary vertex with at
least three associated tracks and with the largest

∑
p2

T of the
associated tracks are required to satisfy |z0| < 10 mm and
|d0|/σd0 < 10, respectively, where σd0 is the estimated d0

uncertainty.
The Z → ��γ candidates are selected by requiring two

opposite-sign charged leptons of the same flavour satisfy-
ing the previous criteria and one isolated photon candidate
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Fig. 3 Two-dimensional distribution of m��γ and m�� for all recon-
structed Z → ��γ candidates after loosening the selection applied
to m��γ and m��. No photon identification requirements are applied.
Events from initial-state (m�� ≈ mZ ) and final-state (m��γ ≈ mZ )
radiation are clearly visible

with ET > 10 GeV and |η| < 1.37 or 1.52 < |η| < 2.37.
An angular separation 	R > 0.2 (0.4) between the photon
and each of the two muons (electrons) is required so that
the energy deposited by the leptons in the calorimeter does
not bias the photon discriminating variables. In the selected
events, the triggering leptons are required to match one (or
in the case of dilepton triggered events, both) of the Z can-
didate’s leptons.

The two-dimensional distribution of the dilepton invariant
mass, m��, versus the invariant mass of the three final-state
particles, m��γ , in events selected in

√
s = 8 TeV data is

shown in Fig. 3. The selected sample is dominated by Z +jet
background events in which one jet is misreconstructed as a
photon. These events, which have a cross section about three
orders of magnitudes higher than ��γ events, havem�� ≈ mZ

and m��γ � mZ , while final-state radiation Z → ��γ events
have m�� � mZ and m��γ ≈ mZ , where mZ is the Z boson
pole mass. To significantly reduce the Z +jet background, the
requirements of 40 GeV < m�� < 83 GeV and 80 GeV <

m��γ < 96 GeV are thus applied.
After the selection, about 54000 unconverted and about

19000 converted isolated photon candidates are selected in
the Z → μμγ channel, and 32000 unconverted and 12000
converted isolated photon candidates are selected in the
Z → eeγ channel. The residual background contamina-
tion from Z+jet events is estimated through a maximum-
likelihood fit (called “template fit” in the following) to the
m��γ distribution of selected events after discarding the
80 GeV < m��γ < 96 GeV requirement. The data are fit
to a sum of the photon and background contributions. The
photon and background m��γ distributions (“templates”) are
extracted from the Z → ��γ and Z +jet simulations, cor-
rected to take into account known data–MC differences in the
photon and lepton energy scales and resolution and in the lep-
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Fig. 4 Invariant mass (mμμγ ) distribution of events in which the
unconverted photon has 10 GeV < ET < 15 GeV, selected in data at√
s = 8 TeV after applying all the Z → μμγ selection criteria except

that on mμμγ (black dots). No photon identification requirements are
applied. The solid black line represents the result of fitting the data dis-
tribution to a sum of the signal (red dashed line) and background (blue
dotted line) invariant mass distributions obtained from simulations

ton efficiencies. The signal and background yields are deter-
mined from the data by maximising the likelihood. Due to the
small number of selected events in data and simulation, these
fits are performed only for two photon transverse momentum
intervals, 10 GeV < ET < 15 GeV and ET > 15 GeV, and
integrated over the photon pseudorapidity, since the signal
purity is found to be similar in the four photon |η| intervals
within statistical uncertainties.

Figure 4 shows the result of the fit for unconverted photon
candidates with transverse momenta between 10 GeV and
15 GeV. The fraction of residual background in the region
80 GeV < m��γ < 96 GeV decreases rapidly with the
reconstructed photon transverse momentum, from ≈10% for
10 GeV < ET < 15 GeV to ≤ 2% for higher-ET regions. A
similar fit is also performed for the subsample in which the
photon candidates are required to satisfy the tight identifica-
tion criteria.

The identification efficiency as a function of ET is esti-
mated as the fraction of all the selected probes in a certain
ET interval passing the tight identification requirements. For
10 GeV < ET < 15 GeV, both the numerator and denomi-
nator are corrected for the average background fraction deter-
mined from the template fit. For ET > 15 GeV, the back-
ground is neglected in the nominal result, and a systematic
uncertainty is assigned as the difference between the nominal
result and the efficiency that would be obtained taking into
account the background fraction determined from the tem-
plate fit in this ET region. Additional systematic uncertain-
ties related to the signal and background m��γ distributions
are estimated by repeating the previous fits with templates
extracted from alternative MC event generators (POWHEG
interfaced to PHOTOS and PYTHIA8 for Z → ��γ and
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ALPGEN for Z+jet, Z → ��). The total relative uncer-
tainty in the efficiency, dominated by the statistical compo-
nent, increases from 1.5–3% (depending on η and whether
the photon was reconstructed as a converted or an uncon-
verted candidate) for 10 GeV < ET < 15 GeV to 5–20% for
ET > 40 GeV.

5.2 Electron extrapolation

The similarity between the electromagnetic showers induced
by isolated electrons and photons in the EM calorimeter is
exploited to extrapolate the expected photon distributions of
the discriminating variables. The photon identification effi-
ciency is thus estimated from the distributions of the same
variables in a pure and large sample of electrons with ET

between 30 GeV and 100 GeV obtained from Z → ee
decays using a tag-and-probe method [43]. Events collected
with single-electron triggers are selected if they contain two
opposite-sign electrons with ET > 25 GeV, |η| < 1.37 or
1.52 < |η| < 2.47, at least one hit in the pixel detector and
seven hits in the silicon detectors, E iso

T < 4 GeV and invari-
ant mass 80 GeV < mee < 120 GeV. The tag electron is
required to match the trigger object and to pass the tight elec-
tron identification requirements. A sample of about 9 × 106

electron probes is collected. Its purity is determined from
the mee spectrum of the selected events by estimating the
background, whose normalisation is extracted using events
with mee > 120 GeV and whose shape is obtained from
events in which the probe electron candidate fails both the
isolation and identification requirements. The purity varies
slightly with ET and |η|, but is always above 99%.

The differences between the photon and electron distribu-
tions of the discriminating variables are studied using simu-
lated samples of prompt photons and electrons from Z → ee
decays, separately for converted and unconverted photons.
The shifts of the photon discriminating variables described
in Sect. 4 are not applied, since it is observed that the photon
and electron distributions are biased in a similar way in the
simulation.

Photon conversions produce electron–positron pairs which
are usually sufficiently collimated to produce overlapping
showers in the calorimeter, giving rise to single clusters with
distributions of the discriminating variables similar to those
of an isolated electron. The largest differences between elec-
trons and converted photons are found in the Rφ distribution,
due to the bending of electrons and positrons in opposite
directions in the r–φ plane, which leads to a broader Rφ distri-
bution for converted photons. However, the Rφ requirement
used for the identification of converted photons is relatively
loose, and a test on MC simulated samples shows that, by
directly applying the converted photon identification criteria
to an electron sample, the εID obtained from electrons over-
estimates the efficiency for converted photons by at most 3%.

The showers induced by unconverted photons are more
likely to begin later than those induced by electrons, and
thus to be narrower in the first layer of the EM calorimeter.
Additionally, the lack of photon-trajectory bending in the φ

plane makes the Rφ distribution particularly different from
that of electrons. Therefore, if the unconverted-photon selec-
tion criteria are directly applied to an electron sample, the εID

obtained from these electrons is about 20–30% smaller than
the efficiency for unconverted photons with the same pseu-
dorapidity and transverse momentum.

To reduce such effects a mapping technique based on a
Smirnov transformation [44] is used for both the unconverted
and converted photons. For each discriminating variable x ,
the cumulative distribution functions (CDF) of simulated
electrons and photons, CDFe(x) and CDFγ (x), are calcu-
lated. The transform f (x) is thus defined by CDFe(x) =
CDFγ ( f (x)). The discriminating variable of the electron
probes selected in data can then be corrected on an event-
by-event basis by applying the transform f (x) to obtain the
expected one for photons in data. Figure 5 illustrates the
process for one shower shape (Rφ). These Smirnov transfor-
mations are invariant under systematic shifts which are fully
correlated between the electron and photon distributions. Due
to the differences in the |η| and ET distributions of the source
and target samples, the dependence of the shower shapes on
|η|, ET, and whether the photon was reconstructed as a con-
verted or an unconverted candidate, this process is applied
separately for converted and unconverted photons, and in
various regions of ET and |η|. The efficiency of the identi-
fication criteria is determined from the extrapolated photon
distributions of the discriminating variables.

The following three sources of systematic uncertainty are
considered for this analysis:

• As the Smirnov transformations are obtained indepen-
dently for each shower shape, the estimated photon iden-
tification efficiency can be biased if the correlations
among the discriminating variables are significantly dif-
ferent between electrons and photons. Non-closure tests
are performed on the simulation, comparing the identi-
fication efficiency of true prompt photons with the effi-
ciency extrapolated from electron probes selected with
the same requirement as in data and applying the extrap-
olation procedure. The differences between the true and
extrapolated efficiencies are at the level of 1% or less,
with a few exceptions for unconverted photons, for which
maximum differences of 2% are found.

• The results are also affected by the uncertainties in the
modelling of the shower shape distributions and corre-
lations in the photon and electron simulations used to
extract the mappings. The largest uncertainties in the
distributions of the discriminating variables originate
from limited knowledge of the material upstream of the
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Fig. 5 Diagram illustrating the process of Smirnov transformation.
Rφ is chosen as an example discriminating variable whose distribution
is particularly different between electrons and (unconverted) photons.
The Rφ probability density function (pdf) in each sample (a) is used to

calculate the respective CDF (b). From the two CDFs, a Smirnov trans-
formation can be derived (c). Applying the transformation leads to an
Rφ distribution of the transformed electrons which closely resembles
the photon distribution (d)

calorimeter. The extraction of the mappings is repeated
using alternative MC samples based on a detector simu-
lation with a conservative estimate of additional material
in front of the calorimeter [21]. This detector simula-
tion is considered as conservative enough to cover any
mismodelling of the distributions of the discriminating
variables. The extracted εID differs from the nominal one
by typically less than 1% for converted photons and 2%
for unconverted ones, with maximum deviations of 2%
and 3.5% in the worst cases, respectively.

• Finally, the effect of a possible background contamina-
tion in the selected electron probes in data is found to
be smaller than 0.5% in all ET, |η| intervals for both the
converted and unconverted photons.

The total uncertainty is dominated by its systematic compo-
nent and ranges from 1.5% in the central region to 7.5% in
the highest ET bin in the endcap region, with typical values
of 2.5%.

5.3 Matrix method

An inclusive sample of about 7 × 106 isolated photon can-
didates is selected using single-photon triggers by requir-
ing at least one photon candidate with transverse momen-
tum 20 GeV < ET < 1500 GeV and isolation energy
E iso

T < 4 GeV, matched to the photon trigger object passing
the loose identification requirements.

The distribution of the track isolation of selected candi-
dates in data is used to discriminate between prompt and
background photon candidates, before and after applying
the tight identification criteria. The track isolation variable
used for the measurement of the efficiency of unconverted
photon candidates, piso

T , is defined as the scalar sum of the
transverse momenta of the tracks, with transverse momen-
tum above 0.5 GeV and distance of closest approach to the
primary vertex along z less than 0.5 mm, within a hollow
cone of 0.1 < 	R < 0.3 around the photon direction. For
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the measurement of the efficiency of the converted photon
candidates, the track isolation variable νiso

trk is defined as the
number of tracks, passing the previous requirements, within
a hollow cone of 0.1 < 	R < 0.4 around the photon direc-
tion. Unconverted photon candidates with piso

T < 1.2 GeV
and converted photon candidates with νiso

trk = 0 are consid-
ered to be isolated from tracks. The track isolation variables
and requirements were chosen to minimise the total uncer-
tainty in the identification efficiency after including both the
statistical and systematic components.

The yields of prompt and background photons in the
selected sample (“ALL” sample), NS

all and NB
all, and in the

sample of candidates satisfying the tight identification crite-
ria (“PASS” sample), NS

pass and NB
pass, are obtained by solving

a system of four equations:

NT
all = NS

all + NB
all,

NT
pass = NS

pass + NB
pass,

NT,iso
all = εS

all × NS
all + εB

all × NB
all,

NT,iso
pass = εS

pass × NS
pass + εB

pass × NB
pass. (1)

Here NT
all and NT

pass are the total numbers of candidates in

the ALL and PASS samples respectively, while NT,iso
all and

NT,iso
pass are the numbers of candidates in the ALL and PASS

samples that pass the track isolation requirement. The quan-
tities ε

S(B)
all and ε

S(B)
pass are the efficiencies of the track isolation

requirements for prompt (background) photons in the ALL
and PASS samples.

Equation (1) implies that the fractions fpass and fall of
prompt photons in the ALL and in the PASS samples can be
written as:

fpass = εpass − εB
pass

εS
pass − εB

pass

fall = εall − εB
all

εS
all − εB

all

(2)

where εpass(all) = NT,iso
pass(all)/N

T
pass(all) is the fraction of tight

(all) photon candidates in data that satisfy the track isolation
criteria.

The identification efficiency εID = NS
pass/N

S
all is thus:

εID = NT
pass

NT
all

(
εpass − εB

pass

εS
pass − εB

pass

) (
εall − εB

all

εS
all − εB

all

)−1

. (3)

The prompt-photon track isolation efficiencies, εS
all and

εS
pass, are estimated from simulated prompt-photon events.

The difference between the track isolation efficiency for elec-
trons collected in data and simulation with a tag-and-probe
Z → ee selection is taken as a systematic uncertainty. An
additional systematic uncertainty in the prompt-photon track
isolation efficiencies is estimated by conservatively varying

the fraction of fragmentation photons in the simulation by
±100%. The overall uncertainties in εS

all and εS
pass are below

1%.
The background-photon track isolation efficiencies, εB

all
and εB

pass, are estimated from data samples enriched in back-

ground photons. For the measurement of εB
all, the control sam-

ple of all photon candidates not meeting at least one of the
tight identification criteria is used. In order to obtain εB

pass, a
relaxed version of the tight identification criteria is defined.
The relaxed tight selection consists of those candidates which
fail at least one of the requirements on four discriminating
variables computed from the energy in the cells of the first
EM calorimeter layer (Fside, ws3, 	E , Eratio), but satisfy
the remaining tight identification criteria. The four variables
which are removed from the tight selection to define the
relaxed tight one are computed from the energy deposited in
a few strips of the first compartment of the LAr EM calorime-
ter near the one with the largest deposit and are chosen since
they have negligible correlations with the photon isolation.
Due to the very small correlation (few %) between the track
isolation and these discriminating variables, the background-
photon track isolation efficiency is similar for photons satis-
fying tight or relaxed tight criteria. The differences between
the track isolation efficiencies for background photons satis-
fying tight or relaxed tight criteria are included in the system-
atic uncertainties. The contamination from prompt photons
in the background enriched samples is accounted for in this
procedure by using as an additional input the fraction of sig-
nal events passing or failing the relaxed tight requirements,
as determined from the prompt-photon simulation. The frac-
tion of prompt photons in the background control samples
decreases from about 20% to 1%, with increasing photon
transverse momentum. The whole procedure is tested with
a simulated sample of γ+jet and dijet events, and the dif-
ference between the true track isolation efficiency for back-
ground photons and the one estimated with this procedure
is taken as a systematic uncertainty. An additional system-
atic uncertainty, due to the use of the prompt-photon simu-
lation to estimate the fraction of signal photons in the back-
ground control regions, is estimated by re-calculating these
fractions using alternative MC samples based on a detector
simulation with a conservative estimate of additional material
in front of the calorimeter. The typical total relative uncer-
tainty in the background-photon track isolation efficiency
is 2–4%.

As an example, Fig. 6 shows the track isolation efficiencies
as a function of ET for prompt and background unconverted
photon candidates with |η| < 0.6 in the ALL and PASS
samples, as well as the fractions of all or tight photon can-
didates in data that satisfy the track isolation criteria. From
these measurements the photon identification efficiency is
derived, according to Eq. (3). The track isolation efficiency
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Fig. 6 Track isolation efficiencies as a function of ET for unconverted
prompt (green circles) and background (black triangles) photon can-
didates within |η| < 0.6 in a the inclusive sample or b passing tight

identification requirements. The efficiencies are estimated combining
the simulation and data control samples. The blue square markers show
the track isolation efficiency for candidates selected in data

for prompt-photon candidates is essentially independent of
the photon transverse momentum. For background candi-
dates, the track isolation efficiency initially decreases with
ET, since candidates with larger ET are produced from more
energetic jets, which are therefore characterised by a larger
number of tracks near the photon candidate. At higher trans-
verse energies, typically above 200 GeV, the boost of such
tracks causes some of them to fall within the inner cone
(	R < 0.1) of the isolation cone around the photon and
the isolation efficiency for background candidates therefore
increases.

The total systematic uncertainty decreases with the trans-
verse energy. It reaches 6% below 40 GeV, and amounts to
0.5–1% at higher ET, where the contribution of this method
is the most important.

The final result is obtained by multiplying the measured
efficiency by a correction factor which takes into account
the preselection of the sample using photon triggers, which
already apply some loose requirements to the photon dis-
criminating variables. The correction factor, equal to the
ratio of the tight identification efficiency for all reconstructed
photons to that for photons matching the trigger object that
triggers the event, is obtained from a corrected simulation
of photon+jet events. This correction is slightly lower than
unity, by less than 1% for ET > 50 GeV and by 2–3%
for ET = 20 GeV. The systematic uncertainty from this
correction is negligible compared to the other sources of
uncertainty.

6 Photon identification efficiency results at
√
s = 8 TeV

6.1 Efficiencies measured in data

The identification efficiency measurements for
√
s = 8 TeV

obtained from the three data-driven methods discussed in the
previous section are compared in Figs. 7 and 8. The Z →
eeγ and Z → μμγ results agree within uncertainties and
are thus combined, following a procedure described in the
next section, and only the combined values are shown in the
figures. In a few ET bins in which the central values of the
Z → eeγ and the Z → μμγ results differ by more than the
combined uncertainty, the latter is increased to cover the full
difference between the two results.

In the photon transverse momentum regions in which
the different measurements overlap, the results from each
method are consistent with each other within the uncertain-
ties. Relatively large fluctuations of the radiative Z decay
measurements are seen, due to their large statistical uncer-
tainties.

The photon identification efficiency increases from 50–
65% (45–55%) for unconverted (converted) photons at ET ≈
10 GeV to 94–100% at ET � 100 GeV, and is larger than
about 90% for ET > 40 GeV. The absolute uncertainty in
the measured efficiency is around 1% (1.5%) for unconverted
(converted) photons for ET < 30 GeV and around 0.4–0.5%
for both types of photons above 30 GeV for the most precise
method in a given bin.
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Fig. 7 Comparison of the data-driven measurements of the identifi-
cation efficiency for unconverted photons as a function of ET in the
region 10 GeV < ET < 1500 GeV, for the four pseudorapidity inter-

vals a |η| < 0.6, b 0.6 ≤ |η| < 1.37, c 1.52 ≤ |η| < 1.81, and d
1.81 ≤ |η| < 2.37. The error bars represent the sum in quadrature of
the statistical and systematic uncertainties estimated in each method

6.2 Comparison with the simulation

In this section the results of the data-driven efficiency
measurements are compared to the identification efficien-
cies predicted in the simulation. The comparison is per-
formed both before and after applying the shower shape
corrections.

Prompt photons produced in photon+jet events have dif-
ferent kinematic distributions than photons originating in
radiative Z boson decays. Moreover, some of the photons
in γ +jet events – unlike those from Z boson decays – origi-
nate in parton fragmentation. Such photons have lower iden-
tification efficiency than the photons produced directly in
the hard-scattering process, due to the energy deposited in
the calorimeter by the hadrons produced almost collinearly
with the photon in the fragmentation. After applying an iso-
lation requirement, however, the fragmentation photons usu-
ally represent a small fraction of the selected sample, typ-
ically below 10% for low transverse momenta and rapidly
decreasing to a few % with increasing ET. The difference in
identification efficiency between photons from radiative Z

boson decays and from γ +jet events is thus expected to be
small. To account for such a difference, the efficiency mea-
sured in data with the radiative Z boson decay method is
compared to the prediction from simulated Z → ��γ events
(Figs. 9, 10), while the efficiency measured in data with the
electron extrapolation and matrix methods is compared to the
prediction from simulated photon+jet events (Figs. 11, 12).

The level of agreement among the different εID values
improves with increasing ET: no significant difference is
observed between the data-driven measurements and the
nominal or corrected simulation for ET > 60 GeV. At lower
transverse momenta, the nominal simulation tends to overes-
timate the efficiency by up to 10–15%, as the electromagnetic
showers from photons are typically narrower in the simula-
tion than in data. In the same transverse momentum range,
the corrected simulation agrees with the data-driven mea-
surements within a few percent.

The remaining difference between the corrected simula-
tion and the data-driven measurements is taken into account
by computing data-to-MC efficiency ratios, also referred to
as scale factors (SF). The data-to-MC efficiency ratios are
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Fig. 8 Comparison of the data-driven measurements of the identifica-
tion efficiency for converted photons as a function of ET in the region
10 GeV < ET < 1500 GeV, for the four pseudorapidity intervals

a |η| < 0.6, b 0.6 ≤ |η| < 1.37, c 1.52 ≤ |η| < 1.81, and d
1.81 ≤ |η| < 2.37. The error bars represent the quadratic sum of
the statistical and systematic uncertainties estimated in each method

computed separately for each method and then combined.
The efficiencies from the Z → ��γ data control sample are
divided by the prediction of the simulation of radiative pho-
tons from Z boson decays, while the results from the other
two methods are divided by the predictions of the photon+jet
simulation. The data-to-MC efficiency ratios are shown in
the bottom plots of Figs. 9, 10, 11 and 12 and are used to
correct the predictions in the analyses using photons.

Because of their good agreement and the mostly indepen-
dent data samples used, the data-to-MC efficiency ratios as
a function of photon ET are combined into a single, more
precise result in the overlapping regions. The combination is
performed independently in the different pseudorapidity and
transverse energy bins, using the Best Linear Unbiased Esti-
mate (BLUE) method [45,46]. The combined data-to-MC
efficiency ratio SF is calculated as a linear combination of the
input measurements, SFi , with coefficients wi that minimise
the total uncertainty in the combined result. In the algorithm,
both the statistical and systematic uncertainties, as well as the
correlations of systematic sources between input measure-
ments, are taken into account assuming that all uncertainties

have Gaussian distributions. In practice, the quantity that is
minimised is a χ2 built from the various results and their sta-
tistical and systematic covariance matrices. Since the three
measurements use different data samples and independent
MC simulations, their systematic and statistical uncertainties
are largely uncorrelated. The background-induced uncertain-
ties in the Z → eeγ and Z → μμγ results, originating
from the same background process (Z+jet events with a jet
misreconstructed as a photon) and evaluated with the same
method, are considered to be 100% correlated. The uncer-
tainties in the results of the matrix method and the electron
extrapolation method due to limited knowledge of the detec-
tor material in the simulation are also partially correlated,
both being determined with alternative MC samples based
on the same detector simulation with a conservative estimate
of additional material in front of the calorimeter. The exact
value of this correlation is difficult to estimate. However, it
was checked by varying the amount of correlation that its
effect on the final result is negligible.

After the combination, for each averaged scale factor SF,
the χ2 = ∑N

i=1 wi (SF−SFi )
2 is computed and compared to
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Fig. 9 Comparison of the radiative Z boson data-driven efficiency
measurements of unconverted photons to the nominal and corrected
Z → ��γ MC predictions as a function of ET in the region 10 GeV <

ET < 80 GeV, for the four pseudorapidity intervals a |η| < 0.6, b
0.6 ≤ |η| < 1.37, c 1.52 ≤ |η| < 1.81, and d 1.81 ≤ |η| < 2.37.

The bottom panels show the ratio of the data-driven results to the MC
predictions (also called scale factors in the text). The error bars on the
data points represent the quadratic sum of the statistical and systematic
uncertainties. The error bars on the MC predictions correspond to the
statistical uncertainty from the number of simulated events

N − 1, where N is the number of measurements included in
the combined result for that point, and N − 1 is the expecta-
tion value of χ2 from a Gaussian distribution. Only a few bins
among all photon η and ET bins for unconverted and con-
verted photons are found to have χ2/(N − 1) > 1. These χ2

values are smaller than 2.0, confirming that the different mea-
surements are consistent. For the points withχ2/(N−1) > 1,
the error in the combined value, δSF, is increased by a factor
S = √

χ2/(N − 1), following the prescription in Ref. [47].
The combined data-to-MC efficiency ratios differ from one
by as much as 10% at ET = 10 GeV and by only a few percent
above ET = 40 GeV.

A systematic uncertainty in the data-to-MC efficiency
ratios is associated with the uncertainty in photon+jet simu-
lation’s modelling of the fraction of photons emitted in the
fragmentation of partons. In order to estimate the effect on
the data-to-MC efficiency ratio, the number of fragmentation
photons in the photon+jet MC sample is varied by ±50%, and
the maximum variation of the data-to-MC efficiency ratio
is taken as an additional systematic uncertainty. This uncer-

tainty decreases with increasing transverse momentum and is
always below 0.5% and 0.7% for unconverted and converted
photons, respectively. This uncertainty is also larger than the
efficiency differences observed in the simulation between dif-
ferent event generators, which are thus not considered as a
separate systematic uncertainty in the data-to-MC efficiency
ratios.

The effect of the isolation requirement on the data-to-MC
efficiency ratios is checked by varying it between 3 GeV
and 7 GeV and recomputing the data-to-MC efficiency ratios
using Z boson radiative decays. The study is performed in
different regions of pseudorapidity and integrated over ET to
reduce statistical fluctuations. The deviation of the alterna-
tive data-to-MC efficiency ratios from the nominal value is
typically 0.5% and always lower than 1.2%, almost inde-
pendent of pseudorapidity. This deviation is thus consid-
ered as an additional uncertainty and added in quadrature
in ATLAS measurements with final-state photons to which
an isolation requirement different from E iso

T < 4 GeV is
applied.
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Fig. 10 Comparison of the radiative Z boson data-driven efficiency
measurements of converted photons to the nominal and corrected
Z → ��γ MC predictions as a function of ET in the region 10 GeV <

ET < 80 GeV, for the four pseudorapidity intervals a |η| < 0.6, b
0.6 ≤ |η| < 1.37, c 1.52 ≤ |η| < 1.81, and d 1.81 ≤ |η| < 2.37.

The bottom panels show the ratio of the data-driven results to the MC
predictions (also called scale factors in the text). The error bars on the
data points represent the quadratic sum of the statistical and systematic
uncertainties. The error bars on the MC predictions correspond to the
statistical uncertainty from the number of simulated events

The combined data-to-MC efficiency ratios with their total
uncertainties are shown as a function of ET in Figs. 13 and 14.
In the low transverse energy region these ratios decrease from
values higher than one to values smaller than one because the
data and MC efficiency curves cross between 10 and 20 GeV,
as can be seen in Figs. 9 and 10. The change of shape at ET =
30 GeV can be explained by the fact that the electron extrap-
olation method starts entering the combination, changing the
central values but also decreasing the uncertainties.

The total uncertainty in the data-to-MC efficiency ratio is
1.4–4.5% (1.7–5.6%) for unconverted (converted) photons
for 10 GeV < ET < 30 GeV, it decreases to 0.2–2.0% (0.2–
1.5%) for 30 GeV < ET < 100 GeV, and it further decreases
to 0.2–0.8% (0.2–0.5%) for higher transverse momenta. The
≈5% uncertainty at low transverse momenta is due to the
systematic uncertainty affecting the measurement with radia-
tive Z boson decays for 10 GeV < ET < 15 GeV. Above
15 GeV the total uncertainty is below 2.5% (3.0%) for uncon-
verted (converted) photons. A summary of the contributions

to the final uncertainty on the data-to-MC efficiency ratios
of the different sources of uncertainties described in Sect. 5
is given in Table 2. The background systematic uncertain-
ties correspond to the background subtraction done in the
three methods. The material uncertainty comes from limited
knowledge of the material upstream of the calorimeter which
affects the shower-shape description for the electron extrap-
olation method (Sect. 5.2) and the track isolation efficiency
for the matrix method (Sect. 5.3). The non-closure test uncer-
tainty of the Smirnov transform appears only in the electron
extrapolation method (Sect. 5.2).

In multi-photon processes, such as Higgs boson decays
to two photons, a per-event efficiency correction to the
simulated events is computed by applying scale factors to
each of the photons in the event. The associated uncertainty
depends on the correlation between SF uncertainties in dif-
ferent regions of photon |η| and ET, and for converted and
unconverted photons. Among the systematic uncertainties
considered in the analysis, the impact of correlations is found
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Fig. 11 Comparison of the electron extrapolation and matrix method
data-driven efficiency measurements of unconverted photons to the
nominal and corrected prompt-photon+jet MC predictions as a function
of ET in the region 20 GeV < ET < 1500 GeV, for the four pseudora-
pidity intervals a |η| < 0.6, b 0.6 ≤ |η| < 1.37, c 1.52 ≤ |η| < 1.81,
and d 1.81 ≤ |η| < 2.37. The bottom panels show the ratio of the

data-driven results to the MC predictions (also called scale factors in
the text). The error bars on the data points represent the quadratic sum
of the statistical and systematic uncertainties. The error bars on the MC
predictions correspond to the statistical uncertainty from the number of
simulated events

to be negligible in all cases but one, that of the uncertainty
in the background level in the matrix method determination
(see Sect. 5.3). Its contribution to the SF uncertainty is con-
servatively assumed to be fully correlated across all regions
of |η| and ET and between converted and unconverted pho-
tons, while the rest of the SF uncertainty is assumed to be
uncorrelated. The correlated and uncorrelated components
of the uncertainty in each region are then propagated to the
per-event uncertainty using a toy-experiment technique.

7 Photon identification efficiency at
√
s = 7 TeV

As described in Sect. 3.2, photon identification in the analysis
of 7 TeV data relies on the same cut-based algorithms used
for the 8 TeV data, with different thresholds. Such thresholds
were first determined using simulated samples prior to the

2010 data-taking and then loosened in order to reduce the
observed inefficiency and the systematic uncertainties arising
from the differences found between the distributions of the
discriminating variables in data and in the simulation.

The efficiency of the identification algorithms used for
the analysis of the 7 TeV data is measured with the same
techniques described in Sect. 5. Small differences between
the 7 and 8 TeV measurements concern the simulated sam-
ples that were used, and the criteria used to select the data
control samples. The 7 TeV simulations are based on a dif-
ferent detector material model, as described in Sect. 4; the
number of simulated pile-up interactions and the correction
factors for the lepton efficiency and momentum scale and
resolution also differ from those of the 8 TeV study, as do
the lepton triggers and the algorithms used to identify the
leptons in data. Due to the smaller number of events, the
7 TeV measurements cover a narrower transverse momentum
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Fig. 12 Comparison of the electron extrapolation and matrix method
data-driven efficiency measurements of converted photons to the nom-
inal and corrected prompt-photon+jet MC predictions as a function of
ET in the region 20 GeV < ET < 1500 GeV, for the four pseudora-
pidity intervals a |η| < 0.6, b 0.6 ≤ |η| < 1.37, c 1.52 ≤ |η| < 1.81,
and d 1.81 ≤ |η| < 2.37. The bottom panels show the ratio of the

data-driven values to the MC predictions (also called scale factors in
the text). The error bars on the data points represent the quadratic sum
of the statistical and systematic uncertainties. The error bars on the MC
predictions correspond to the statistical uncertainty from the number of
simulated events

range, 20 GeV < ET < 250 GeV. The nominal efficiency is
measured with respect to photons having a calorimeter iso-
lation transverse energy lower than 5 GeV, a typical require-
ment used in 7 TeV ATLAS measurements. The isolation
energy is computed using all the calorimeter cells in a cone
of 	R = 0.4 around the photon and corrected for pile-up
and the photon energy.

The number of selected candidates is 12000 in the Z →
��γ study, 1.8×106 in the Z → ee one, and 1.5×107 in the
measurement with the matrix method. All data-driven mea-
surements are combined using the same procedure described
in Sect. 6.2 for the scale factors, and then compared to a sim-
ulation of prompt-photon+jet events. In the combination, the
differences between the efficiencies of photons from radiative
Z boson decays and of photons from γ+jet events mentioned
in Sect. 6.2 are neglected. Such differences after the photon

isolation requirement are estimated to be much smaller than
the uncertainties of the measurements performed with the√
s = 7 TeV data. The combined efficiency measurements

for the cut-based identification algorithms at
√
s = 7 TeV

are shown in Figs. 15 and 16. The identification efficiency
increases from 60–70% for ET = 20 GeV to 87–95% (90–
99%) for ET > 100 GeV for unconverted (converted) pho-
tons. The uncertainty in the efficiency and on the data-to-MC
efficiency ratios decreases from 3–10% at low ET to about
0.5–5% for ET > 100 GeV, being typically larger at higher
|η|.

In the search of the Higgs boson decays to diphoton final
states with 7 TeV data [23], an alternative photon identifi-
cation algorithm based on an artificial neural network (NN)
was used. The neural network uses as input the same dis-
criminating variables exploited by the cut-based selection.
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Fig. 13 Combined data-to-MC efficiency ratios (SF) of unconverted photons in the region 10 GeV < ET < 1500 GeV

 [GeV]TE

20 30 210 210×2 310

co
m

bi
ne

d 
D

at
a/

M
C

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

| < 0.6η |≤0
γConverted

 < 4 GeViso
TE

-1 = 8 TeV, 20.3 fbs

ATLAS

 [GeV]TE

20 30 210 210×2 310

co
m

bi
ne

d 
D

at
a/

M
C

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

| < 1.37η |≤0.6
γConverted

 < 4 GeViso
TE

-1 = 8 TeV, 20.3 fbs

ATLAS

 [GeV]TE

20 30 210 210×2 310

co
m

bi
ne

d 
D

at
a/

M
C

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

| < 1.81η |≤1.52
γConverted

 < 4 GeViso
TE

-1 = 8 TeV, 20.3 fbs

ATLAS

 [GeV]TE

20 30 210 210×2 310

co
m

bi
ne

d 
D

at
a/

M
C

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

| < 2.37η |≤1.81
γConverted

 < 4 GeViso
TE

-1 = 8 TeV, 20.3 fbs

ATLAS

Fig. 14 Combined data-to-MC efficiency ratios (SF) of converted photons in the region 10 GeV < ET < 1500 GeV

Multi-layer perceptrons are implemented with the Toolkit for
Multivariate Data Analysis [48], using 13 nodes in a single
hidden layer. Separate networks are optimised along bins of
photon pseudorapidity and transverse momentum. Different

networks are created for photons that are reconstructed as
unconverted, single-track converted and double-track con-
verted, due to their different distributions of the discrim-
inating variables. The final identification is performed by
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Table 2 Ranges of total
uncertainty on the data-to-MC
photon identification efficiency
ratios and breakdown of the
different sources of uncertainty
for unconverted and converted
photons, in three bins of
transverse energy, giving the
minimum and maximum values
in the four pseudorapidity
regions

10–30 GeV 30–100 GeV 100–1500 GeV

Unconverted γ

Total uncertainty 1.4–4.5% 0.2–2.0% 0.2–0.8%

Statistical uncertainty 0.5–2.0% 0.1–0.7% 0.1–0.4%

Total systematic uncertainty 1.0–4.1% 0.1–1.2% 0.1–0.8%

Background uncertainty 0.6–1.3% 0.0–0.8% 0.0–0.7%

Material uncertainty 0.0–0.8% 0.0–1.1% 0.0–0.8%

Non closure 0.0% 0.0–0.9% 0.0%

Converted γ

Total uncertainty 1.7–5.6% 0.2–1.5% 0.2–0.5%

Statistical uncertainty 0.9–3.2% 0.1–0.6% 0.1–0.4%

Total systematic uncertainty 1.4–4.3% 0.2–1.4% 0.1–0.5%

Background uncertainty 0.7–1.7% 0.0–0.6% 0.0–0.4%

Material uncertainty 0.0–1.3% 0.0–1.0% 0.0–0.5%

Non closure 0.0% 0.0–0.9% 0.0%
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Fig. 15 Comparison between the identification efficiency εID of
unconverted photon candidates in

√
s = 7 TeV data and in the nominal

and corrected MC predictions in the region 20 GeV < ET < 250 GeV,
for the four pseudorapidity intervals a |η| < 0.6, b 0.6 ≤ |η| < 1.37,
c 1.52 ≤ |η| < 1.81, and d 1.81 ≤ |η| < 2.37. The black error bars

correspond to the sum in quadrature of the statistical and systematic
uncertainties estimated for the combination of the data-driven methods.
Only the statistical uncertainties are shown for the MC predictions. The
bottom panels show the ratio of the data-driven results to the nominal
and corrected MC predictions
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Fig. 16 Comparison between the identification efficiency εID of con-
verted photon candidates in

√
s = 7 TeV data and in the nominal and

corrected MC predictions in the region 20 GeV < ET < 250 GeV, for
the four pseudorapidity intervals a |η| < 0.6, b 0.6 ≤ |η| < 1.37, c
1.52 ≤ |η| < 1.81, and d 1.81 ≤ |η| < 2.37. The black errors bars

correspond to the sum in quadrature of the statistical and systematic
uncertainties estimated for the combination of the data-driven methods.
Only the statistical uncertainties are shown for the MC predictions. The
bottom panels show the ratio of the data-driven results to MC predic-
tions (also called scale factors in the text)
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Fig. 17 Efficiency (red dots) of a unconverted andb converted photons
candidates as a function of the number NPV of reconstructed primary
vertices, measured in 2012 data from radiative Z boson decays. The

measurements are integrated in pseudorapidity and in the transverse
momentum range 10 GeV < ET < 30 GeV. The red histograms
indicate the NPV distribution in 2012 data
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Fig. 18 Comparison of data-driven efficiency measurements for
unconverted photons performed with the 2011 (blue squares) and
2012 (red circles) datasets as a function of the number NPV of recon-
structed primary vertex candidates, for the four pseudorapidity inter-
vals a |η| < 0.6, b 0.6 ≤ |η| < 1.37, c 1.52 ≤ |η| < 1.81, and

d 1.81 ≤ |η| < 2.37. The 2011 measurements are performed with
the matrix method for photons with ET > 20 GeV and the 2012
measurements with the electron extrapolation method for photons with
ET > 30 GeV. The two (blue/red) histograms indicate the NPV distri-
bution in 2011/2012 data

requiring the output discriminant to be larger than a certain
threshold, tuned to reproduce the background photon rejec-
tion of the cut-based algorithm. For the training of the NN,
simulated signal events and jet-enriched data are used. In
the simulation, the discriminating variables are corrected for
the average differences observed with respect to the data.
For the NN-based photon identification algorithm, the effi-
ciency increases from 85–90% for ET = 20 GeV to about
97% (99%) for ET > 100 GeV for unconverted (converted)
photon candidates, with uncertainties varying between 4 and
7%.

8 Dependence of the photon identification efficiency
on pile-up

The dependence of the identification efficiency and of the
data/MC efficiency scale factors on pile-up was investigated
with both 7 and 8 TeV data. The efficiencies are measured
as a function of the number of reconstructed primary vertex
candidates with at least three associated tracks, NPV, a quan-
tity which is highly correlated to μ, the expected number of
interactions per bunch crossing.

In 2012 pp collisions, μ was typically between 1 and
40, with an average value of 21. In the range 10 GeV <

ET < 30 GeV the pile-up dependence of the
√
s = 8 TeV

identification efficiency is measured using Z boson radiative
decays, integrating over the photon pseudorapidity distribu-
tion because of the small size of the sample. For higher trans-
verse momenta the dependence is measured using the results
obtained with the electron extrapolation method, in four |η|
bins.

In
√
s = 7 TeV pp collisions, the pile-up dependence is

measured using the results obtained the matrix method, in
four |η| bins, integrated over the ET > 20 GeV range.

The results of the data measurements are shown in
Figs. 17, 18 and 19. The efficiency variation with NPV

in
√
s = 8 TeV data for ET < 30 GeV is shown in

Fig. 17. The variation is rather large, up to 15% in the range
0 < NPV ≤ 20 (corresponding to about 0 < μ ≤ 30). The
efficiency variation with NPV in

√
s = 8 (7) TeV data for

ET > 30 (20) GeV is shown in Figs. 18 and 19. In the 8 TeV
data the efficiency dependence on pile-up for ET > 30 GeV
is similar in the pseudorapidity intervals that have been stud-
ied, with a decrease of about 3–4% when NPV increases from
1 to 20. The pile-up dependence of the photon identification
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Fig. 19 Comparison of data-driven efficiency measurements for con-
verted photons performed with the 2011 (blue squares) and 2012 (red
circles) datasets as a function of the number NPV of reconstructed pri-
mary vertex candidates, for the four pseudorapidity intervals a |η| <

0.6, b 0.6 ≤ |η| < 1.37, c 1.52 ≤ |η| < 1.81, and d 1.81 ≤ |η| < 2.37.

The 2011 measurements are performed with the matrix method for
photons with ET > 20 GeV and the 2012 measurements with the elec-
tron extrapolation method for photons with ET > 30 GeV. The two
(blue/red) histograms indicate the NPV distribution in 2011/2012 data

efficiency is smaller in 8 TeV data than in 7 TeV data, since the
photon identification criteria were specifically re-optimised
to be less sensitive to pile-up before the start of the 8 TeV
data taking.

To further study the pile-up dependence of the efficiency
at high photon transverse momenta, the

√
s = 8 TeV mea-

surements with the electron extrapolation have been repeated
using only electron probes with ET > 45 GeV. The effi-
ciency for ET > 45 GeV photons decreases by only 1–3%
when NPV increases from 1 to 20.

The pile-up dependence of the efficiency in data is com-
pared to the prediction of the simulation by calculating the
data-to-MC efficiency ratios as a function of the number of
reconstructed primary vertex candidates NPV. The pile-up
dependence of the data-to-MC efficiency ratios is assessed
through a linear fit of the efficiency ratios as a function of
NPV. The slopes of these fits are always consistent with zero
within the uncertainties, which are of the order of 0.2%.
Therefore, while the efficiency itself varies significantly as
a function of NPV, the dependence of the data-to-MC effi-
ciency ratios on NPV in the range 0 < NPV ≤ 26 (corre-
sponding to about 0 < μ ≤ 40) is compatible with zero. This

observation suggests that the simulation correctly models the
effect of pile-up on the distributions of the discriminating
variables.

9 Conclusion

The efficiency εID of the algorithms used by ATLAS to iden-
tify photons during the LHC Run 1 has been measured from
pp collision data using three independent methods in differ-
ent photon ET ranges. The three measurements agree within
their uncertainties in the overlapping ET ranges, and are com-
bined.

For the data taken in 2011, 4.9 fb−1 at
√
s = 7 TeV, the

efficiency of the cut-based identification algorithm increases
from 60–70% at ET = 20 GeV up to 87–95% (90–99%) at
ET > 100 GeV for unconverted (converted) photons. With an
optimised neural network this efficiency increases from 85–
90% at ET = 20 GeV to about 97% (99%) at ET > 100 GeV
for unconverted (converted) photon candidates for a similar
background rejection. For the data taken in 2012, 20.3 fb−1

at
√
s = 8 TeV, the efficiency of a re-optimised cut-based
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photon identification algorithm increases from 50–65% (45–
55%) for unconverted (converted) photons at ET = 10 GeV
to 95–100% at ET > 100 GeV, being larger than ≈90% for
ET > 40 GeV.

The nominal MC simulation of prompt photons in ATLAS
predicts significantly higher identification efficiency values
than those measured in some regions of the phase space,
particularly at low ET. A simulation with shower shapes cor-
rected for the average shifts observed with respect to the
data describes the values of εID better in the entire ET and
η range accessible by the data-driven methods. The residual
difference between the efficiencies in data and in the cor-
rected simulation are taken into account by computing data-
to-MC efficiency scale factors. These factors differ from one
by up to 10% at ET = 10 GeV and by only a few per-
cents above ET = 40 GeV, with an uncertainty decreas-
ing from 1.4–4.5% (1.7–5.6%) at ET = 10 GeV for uncon-
verted (converted) photons to 0.2–0.8% (0.2–0.5%) at high
ET for

√
s = 8 TeV. The uncertainties are slightly larger

for
√
s = 7 TeV data due to the smaller size of the control

samples.
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Appendix

A Definition of the photon identification discriminating
variables

In this Appendix, the quantities used in the selection of pho-
ton candidates, based on the reconstructed energy deposits
in the ATLAS calorimeters, are summarised.

• Leakage in the hadronic calorimeter
The following discriminating variables are defined, based
on the energy deposited in the hadronic calorimeter:

– Normalised hadronic leakage

Rhad = Ehad
T

ET
(4)

is the transverse energy Ehad
T deposited in cells of the

hadronic calorimeter whose centre is in a window
	η × 	φ = 0.24 × 0.24 behind the photon cluster,
normalised to the total transverse energy ET of the
photon candidate.

– Normalised hadronic leakage in first layer

Rhad1 = Ehad,1
T

ET
(5)

is the transverse energy Ehad,1
T deposited in cells of

the first layer of the hadronic calorimeter whose cen-
tre is in a window 	η × 	φ = 0.24 × 0.24 behind
the photon cluster, normalised to the total transverse
energy ET of the photon candidate.

The Rhad variable is used in the selection of photon candi-
dates with pseudorapidity |η| between 0.8 and 1.37 while
the Rhad1 variable is used otherwise.

• Variables using the second (“middle”) layer of the
electromagnetic calorimeter
The discriminating variables based on the energy
deposited in the second layer of the electromagnetic
calorimeter are the following:

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


666 Page 28 of 42 Eur. Phys. J. C (2016) 76 :666

– Middle η energy ratio

Rη = ES2
3×7

ES2
7×7

(6)

is the ratio of the sum ES2
3×7 of the energies of the

second-layer cells of the electromagnetic calorimeter
contained in a 3×7 rectangle in η × φ measured in
cell units (0.025 × 0.0245), to the sum ES2

7×7 of the
energies in a 7×7 rectangle, both centred around the
cluster seed.

– Middle φ energy ratio

Rφ = ES2
3×3

ES2
3×7

(7)

is defined similarly to Rη. Rφ behaves very differ-
ently for unconverted and converted photons, since
the electrons and positrons generated by the lat-
ter bend in different directions in φ because of the
solenoid’s magnetic field, producing larger showers
in the φ direction than the unconverted photons.

– Middle lateral width

wη2 =
√∑

Eiη
2
i∑

Ei
−

(∑
Eiηi∑
Ei

)2

(8)

where Ei is the energy deposit in each cell, and ηi
is the actual η position of the cell, measures the
shower’s lateral width in the second layer of the elec-
tromagnetic calorimeter, using all cells in a window
η × φ = 3 × 5 measured in cell units.

• Variables using the first (“front”) layer of the electro-
magnetic calorimeter
The discriminating variables based on the energy
deposited in the first layer of the electromagnetic calorime-
ter are the following:

– Front side energy ratio

Fside = E(±3) − E(±1)

E(±1)
(9)

measures the lateral containment of the shower, along
the η direction. E(±n) is the energy in the ±n strip
cells around the one with the largest energy.

– Front lateral width (3 strips)

ws 3 =
√∑

Ei (i − imax)2
∑

Ei
(10)

measures the shower width along η in the first layer
of the electromagnetic calorimeter, using a total of

three strip cells centred on the largest energy deposit.
The index i is the strip identification number, imax

identifies the strip cells with the greatest energy, and
Ei is the energy deposit in each strip cell.

– Front lateral width (total)
ws tot measures the shower width along η in the first
layer of the electromagnetic calorimeter using all
cells in a window 	η×	φ = 0.0625×0.196, corre-
sponding approximately to 20×2 strip cells in η×φ,
and is computed as ws 3.

– Front second maximum energy difference

	E =
[
ES1

2ndmax − ES1
min

]
(11)

is the difference between the energy of the strip
cell with the second largest energy ES1

2ndmax
, and the

energy in the strip cell with the lowest energy found
between the largest and the second largest energy
ES1

min (	E = 0 when there is no second maximum).
– Front maxima relative energy ratio

Eratio = ES1
1st max − ES1

2nd max

ES1
1st max + ES1

2nd max

(12)

measures the relative difference between the energy
of the strip cell with the largest energy ES1

1st max and
the energy in the strip cell with second largest energy
ES1

2nd max
(Eratio = 1 when there is no second maxi-

mum).
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