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Brain transcriptome analysis of a familial
Alzheimer’s disease-like mutation in the
zebrafish presenilin 1 gene implies effects
on energy production
Morgan Newman†, Nhi Hin†, Stephen Pederson and Michael Lardelli*

Abstract

To prevent or ameliorate Alzheimer’s disease (AD) we must understand its molecular basis. AD develops over
decades but detailed molecular analysis of AD brains is limited to postmortem tissue where the stresses initiating
the disease may be obscured by compensatory responses and neurodegenerative processes. Rare, dominant
mutations in a small number of genes, but particularly the gene PRESENILIN 1 (PSEN1), drive early onset of familial
AD (EOfAD). Numerous transgenic models of AD have been constructed in mouse and other organisms, but
transcriptomic analysis of these models has raised serious doubts regarding their representation of the disease
state. Since we lack clarity regarding the molecular mechanism(s) underlying AD, we posit that the most valid
approach is to model the human EOfAD genetic state as closely as possible. Therefore, we sought to analyse brains
from zebrafish heterozygous for a single, EOfAD-like mutation in their PSEN1-orthologous gene, psen1. We
previously introduced an EOfAD-like mutation (Q96_K97del) into the endogenous psen1 gene of zebrafish. Here, we
analysed transcriptomes of young adult (6-month-old) entire brains from a family of heterozygous mutant and wild
type sibling fish. Gene ontology (GO) analysis implies effects on mitochondria, particularly ATP synthesis, and on
ATP-dependent processes including vacuolar acidification.
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Background
AD is the most common form of dementia with severe
personal, social, and economic impacts. Rare, familial
forms of AD exist caused by autosomal dominant muta-
tions in single genes (reviewed by [1]). The majority of
these mutations occur in the gene PRESENILIN 1
(PSEN1) that encodes a multipass integral membrane
protein involved in intra-membrane cleavage of numer-
ous proteins [1].
A wide variety of transgenic models of AD have been

created and studied. These are aimed at reproducing
histopathologies posited to be central to the disease
process, i.e. amyloid plaques and neurofibrillary tangles

of the protein MAPT [2]. However, analysis of the ef-
fects on the brain transcriptome of the transgenes driv-
ing a number of these mouse models showed little
concordance with transcriptomic differences between
human AD brains and age-matched controls [3] (al-
though a recent study asserts that this lack of concord-
ance for the popular “5XFAD” transgenic mouse model
is due to previous failure to analyse the effects of its
transgenes in a variety of genetic backgrounds [4]). We
posit that, in the absence of an understanding of the mo-
lecular mechanism(s) underlying AD, the most objective
approach to modeling this disease (or, at least, modeling
its genetic form, EOfAD) is to create a genetic state as
similar as possible to the EOfAD state in humans.
Mouse “knock-in” models of EOfAD mutations were
created over a decade ago and showed subtle phenotypic
effects but not the desired histopathologies (e.g. [5, 6]).
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Table 1 GOs enriched for genes differentially expressed between heterozygous mutant and wild type sibling fish brains

Gene Ontology Term Ontology Total Genes DE Genes p-value FDR p-value

ATP biosynthetic process BP 29 7 3.48987E-08 0.00041

ribonucleoside triphosphate biosynthetic process BP 49 8 9.41317E-08 0.00045

nucleoside triphosphate biosynthetic process BP 54 8 2.06555E-07 0.00060

purine nucleoside triphosphate biosynthetic process BP 41 7 4.46237E-07 0.00060

purine ribonucleoside triphosphate biosynthetic process BP 41 7 4.46237E-07 0.00060

hydrogen transport BP 60 8 4.783E-07 0.00060

proton transport BP 60 8 4.783E-07 0.00060

energy coupled proton transport, down electrochemical gradient BP 27 6 5.89038E-07 0.00060

ATP synthesis coupled proton transport BP 27 6 5.89038E-07 0.00060

transport BP 2072 48 2.11748E-06 0.00165

purine nucleoside monophosphate biosynthetic process BP 54 7 3.09019E-06 0.00172

purine ribonucleoside monophosphate biosynthetic process BP 54 7 3.09019E-06 0.00172

hydrogen ion transmembrane transport BP 54 7 3.09019E-06 0.00172

ribonucleoside triphosphate metabolic process BP 133 10 3.8448E-06 0.00178

establishment of localization BP 2123 48 4.20295E-06 0.00182

ATP metabolic process BP 109 9 5.50772E-06 0.00230

nucleoside triphosphate metabolic process BP 140 10 6.08925E-06 0.00245

cation transport BP 452 18 6.61154E-06 0.00258

monovalent inorganic cation transport BP 219 12 1.10729E-05 0.00392

ribonucleoside monophosphate biosynthetic process BP 65 7 1.08944E-05 0.00392

nucleoside monophosphate biosynthetic process BP 68 7 1.47269E-05 0.00492

purine ribonucleoside triphosphate metabolic process BP 125 9 1.68142E-05 0.00546

purine nucleoside triphosphate metabolic process BP 126 9 1.79263E-05 0.00552

transmembrane transport BP 654 21 2.93288E-05 0.00797

purine nucleoside monophosphate metabolic process BP 136 9 3.2951E-05 0.00837

purine ribonucleoside monophosphate metabolic process BP 136 9 3.2951E-05 0.00837

energy coupled proton transmembrane transport, against electrochemical gradient BP 35 5 5.20342E-05 0.01106

ATP hydrolysis coupled proton transport BP 35 5 5.20342E-05 0.01106

ATP hydrolysis coupled transmembrane transport BP 35 5 5.20342E-05 0.01106

ATP hydrolysis coupled ion transmembrane transport BP 35 5 5.20342E-05 0.01106

ATP hydrolysis coupled cation transmembrane transport BP 35 5 5.20342E-05 0.01106

ion transport BP 737 22 5.61478E-05 0.01152

localization BP 2621 52 6.0913E-05 0.01207

ribonucleoside monophosphate metabolic process BP 147 9 6.06496E-05 0.01207

nucleoside monophosphate metabolic process BP 150 9 7.09445E-05 0.01360

single-organism localization BP 819 23 9.51294E-05 0.01738

single-organism transport BP 776 22 0.000119082 0.02109

ribonucleotide biosynthetic process BP 129 8 0.000143028 0.02423

ribose phosphate biosynthetic process BP 129 8 0.000143028 0.02423

vacuolar acidification BP 11 3 0.000246582 0.04101

ribonucleotide metabolic process BP 220 10 0.000281352 0.04506

proton-transporting two-sector ATPase complex, proton-transporting domain CC 25 6 3.59375E-07 0.00060

proton-transporting two-sector ATPase complex CC 45 7 8.65692E-07 0.00078

mitochondrial membrane CC 285 15 1.42199E-06 0.00119
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However, at that time, researchers did not have access to
RNA-Seq technology. To the best of our knowledge,
transcriptome analysis of the EOfAD mutation knock-in
mouse models was never performed.
In humans, AD is thought to develop over decades

and the median survival to onset age for EOfAD muta-
tions in human PSEN1 considered collectively is 45 years
[7]. Functional MRI of human children carrying EOfAD
mutations in PSEN1 has revealed differences in brain

activity compared to non-carriers in individuals as young
as 9 years of age [8]. Presumably therefore, heterozygos-
ity for EOfAD mutations in PSEN1 causes early molecu-
lar changes/stresses that eventually lead to AD.
Transcriptome analysis is currently the most detailed

molecular phenotypic analysis possible on cells or tissues.
Here we present an initial analysis of the transcriptomic
differences caused in young adult (6-month-old) zebrafish
brains by the presence of an EOfAD-like mutation in the

Table 1 GOs enriched for genes differentially expressed between heterozygous mutant and wild type sibling fish brains (Continued)

Gene Ontology Term Ontology Total Genes DE Genes p-value FDR p-value

mitochondrial envelope CC 303 15 3.0322E-06 0.00172

membrane part CC 4868 85 1.1722E-05 0.00403

organelle membrane CC 789 24 1.84982E-05 0.00555

mitochondrial inner membrane CC 195 11 1.97958E-05 0.00579

integral component of membrane CC 4419 78 2.52479E-05 0.00720

intrinsic component of membrane CC 4453 78 3.37749E-05 0.00840

organelle envelope CC 420 16 3.76291E-05 0.00917

envelope CC 422 16 3.98337E-05 0.00950

organelle inner membrane CC 215 11 4.86028E-05 0.01106

Cul2-RING ubiquitin ligase complex CC 7 3 5.4156E-05 0.01131

proton-transporting ATP synthase complex CC 19 4 6.25883E-05 0.01220

mitochondrial membrane part CC 117 8 7.21148E-05 0.01360

mitochondrial part CC 404 15 8.83156E-05 0.01639

membrane CC 5379 88 0.000106964 0.01924

vacuolar proton-transporting V-type ATPase, V0 domain CC 9 3 0.000127733 0.02229

mitochondrial proton-transporting ATP synthase complex, coupling factor F(o) CC 12 3 0.000325933 0.04885

proton-transporting V-type ATPase, V0 domain CC 12 3 0.000325933 0.04885

ATPase activity, coupled to transmembrane movement of ions, rotational mechanism MF 34 7 1.1446E-07 0.00045

hydrogen ion transmembrane transporter activity MF 84 9 6.11883E-07 0.00060

ATPase activity, coupled to transmembrane movement of substances MF 98 9 2.27123E-06 0.00166

hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement
of substances

MF 101 9 2.92425E-06 0.00172

primary active transmembrane transporter activity MF 104 9 3.73269E-06 0.00178

P-P-bond-hydrolysis-driven transmembrane transporter activity MF 104 9 3.73269E-06 0.00178

cation-transporting ATPase activity MF 56 7 3.96731E-06 0.00178

ATPase coupled ion transmembrane transporter activity MF 56 7 3.96731E-06 0.00178

ATPase activity, coupled to movement of substances MF 112 9 6.88692E-06 0.00260

active ion transmembrane transporter activity MF 96 8 1.72916E-05 0.00546

active transmembrane transporter activity MF 281 13 2.87859E-05 0.00797

proton-transporting ATP synthase activity, rotational mechanism MF 16 4 3.02121E-05 0.00803

transporter activity MF 991 25 0.000249051 0.04101

substrate-specific transmembrane transporter activity MF 709 20 0.000263528 0.04279

ion transmembrane transporter activity MF 660 19 0.000293184 0.04572

substrate-specific transporter activity MF 828 22 0.000297009 0.04572

monovalent inorganic cation transmembrane transporter activity MF 264 11 0.000297217 0.04572

GOs are grouped by ontology (BP, CC or MF) and ranked by FDR-corrected p-value
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gene psen1 that is orthologous to the human PSEN1 gene.
GO analysis supports very significant effects on mitochon-
drial function, especially synthesis of ATP, and on
ATP-dependent functions such as the acidification of lyso-
somes that are critical for autophagy.

Materials and methods
The mutant allele, Q96_K97del, of psen1 was a bypro-
duct identified during our introduction of the K97fs mu-
tation into psen1 (that models the K115fs mutation of
human PSEN2 – see [9] for an explanation).
Q96_K97del is a deletion of 6 nucleotides from the

coding sequence of the psen1 gene. This is predicted to
distort the first lumenal loop of the Psen1 protein. In
this sense, it is similar to a number of EOfAD mutations
of human PSEN1 [10]. Also, in common with all the
widely distributed EOfAD mutations in PSEN1, (and
consistent with the PRESENILIN EOfAD mutation
“reading frame preservation rule” [1]), the Q96_K97del
allele is predicted to encode a transcript that includes
the C-terminal sequences of the wild type protein.
Therefore, as a model of an EOfAD mutation, it is su-
perior to the K97fs mutation in psen1 [9].
To generate a family of heterozygous Q96_K97del al-

lele (i.e. psen1Q96_K97del/+) and wild type (+/+) sibling
fish, we mated a psen1Q96_K97del/+ individual with a +/+
individual and raised the progeny from a single spawn-
ing event together in one tank. Zebrafish can live for up
to 5 years but, in our laboratory, typically show greatly
reduced fertility after 18 months. The fish become fertile
after around 3 months of age, so we regard 6-month-old
fish as equivalent to young adult humans. Therefore we
analysed the transcriptomes of entire young adult,
6-month-old fish brains using poly-A enriched RNA-seq
technology, and estimated gene expression from the
resulting single-end 75 bp reads using the reference
GRCz11 zebrafish assembly transcriptome [11, 12]. Each
zebrafish brain has a mass of approximately 7 mg. Since
AD is more prevalent in human females than males, and
to further reduce gene expression “noise” in our ana-
lyses, we obtained brain transcriptome data from four fe-
male wild type fish and four female heterozygous
mutant fish. This data has been made publicly available
at the Gene Expression Omnibus (GEO, see under Avail-
ability of data and materials below).

Results
Differentially expressed genes (DE genes)
Genes differentially expressed between wild type and het-
erozygous mutant sibling fish were identified using moder-
ated t-tests and a false discovery rate (FDR)-adjusted
p-value cutoff of 0.05 as previously described [9, 13, 14]. In
total, 251 genes were identified as differentially expressed
(see Additional file 1). Of these, 105 genes showed

increased expression in heterozygous mutant brains relative
to wild type sibling brains while 146 genes showed de-
creased expression.

GO analysis
To understand the significance for brain cellular function
of the differential gene expression identified in young adult
heterozygous mutant brains we used the goana function
[15] of the limma package of Bioconductor software [14] to
identify GOs in which the DE genes were enriched at an
FDR-corrected p-value of less than 0.05. Seventy-eight GOs
were identified (Table 1) of which 20 addressed cellular
components (CC). Remarkably, most of these CCs con-
cerned the mitochondrion, membranes, or ATPases. Seven-
teen GOs addressed molecular functions (MF) and largely
involved membrane transporter activity, particularly ion
transport and ATPase activity coupled to such transport.
Forty-one GOs addressed biological processes (BP) and in-
volved ATP metabolism, ribonucleoside metabolism, and
transmembrane transport processes including vacuolar
acidification (that has previously been identified as affected
by EOfAD mutations in PSEN1 [16]). Overall, our GO ana-
lysis indicates that this EOfAD-like mutation of zebrafish
psen1 has very significant impacts on cellular energy metab-
olism and transmembrane transport processes.

Additional file

Additional file 1: Genes differentially expressed between heterozygous
mutant and wild type brains at 6 months. Lists the genes identified as
differentially expressed between the brains of heterozygous psen1Q96_K97del

mutant fish and the brains of their wild type siblings at an age of 6months.
Genes are ranked according to FDR-corrected p-value. Only genes with a
FDR-corrected p-value less than 0.05 are shown. “FC” denotes fold change.
“DE” denotes differential expression. For DE_Direction, “1” denotes increased
expression in the mutant and “-1” denotes decreased expression in the mu-
tant. (XLSX 39 kb)
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AD: Alzheimer’s disease; ATP: Adenosine triphosphate; BP: Biological process
(GO term); CC: Cellular component (GO term); DE genes: Differentially expressed
genes; EOfAD: Early onset familial Alzheimer’s disease; FDR: False discovery rate;
GEO: Gene Expression Omnibus; GO: Gene ontology; MAPT: MICROTUBULE-
ASSOCIATED PROTEIN TAU (human protein); MF: Molecular function (GO term);
mg: Milligrams; MRI: Magnetic resonance imaging; PSEN1: PRESENILIN 1 (human
gene); PSEN1: PRESENILIN 1 (human protein); psen1: presenilin 1 (zebrafish gene);
Psen1: Presenilin 1 (zebrafish protein)
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