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Abstract We report an analysis of the neutral mesosphere density response to geomagnetic activity from
January 2016 to February 2017 over Antarctica. Neutral mesospheric densities from 85 to 95 km are derived
using data from the Davis meteor radar (68.5°S, 77.9°E) and the Microwave Limb Sounder on the Aura
satellite. Spectral and Morlet wavelet analyses indicate that a prominent oscillation with a periodicity of
13.5 days is observed in the mesospheric density during the declining phase of solar cycle 24 and is
associated with variations in solar wind high-speed streams and recurrent geomagnetic activity. The periodic
oscillation in density shows a strong anticorrelation with periodic changes in the auroral electrojet index.
These results indicate that a significant decrease in neutral mesospheric density as the geomagnetic
activity enhances.

1. Introduction

The middle and upper atmosphere can be disturbed by the upward momentum deposition of atmospheric
waves, including planetary waves, tides, and gravity waves from lower atmosphere [e.g., Salby, 1984; Fritts
and Alexander, 2003; Forbes and Garrett, 1979], as well as downward energy and momentum transport
through magnetosphere-ionosphere-thermosphere (MIT) coupling [e.g., Xu et al., 2011; Lei et al., 2010]. A
direct relationship between rotating solar coronal holes and the Earth’s upper atmosphere with periodicities
of 5, 7, 9, and 13.5 day oscillations in the thermosphere and ionosphere were originally reported byMlynczak
et al. [2008], Lei et al. [2008a, 2008c], and Thayer et al. [2008], as well as in subsequent studies including Lei
et al. [2008b, 2011], Crowley et al. [2008], Sojka et al. [2009], Chang et al. [2009], Pedatella et al. [2010], Tulasi
Ram et al. [2010], Jiang et al. [2014], and Xu et al. [2015]. However, the periodic oscillations observed in these
studies are confined to the MIT system, with the mechanism considered to be Joule and particle heating of
the thermosphere [e.g., Jiang et al., 2014].

Geomagnetic activity can affect the polar middle atmosphere through the impact of energetic particle
(protons, electrons, and rarely heavier ions) precipitation (EPP) on atmospheric chemistry [e.g., Turunen
et al., 2009; Daae et al., 2012]. In particular, EPP can lead to the production of odd hydrogen (HOx =
H + OH + HO2) and odd nitrogen (NOx = N + NO + NO2), both of which can cause the depletion of meso-
spheric ozone (O3) [see, e.g., Andersson et al., 2012, 2014a, 2014b, 2016; Verronen et al., 2011, 2013; Fytterer
et al., 2015, 2016; Turunen et al., 2016; Zawedde et al., 2016]. These studies have found evidence of the impact
of geomagnetic forcing on the composition of the mesosphere, especially mesospheric O3. However, the
expected related response of neutral mesospheric temperature and density to such geomagnetic forcing
has never been found.

Accurate knowledge of neutral mesospheric density is essential for studying the dynamics and climate in
this region, but continuous measurements of neutral mesospheric density are difficult to obtain, leading to
relatively scarce data. Estimates of the ambipolar diffusion coefficient by meteor radar are sensitive to
changes in atmospheric density and temperature, which provide methods to estimate neutral mesospheric
density. In this paper, data from an Antarctic meteor radar from January 2016 to February 2017 are used
to estimate neutral mesospheric density height profiles. We find that neutral mesospheric density shows
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a clear response to geomagnetic activity and discuss a possible mechanism for this magnetosphere-
mesosphere coupling.

2. Data and Method

An ATRADmeteor detection radar has been operated by the Australian Antarctic Division since 2005 at Davis
Station (68.5°S, 77.9°E; magnetic latitude, 74.6°S), Antarctica. The Davis meteor radar operates at a frequency
of 33 MHz with a peak power of 7.5 kW and transmits 3.6 km long, 4 bit complimentary coded circularly polar-
ized pulses at a pulse repetition rate of 430 Hz [Holdsworth et al., 2004, 2008].

The typical meteor detection rate of the Davis meteor radar is 5000–15000 unambiguous underdense meteor
echoes per day, with maximum count rates observed in the southern hemisphere summer (December/
January) and minimum in winter (August/September) [e.g., Reid et al., 2006]. In order to avoid the possibility
of excessive error in the height estimates of individual meteors, trail detections for this study were restricted
to zenith angles of less than 60°. This reduced the usable detection rate to 4000–10,000 per day. In this study,
we separate the meteor radar data into dayside (6:00–18:00 h local time) and nightside (18:00–6:00 h local
time), offering the opportunity to explore any local time dependency.

The Microwave Limb Sounder (MLS) instrument is on board the Earth Observing System (EOS) Aura space-
craft, which was launched in 2004. MLS observes atmospheric thermal microwave emissions in five spectral
regions from 115 GHz to 2.5 THz. Temperatures are retrieved from bands near the O2 spectral lines at 118 GHz
and 239 GHz [Schwartz et al., 2008]. Restricting Aura MLS temperature and geopotential height data (version
4) to within a 300 km radius of the Davis meteor radar resulted in two sets of MLS observations at approxi-
mately 10:00 h and 19:00 h universal time. The daily MLS temperature and geopotential height observations
were divided into dayside (near 10:00 h UT) and nightside (near 19:00 h UT), averaged, and interpolated into
1 km bins between 85 and 95 km to produce temperature profiles using geometric heights obtained from
geopotential heights [see, e.g., Younger et al., 2014, 2015].

Solar wind and geomagnetic activity was characterized by the hourly averaged solar wind speed observed by
the Advanced Composition Explorer (ACE) satellite, the planetary magnetic activity index, Kp, the auroral elec-
trojet index, AE, and the daily solar activity proxy, F10.7.

3. Analysis

The ambipolar diffusion coefficient D describes the rate at which plasma diffuses in a neutral background and
is a function of atmospheric temperature, T, and atmospheric pressure, P, (or atmospheric density, ρ) [see, e.g.,
Younger et al., 2014] as given by

ρ ¼ 2:23�10�4K0
T
D
; (1)

where K0 is the ionic zero-field mobility. Following Chilson et al. [1996], Hocking et al. [1997], and Cervera and
Reid [2000], K0 is assumed to be 2.5 × 10�4m�2s�1V�1. Using the relation given by equation (1), measure-
ments of the temperature and ambipolar diffusion coefficient can be used to retrieve neutral mesospheric
density [e.g., Takahashi et al., 2002].

The log10D profiles derived from meteor radar are approximately linear with respect to altitude in the range
of 85–95 km [see, e.g., Yi et al., 2016], which indicates that the ambipolar diffusion mainly governs the evolu-
tion of meteor trails in this region [see, e.g., Younger et al., 2014]. To improve the accuracy of the height profile
of D, an outlier rejection was applied, in which diffusion coefficients of more than two standard deviations
from the mean were discarded, and a new mean was calculated from the remaining estimates of each
1 km height bin. Values of D and MLS temperature from 85 to 95 km were then to estimate the dayside
and nightside neutral mesospheric density using equation (1).

The dayside and nightside densities estimated from the Davis meteor radar show a dominant annual
variation, with a maximum during spring (November) and a minimum during winter (June). In this study,
we focus on the shorter term periodic variabilities in mesospheric density, and so we remove seasonal
variations to obtain the residual of the mesospheric neutral density. Observations of long-term changes,
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such as seasonal variations and solar cycle variations of neutral mesospheric density, will be detailed in
subsequent work.

4. Results

As shown in Figure 1a, predominant spectral peaks in dayside density can be found at the periods of 27, 13.5,
9, and 6.75 days. These correspond to peaks in the spectra of the Kp index. It is interesting to note that these
periodic oscillations in dayside density are more evident at lower altitudes and have largely disappeared
above 92 km. As Figure 1b shows, the periodicities of 27, 13.5, and 9 day oscillations are also present in
the nightside density but seem to be confined to heights below about 89 km.

Note that we only examine the 13.5 day periodicity in this study, although periodicities of 6.75, 9, and 27 days
are also present in the neutral mesospheric density during this period. This is because the 6.75 and 9 day per-
iodicities are present but relatively weak, and the 27 day periodicity is present in both geomagnetic activity
and solar EUV radiation, which makes it difficult to separate the impact of the different forcing.

The Morlet wavelet [see, e.g., Torrence and Compo, 1998; Liu et al., 2007] results in Figures 2a and 2b show that
the 13.5 day oscillation is the most prominent feature in dayside density and is almost always present around
days 280(2016)–15(2017). The 13.5 day periodic variation is weaker in nightside density than in dayside den-
sity, but it is still clearly evident in some periods, such as around days 275–305 in 2016.

The peak height of the meteor detection distribution can serve as a proxy for the height of a constant neutral
mesospheric density surface and so can provide insight into planetary wave activity [see, e.g., Stober et al.,
2012]. The wavelet spectral power of peak height in Figures 2c and 2d shows similar 13.5 day periodic oscilla-
tions with density, and the time occurrence of this periodic oscillation in peak height is consistent with the
density. Similar to the nightside density, the 13.5 day oscillation in the nightside peak height is weaker than
in dayside. However, it should be noted that all of disturbances in nightside peak height seem to be weaker
than in dayside. The presence of a 13.5 day oscillation in peak height, which depends directly on density, can
be used to exclude the possibility that the geomagnetic field and background plasma of ionosphericD region
effects are influencing the density values obtained from ambipolar diffusion coefficient estimates [see, e.g.,
Jones, 1991; Ceplecha et al., 1998].

It should be noted that the 13.5 day oscillations were not present in MLS temperatures during the period of
this study. Lee et al. [2013] found a direct relation between the strength of summertime high northern lati-
tude D region VHF echo strength and high-speed solar wind streams in 2006 and 2008, but no response of
a similar period in MLS temperature data. In their case, the echo strength is likely being enhanced by direct
particle precipitation “illuminating” the turbulent structures, rather than a direct density response. A similar

Figure 1. Contour of Lomb-Scargle spectral [see, e.g., Lomb, 1976; Scargle, 1982] amplitudes of (a) dayside and (b) nightside
relative residual density as a function of altitude and period, from January 2016 to February 2017. The color bar indicates
the percentage amplitude of the density residual to the mean density from January 2016 to February 2017. The Lomb-
Scargle Periodogram of the simutaneous Kp index is also superimposed (solid line, right axis).
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relationship between high northern latitude VHF radar echo occurrence and absorption has previously been
suggested by Czechowsky et al. [1989].

From Figures 2e and 2f, we find that the time evolution of the 13.5 day oscillation in the density perturbations
matches well with those of the solar wind speed and Kp. This indicates that the observed 13.5 day oscillations
in the neutral mesospheric density are related to the variations of solar wind and recurrent geomagnetic
activity. Finally, the wavelet spectral plot of F10.7 in Figure 2g confirms again that the variations with a peri-
odicity of 13.5 days in density are not present in the F10.7 index during this period, and so we can exclude
solar EUV flux effects as a direct driver of these oscillations.

The 27 day and harmonic periodicities of recurrent geomagnetic activities are caused by periodic high-speed
solar wind streams originating from the average distribution of coronal holes in solar longitude [Temmer et al.,
2007; Lei et al., 2008b]. It is interesting to note that the periodicity of 13.5 day is the strongest feature in our
study. However, the 9 day oscillation is the strongest feature in solar cycle 23, especially in 2005 [e.g., Lei et al.,
2008a, 2008b, 2008c], while the 13.5 day oscillation is weak in solar cycle 23. Xu et al. [2015] compared the
strength of 9 and 13.5 day oscillations in thermospheric density from 1967 to 2007 and found that only

Figure 2. Morlet wavelet power spectra of the time series of the residual from (a) dayside and (b) nightside density at
87 km, the residual from (c) dayside and (d) nightside peak height, (e) Kp, (f) solar wind velocity, and (g) F10.7 index
from 2016 to February 2017. The white solid contours denote the regions of the wavelet spectrum above the 95%
confidence level.
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during 2003–2007 was the 9 day oscillation stronger than the 13.5 day oscillation, with the 13.5 day
oscillation usually being stronger than the 9 day oscillation.

During the declining phase of a solar cycle and solar minimum, recurrent geomagnetic activity often occurs
as a result of periodic forcing by high-speed solar wind streams and corotating interaction regions (CIRs)
[Tsurutani et al., 2006]. The years of 2016 and 2017 lie just in the declining phase of solar cycle 24 as solar
activity is weakening. The 13.5 day oscillation is the primary feature in periodic geomagnetic activity in this
solar cycle and may be gradually strengthening as the minimum of solar cycle 24 approaches.

5. Discussion and Summary

Spectral analysis of the Davis meteor radar density from 85 to 95 km, shown in Figures 1 and 2, reveals that a
13.5 day oscillation is presents in mesospheric density and is associated with solar wind and recurrent geo-
magnetic activity. An outstanding question is how periodic variations of solar wind and geomagnetic activity
are modulating neutral mesospheric density. As the 13.5 day osicllation in meospheric density is much more
evident during days 260(2016)–62(2017) in the wavelet results in Figure 2, we limit our investigation to this
period to further examine the relationship between mesosphreic density and Kp.

Note that there is a clear anticorrelation between density and Kp in Figure 3a, which is stronger at lower
than higher altitudes. In addition, the dayside peak height also shows a rough anticorrelation with Kp.
Furthermore, the 13.5 day periodic variation is clearly visible in dayside density and Kp after day 260 of
2016. The anticorrelation is not as obvious in the nightside density as in the dayside density, but is still
present at times, such as the period around the days 260–275 in 2016, where there is a decrease in density
as the geomagnetic activity enhances.

Numerous studies have reported an in-phase response of thermospheric density and temperature to periodic
oscillations of geomagnetic activity [e.g., Lei et al., 2008a, 2008b, 2011; Chang et al., 2009; Qian et al., 2010;
Jiang et al., 2014; Xu et al., 2015]. The mechanism driving these periodic oscillations is considered to be
Joule and particle heating in the thermosphere [Lei et al., 2008a, 2008b; Qian et al., 2010; Jiang et al., 2014].
Crowley et al. [2008] reported an anticorrelation between the

P
O/N2 ratio in thermosphere at high latitudes

and geomagnetic activity and suggested the mechanism of uplifted molecular-rich air carried by upwelling
winds driven by Joule and particle heating in the lower thermosphere. However, in our study, the antiphase
response of density to periodic geomagnetic activity is present in the mesosphere and increases in magni-
tude with decreasing altitude.

The influence of Joule heating is confined to the lower thermosphere at low and middle latitudes [Jiang et al.,
2014], with possible penetration down to the polar mesosphere during strong magnetic storms [Sinnhuber
et al., 2012]. However, in our study, we found the neutral mesospheric density to be sensitive to both geo-
magnetic storms and small geomagnetic activity (Kp < 3). This may suggest another mechanism for the
response of neutral mesospheric density to geomagnetic activity.

Figure 3. Davis meteor radar (a) dayside and (b) nightside density residual percentage as a function of time and height. The
color bar indicates the percentage of residual density to the mean density during 260(2016)–62(2017). The magenta
dashed line denotes the meteor peak height. The solid black line denotes the Kp values, corresponding to the right axis.
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To further examine this phenomenon, we applied a band-pass filter to the time series of mesospheric density
and Kp, as well as the auroral electrojet index, AE, which is used to indicate the strength of energetic particle
precipitation into the polar mesosphere, during days 260–366 in 2016. The band-pass filter is centered at the
period of 13.5 days with lower and upper bounds of 10 and 16 days.

Figures 4a and 4b show clear anticorrelations between density and Kp and AE indices and also shows that the
effects of geomagnetic activity have a local time dependency in that they are stronger in the dayside, rather
than the nightside. Figure 4c shows that the correlations betweenmesospheric density oscillation and Kp and
AE indices are quite strong, with a small decrease with increasing altitude, from �0.90 to �0.64 and from
�0.92 to�0.71, respectively. However, Figure 4d shows that the anticorrelations between the nightside den-
sity and Kp and AE both show a substantial weakening with increasing altitude. In this case, the correlation
coefficients between nightside density and Kp and AE decrease from �0.87 to �0.24 and from �0.94 to
�0.46, respectively. Note that the correlation between nightside density and AE is obviously stronger than
that with Kp. In addition, a slightly stronger correlation can be also found between the dayside density and
AE. This indicates that the periodic oscillation in mesospheric neutral density has a stronger response to
the auroral energetic particle precipitation than to geomagnetic activity.

Recent observations and modeling has indicated the significant impact of EPP driven by high-speed solar
wind streams and CIRs [Turunen et al., 2009] on the chemistry of the mesosphere and lower thermosphere
[e.g., Sinnhuber et al., 2012; Andersson et al., 2014b, 2016; Fytterer et al., 2015, 2016; Turunen et al., 2016].
These studies find that the most important processes are dissociation, dissociative ionization, and ionization
of N2, O2, and O. These processes are followed by ion-chemistry formation of NOx and HOx, and a subsequent
loss on the order of tens of percent of mesospheric O3 at 70–80 km [Andersson et al., 2014b]. In addition,
Tsuda et al. [2017] found a significant decrease in the Na density with an increase in the AE index due to
the effects of EPP above 95 km in both northern and southern polar regions. These authors also note that
mesospheric dynamics can be affected by a combination of Joule heating, chemical and radiative heating
changes, and resultant changes in the interaction between the zonal mean flow, gravity wave propagation,
and gravity wave breaking. It is well known that the absorption of solar ultraviolet (UV) radiation by O3 is an
important source of mesospheric heating and cooling, and changes to ozone concentration will significantly
affect the local mesospheric temperature, as well as mesospheric density. The range of possible processes
and their impacts are complex, but we can provide a simple possible explanation that is consistent with
our results.

We propose the explanation that the periodic variation of the high-speed solar wind stream modulates a
similar geomagnetic disturbance (shown in Kp) in the magnetosphere during the declining phase of a

Figure 4. Density residual percentages of the (a) dayside and (b) nightside band-pass filtered at 13.5 days (10–16 days) with
a mean density calculated for days 260–366 of 2016. The perturbations at 13.5 days in Kp (black dashed line) and AE index
(magenta dashed line) obtained from the same band-pass filter are shown and correspond to the right-hand scale. Also
shown are the correlation coefficients between the band-pass filter density and Kp (black solid lines), as well as AE index
(magenta dashed line) in (c) dayside and (d) nightside.
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solar cycle and solar minimum, which in turn leads to a similar variation in EPP (shown in AE). This can directly
penetrate into the mesophere from the Earth’s radiation belts, causing a depletion of mesospheric O3 [e.g.,
Andersson et al., 2014b; Fytterer et al., 2015; Turunen et al., 2016]. This in turn would lead to the loss of radiative
heating by O3 absorption, leading to a temperature reduction, as well as a decrease in mesospheric density.
This suggestion, although speculative, is consistent with both the anticorrelation between the geomagnetic
activity and the neutral mesospheric density, and also with the strengthening response with decreasing alti-
tude. It is also consistent with the local time dependence, having a stronger effect on the dayside density
than the nightside density.

Electrons with energy levels of several keV-MeV can precipitate down tomesospheric regions with a geomag-
netic latitudinal bands primarily between 55° and 75°S/N [e.g., Andersson et al., 2014a; Fytterer et al., 2015]. The
Davis meteor radar is located just within this region. We note that we also find a similar response for densities
determined using the Nippon/Norway Tromsø meteor radar [see, e.g., Hall et al., 2006; Holmen et al., 2016]
(69.6°N, 19.2°E; magnetic latitude, 66.73°N) in the Arctic, but an absence of this effect for Mohe meteor radar
observations in northern China [see, e.g., Liu et al., 2017] (53.5°N, 122.3°E, magnetic latitude, 44°N). This sug-
gests a geomagnetic latitude dependence connected to the outer radiation belts which will be reported in
detail in a following paper.

This is the first paper to report a response of neutral mesospheric density to geomagnetic forcing. It provides
an important insight for future modeling work on the Earth’s magnetosphere-thermosphere-mesosphere
coupling. However, the actual mechanism of cooling due to EPP-induced ozone destruction has not been
comprehensively proven and is left as an open question for the moment. Future observations and modeling
are needed to more completely characterize the coupling process between geomagnetic activity and
mesospheric density.
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