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Abstract

Background: Democratising the growing body of whole genome sequencing data available for Triticum aestivum
(bread wheat) has been impeded by the lack of a genome reference and the large computational requirements for
analysing these data sets.

Results: DAWN (Diversity Among Wheat geNomes) integrates data from the T. aestivum Chinese Spring (CS) IWGSC
RefSeq v1.0 genome with public WGS and exome data from 17 and 62 accessions respectively, enabling researchers
and breeders alike to investigate genotypic differences between wheat accessions at the level of whole
chromosomes down to individual genes.

Conclusions: Using DAWN we show that it is possible to visualise small and large chromosomal deletions, identify
haplotypes at a glance and spot the consequences of selective breeding. DAWN allows us to detect the break points
of alien introgression segments brought into an accession when transferring desired genes. Furthermore, we can find
possible explanations for reduced recombination in parts of a chromosome, we can predict regions with linkage drag,
and also look at diversity in centromeric regions.
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Background
With advances in technology and the reducing costs of
high-throughput sequencing, it has become feasible to
sequence the large (≈17 Gbp), polyploid genome of bread
wheat (Triticum aestivum) and resequencing projects
have been undertaken [1] or are currently underway
[2, 3]. Ahead of these whole genome sequencing projects,
data from thousands of sequenced exomes has become
available, predominantly from TILLING populations
[4, 5]. While exome capture provides a means to sequence
and analyse many more individuals by significantly reduc-
ing the sequencing space [6], it is limited to the cod-
ing regions for which probes have been designed and
is sensitive to GC content. As a result, the coverage of
coding regions by exome capture has been shown to be
inferior to whole genome sequencing [7]. Furthermore,
whole genome sequencing is not only more powerful
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in detecting exome variants [8] but is capable of cap-
turing structural variation and non-exonic variants [9].
However, this comes at the cost of significantly more
resources, not only in terms of sequencing but also the
analysis.
Genetic diversity is generally estimated at the pop-

ulation level from SNP data and provides information
on the amount of genetic diversity between individu-
als at the whole genome level, but not on its distri-
bution within the genome. However, genetic diversity
goes beyond SNPs and includes indels, introgressions
and other structural variation such as copy-number-
variation (CNV). These are all known to be important
drivers of diversity. Introgressions are often the result
of wide crosses with landraces, wild relatives or related
species such as rye. These donor species are often more
resilient and are good sources of tolerance to various dis-
eases and abiotic stresses such as heat and drought, and
have been used extensively in wheat breeding [10, 11].
The ability to access and visualise genetic diversity in
detail, from whole chromosomes to individual genes,
will enable a better understanding and utilisation of the
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available diversity in a region of interest, irrespective
of scale.
While whole genome sequencing resources are available

to the community, their wider utility has been impeded
due to several factors: 1) the lack of a high quality,
contiguous reference genome assembly and gene annota-
tions; 2) the large computational resource requirements
for analysing these data sets effectively and 3) the tools
for making that information available in a way that would
allow breeders to access information on potentially useful
genetic diversity. Addressing these issues is key to clos-
ing the gap between research and some of the challenges
in plant breeding. The release of the IWGSC RefSeq v1.0
assembly [12], and associated annotations, addresses the
first of these issues. Through DAWN (Diversity Among
Wheat geNomes) we address the other two issues.

Implementation
DAWN provides convenient access to almost 1 ter-
abyte of precomputed data. This is derived from a
Whole Genome Shotgun (WGS) sequencing project of
17 wheat accessions, including Chinese Spring (CS), 62
exome captures, and RNA-seq data from several tis-
sues and developmental stages from CS. For conve-
nience, it also incorporates annotation data released
with the CS IWGSC RefSeq v1.0 assembly, including
gene annotations and marker location information. This
resource is accessible to the wheat community through
a JBrowse [13, 14] genome browser interface hosted at
http://crobiad.agwine.adelaide.edu.au/dawn/.

Reference genome and annotations
DAWN uses the Triticum aestivum CS IWGSC RefSeq
v1.0 genome assembly as the reference genome [12]. To
our knowledge, no currently available genome browsers,
including UCSC [15], Ensembl [16], IGV [17], Tablet
[18] or JBrowse [13, 14], support the CSI indexing
schema. Therefore to enable the visualisation of read
alignments from BAM files and variant calls from
VCF files we have used a version of the reference
genome where each pseudomolecule had been split
into two smaller “parts”. To facilitate the conversion
of coordinates between full-length pseudomolecules and
these “parts” we have developed an online conversion
tool (http://crobiad.agwine.adelaide.edu.au/dawn/coord/).
IWGSC RefSeq v1.0 is accompanied by several GFF3 files
which describe the physical location of gene models (v1.0
and v1.1), transposable elements and markers from var-
ious platforms (e.g. Illumina Infinium iSelect 90K and
9K SNP chip markers, DArT markers and several EST
and SSR data sets). We pre-processed these files to trans-
form coordinates to match the pseudomolecule “parts”
(Additional files 1 and 2) and merged functional annota-
tions into the v1.0 high and low confidence gene models

(Additional files 3 and 4). Resulting GFF3 files were vali-
dated using GenomeTools v1.5.9 [19].
The CS IWGSC RefSeq v1.0 derived annotation tracks

are available to the user under “Annotations/RefSeq v1.0”
while the various marker data sets are available as tracks
under “Markers”. In addition, the v1.1 gene annotations
are available to the user under “Annotations/RefSeq v1.1”.
The data from these tracks have been indexed, mak-
ing genes and markers searchable by name, via the
location/search box.

WGS resequencing data
Whole Genome Shotgun (WGS) resequencing data from
16 bread wheat accessions was obtained from Bioplat-
forms Australia (BPA) [1, 20] in addition to Chinese
Spring WGS Illumina data from the ENA (accession
number PRJNA392179) [21]. The data was aligned to
the reference genome using minimap2 v2.10 [22]. Align-
ments with a MAPQ <5 were removed and then fur-
ther processed to create several data tracks per acces-
sions for visualisation. Approximately 29-50% of raw
reads failed to align with a MAPQ ≥5 while 38-56%
of raw reads aligned with a MAPQ ≥30 (Additional
file 5) These tracks are available to the user under
“Resequencing/Whole Genome Shotgun (Illumina)”. The
BPA panel includes 11 Australian accessions: Baxter,
Chara, Drysdale, Excalibur, Gladius, H-45, Kukri, RAC-
875, Westonia, Wyalkatchem and Yitpi, and 5 North-
ern Hemisphere accessions: AC-Barrie (Canada), Alsen
(USA), Pastor (CIMMYT), Volcani-DD-1 (Israel) and
Xiaoyan-54 (China). All but Xiaoyan-54 are spring
wheat.
For each accession the user can access: 1) “Coverage”

tracks for visualising read coverage depth patterns at
Kbp to Mbp scales. These show the mean coverage (yel-
low line) as well as 1 and 2 standard deviations (grey
background shading). Regions with read coverage >2*SD
from the mean were extracted, then merged if ≤500 bp
apart and reported if ≥5 kbp (above the mean) or ≥50
kbp (below the mean) in length (Additional file 6). 2)
“Read Alignment” tracks for visualising individual read
alignments and alignment mismatches at the 100’s of
bp scale. 3) “SNP Coverage” tracks for highlighting mis-
matches between the read alignments and the CS refer-
ence. Vertical lines within the read coverage plot indicate
the proportion of reads with mismatches to the CS
reference and teardrops shown below the coverage
track indicate those positions exceeding 90% alternative
bases and at ≥3 reads coverage. This track is particu-
larly useful for identifying haplotype blocks at the Kbp
scale. Most tracks transition to a read coverage depth
or variant density plots at the Kbp-Mbp scale, when
the density of information is too high to be visually
meaningful.

http://crobiad.agwine.adelaide.edu.au/dawn/
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Exome capture data
Public exome capture data for 62 accessions was obtained
from the ENA (accession number PRJNA227449) [23] and
aligned to the reference genome using the same approach
as the WGS data described above. These tracks are avail-
able to the user under “Resequencing/Exome (Illumina)”.
The data set comprises 6 breeding lines, 29 cultivars, 26
landraces and 1 synthetic hexaploid. As with the WGS
resequencing data, “Coverage”, “Read Alignment” and
“SNP Coverage” tracks are available for each accession.

Variant calls and variant density
Variant calling was performed for each accession in the
WGS resequencing and exome capture data sets, using
a SAMtools v1.8 [24] and BCFtools v1.8 calling pipeline,
and is accessible under the “Variant Calls” tracks. These
tracks show variant positions as vertical bars, coloured
according to the alternative allele. Positions that were
reported as indels or triallelic are displayed in black. Vari-
ants were classified as either high quality homozygous
(PASS), low quality homozygous (LowQualHom), high
quality heterozygous (Het) or low quality heterozygous
(LowQualHet). A summary of the number of variants for
each WGS data set is presented in Table 1. By default,
only the homozygous (PASS and LowQualHom) variant
calls are displayed. However all classes of variants can be

Table 1 Number of variants (millions) called per accession from
WGS data (% indel calls)

Accession PASS Het LowQualHom LowQualHet

ACBarrie 15.51 (4.0%) 3.87 (2.1%) 4.85 (6.1%) 3.06 (2.0%)

Alsen 22.90 (3.9%) 2.14 (3.9%) 5.15 (8.2%) 3.31 (3.3%)

Baxter 26.44 (4.6%) 4.99 (2.9%) 3.91 (8.8%) 5.05 (2.4%)

Chara 21.59 (4.6%) 4.31 (2.6%) 3.77 (8.5%) 7.16 (1.4%)

Drysdale 23.29 (4.3%) 2.29 (3.4%) 3.67 (10.1%) 1.80 (3.5%)

Excalibur 22.48 (3.9%) 2.75 (3.1%) 3.69 (9.6%) 5.52 (2.3%)

Gladius 23.90 (4.3%) 2.48 (3.1%) 3.41 (10.8%) 2.53 (2.4%)

H45 20.94 (4.2%) 2.88 (2.9%) 3.76 (9.4%) 4.59 (1.6%)

Kukri 17.21 (3.9%) 4.43 (4.1%) 3.13 (8.9%) 2.69 (3.6%)

Pastor 19.52 (4.2%) 5.44 (2.8%) 4.21 (8.0%) 5.56 (2.2%)

RAC875 29.25 (5.0%) 3.23 (3.9%) 2.75 (11.2%) 2.22 (4.4%)

Volcanii 20.28 (4.0%) 2.81 (3.3%) 5.61 (7.2%) 6.87 (2.5%)

Westonia 20.49 (4.5%) 3.50 (3.7%) 4.11 (8.6%) 4.67 (3.2%)

Wyalkatchem 26.67 (5.0%) 2.69 (3.8%) 3.14 (9.4%) 1.73 (3.7%)

Xiaoyan 15.43 (4.4%) 6.30 (1.7%) 3.62 (8.3%) 11.90 (1.1%)

Yitpi 19.59 (4.6%) 7.84 (1.6%) 3.45 (9.3%) 11.77 (1.1%)

Chinese spring 0.09 (26.4%) 0.43 (6.7%) 0.04 (36.9%) 0.21 (8.8%)

The filter values PASS, Het, LowQualHom and LowQualHet correspond to high
quality homozygous, high quality heterozygous, low quality homozygous and low
quality heterozygous calls repsectively. Filter values can be used to show/hide that
particular type of variant in the “Variant Calls” tracks

toggled on/off using the “Hide sites not passing filter ...”
available from the track label of “Variant Calls“ tracks.
These tracks are particularly useful for identifying hap-
lotype blocks at the 10’s - 100’s Kbp scale, depending on
variant density, and for marker development.
A higher-level visualisation of variant calls is provided

as “Variant Call Density” tracks, calculated as the number
of variant calls per 10 Kbp of non-overlapping windows.
Regions with variant density >2*SD from the mean were
extracted, then merged if ≤40 kbp apart and reported if
≥500 kbp in length (Additional file 7). When used in con-
cert with the read “Coverage” tracks at the multi-Mbp,
it provides a way to differentiate genomic regions which
are CS-like (good read coverage and low variant density)
from those which are more divergent from CS (good read
coverage and high variant density).

Gene expression data
Chinese Spring RNA-derived data was obtained from
URGI [25]. Briefly, it comprised of 5 tissues (grain, leaf,
root, spike and stem) at 3 different developmental stages
and in 2 replicates. For each tissue and developmental
stage we aligned the reads to the reference genome using
STAR v2.6.0c [26] and provide access to the resulting
data via tracks under “Expression/IWGSC/RNA-seq”, for
visualising the read alignments which transition to read
coverage depth plots at the 10’s of Kbp scale. A sum-
mary of coverage profiles is also available for each tissue
(under “Coverage Summary”) to help identify tissue-
specific expression patterns using a smaller number of
tracks. Unlike other gene expression resources (e.g.Wheat
Expression Browser [27]) the information in these tracks
cannot be directly compared across different samples (no
normalisation performed). However, it still provides an
insight into whether genes are potentially expressed and if
this may be tissue or stage specific.

Optimising data for JBrowse tracks
Due to the large size of the wheat genome and the data
sets used, the size of index files can become quite large
(e.g. ≈40 megabytes for each of the 16 WGS BAM files).
Large index files can negatively affect the responsiveness
of DAWN, especially when viewing many tracks simulta-
neously. Before JBrowse can render data for a region of
a track to be viewed, it potentially has to download 100’s
megabytes of index files. Fortunately, JBrowse offers a fea-
ture whereby it loads different index files depending on
the currently loaded reference sequence (i.e. chromosome
part). To take advantage of this feature, we split BAM,
VCF and bigWig files into 43 chromosome parts and index
these separately. As a result, the BAM indexes are on
average a few hundred kilobytes in size and less than 1.3
megabytes per chromosome part. This reduces the delay
until the data is rendered.
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Processing pipeline
The processing pipeline underpinning the DAWN data
was implemented using Snakemake v5.1.4 [13]. The 2,149
jobs were executed on a compute cluster containing
2 nodes, each with 72 Intel Xeon E5-2699 v3 CPUs
(2.30GHz) and 770 gigabytes RAM. The analysis of the
WGS and RNA-Seq data sets took 5.7 CPU years, had a
peak memory usage of 300 gigabytes and generated over
11 terabytes of data files (≈800 gigabytes are for JBrowse
tracks). The commands used in the processing of this data
are available in Additional file 8 with example commands
and parameters in Additional file 9.
While users have access to over 800 gigabytes of data

files, only a fraction of this is downloaded to a user’s com-
puter. This is made possible by JBrowse’s ability to effi-
ciently retrieve and locally cache information for relatively
small subset of data.

Results and discussion
Below we present examples to demonstrate the util-
ity of DAWN in the investigation of genetic diversity
among wheat genomes, opportunities for discovery of
new alleles or introgression segments as well as its
application for marker development and breeding strate-
gies. The ability to visualise data from several acces-
sions at once, together with gene expression data, marker
information and gene annotations provides a powerful
resource for investigating genetic diversity among wheat
genomes.

Introgressions
Alien introgressions can be easily spotted with DAWN
as decreases in read coverage and probably an associated
increase in variant density. For example, a wheat accession
that contains an introgression fragment from a distantly
related species would show few, if any, sequence reads
aligned over the corresponding region of the CS refer-
ence genome. Even for the more conserved genic regions
we may observe few aligned reads if the sequence diver-
gence is too great for the aligner to accurately place.
For introgressed portions of closer relatives, such as
durum wheat, the reduction in read alignment affects
the non-coding regions more dramatically. That is, we
see higher numbers of variant calls in the intergenic
regions than in the coding regions. The read alignment
coverage and variant density tracks allow easy identifica-
tion of putative deletions and alien introgressions; their
approximate physical size can be inferred from CS. This
information can provide valuable insights to QTL-cloning
projects since the generation and screening of mapping
populations may be unsuccessful if the region harbour-
ing the gene of interest is placed within an introgres-
sion fragment and thus unlikely to generate informative
recombinants.

Stem rust locus Sr36
We observed a large region of chromosome 2B in Baxter
which showed a consistently reduced read depth cover-
age and increase variant density compared to the rest of
the genome (Fig. 1a and b ). The region starts at ≈89.5
Mbp on chr2B_part1, spans the centromeric region, and
ends at ≈304.3 Mbp on chr2B_part2. This corresponds
to ≈668 Mbp (83%) of the chr2B pseudomolecule and
contains 4445 high-confidence gene models. Across this
region, we observed increases in read coverage around
genes together with increases in variant density (Fig. 1c).
This suggested that while much of the intergenic space
is very different in Baxter, the gene space is nevertheless
similar to the CS reference genome.
The stem rust resistance locus Sr36, located on chro-

mosome 2B, is derived from Triticum timopheevi and
confers resistance against many Puccinia graminis sp.
tritici pathotypes [28]. The microsatellite marker stm773-
2 has been found to be tightly linked to Sr36 and the
KASPmarker, wMAS000015, is also available [29, 30]. The
Australian cultivar, Cook, is derived from the hexaploid
wheat CI-12633 which is one of several origins of the
T. timopheevi Sr36 introgression [28]. Cook has been used
extensively in breeding programs and is a common source
of Sr36 in Australian wheat accessions, including Bax-
ter. A revised genetic map of Sunco (derived from Cook
and carrying Sr36) x Tasman (not carrying Sr36) sug-
gested the Sr36 translocation extends frommarker wmc35
on the short arm, to marker gwm501 on the long arm
[31]. By aligning the primer sequences for each of the
four markers, to the reference genome, we were able to
place wmc35, stm773-2 and wMAS000015 on chromo-
some 2B_part1 at 113.3 Mbp, 249.7 Mbp and 406.3 Mbp
respectively, while gwm501 was placed on chromosome
2B_part2 at 218.9 Mbp (Fig. 1a and b). It has been shown
that accessions carrying Sr36 show no allelic diversity
across most of chromosome 2B when compared to acces-
sions which lack it [32], show segregation distortion [33]
and linkage repulsion with Sr39 [34]. This means that
combining and introgressing new traits on chromosome
2B in lines possessing Sr36 derived from CI-12633 will be
difficult.
By looking at chromosome 2B in DAWN, we were not

only able to find this introgressed region, but were able to
delimit the area to a similar interval as previously deter-
mined by genetic mapping. However, the Sr36-derived
gene(s) responsible for stem rust resistance remain elu-
sive, especially given the size of this introgression.

Root lesion nematode resistance tightly linked to yellow flour
colour
Root lesion nematode (Pratylenchus neglectus) infec-
tions can cause significant yield losses and thus are a
major problem for Australian wheat growers. Moderate



Watson-Haigh et al. BMC Genomics          (2018) 19:941 Page 5 of 20

Fig. 1 Read coverage depth and variant density for Baxter across chromosome 2B. Read coverage and variant density across the whole of
chromosome 2B_part1 (a) and chromosome 2B_part2 (b) for Baxter. The position of 4 markers discussed in the text are indicated with stars. An
example of how read coverage and variant density increase around high confidence (HC) genes is shown together with high quality homozygous
SNP/indel calls for chromosome 2B_part1:206570385-207124169 (c)

resistance has been described for two accessions in the
BPA panel, Excalibur and Wyalkatchem, whereas other
Australian accessions, including Kukri, Chara, Gladius

and Yitpi, are susceptible. The resistance has been
attributed to the Rlnn1 locus located in the termi-
nal region of the long arm of chromosome 7A [35].

http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr2B_part1%3A1..453218924&tracks=Baxter_variant_density%2CBaxter_reads
http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr2B_part2%3A1..348037791&tracks=Baxter_variant_density%2CBaxter_reads
http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr2B_part1%3A206570385..207124169&tracks=IWGSC_v1.0_HC_genes%2CBaxter_variant_density%2CBaxter_reads%2CBaxter_variants
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Jayatilake et al. [36] showed Rlnn1 to be tightly linked
to the t allele of Psy-A1, an allele highly associated
with yellow pigmentation of the wheat grain. While yel-
low flour colour is a desirable trait for durum wheats,
it is undesirable in bread wheat. Efforts towards sep-
arating the loci by recombination have so far been
unsuccessful [37].
To investigate what DAWN can reveal about this region,

we retrieved sequences for markers (wri1, wri2, wri3,
wri5 and wPt-0790) used by Jayatilake et al. [36] and
placed these onto the genome by BLASTn. In doing
so, we identified TraesCS7A01G557300 as Psy-A1. The
SNP/indel patterns and read alignment coverage clearly
identified at least 4 different haplotypes, with Excalibur
and Wyalkatchem being the most different from CS, as
evident from few reads being aligned across this region
and with higher variant density (Fig. 2). This lack of
read alignment coverage extends from position ≈272.1
Mbp on chr7A_part2 to the telomere, i.e. a ≈14.6 Mbp

long segment containing 233 high-confidence gene mod-
els (Fig. 3). Thus it appears likely that the Rlnn1 carry-
ing segment has been introgressed from a wild relative
of wheat as a terminal substitution. Tight linkage and
suppressed recombination observed between Lr20/Sr15
(leaf rust resistance), Pm1 (powdery mildew resistance)
and Rlnn1 are carried on this introgression and now
form part of Excalibur’s andWyalkatchem’s genomes [38].
Sequence differences between bread wheat and the alien
introgression segment likely explains the observed sup-
pressed recombination and the failed attempts to separate
Rlnn1 from the unfavourable Psy-A1 allele over the last
decade.

Deletions
VRN-B1 deletion
Spring and winter growth habit in hexaploid wheat is
determined primarily by allelic variation in the VRN-1
homeologues VRN-A1 on chromosome 5A, VRN-B1

Fig. 2 Genomic diversity around the Rlnn1marker wri2. SNP Coverage plots for the 16 BPA accessions have been sorted into 4 haplotypes based on
the SNP/indel patterns in view (chr7A_part2:281214721-281228448). The position of the marker, wri2, is indicated by the star. Coloured drops
hanging off the read coverage profile indicate the presence of putative SNPs/indels to the reference, A-green, T-red, C-blue, G-yellow, indel-grey

http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr7A_part2%3A279349244..279355781&tracks=DNA%2CIWGSC_v1.0_HC_genes
http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr7A_part2%3A281214721..281228448&tracks=DNA%2CIWGSC_v1.0_HC_genes%2CXiaoyan_snpcoverage%2CACBarrie_snpcoverage%2CWestonia_snpcoverage%2CAlsen_snpcoverage%2CKukri_snpcoverage%2CWyalkatchem_snpcoverage%2CExcalibur_snpcoverage%2CChara_snpcoverage%2CGladius_snpcoverage%2CYitpi_snpcoverage%2CDrysdale_snpcoverage%2CBaxter_snpcoverage%2CH45_snpcoverage%2CRAC875_snpcoverage%2CPastor_snpcoverage%2CVolcanii_snpcoverage
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Fig. 3 Read alignment coverage for the distal end of chr7A_part2 with positions of markers linked to Rlnn1. The positions of several markers, known
to be linked to Rlnn1, and the location of the Psy-A1 gene are shown (chr7A_part2:268221621-286659250). The black box highlighting a region of
low coverage observed in Excalibur and Wyalkatchem, two accessions known to be moderately resistant to P. neglectus, have yellow flour colour
and carry Rlnn1. For comparison, four other accessions know to be susceptible are included

on chromosome 5B and VRN-D1 on chromosome 5D
[39, 40]. Briefly, hexaploid spring wheat have a deletion
in the first intron of VRN-B1 and/or VRN-D1. Spring
types lacking these deletions are expected to have a VRN-
A1 promoter which differs from the recessive vrn-A1
allele [39].
Using DAWN we were able to see that 12 of the 15

spring wheats in the BPA panel had a VRN-B1 deletion,
as indicated by a lack of read alignment coverage in those
accessions (Fig. 4). Three of these 12 spring wheats have
evidence for an ≈8 Kbp deletion (Pastor, Drysdale and
Baxter) while the other 9 spring wheats seem to have an
≈2.7 Kbp deletion and the remaining ≈5.3 Kbp is sig-
nificantly different to CS. Of the remaining three spring
wheats (H-45, Chara and AC-Barrie) which lack a VRN-
B1 deletion, they also lack a VRN-D1 deletion (Fig. 5).
The variable read alignment coverage around VRN-D1
and VRN-A1 make it difficult to determine the precise
combination of alleles at these loci (Fig. 6).

Wx-B1 nulls
The ratio of the two main macromolecules, amylose and
amylopectin, is closely related to the quality of starch
in the wheat grain, with high amylose being associated
with low noodle quality [41]. TraesCS4A01G418200, also
known as “waxy”, encodes a granular bound starch syn-
thase. This gene is solely responsible for the synthesis

of amylose in wheat and has three homeologs: Wx-A1
on chromosome 7A, Wx-B1 on chromosome 4AL (7B
translocation) and Wx-D1 on chromosome 7D [42]. Null
alleles of waxy genes have been described previously in a
variety of studies, for instance when examining Mexican
[43], Italian [44], Spanish [45] and 324 European acces-
sions which included landraces and spelt wheats [46]. The
identification of accessions with these null alleles have
allowed the development of new lines with low amylose
content. In all cases, Wx-B1 appeared to be the most
polymorphic locus. For a recent review on waxy proteins
and their genes see Guzman & Alvarez 2016 [47]. Using
DAWN we were able to see a deletion (≈8 Kbp) in six
accessions from the BPA panel (Alsen, Pastor, RAC-875,
Westonia,Wyalkatchem and Yitpi). This deletion included
the whole of Wx-B1 (Fig. 7) as well as the 3′ end of a
neighbouring gene (TraesCS4A01G418100), annotated as
coding for succinate dehydrogenate subunit 5. However,
we are not aware of any phenotypic consequences result-
ing from the partial deletion of this gene.We also observed
thatWx-D1 was conserved across all 16 BPA accessions.

TOM1 deletion
Higher plants have two strategies for the uptake of Fe(III)
from the rhizosphere (Marschner et al. 1986). The grasses
(including wheat, maize, rice and barley) secrete mugineic
acid (MA) family phytosiderophores (PS) from their roots

http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr7A_part2%3A268221621..286659250&tracks=Excalibur_coverage%2CWyalkatchem_coverage%2CKukri_coverage%2CChara_coverage%2CGladius_coverage%2CYitpi_coverage
http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr4A_part2%3A235541290..235546635&tracks=DNA%2CIWGSC_v1.0_HC_genes
http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr4A_part2%3A235536102..235541744&tracks=DNA%2CIWGSC_v1.0_HC_genes
http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr7D_part1%3A35594653..35599972&tracks=DNA%2CIWGSC_v1.0_HC_genes%2CAlsen_snpcoverage%2CRAC875_snpcoverage%2CYitpi_snpcoverage%2CPastor_snpcoverage%2CWyalkatchem_snpcoverage%2CWestonia_snpcoverage%2CACBarrie_snpcoverage%2CVolcanii_snpcoverage%2CBaxter_snpcoverage%2CChara_snpcoverage%2CDrysdale_snpcoverage%2CH45_snpcoverage%2CXiaoyan_snpcoverage%2CKukri_snpcoverage%2CGladius_snpcoverage%2CExcalibur_snpcoverage%2CCS_snpcoverage
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Fig. 4 Graphical representation of read coverage and SNPs/indels around VRN-B1. The High Confidence gene prediction track (HC Genes) shows the
gene models for TraesCS5B01G396600 (VRN-B1; chr5B_part2:122425505-122445491); SNP Coverage tracks for 15 spring types and 1 winter type
(Xiaoyan-54). All but 3 spring types (H-45, Chara and AC-Barrie) have a deletion in the first intron of VRN-B1 as indicated by the lack of read alignment
coverage (boxed). Coloured drops hanging off the read coverage profile indicate the presence of putative SNPs/indels to the reference, A-green,
T-red, C-blue, G-yellow, indel-grey

Fig. 5 Graphical representation of read coverage and SNPs/indels around VRN-D1. The tracks from top to bottom are: High Confidence Gene
Predictions showing the gene models for TraesCS5D01G401500 (VRN-D1; chr5D_part2:15273724-15283732); SNP Coverage tracks for 1 winter type
(Xiaoyan-54) and the 3 spring types (H-45, Chara and AC-Barrie) which do not possess the VRN-B1 deletion. There is no evidence for a deletion in the
three spring types for VRN-D1. Coloured drops hanging off the read coverage profile indicate the presence of putative SNPs/indels to the reference,
A-green, T-red, C-blue, G-yellow, indel-grey

http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr5B_part2%3A122425505..122445491&tracks=IWGSC_v1.0_gaps%2CIWGSC_v1.0_HC_genes%2CPastor_snpcoverage%2CExcalibur_snpcoverage%2CWyalkatchem_snpcoverage%2CDrysdale_snpcoverage%2CBaxter_snpcoverage%2CVolcanii_snpcoverage%2CKukri_snpcoverage%2CAlsen_snpcoverage%2CWestonia_snpcoverage%2CRAC875_snpcoverage%2CGladius_snpcoverage%2CYitpi_snpcoverage%2CH45_snpcoverage%2CChara_snpcoverage%2CACBarrie_snpcoverage%2CXiaoyan_snpcoverage
http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr5D_part2%3A15273724..15283732&tracks=IWGSC_v1.0_HC_genes%2CH45_snpcoverage%2CChara_snpcoverage%2CACBarrie_snpcoverage%2CXiaoyan_snpcoverage
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Fig. 6 Graphical representation of read coverage and SNPs/indels around VRN-A1. The tracks from top to bottom are: High Confidence Gene
Predictions showing the gene models for TraesCS5A01G391700 (VRN-A1;chr5A_part2:134174264-134195143); SNP Coverage tracks for 1 winter type
(Xiaoyan-54) and the 3 spring types (H-45, Chara and AC-Barrie) which do not possess either a VRN-B1 or VRN-D1 deletion. Putative SNPs/indels
indicate the spring types share the same haplotype which differs from the haplotype of the winter wheat. Coloured drops hanging off the read
coverage profile indicate the presence of putative SNPs/indels to the reference, A-green, T-red, C-blue, G-yellow, indel-grey

Fig. 7 Graphical representation of read coverage and SNPs/indels around theWx-B1 locus. The tracks from top to bottom are: High Confidence
Gene Predictions showing the gene models for TraesCS4A01G418100 (left) and TraesCS4A01G418200 (Wx-B1, right) and SNP Coverage tracks for the
16 BPA accessions (chr4A_part2:235534559-235547014). Six accessions (Alsen, RAC-875, Yipti, Pastor, Wyalkatchem and Westonia) show evidence of
a deletion (boxed) as indicated by the lack of read coverage, while the remaining ten do not have a deletion. Coloured drops hanging off the read
coverage profile indicate the presence of putative SNPs/indels to the reference, A-green, T-red, C-blue, G-yellow, indel-grey

http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr5A_part2%3A134174264..134195143&tracks=IWGSC_v1.0_HC_genes%2CH45_snpcoverage%2CChara_snpcoverage%2CACBarrie_snpcoverage%2CXiaoyan_snpcoverage
http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr4A_part2%3A235534559..235547014&tracks=IWGSC_v1.0_HC_genes%2CAlsen_snpcoverage%2CRAC875_snpcoverage%2CYitpi_snpcoverage%2CPastor_snpcoverage%2CWyalkatchem_snpcoverage%2CWestonia_snpcoverage%2CACBarrie_snpcoverage%2CVolcanii_snpcoverage%2CBaxter_snpcoverage%2CChara_snpcoverage%2CDrysdale_snpcoverage%2CH45_snpcoverage%2CXiaoyan_snpcoverage%2CKukri_snpcoverage%2CGladius_snpcoverage%2CExcalibur_snpcoverage
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into the rhizosphere to chelate and solubilise iron. These
iron-PS complexes are taken up into the roots through
specific transporters. Transporter of MAs 1 (TOM1) has
been identified as the likely gene encoding the efflux
transporter of 2′-deoxymugineic acid (DMA) in plants
[48]. Rice contains five homologues of TOM1, two being
in tandem with TOM1 on chromosome 11 (TOM2 and
TOM3) and three others in tandem on chromosome 12
[49]. The function of TOM3 and the chromosome 12
homologues have not yet been determined, but TOM2 is
thought to be involved in the translocation of metal ions
inside the plant body [49].
We identified the TOM1 homeologues: TOM-A1 on

chromosome 4A (TraesCS4A01G187500), TOM-B1 on
chromosome 4B (TraesCS4B01G131400) and TOM-D1
on chromosome 4D (TraesCS4D01G125900).We saw that
Gladius and RAC-875 have a deletion (≈2.5 Kbp) which
spans the first three exons of TOM1 and ≈1 Kbp of pro-
moter region (Fig. 8). While this deletion would certainly
lead to a TOM-A1 null, it is not known if these two acces-
sions are more susceptible to iron deficiency or if the
TOM-B1 or TOM-D1 homeologues compensate for the
absence of TOM-A1.

Copy number variation (CNV)
Duplications of genomic loci are known to have played
an important role in the evolution of plant genomes and
have been linked to disease risk in humans [50]. While
it is believed that CNV predominantly affects intergenic
regions, there are known CNVs which affect protein-
coding genes. For example, CNV has been linked to
important traits such as flowering time, plant height and

resistance to biotic and abiotic stresses, including boron
tolerance in barley [51]. For a recent review of CNV in
plants see Zmienko et al. 2014 [52].
Using read coverage depth tracks it is possible to iden-

tify putative increases in CNV compared to the CS refer-
ence and to delineate the boundaries of the duplication.
This is especially the case for the D genome where read
coverage depth is less variable. One such example is a
≈2.3 Mbp region on chromosome 6D which shows an
≈2 fold higher coverage (and >2*SD) compared to the
mean coverage of the rest of the genome. This putative
CNV encompasses 27 high confidence gene models and is
only observed for RAC-875 and Westonia (Fig. 9). While
Additional file 6 contains coordinates of regions with read
coverage >2*SD from the mean, we encourage those with
special interest in CNV to analyse our data using the latest
computational tools [53].

Haplotypes
Haplotype blocks are usually defined using linkage dis-
equilibrium (LD) estimated between pairs of markers.
Methods to define haplotype blocks require the selection
of somewhat arbitrary LD thresholds, especially for
species where there is limited information on the extent of
LD. DAWN allows haplotype blocks to be visualised using
the distribution of SNPs/indels along the chromosomes
of the 16 BPA accessions. Different haplotype alleles and
recombination between blocks can also be observed.
The nucleotide polymorphisms visible in Fig. 10 allow

grouping of the BPA accessions into five distinct haplo-
types. Using the information carried in these SNP Cov-
erage tracks, it is possible to see changes in haplotypes

Fig. 8 Read alignment coverage across TOM-A1. A 2.5 Kbp deletion is observed in Gladius and RAC-875 (boxed) which covers the first three exons of
TOM-A1 (chr4A_part2:14079821-14091810)

http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr4A_part2%3A14079691..14091680&tracks=IWGSC_v1.0_gaps%2CIWGSC_v1.0_HC_genes%2CH45_reads%2CChara_reads%2CXiaoyan_reads%2CWyalkatchem_reads%2CGladius_reads%2CRAC875_reads&highlight=
http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr4B_part1%3A171620690..171630149&tracks=IWGSC_v1.0_gaps%2CIWGSC_v1.0_HC_genes%2CH45_reads%2CChara_reads%2CXiaoyan_reads%2CWyalkatchem_reads%2CGladius_reads%2CRAC875_reads&highlight=
http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr4D_part1%3A110074421..110083360&tracks=IWGSC_v1.0_gaps%2CIWGSC_v1.0_HC_genes%2CH45_reads%2CChara_reads%2CXiaoyan_reads%2CWyalkatchem_reads%2CGladius_reads%2CRAC875_reads&highlight=
http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr4A_part2%3A14079821..14091810&tracks=IWGSC_v1.0_HC_genes%2CH45_coverage%2CChara_coverage%2CXiaoyan_coverage%2CWyalkatchem_coverage%2CGladius_coverage%2CRAC875_coverage
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Fig. 9 Putative Copy Number Variation (CNV) on chromosome 6D. The putative CNV (boxed) has twice the read coverage depth of the genome in
RAC-875 and Westonia. It spans a ≈2.3 Mbp region (chr6D_part1:430251567-448876599) and contains 27 high confidence gene models

as a result of recombination. Fig. 11 shows a region on
chromosome 1A in the vicinity of TraesCS1A01G013000,
a gene annotated as being “disease resistance family pro-
tein”. The SNP pattern in the region immediately pre-
ceding this gene clearly shows that the seven acces-
sions share the same haplotype. However, at about base
7,294,500 (near the 3′ UTR of this gene) there is a
putative recombination break point as evident from
the 4 distinct haplotypes immediately following this
position: 1) Drysdale; 2) AC-Barrie, Alsen, RAC-875
and Yitpi; 3) Baxter and 4) Chara. A second putative
recombination break point at around base 7,300,000
results in additional haplotypes to give 6 distinct hap-
lotypes following this position: 1) Drysdale; 2) AC-
Barrie; 3) Alsen; 4) RAC-875 and Yitpi; 5) Baxter and 6)
Chara.
As with the example in Fig. 10, we have observed a

propensity for putative recombination break points to
occur within close proximity of genes. This is consis-
tent with observations made in yeast where the double-
strand breaks, which are required for recombination,
tend to occur 5′ of genes near the promoters [54] and
in maize where a recombination hotspot was located in
the 5′ transcribed region of the anthocyanin1 (a1) gene
[55]. Similarly, a recent study of crossover events on
wheat chromosome 3B showed a significant association
of crossovers with genic features, particularly those which
were expressed during meiosis [56].

Centromeres
It has been known for many years that recombi-
nation events are unequally distributed along wheat

chromosomes such that their frequencies decrease
from telomeres towards the centromeres [57–63]. More
recently, Choulet et al. [64] partitioned the pseudo-
molecule for chromosome 3B with respect to centromere
location, gene density and recombination rate and esti-
mated that the centromere extended from 265Mbp to 387
Mbp.
To explore whether identification of centromeric

regions by visual inspection is possible with DAWN, and
investigate the level of diversity across the centromeres
among the 16 BPA accessions we first examined the vari-
ant call density and concomitant distribution of high and
low confidence genes at a megabase scale. Although we
expected the centromere to be contained within part1 of
each pseudomolecule we analysed the complete length
of the pseudomolecules (i.e. part1 and part2). While we
observed a reduction of high confidence gene density for
most chromosomes (for example Fig. 12), these could be
subtle and did not allow us to demarcate the centromeric
regions. However, using variant call density tracks we
observed a lower number of changes in variant density in
part1 compared to part2 of the pseudomolecules. Thus
corroborating our expectation that the centromeres are
located within part1 of the pseudomolecules.
To determine whether the visual observations indeed

coincided with the centromeric regions of the pseudo-
molecules we analysed previously described centromeric
sequences and their distributions along the chromosomes
(Additional file 9). Once approximate borders of the
putative centromeric regions were established we inves-
tigated conservation of haplotypes from the left border
to the right border, employing the “Variant Calls” tracks

http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr6D_part1%3A430251567..448876599&tracks=IWGSC_v1.0_HC_genes%2CRAC875_variant_density%2CRAC875_coverage%2CWestonia_variant_density%2CWestonia_coverage
http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr1A_part1%3A7279871..7297225&tracks=DNA%2CIWGSC_v1.0_HC_genes
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Fig. 10 Haplotypes in the BPA accessions on 7A at the phosphate transporter gene TraesCS7A01G070000. The tracks from top to bottom are:
Assembly gaps in CS reference; High Confidence Gene Predictions showing the gene model for TraesCS7A01G070000
(chr7A_part1:35692818-35697785). SNP and read coverage tracks for: Xiaoyan-54, Alsen, Westonia, Yipti, Wyalkatchem, Excalibur (first haplotype
group), Gladius, RAC-875 (second haplotype), Drysdale, Volcani-DD-1, H-45, Chara, Baxter (third haplotype), Kukri, Pastor (fourth haplotype),
AC-Barrie (fifth haplotype). Coloured drops hanging off the read coverage profile indicate the presence of putative SNPs/indels to the reference,
A-green, T-red, C-blue, G-yellow, indel-grey

which allows visualization of several 100 Kbp and the
“SNP Coverage” tracks for visualizing variants together
with read coverage at scales up to 30 Kbp.
Table 2 shows the results of distribution of centromeric

sequences and the investigation of the haplotypes across
the delimited regions. For a BPA accession to be assigned
to a haplotype group it had to be clearly identical with
other genotypes. When an accession was similar to
another but showed occasional additional variants we did
not assign it to a group. In cases where a cultivar was
found to be distinct from all other haplotypes, it would
form its own single member group, for instance for chro-
mosome 2B, Baxter, AC-Barrie and Xiaoyan-54 all have
unique haplotypes. We found varying numbers of dis-
crete haplotypes and groupings for most chromosomes,
with the conspicuous exception of the centromeric region
of chromosome 3B; all 16 BPA cultivars displayed the

same haplotype which was clearly distinct from Chinese
Spring. As shown in Table 2 our approximate positioning
of the centromere borders occasionally extended beyond
observed changes in haplotypes. While a more accurate
determination of the centromere regions awaits experi-
mental verification, the fact that the observed haplotype
changes are close to our predictions are encouraging.
The discovery of a single shared haplotype for the cen-

tromeric region of 3B present in the BPA accessions is
peculiar, since these accessions originate from different
regions of the world. Horvath et al. [65] calculated that
chromosome 3B had a lower diversity than average for the
entire B-genome, but their finding was based on mark-
ers located along the whole chromosome, and was not
observed in other diversity studies [66, 67]. Cubizolles
et al. [68] corroborate our results, they also found only
two haplotypes, with the minor haplotype being present

http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr7A_part1%3A35692818..35697785&tracks=IWGSC_v1.0_HC_genes%2CXiaoyan_snpcoverage%2CAlsen_snpcoverage%2CWestonia_snpcoverage%2CYitpi_snpcoverage%2CWyalkatchem_snpcoverage%2CExcalibur_snpcoverage%2CGladius_snpcoverage%2CRAC875_snpcoverage%2CDrysdale_snpcoverage%2CVolcanii_snpcoverage%2CH45_snpcoverage%2CChara_snpcoverage%2CBaxter_snpcoverage%2CKukri_snpcoverage%2CPastor_snpcoverage%2CACBarrie_snpcoverage
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Fig. 11 Haplotype changes indicative of recombination break points. SNP Coverage tracks for seven accessions on chr1A_part1:7261243-7340668.
Allowing for poor coverage of some SNPs/indels, accessions have been sorted by haplotypes and haplotype blocks highlighted by boxes. Two
putative recombination break points can be inferred by changes in the haplotypes group membership. Coloured drops hanging off the read
coverage profile indicate the presence of putative SNPs/indels to the reference, A-green, T-red, C-blue, G-yellow, indel-grey

in mostly Asian derived lines (possibly the Chinese Spring
haplotype). Wheat breeding can impose strong selection
pressures in favour of loci encoding disease resistance,
contributing to yield or quality [69]. Whether this could
be the cause for the low haplotype diversity observed at
the 3B centromere warrants further investigation.

Marker development
QTL positional cloning projects rely on the development
of new polymorphic markers that are then used to screen
the population under investigation for informative recom-
binants. Information on SNP/indel positions is the start-
ing point for the design of new high-throughput markers
such as KASPTM [70]. DAWN facilitates marker design by
providing SNP/indel positions among the 16 BPA acces-
sions as well as allowing the visualisation of previously
developed markers such as the 90K SNP array and the
820K Axiom arrays.
The sequences of the markers flanking a QTL can be

aligned to the CS IWGSC RefSeq v1.0 using BLASTn to
find their position in the reference genome. Alternatively,
if the flanking markers are among the data sets already
included in DAWN (e.g. Illumina Infinium iSelect 90K
and 9K SNP chip, 820K Axiom array), they can be eas-
ily located through a search in the DAWN interface. By
visualising the QTL interval in DAWN, one can obtain
information on the number of predicted genes, the num-
ber of haplotypes among the 16 BPA accessions and the
SNPs/indels present in the region. For large QTL inter-
vals, markers can be designed and spaced based on the

knowledge of the haplotype blocks present in the area,
reducing the number of markers to be developed. In the
case of small QTL intervals, markers can be designed to
target genes in the region or even specific regions of target
genes. SNP/indel positions more likely to be polymorphic
can also be selected based on the frequency of a particular
allele among the 16 BPA accessions.

Limitations
Read alignments
Deletion and regions which are highly divergent from
Chinease Springmay be almost devoid of read alignments.
As such, users are encouraged to investigate further which
of these situations is likely to be true. One option is to look
for the existance of genes, which fall within such regions,
in the wheat pangenome [71, 72].
Short read Illumina data is the predominant sequencing

data available today. While Illumina data can be produced
at sufficient volumes for sequencing wheat genomes and
transcriptomes, it also contains inherent biases and lim-
itations mainly due to the nature of short reads and GC
biases [73]. Therefore, regions with high GC bias tend to
be under-represented in terms of read coverage depth for
both WGS and RNA-Seq data sets, reducing the power to
detect variation between accessions.

Interface
Low and uneven read coverage depth in data sets used for
calling variants, leads tomissing data in the “Variant Calls”
tracks and can mislead the user. However, used together

http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr1A_part1%3A7261243..7340668&tracks=IWGSC_v1.0_gaps%2CIWGSC_v1.0_HC_genes%2CDrysdale_snpcoverage%2CACBarrie_snpcoverage%2CAlsen_snpcoverage%2CRAC875_snpcoverage%2CYitpi_snpcoverage%2CBaxter_snpcoverage%2CChara_snpcoverage


Watson-Haigh et al. BMC Genomics          (2018) 19:941 Page 14 of 20

Fig. 12 Variant density tracks for chromosome 7A around the predicted centromeric region. Variant density (SNPs/indels per 10 Kbp - log scaled)
tracks for 16 accessions, together with high confidence (HC) and low confidence (LC) gene tracks (chr7A_part1:153245006-450046986). A reduction
in HC genes coincides with regions of uniform variant density across the accessions. Predicted centromeric region (boxed) is from 300-410 Mbp

with the “SNP Coverage“ or read coverage depth tracks,
one can mitigate this risk by also considering the read
coverage depth at a variant site. Care should be taken in
overinterpreting the “SNPs” shown in a “SNP Coverage”
track as they are based on read alignment missmatches
rather than robust variant calling. In addition, they are
rendered on-the-fly and so do not scale well, particu-
larly when visualising many accessions over large physical
distances. In order to improve the visualisation of cover-
age and variant information we would look to develop a
new JBrowse track capable of rendering read alignment
coverage from a BigWig file while superimposing variant
information from a VCF file.

Reference genome to pan-genome
In addition to the IWGSC RefSeq v1.0, two further CS
assemblies have been released [21, 74], both of which
are a significant improvement over the 2014 published

Chromosomal Survey Sequences [75]. We chose IWGSC
RefSeq v1.0 as the reference sequence for DAWN because
of the availability of pseudomolecules which facilitate
identification of diversity at the chromosomal level. We
envision that a future consolidation of all CS assem-
blies will resolve discrepancies and fill gaps, leading to
a single CS reference for the community. Until then, the
existence of multiple genome assemblies presents a chal-
lenge for existing wheat resources [76–79] as it demands
a decision on which assembly to use as the reference, or
alternatively, to consider all assemblies as a reference. Fur-
thermore, WGS, RNA-Seq and exome capture data will
require reprocessing to leverage these improvements and
highlights the importance of data sets conforming to FAIR
Data Principles [80, 81].
As the number of resequenced genomes increases, the

benefits of using a “pan-genome” to represent the genomic
repertoire of all the sequenced accessions becomes more

http://crobiad.agwine.adelaide.edu.au/dawn/jbrowse/?loc=chr7A_part1%3A153245006..450046986&tracks=Gladius_variant_density%2CWyalkatchem_variant_density%2CRAC875_variant_density%2CYitpi_variant_density%2CAlsen_variant_density%2CWestonia_variant_density%2CACBarrie_variant_density%2CPastor_variant_density%2CKukri_variant_density%2CVolcanii_variant_density%2CH45_variant_density%2CBaxter_variant_density%2CChara_variant_density%2CExcalibur_variant_density%2CDrysdale_variant_density%2CXiaoyan_variant_density%2CIWGSC_v1.0_HC_genes%2CIWGSC_v1.0_LC_genes
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Table 2 Location of centromeres and number of haplotype groups present in BPA accessions

Chr Start End Size # Haplotype Haplotype Groups
(Mbp) (Mbp) (Mbp) groups block break

points (Mbp)

1A 160 260 100 2 Xia: 256.967 Group1: Xia, Yit, Exc
Exc: 258.867 Group2: Kuk, Gla, Wyal, Wes, Bax, H45, Cha, Dry, Pas, RAC, ACB, Vol

1B 180 280 100 5 Group1: Xia
Group2: Vol
Group3: ACB, Exc, Als, RAC

Group4: Kuk, Gla, Wyal, Yit, Wes

Group5: Bax, Pas, Cha, Dry

1D 146 196 50 2 Group1: Cha, Dry, Exc, Wes, Vol

Group2: H45, Pas, Wyal, RAC, Xia

2A 270 370 100 3 Group1: ACB, Als, Bax, Dry, Exc, H45, Pas, Kuk, Wyal

Group2: Cha, RAC, Yit, Gla, Wes, Vol

Group3: Xia

2B 270 385 115 7 Yit: 379.837 Group1: Bax

Group2: ACB

Group3: Xia

Group4: Wes, Cha, Als

Group5: RAC, Yit, Gla, Exc

Group6: Pas, H45, Dry

Group7: Vol, Wyal, Kuk

2D 220 300 80 3 Group1: Yit, Xia, Als, H45

Group2: Kuk, Cha, Dry, Pas, RAC, Gla, Exc

Group3: Bax, Wes, Wyal

3A 240 370 130 4 Group1: Yit, Kuk, Xia, Dry

Group2: Cha, H45, Bax, Wes, Wyal

Group3: Gla, RAC

Group4: Vol, Exc
3B 280 390 110 1 All
3D 200 280 80 2 Bax: 276.588 Group1: Yit, Wes, Bax, Als, Cha, Wyal, Exc

Group2: Dry, Gla, RAC
4A 245 360 115 3 Group1: Pas, Wes, Yit, H45, Bax

Group2: Als, Cha, Dry, Wyal, Exc
Group3: RAC, Gla

4B 270 375 105 6 Group1: ACB
Group2: RAC, Dry, Kuk, Exc, Wyal
Group3: Bax, H45, Xia
Group4: Wes, Gla, Cha
Group5: Als
Group6: Yit

4D 194 226 32 4 Group1: RAC, Dry
Group2: Xia, H45
Group3: Wyal, Bax
Group4: Cha, Vol

5A 185 310 125 4 Group1: Als
Group2: Vol
Group3: Wyal, Gla, Bax, Dry
Group4: Yit, Cha, H45, Xia

5B 145 240 95 3 Group1: RAC, Cha, Exc, H45, Dry, Als
Group2: Wes, Bax, Wyal
Group3: Yit, Gla

5D 145 245 100 2 RAC: 244.646 Group1: RAC, Gla, H45, Dry, Wes
Gla: 244.646 Group2: Exc, Wyal

6A 240 355 115 3 Group1: Bax, Cha, H45, Wyal, Wes, Xia
Group2: Kuk, Als, Dry, Pas, ACB, Yit
Group3: RAC, Exc, Gla, Vol
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Table 2 Location of centromeres and number of haplotype groups present in BPA accessions (Continued)

Chr Start End Size # Haplotype Haplotype Groups
(Mbp) (Mbp) (Mbp) groups block break

points (Mbp)

6B 270 360 90 2 Exc: 345.417 Group1: Kuk, Xia, Exc, Dry, Wes, Yit
Group2: Bax, Vol, Als, H45, Pas, Cha, Wyal, RAC, Gla

6D 184 230 46 3 Group1: Vol, Als, Dry, H45
Group2: Cha, Kuk, Wes, Wyal
Group3: RAC, Yit, Gla

7A 300 410 110 3 Group1: Vol, ACB, Pas, Wes
Group2: Exc, Kuk, Bax, Cha, Dry, H45, Xia
Group3: Wyal, RAC, Yit, Gla

7B 250 315 65 5 Group1: Vol
Group2: Kuk, Als
Group3: Yit, Wyal, Exc, Gla, RAC, Wes
Group4: Dry, H45, Pas, Xia
Group5: Bax, Cha

7D 300 385 85 4 Group1: Kuk, Xia, Wyal
Group2: RAC, Exc, Gla
Group3: Yit, H45, Als, Wes
Group4: Dry, Bax, Cha (Pas)

apparent [82, 83]. Initial attempts to create a wheat
pan-genome have focused on supplementing an exist-
ing genome assembly with contigs assembled from reads
which had failed to align to the reference genome [71].
Similarly, the rice pan-genome (RPAN) developed for
the 3,000 Rice Genome Project (3K RGP) performed a
de novo assembly of each individual and then removed
redundancy to derive a set of sequences that constitute
the rice pan-genome [84]. While these approaches pro-
vide a convenient linear representation of a pan-genome,
it cannot easily be extended to iteratively include newly
sequenced genomes without significant effort. While
graph representations of the pan-genome are an attrac-
tive way to represent the genetic variation which exists
between individuals, their utility is hampered by the lack
of tools which can utilise these data structures for read
alignments, variant calling and visualisation [85]. We
expect the future will see a paradigm shift away from lin-
ear representations of a (pan-)genome tomore sustainable
graph based representations [86].

Conclusions
Through DAWN we have removed the burden of
analysing the whole genome sequencing data of 16
accessions and made these valuable data sets easily
accessible to the community through a JBrowse inter-
face in the context of the newly released IWGSC Ref-
Seq v1.0 genome assembly and annotations. By providing
examples, we have shown how DAWN can be utilised
by researchers to: a) discover diversity of different types
among genomes; b) find explanations for reduced recom-
bination; c) identify markers for tracking important traits
and d) identify candidate genes under QTL. The exam-
ple where we explored possible explanations for the tight
linkage between Rlnn1 and yellow flour colour shows the

power of visualisation of genomic data at different reso-
lutions; it took little time to place the wri-markers onto
chromosome 7A and find a possible explanation for exper-
imental observations. Moreover, DAWN could also be
used in a predictive way, accelerating research direction
and discovery. As more wheat genomes are resequenced
and other genomic resources are made available, we can
make these available through DAWN. Our processed data
sets, which include BAM and VCF files, are made freely
available for others to use and explore.

Availability and requirements
We provide convenient access to the computed
data files via a JBrowse interface available via
http://crobiad.agwine.adelaide.edu.au/dawn/.

• Project name: Diversity AmongWheat geNomes
(DAWN)

• Project home page: http://crobiad.agwine.adelaide.
edu.au/dawn/

• Operating system(s): Platform independent
• Other requirements: HTML5 compatible web

browser
• License: GNU GPL

Additional files

Additional file 1: IWGSC RefSeq v1.0 annotation preprocessing shell
script. Shell script to download, validate and modify IWGSC RefSeq v1.0
annotation files, including splitting GFF3 files based on boundaries defined
by the IWGSC. (SH 9 kb)

Additional file 2: Perl helper script for splitting GFF3 files. Perl script for
splitting a GFF3 file at chromosomal coordinates defined in a BED file. This
converts GFF3 coordinates from full length pseudomolecules to their
“parts” and is called by the preprocessing shell script (Additional file 1).
(PL 3 kb)

http://crobiad.agwine.adelaide.edu.au/dawn/
http://crobiad.agwine.adelaide.edu.au/dawn/
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Additional file 3: Script for merging functional annotations into gene
models. Shell script to merge functional annotation information into the
High and Low confidence gene model GFF3 files. (SH 2 kb)

Additional file 4: Awk helper script for creating correctly formatted GFF3
attribute information. Awk script for generating a file of correctly formatted
GFF3 attributes of functional annotation information. It is called by the shell
script for merging functional annotations (Additional file 3). (AWK 1 kb)

Additional file 5: MAPQ distribution table. Table showing MAPQ
distribution for each WGS accession. Number of aligned reads with a given
MAPQ are show together with the cumulative sum of reads ≥ to a given
MAPQ (expressed both as a percentage of the aligned read as well as the
raw reads). (TAB 28 kb)

Additional file 6: ZIP file containing BED5 format files of high and low
read coverage regions. BED5 format file for each WGS accession. The score
column (5th column) indicates if the feature (row) represents a region
which has >2*SD above (High) or below (Low) the mean read coverage.
(ZIP 1455 kb)

Additional file 7: ZIP file containing BED5 format files of high and low
variant density regions. BED5 format file for each WGS accession. The score
column (5th column) indicates if the feature (row) represents a region
which has >2*SD above (High) or below (Low) the mean variant density.
(ZIP 526 kb)

Additional file 8: Script to generate data files required for the DAWN data
tracks. A script containing all the commands needed to generate all the
data files used in DAWN. (SH 9667 kb)

Additional file 9: Materials and Methods. A description of materials and
methods used. (PDF 229 kb)
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