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Abstract 

 

Mucopolysaccharidosis type IIIA (MPS IIIA) is one of a series of 11 genetically inherited 

metabolic disorders and results from a deficiency in the lysosomal enzyme sulphamidase, 

leading to intracellular and extracellular accumulation of the glycosaminoglycan (GAG) 

heparan sulphate (HS). MPS IIIA is characterised by a profound neurological phenotype and 

mild skeletal pathology. Currently, the mechanisms leading to disease pathology are poorly 

understood in MPS IIIA. It has been suggested that the excess amount and aberrant structure 

of MPS IIIA HS compared to normal HS contributes to disease pathology, due to the vital 

role of HS in many developmental signalling pathways. GAG accumulation commences 

prenatally in MPS IIIA, with GAG storage present in the developing CNS in utero, indicating 

that alterations in CNS development processes may contribute to the neurological pathology 

of MPS IIIA patients. 

 

This thesis aimed to determine the effects of aberrant MPS IIIA HS on one of the earliest 

processes in CNS development, neurogenesis, through the development of a range of in vitro 

models of MPS IIIA. Extrinsic, extracellular MPS IIIA HS was found to impair neurogenesis, 

providing a mechanism of pathology for the severe central nervous system (CNS) pathology 

prominent in patients. GAGs from a range of other MPS subtypes were found to have diverse 

effects on neurogenesis, indicating that MPS IIIA HS was distinctly pathogenic. Osteogenesis 

was similarly impaired by MPS IIIA HS, providing a molecular basis for the mild skeletal 

pathology observed in patients. To further investigate the effects of MPS IIIA on 

neurogenesis, two neurogenic MPS IIIA stem cell lines were developed. Mesenchymal stem 

cells (MSCs) isolated from a mouse model of MPS IIIA and induced pluripotent stem cells 

(iPSCs) derived from MPS IIIA patient fibroblasts were used to model MPS IIIA 

neurogenesis in vitro. MPS IIIA murine MSCs and neural progenitor cells derived from MPS 
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IIIA human iPSCs (iPSC-NPCs) displayed decreased proliferative capacity compared to 

normal cells, indicating a dysfunction in the processes required for stem cell proliferation, 

many of which are also involved in stem cell differentiation. Both cell lines were then induced 

along the neural lineage. A significant reduction in the expression of neural marker genes was 

seen in MPS IIIA murine MSCs when compared to normal murine MSCs, indicating a 

dysfunction in neurogenesis in MPS IIIA. Similarly, iPSC-derived NSCs induced to form 

neurons displayed less overt neuronal morphology and a significant decrease in the expression 

of neuron marker genes. It was hypothesised that alterations in stem cell proliferation and 

differentiation was a result of MPS IIIA HS disrupting the many HS-dependent signalling 

pathways involved in stem cell proliferation and differentiation. 

 

Overall, through the development of stem cell models with neurogenic properties, this thesis 

has demonstrated that the MPS IIIA HS impairs neural progenitor proliferation, survival and 

maturation, likely via alterations in HS-dependent signalling pathways integral to stem cell 

proliferation and differentiation. Disrupted stem cell proliferation and neurogenesis was 

identified as a potential mechanism of pathology for the severe neurological pathology 

prominent in MPS IIIA patients. 
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1.1 The Mucopolysaccharidoses 

The Mucopolysaccharidoses (MPS) are a series of 11 genetically inherited lysosomal storage 

disorders (LSDs) which result from a deficiency in one of the enzymes required for 

glycosaminoglycan (GAG) degradation (Table 1.1). Catabolism of the GAGs dermatan 

sulphate (DS), heparan sulphate (HS), keratan sulphate (KS), chondroitin sulphate (CS) or 

hyaluronan (HA) are affected in MPS, either singularly or in combination (Neufeld & 

Muenzer, 2001). The resulting lysosomal accumulation of partially degraded GAGs leads to 

significant cellular, tissue and organ dysfunction in affected individuals (Muenzer, 2011). 

Clinical features common to more than one of the MPS types include organomegaly, corneal 

clouding, dysostosis multiplex, abnormal facies and neurological deterioration. Joint 

immobility or hypermobility, airway and cardiovascular dysfunction and impaired hearing 

also often present as clinical features. Profound central nervous system (CNS) involvement is 

present in the severe form of MPS I, MPS II, all subtypes of MPS III and MPS VII (Neufeld 

& Muenzer, 2001). 

 

1.1.1 Mucopolysaccharidosis Type IIIA 

MPS IIIA is one of the most common MPS disorders, with a prevalence in Australian children 

of 1 in 114 000 births (Meikle et al., 1999). MPS IIIA has an autosomal recessive inheritance 

and results from mutations in the SGSH gene, which encodes the lysosomal enzyme heparan 

N-sulphatase, commonly known as sulphamidase (Yogalingam & Hopwood, 2001). 

Currently, 148 unique mutations have been identified which have the ability to reduce or 

eliminate sulphamidase activity in humans (HGMD, 2018). Sulphamidase is one of a complex 

of enzymes required for the step-wise degradation of the GAG HS, cleaving glucosamine-N-

sulphate bonds at the non-reducing end of HS (Figure 1.1). Its diminished activity results in 

lysosomal accumulation of partially degraded HS (Neufeld & Muenzer, 2001). Increased 

extracellular HS is also apparent, with elevated levels in the circulation, excreted in urine and 
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 MPS Type OMIM # Enzyme Deficiency Stored 

GAG 

Primary Clinical 

Manifestations 

MPS I 607014 (H) 

607015 (H/S) 

607016 (S) 

α-L-Iduronidase HS 

DS 

CNS, skeletal and 

somatic pathology 

MPS II 309900 Iduronate-2-sulphatase HS 

DS 

CNS, skeletal and 

somatic pathology 

MPS IIIA 252900 Heparan N-sulphatase HS CNS and somatic 

pathology 

MPS IIIB 252920 α-N-Acetyl-

glucosaminidase 

HS CNS and somatic 

pathology 

MPS IIIC 252930 Acetyl CoA:α-

glucosaminide N-

acetyltransferase 

HS CNS and somatic 

pathology 

MPS IIID 252940 N-Acetylglucosamine 6-

sulphatase 

HS CNS and somatic 

pathology 

MPS IVA 253000 Galactose 6-sulphatase KS 

CS 

Skeletal and somatic 

pathology 

MPS IVB 253010 β-Galactosidase KS Skeletal and somatic 

pathology 

MPS VI 253200 N-Acetylgalatosamine 4-

sulphatase 

DS 

CS 

Skeletal and somatic 

pathology 

MPS VII 253220 β-Glucuronidase HS 

DS 

CS 

CNS, skeletal and 

somatic pathology 

MPS IX 601492 Hyaluronidase HA Skeletal and somatic 

pathology 

 

Table 1.1 Classification of the MPS disorders 

Each MPS disorder results from a deficiency in a different lysosomal enzyme, leading to 

accumulation of the GAGs DS, HS, KS, CS or HA, either singularly or combination. H, Hurler 

Syndrome (severe MPS I); H/S, Hurler-Scheie Syndrome (moderate MPS I); S, Scheie Syndrome 

(mild MPS I). Adapted from Neufeld and Muenzer (2001). 
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Figure 1.1: The stepwise degradation of HS 

Heparan N-sulphatase (sulphamidase) is one of a series of enzymes required for the catabolism of 

HS. The enzymes required for HS degradation are highlighted in purple accompanied by the MPS 

type which results from their deficiency. Sulphamidase is deficient in MPS IIIA (highlighted in red) 

and thus, due to the strict sequence in which HS is degraded, HS degradation stops when an N-

sulphated N-acetylglucosamine residue is present at the non-reducing terminus of the HS chain. 

Adapted from Hochuli et al. (2013).  

MPS II

MPS VII

MPS IIIB

MPS IIID

MPS IIIA

MPS I

MPS IIIC
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present within the ECM (Holley et al., 2011; Meikle et al., 2004; Neufeld & Muenzer, 2001; 

Tomatsu et al., 2005). Individuals with MPS IIIA generally develop normally until 

approximately two years of age, with the first onset of symptoms between two and six years 

of age. These can include delayed development, poor sleep and hyperactive behaviour. Severe 

neurological deterioration often occurs between six and ten years of age and is associated with 

increasingly aggressive behaviour. Death commonly occurs due to inanition in the second or 

third decade of life (Neufeld & Muenzer, 2001). 

 

1.1.1.1   Central Nervous System Pathology 

MPS IIIA is characterised by a severe neurological phenotype. There is significant 

heterogeneity between patients; however, all forms of MPS III present with some form of 

neurological involvement. Due to neurological disease progression and the regressive 

phenotype prevalent in later life, many patients eventually enter a vegetative state (Muenzer, 

2011). Consistent with the predominant neurological pathology seen in patients, HS storage 

occurs primarily within the CNS, with content significantly increased in the brain of MPS 

IIIA patients compared to normal (Constantopoulos et al., 1976). GAG storage begins 

prenatally, with inclusion bodies present in neurons of affected foetuses from the second 

trimester (Ceuterick et al., 1980). Significant increases in HS storage is similarly seen within 

the brain of the MPS IIIA mouse model, with storage primarily located within lysosomes of 

neurons and microglia of the amygdala, septal nucleus, piriform cortex and cerebral cortex 

(Figure 1.2A) (McGlynn et al., 2004; Wilkinson et al., 2012). An increase in glypican-1, a 

protein commonly associated with HS chains (refer section 1.2 for further details), is also seen 

in the hippocampus, an adult neural stem cell (NSC) niche, in MPS IIIA mice (Ohmi et al., 

2011).  Furthermore, the HS that accumulates in the murine model of MPS IIIA has a 

different structure to normal, with a distinctly modified sulfation pattern (Wilkinson et al., 

2012). Secondary lipid storage is evident, with GM2 and GM3 gangliosides elevated in the 
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patient MPS IIIA brain. GM2 and GM3 ganglioside levels are similarly elevated in MPS IIIA 

mice, localised to the piriform and retrosplenial cortices, amygdala and neocortex 

(Constantopoulos & Dekaban, 1978; McGlynn et al., 2004; Wilkinson et al., 2012). Increased 

levels of unesterified cholesterol is also evident in the basal area of pyramidal neurons of the 

cortex, retrosplenial cortex and amygdala in MPS IIIA (Figure 1.2B) (McGlynn et al., 2004). 

Mild to moderate cortical atrophy is evident at the commencement of neurological 

deterioration in patients and progresses to severe cortical atrophy at later stages of disease 

(Jardim et al., 2010; Neufeld & Muenzer, 2001). Chronic neuroinflammation is prevalent in 

MPS IIIA, with astrocyte and microglia activation significantly higher in the MPS IIIA mouse 

brain compared to normal mice (Figure 1.2C and 1.2D) (Wilkinson et al., 2012). 

Neuroinflammation is widespread across the MPS IIIA brain, with global microglial 

activation, in contrast to the microglial niches found in normal mice (Wilkinson et al., 2012).  

 

1.1.1.2   Somatic Pathology 

In contrast to the severe neurological phenotype observed in MPS IIIA patients, somatic 

pathology is relatively mild. Clinically, hirsutism, coarse hair and hepatosplenomegaly are 

present in some cases of MPS IIIA; however, there is much heterogeneity and many patients 

do not present with these phenotypes. Recurrent and severe diarrhoea is not uncommon in 

young children with MPS IIIA, although this generally improves with age. In contrast to 

many of the other MPS types, coarse facial features are not widespread (Neufeld & Muenzer, 

2001). Somatic pathology is also evident in the MPS IIIA mouse model, with increased HS 

storage within the liver and kidneys and to a lesser extent the spleen (Bhaumik et al., 1999; 

Crawley et al., 2006).  
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Figure 1.2: CNS cell pathology of MPS IIIA 

A: Partially degraded HS (green) accumulates in lysosomes in MPS IIIA. B: Secondary storage of GM2 

(green), GM3 (red) and unesterified cholesterol (blue) is evident within the MPS IIIA brain. 

Gangliosides rarely co-localise, indicating that they are stored in separate vesicles. C: A significant 

increase in positive GFAP staining (brown) indicates an increase in astrocyte activation across the 

MPS IIIA mouse brain at four and nine months of age. Boxed insert shows an enlarged single 

positively stained cell. D: A significant increase in positive Isolectin B4 staining (brown) indicates an 

increase in microglia activation across the MPS IIIA mouse brain at four and nine months of age. 

Boxed insert shows an enlarged single positively stained cell. E: HS (green) and GM3 gangliosides 

(red) are stored in separate vesicles within neurons. Figures A, B and E adapted from McGlynn et al. 

(2004). Figures C and D adapted from Wilkinson et al. (2012). 
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Skeletal disease is a prominent component of many of the MPS types but is limited in MPS 

IIIA. Hip deformities and scoliosis on a lesser scale to other MPS types have been reported in 

children with MPS IIIA, as have minor dysostosis multiplex and minimal joint stiffness 

(Neufeld & Muenzer, 2001; Valstar et al., 2010; White et al., 2011). Osteonecrosis of the 

femoral head leading to epiphyseal dysplasia has been reported and is associated with 

increased hip pain in patients (de Ruijter et al., 2013b; White et al., 2011). Osteopenia is the 

most prominent skeletal deformity identified in MPS IIIA patients, with decreased bone 

mineral density (BMD) identified in a number of patients (Nur et al., 2016; Rigante & 

Caradonna, 2004). It has been hypothesised that decreased BMD is a result of bone loss, a 

consequence of decreased mobility, as patients commonly become wheelchair bound from 

their early teens due to deterioration in neurological function (Rigante & Caradonna, 2004; 

White et al., 2011). 

 

1.1.2 Mechanisms of Disease in MPS IIIA 

The mechanisms that lead from mutation to disease in MPS IIIA are poorly understood. A 

wide spectrum of disease pathology is present amongst MPS IIIA patients; however, specific 

genotype-phenotype correlations have been difficult to establish. Whilst mutational analysis 

has identified mutations which commonly give rise to specific disease phenotypes, identical 

SGSH mutations have been shown to result in varied enzyme activities and disease severity, 

indicating that environmental and epigenetic factors may contribute to disease progression 

(McDowell et al., 1993; Piotrowska et al., 2009; Valstar et al., 2010). Correlations between 

sulphamidase activity and phenotype severity exist to a certain extent, with patients with 

higher sulphamidase activities often displaying an attenuated phenotype, whilst patients with 

below detectable enzyme activities generally exhibit a severe form of the disease (Perkins et 

al., 2001; Piotrowska et al., 2009). However, pathology severity is more directly affected by 

the accumulation of HS. Increased HS accumulation correlates with increased disease 
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severity, both amongst the MPS types and between mild and severe forms of the same 

subtype (Coppa et al., 2015; de Ruijter et al., 2013a; Hochuli et al., 2003). Pathology is often 

more severe in patients with a high rate of GAG synthesis compared to those with a low to 

average rate, indicating that the rate of HS turnover contributes towards disease severity 

(Piotrowska et al., 2009). 

 

The different structure of MPS IIIA HS compared to normal HS is likely to contribute to its 

severe neurological phenotype. A distinct sulphation pattern with increased sulphate content 

was seen in HS isolated from MPS IIIA patient urine compared to HS from MPS I and II 

patient urine (Hochuli et al., 2003). Similarly, HS chains isolated from murine brain tissue 

were found to be more highly sulphated in MPS IIIA and MPS IIIB mice compared to MPS I 

mice (Wilkinson et al., 2012). It has been suggested that the increased sulphation of HS in 

MPS IIIA is at least partially responsible for the more severe pathology seen in this MPS type 

compared to the other HS-storing MPS disorders (Hochuli et al., 2003; Wilkinson et al., 

2012). Furthermore, MPS IIIA patients with a more severe phenotype have been found to 

store HS fragments with a higher proportion of sulphated monosaccharides and disaccharides 

than those with an attenuated phenotype (Hochuli et al., 2003). Integral to cell membranes 

and the extracellular matrix (ECM), HS is an essential component of many signalling 

pathways during development and adulthood (Bernfield et al., 1999; Habuchi et al., 2004). 

This increased sulphation is likely to affect the ability of HS to bind to molecules involved in 

these signalling pathways, as sulphation patterns are crucial to this mechanism (Habuchi et 

al., 2004; Rong et al., 2001; Rusnati et al., 1994). HS accumulation begins prenatally and thus 

disruption of these signalling pathways during development could be contributing to the 

severe CNS pathology of MPS IIIA (Ceuterick et al., 1980; Greenwood et al., 1978; Harper et 

al., 1974; Martin & Ceuterick, 1983). 
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Although MPS IIIA is characterised by the accumulation of partially degraded HS, the 

secondary lipid storage of GM2 and GM3 gangliosides and unesterified cholesterol is another 

defining feature (McGlynn et al., 2004; Wilkinson et al., 2012). Ganglioside storage was 

originally hypothesised to be the result of lysosomal hydrolase dysfunction due to GAG 

accumulation; however, the mechanisms responsible for ganglioside accumulation are now 

thought to be more complex, due to the lack of consistent GAG and ganglioside co-

localisation in the MPS IIIA mouse brain (Figure 1.2E) (McGlynn et al., 2004). It has been 

hypothesised that GAG accumulation may contribute to ganglioside storage through 

regulation of genes involved in ganglioside biosynthesis and degradation (Baumkotter & 

Cantz, 1983; Kreutz et al., 2013; Walkley, 2004). In addition, GM2 and GM3 gangliosides 

accumulate in separate vesicles to one another, suggesting their sequestration also occurs 

through independent mechanisms (Figure 1.2B) (McGlynn et al., 2004). Ganglioside and 

cholesterol storage are now believed to contribute directly towards disease pathology, 

although a clear connection is yet to be established. GM2 accumulation has been linked with 

ectopic dendritogenesis in MPS I and other LSDs, providing a possible mechanism of 

pathology (Purpura & Suzuki, 1976; Siegel & Walkley, 1994). Cholesterol also accumulates 

intracellularly in MPS IIIA; however, evidence suggests that the sequestration is the result of 

changes in cholesterol distribution across the cell rather than absolute increases in 

concentration (Karten et al., 2002; McGlynn et al., 2004). Elevated perikaryal cholesterol 

levels and concomitant decreases in axonal cholesterol levels have been seen in Niemann-

Pick C neurons, which could have significant consequences for correct neuronal function 

(Karten et al., 2002). However, cholesterol accumulation may be regulated by a different 

mechanism in MPS IIIA (Davidson et al., 2009). As gangliosides and cholesterol do not 

necessarily co-localise within affected cells, or with HS, it is likely that their storage has 

independent effects on cellular function (Figure 1.2B) (McGlynn et al., 2004). 
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Chronic neuroinflammation is another prominent component of MPS IIIA pathology. MPS III 

mouse models exhibit chronic neuroinflammation, with increased astrocyte and microglial 

activation present in MPS IIIA and MPS IIIB brains at four and nine months of age (Figure 

1.2C and 1.2D). Neuroinflammation progresses with time and was found to be more 

pronounced in the MPS III mouse models compared to the MPS I mouse model (Wilkinson et 

al., 2012). HS is an important factor in inflammation, influencing cytokine/chemokine 

production, leukocyte recruitment and inflammatory cell maturation, often serving as a 

molecular signal of injury in the absence of an exogenous pathogen (Taylor & Gallo, 2006; 

Wang et al., 2005). The elevated HS in MPS IIIA may therefore be directly responsible for 

the chronic neuroinflammation of the disease. Although a prominent component of MPS IIIA 

neuropathology, the extent to which neuroinflammation actually contributes to disease is 

disputed; MPS IIIB mice deficient in toll-like receptor 4 have shown that severe 

neurodegeneration occurs even without microglial activation by HS (Ausseil et al., 2008). 

However, administration of the anti-inflammatory drug aspirin to MPS IIIA mice has resulted 

in reduced CNS pathology (Arfi et al., 2011). Although originally thought to result solely 

from HS accumulation, it is now most likely that MPS IIIA pathogenesis results from a 

complex interplay between all neurological dysfunctions within the CNS. 

 

1.2 Glycosaminoglycans and Proteoglycans 

Glycosaminoglycans (GAGs) are long, unbranched polysaccharides involved in many cellular 

processes integral for growth and development (Lin, 2004; Mizuguchi et al., 2003; Perrimon 

& Bernfield, 2000). GAG chain length and post-translational sulphation patterns are thought 

to influence GAG function and specificity (Allen & Rapraeger, 2003; Nakato & Kimata, 

2002). GAGs are considered post-translational modifications of selected core proteins which 

contain GAG attachment consensus sequences, such as the well-known SGD sequence; the 

addition of one or more GAG chains to a core protein results in formation of a proteoglycan 
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(PG) (Iozzo & Schaefer, 2015). PGs can be found intracellularly (reviewed in Kolset et al., 

2004); however, PGs are primarily located within the extracellular matrix (ECM) or else 

integrated into the cell membrane (Bandtlow & Zimmermann, 2000; Lamoureux et al., 2007). 

PGs are vital during histogenesis, increasing morphogen binding efficacy by acting as co-

receptors, or increasing morphogen concentrations at the cell surface through formation of a 

morphogen gradient (Bandtlow & Zimmermann, 2000; Yamaguchi, 2001). 

 

1.2.1 Heparan Sulphate 

HS is composed of repeating disaccharide units of D-glucuronic or L-iduronic acid and N-

acetylglucosamine residues. Glucuronic and iduronic acids may be sulphated, whilst 

glucosamine is either sulphated or acetylated on the amino group, leading to a wide variety of 

possible  sulphation patterns (Kjellen & Lindahl, 1991). HS largely functions as a PG, with 

HS chains bound to perlecan, agrin and collagen XVII found in the basement membranes of 

the ECM. However, HS chains bind primarily to glypicans and syndecans, the two major cell 

surface heparan sulphate proteoglycan (HSPG) families (Filmus & Selleck, 2001; Iozzo, 

1998; Zimmermann & David, 1999). The HS chains bound to glypicans and syndecans are 

located close to the cell membrane, suggesting a role for HS in mediating PG interactions 

with signalling molecules, primarily fibroblast growth factors (FGFs), Wnts, bone 

morphogenic proteins (BMPs) and Hedgehogs (Hhs) (Esko et al., 2009; Guo & Wang, 2009; 

Kim et al., 2011; Song et al., 2005; Tkachenko et al., 2005; Topczewski et al., 2001; 

Veugelers et al., 1999; Xian et al., 2012; Yan & Lin, 2007). 

 

1.2.1.1   Heparan Sulphate Synthesis 

HS synthesis is initiated by the addition of an N-acetylglucosamine to a xylose-galactose-

galactose-glucuronic acid tetrasaccharide linker, itself attached to the PG core protein by O-
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glycosylation of a serine residue. Alternating units of glucuronic acid and N-

acetylglucosamine are then added under the action of the EXT enzymes, assembling an 

unbranched polysaccharide chain (Esko & Selleck, 2002; Hacker et al., 2005). Concomitant 

with chain elongation, post-translational modifications occur in the Golgi apparatus, 

specifically sulphation and epimerisation (Figure 1.3). 

 

HS chain modifications do not necessarily occur in the linear order seen in Figure 1.3; 

furthermore, modifications are not evenly distributed across the GAG chain, instead occurring 

in defined loci generating distinct domains that have biological significance (Hacker et al., 

2005). Iduronic acid residues and sulphated N-acetylglucosamines cluster in regions known as 

N-sulphated (NS) domains, interspersed by regions containing unsulphated monosaccharides 

known as N-acetylated (NA) domains. NS and NA domains are separated by regions 

containing alternating N-acetyl and N-sulpho glucosamines, known as NA/NS domains 

(Hacker et al., 2005; Maccarana et al., 1996; Murphy et al., 2004). Therefore, the post-

translational modification of HS results in chains with a wide range of possible sulphation 

patterns (Hacker et al., 2005). 

 

1.2.1.2   Heparan Sulphate Catabolism 

HS degradation is initiated by the extracellular enzyme heparanase, which cleaves HS chains 

from the proteoglycan core protein (Bame, 2001; Vlodavsky et al., 2007). These partially 

cleaved HS chains are then translocated to the lysosomes for further degradation by a 

complex of eight lysosomal enzymes (Figure 1.1). These enzymes act in a stepwise manner to 

remove monosaccharides from the non-reducing terminus of the GAG chain; however, prior 

to the removal of monosaccharides, all sulphate moieties must be removed. Four sulphatases 

achieve the removal of sulphate groups, whilst three glycosidases hydrolyse glycosidic bonds
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Figure 1.3: Heparan sulphate synthesis 

HS chains are composed of alternating units of glucuronic acid and N-acetylglucosamine, which 

undergo a series of modifications to form a mature chain. NDST, N- deacetylase-N- 

sulphotransferase; OST, O-sulphotransferase. Adapted from Hacker et al. (2005). 
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between saccharides (Figure 1.1) (Neufeld & Muenzer, 2001). A single acetyltransferase 

acetylates glucosamine (GlcN) amino groups exposed by the removal of a sulphate group by 

heparan-N-sulphatase, allowing the glucosamine to later be cleaved by α-N-

acetylglucosaminidase (Figure 1.1) (Neufeld & Muenzer, 2001).  

 

1.2.2 Heparan Sulphate in MPS IIIA 

A number of disease states are known to alter HS structure, often resulting in altered binding 

properties that exacerbate the existing disease (Blackhall et al., 2001; Kjellen & Lindahl, 

1991; Osterholm et al., 2009). There has been increasing interest regarding the altered 

structure of GAGs in the MPS disorders and their possible effects on disease. HS sulphation 

patterns vary between the HS-storing MPS types. Different non-reducing terminal residues 

are characteristic of an individual MPS type; furthermore, the levels of sulphation across the 

HS backbone differ between MPS types (Figure 1.4) (Byers et al., 1998; Neufeld & Muenzer, 

2001).  

 

Whilst all patients with HS-storing MPS types excrete urinary HS with increased sulphate 

compositions compared to normal patients, patients with MPS IIIA have the highest 

proportion of the highly sulphated NS domains when compared to the HS from MPS I and 

MPS II patients (Hochuli et al., 2003). Similarly, HS isolated from MPS IIIA and MPS IIIB 

murine brain tissue was found to be more highly sulphated along its length than HS isolated 

from MPS I murine brain tissue. Specifically, an increase in tri- and di-sulphated disaccharide 

domains, HexA(2S)–GlcNS(6S) (where HexA is either glucuronic acid or iduronic acid) and 

HexA(2S)–GlcNS (see Appendix B for abbreviations), was seen in murine MPS IIIA and 

MPS IIIB brains (Wilkinson et al., 2012). The increased sulphation of HS in the MPS III
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Figure 1.4: Gradient PAGE of MPS heparan sulphate 

Gradient PAGE of HS isolated from urine of patients with MPS I (lane 2), MPS II (lane 3) and MPS 

IIIA-D (lanes 4-7). Octosaccharide, hexasaccharide and tetrasaccharide HS standards were included 

as controls (lanes 1 and 8). Distinct banding patterns are present for each MPS type. Adapted from 

Byers et al. (1998). 

 

 

 

I II A C DBstd std

III

octa

hexa

tetra



17 

 

types has been hypothesised to contribute to the more severe neurological phenotype of the 

disease (Hochuli et al., 2003; Wilkinson et al., 2012). 

 

1.3 Neurogenesis 

Neurogenesis, the production of new neurons in the CNS, is a highly regulated process. 

Neurogenesis primarily occurs during development, but also continues into adulthood in the 

subgranular zone (SGZ) in the dentate gyrus of the hippocampus and the subventricular zone 

(SVZ) of the lateral ventricles (Cameron et al., 1993; Garcia-Verdugo et al., 1998). The 

primordial cell types of the developing embryonic brain are called neural stem or neural 

progenitor cells, which balance both proliferation and differentiation into mature, post-mitotic 

cells of the mature brain. Initially, they favour a proliferative state during an expansive phase 

required to increase overall brain size. They then switch into increasingly more differentiative 

states, firstly undergoing a neurogenic phase to produce the neuronal cells and subsequently 

gliogenic phases to produce glia and then oligodendrocytes. At the conclusion of these 

processes (early postnatally), the vast majority of NSCs become exhausted and persist only in 

a few specialised ‘adult neurogenic niches’, supplying new neurons to the olfactory and 

hippocampal structures (Figure 1.5A) (Martynoga et al., 2012; Panchision & McKay, 2002). 

 

Neurogenesis is a production of neurons arising from the division of neural progenitor cells 

(NPCs), and is thus linked to their decision to self-renew (produce more progenitor cells) or 

differentiate (produce neurons). CNS development is driven by differing types of NPC cell 

divisions, classified as being either symmetric or asymmetric (Horvitz & Herskowitz, 1992; 

Rakic, 1995). During the expansive phase early in CNS development, NPCs (with 

neuroepithelial (NE) identity), favour symmetric cell divisions and divide to produce two 

more NPCs, driving NPC expansion. During the later neurogenic phase, NPCs switch to an
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Figure 1.5: Cell division in neurogenesis 

A: CNS development occurs in three phases; the expansion phase, the neurogenic phase and the 

gliogenic phase. B: Neurogenesis is dependent on symmetric and asymmetric cell divisions to 

maintain progenitor proliferation and neuron formation. C: Developmental neurogenesis involves 

the symmetric and asymmetric divisions of NPCs (which include neuroepithelial cells (NE) and 

radial glial cells (RG)) to produce neurons (N). Figure A adapted from Panchision and McKay 

(2002). Figures B and C adapted from Gotz and Huttner (2005). 
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asymmetric type of division, dividing to produce one NPC (with radial glial (RG) cell 

identity) and one neuron (Gotz & Huttner, 2005; Huttner & Brand, 1997; Kriegstein & Gotz, 

2003). The RG population is able to expand through asymmetric divisions, producing one 

identical NPC (with RG cell identity) and one neuron (Gotz, 2003). At the conclusion of 

developmental neurogenesis, NPCs can undergo symmetric, neurogenic divisions, producing 

two mature neurons (Figure 1.5B and 1.5C). Through this last type of division, NPCs become 

exhausted, and very few NPCs exist beyond developmental stages (Huttner & Kosodo, 2005; 

Saito et al., 2003). RG NPCs are only maintained in two discrete neurogenic niches in the 

adult brain, driving adult neurogenesis in the hippocampus and olfactory systems (Bonfanti & 

Peretto, 2007). 

 

1.3.1 Heparan Sulphate in Neurogenesis 

HSPGs play a vital role in both embryonic and adult neurogenesis (Urban & Guillemot, 

2014). Several morphogens and growth factors involved in neurogenesis require interactions 

with the HS chains of HSPGs, resulting in HS-dependent signalling regulation and ligand 

stability. HS binding capacity is dependent on the fine structure of the chain, specifically the 

sulphation patterns of the NS regions (Habuchi et al., 2004). HS chains generally modulate 

neurogenesis by enhancing receptor activation at low ligand concentrations. Low affinity 

interactions between HS and morphogens increase ligand concentration at the cell surface, 

enabling presentation of the ligand to its signalling receptor. As an additional mechanism, 

HSPGs can also form morphogen gradients to increase morphogen concentration at the cell 

membrane (Okolicsanyi et al., 2014). In some cases, HS chains act as co-receptors for 

morphogens, forming vital complexes integral for neurogenesis (Chang et al., 2000; Krufka et 

al., 1996). 
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1.3.1.1   Fibroblast Growth Factor Signalling 

The FGF family of morphogens are dependent on HSPGs for function. Comprising of 22 

members in mammals, the FGF family has an important role in development, with many 

FGFs required for CNS development. FGF signalling is initiated following ligand binding to 

the FGF receptor (FGFR). Whilst HSPGs also act to bind and protect FGFs within the ECM 

and accrue a reservoir of FGF at the cell surface, HS chains primarily act as co-receptors for 

FGF, resulting in formation of the FGF:FGFR:HS complex necessary for FGF signalling 

(Chang et al., 2000; Lin et al., 1999). FGFs bind to specific HS sulphation patterns; the 

tetrasaccharide GlcNS(6S)-IdoA(2S)-GlcNS(6S)-IdoA(2S) has been identified as the 

minimum FGF-2 binding motif (Guglier et al., 2008; Raman et al., 2003). MPS IIIA HS 

fragments have been shown to display increases in HexA(2S)-GlcNS(6S) disaccharides, 

where HexA represents either GlcA or IdoA (see Appendix B for abbreviations), indicating a 

potential increase in the proportion of the minimum FGF-2 binding motif compared to normal 

HS, albeit dependent on the specific tetrasaccharide formations (Wilkinson et al., 2012). The 

conformation of the binding motif varies between FGFs; for example, FGF-2 binds only to 

the 2-O and N sulphate groups of the binding motif, leaving the 6-O sulphate exposed 

(Ashikari-Hada et al., 2004; Guglier et al., 2008). However, 6-O sulphation of HS is required 

for bridging interactions between FGF-2 and the FGFR, forming the FGF:FGFR:HS complex 

(Pye et al., 2000; Pye et al., 1998). Formation of this complex induces dimerization of the 

FGFR intracellular tyrosine kinase domains, changing their orientation and increasing their 

proximity. This enables transphosphorylation of the tyrosine kinase domains, resulting in their 

activation. The activated tyrosine kinases are then able to phosphorylate, and thus activate, 

their intracellular substrates, most commonly FGFR substrate 2α (FRS2α) and phospholipase 

Cγ1 (PLCγ1). FRS2α activation is able to initiate downstream activation of the mitogen 

activated protein kinase (MAPK) or PI3K/AKT cascades, whilst PLCγ1 activation results in 

calcium signalling and activation of protein kinase C (PKC). Of these downstream pathways, 

the MAPK signalling pathway has been most implicated in neurogenesis due to its activation 
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of transcription factors involved in cell proliferation, differentiation and migration (Figure 

1.6) (Chen et al., 2010).  

 

As FGFs are involved in the upregulation of cell proliferation and differentiation-related 

genes, it is unsurprising that they play an important role in neurogenesis.  In particular, FGF-2 

is an established and well-studied neurogenic factor; high levels are present during 

development from the initiation of neurulation and its temporospatial expression in the 

developing CNS corresponds with neurogenesis in specific brain regions (Murphy et al., 

1994; Powell et al., 1991). During development, FGF-2 is primarily involved in stimulating 

neural progenitor proliferation and maintaining stem cells in the cell cycle; however, FGF-2 

has also been implicated in regulating neural differentiation (Chen et al., 2010; Israsena et al., 

2004; Qian et al., 1997). In adults, FGF-2 expression is found in the neurogenic niches, the 

SGZ and the SVZ, and is thus implicated in the regulation of adult neurogenesis (Rai et al., 

2007; Werner et al., 2011).  

 

Defects in FGF signalling highlight the family’s vital role in neurogenesis. Deletion of FGF 

receptors dramatically reduced progenitor proliferation during early development, resulting in 

reduced postnatal size of particular brain regions (Ohkubo et al., 2004; Rash et al., 2011). 

FGF-2 knockout mice display impairments in neuronal proliferation and differentiation, 

demonstrating the mitogenic role of FGF-2 (Raballo et al., 2000; Werner et al., 2011). 

Additionally, disruption of FGF-10 during development delays differentiation along the 

neural lineage by prolonging the proliferation of NE cells (Sahara & O'Leary, 2009).  
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Figure 1.6: The FGF signalling pathway 

Formation of the FGF:FGFR:HS complex induces FGFR dimerization, which juxtaposes the 

intracellular tyrosine kinase domains, allowing them to transphosphorylate one another. Activated 

FGFR tyrosine kinases activate the FGFR substrate 2α (FRS2α) by phosphorylation, which can in 

turn activate growth factor receptor-bound 2 (GRB2), an adaptor protein. GBR2 then recruits a 

guanine exchange factor, son of sevenless (SOS), which acts upon a GTP-ase, rat sarcoma (RAS), 

forcing the release of its GDP nucleotide and enabling it to instead bind GTP. Activated RAS is 

then able to phosphorylate and activate the rapidly accelerated fibrosarcoma (RAF) kinase, which in 

turn phosphorylates and activates mitogen activated protein kinase kinase (MAPKK). Activated 

MAPKK is then able to act upon mitogen activated protein kinase (MAPK); once activated, MAPK 

translocates from the cytoplasm to the nucleus where it activates target genes. Adapted from Goetz 

and Mohammadi (2013). 
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1.3.1.2   Wnt Signalling 

Wnt signalling is also dependent on HSPGs for function. HSPGs act to increase Wnt 

concentration at the cell surface through the creation of morphogen gradients and ligand 

solubility maintenance, and to stabilise interactions between the Wnt and Frizzled (FZD) 

protein receptors (Figure 1.7) (Capurro et al., 2014; Capurro et al., 2005; Fuerer et al., 2010). 

Wnts bind to specific regions of HS chains, with HS binding domains identified in a number 

of Wnts (Cardin & Weintraub, 1989; Tran et al., 2012). Wnt binding is also dependent on the 

sulphation of the HS chain, with 6-O-sulphation, enriched in MPS IIIA HS, the most 

implicated (Ai et al., 2003; Wilkinson et al., 2012). Binding of Wnt ligands to FZD receptors 

results in activation of either the canonical or non-canonical signalling cascade (Gordon & 

Nusse, 2006; Prud'homme et al., 2002). Pathway activation is determined by the ability of 

Wnt ligands to bind to co-receptors during signalling initiation, with the LRP5/6 co-receptor 

associated with canonical Wnt signalling and the Ror-2 co-receptor associated with non-

canonical Wnt signalling (Grumolato et al., 2010). The majority of HS binding domains exist 

on canonical Wnts; the canonical Wnt signalling pathway has been closely linked with 

neurogenesis in both the developing and adult brain (Hirabayashi et al., 2004; Lie et al., 2005; 

Tran et al., 2012).  

 

Throughout neurogenesis, Wnt signalling has been found to regulate self-renewal, 

maintenance and differentiation of neural progenitors (Chenn & Walsh, 2002; Hirabayashi et 

al., 2004). β-catenin levels regulated by canonical Wnt signalling regulate the switch between 

proliferation and differentiation during developmental neurogenesis; early in development, 

increased canonical Wnt signalling is associated with increases in proliferation whilst 

decreased canonical Wnt signalling increases differentiation along the neural lineage; later in 

development, increased Wnt/β-catenin results in reduced proliferation and increased
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Figure 1.7: The canonical Wnt signalling pathway 

A: In the absence of Wnt binding to frizzled (FZD), the destruction complex composed of axin, 

adenomatous polyposis coli (APC), protein phosphatase 2A (PP2A), glycogen synthase kinase 3 

(GSK3) and casein kinase 1α (CK1α) is able to form. β-catenin is phosphorylated by GSK3, which 

is targeted for degradation by the ubiquitin ligase β-Trcp, and therefore unable to translocate to the 

nucleus. B: Binding of Wnt to the FZD (facilitated by the HS chains of HSPGs) and the LRP5/6 co-

receptor results in activation of the dishevelled (Dvl) protein, binding it to FZD. This results in 

recruitment of the axin protein to the Wnt-LRP-FRD complex at the cell membrane. Recruitment of 

axin prevents the correct formation of the destruction complex, preventing GSK3 from 

phosphorylating β-catenin. β-catenin therefore accumulates within the cytoplasm before 

translocating to the nucleus, where it is able to interact with TCF transcription factors to upregulate 

target genes. Adapted from MacDonald et al. (2009). 
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differentiation (Chenn & Walsh, 2002; Hirabayashi et al., 2004; Mutch et al., 2010; Wrobel et 

al., 2007). Wnt signalling is also involved in adult neurogenesis, with increased canonical 

Wnt signalling promoting both cell proliferation and differentiation in the adult dentate gyrus 

(Lie et al., 2005). Wnt signalling regulates both developmental and adult neurogenesis 

through its regulation of genes involved in the cell cycle (e.g. cyclin D1) and neural 

differentiation (e.g. neurogenin-1 and -2). These genes are upregulated by the TCF/LEF 

transcription factors activated during canonical Wnt signalling (Qu et al., 2013). Aberrations 

in Wnt signalling have been found in many neurological disorders, highlighting their 

important role in neural development and maintenance (Durak et al., 2015; Lovestone et al., 

2007; Pei et al., 1999; Voleti & Duman, 2012).  

 

1.3.1.3   Bone Morphogenetic Protein Signalling 

Cell-surface HSPGs are required for BMP signalling, with the removal of cell-surface HS 

preventing BMP binding and inhibiting Smad1/5/8 phosphorylation (Irie et al., 2003). HS is 

also believed to increase the bioavailability of BMP morphogens, preventing their degradation 

within the ECM and disrupting interactions between BMP and its antagonist, noggin (Figure 

1.8) (Murali et al., 2013; Zhao et al., 2006). It has also been suggested that HS acts to enhance 

type II receptor recruitment following BMP binding, promoting formation of the 

heterotetrameric signalling complex, mediating BMP morphogen internalisation (Hu et al., 

2009; Kuo et al., 2010). Similarly to the FGF and Wnt pathways, specific HS sulphation 

patterns are required for BMP binding; for example, N-sulphation and 6-O-sulphation have 

been identified as integral for HS:BMP-7 interactions, both of which are enriched in MPS 

IIIA HS (Irie et al., 2003; Wilkinson et al., 2012). 
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Figure 1.8: The canonical BMP signalling pathway 

HS interactions with BMP ligands prevent their degradation within the ECM and disrupt 

interactions with the BMP antagonist, noggin, increasing ligand bioavailability at the cell surface. 

BMPs bind to type I and type II serine/threonine kinase receptors, forming a heterotetrameric 

complex. Formation of this complex enables the type II receptor to transphospohorylate the type I 

receptor, enabling the type I receptor to in turn phosphorylate Smad1/5/8. Phosphorylated 

Smad1/5/8 is able to bind Smad4, following which the complex is translocated to the nucleus. The 

Smad complex then associates with coactivators or corepressors to modulate expression of target 

genes. Adapted from Wang et al. (2014). 
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In contrast to many other HS-dependent signalling pathways, BMP acts as an inhibitory 

modulator of neural induction. During embryonic development of the ectoderm, BMP 

morphogens are known to promote formation of the epidermis, concurrently suppressing 

neural formation (Furuta et al., 1997; Hawley et al., 1995). Increases in BMP signalling also 

corresponded with decreased progenitor proliferation and increased apoptosis (Furuta et al., 

1997; Graham et al., 1994). BMP expression increases with age and is associated with a 

reduction in hippocampal neural progenitor proliferation and neurogenesis; inhibition of BMP 

signalling increases neurogenesis and has been shown to restore cognitive defects in aging 

mice (Meyers et al., 2016; Yousef et al., 2015). 

 

1.3.1.4   Hedgehog Signalling 

HSPGs are also involved in Hh signalling. Hydrophobic Hhs are secreted and transported to 

the cell surface of cells expressing the Patched (Ptch) receptor (Panakova et al., 2005). Whilst 

lipidated proteins normally remain bound to the cell surface, Hhs must be released from the 

cell surface in order to bind to the Ptch receptor and initiate signal transduction (Ohlig et al., 

2011; Tukachinsky et al., 2012; Zeng et al., 2001). HS chains are believed to regulate the 

release of Hh from the cell surface, indicating a positive regulatory role of HS (Figure 1.9) 

(Dierker et al., 2009; Jakobs et al., 2014; Lin, 2004; Ortmann et al., 2015). Indeed, mutant 

Hhs unable to bind to heparin display reduced Hh signalling in vitro (Chang et al., 2011). It 

has also been hypothesised that HSPGs may stabilise hydrophobic Hh morphogens following 

their release from the cell surface, preventing degradation, or act as a co-receptors for Hh 

interactions with its receptor, Ptch, as is seen in FGF signalling (Lin, 2004; Ohlig et al., 

2011). 
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Figure 1.9: The Hh signalling pathway 

A: In the absence of Hh, the Patched (Ptch) receptor inactivates the action of the Smoothened (Smo) 

receptor. This prevents the activation of the Gli transcription factor and results in repression of Gli 

target genes. B: Hh morphogens are released from the cell surface by HS chains and bind to the 

Ptch receptor, resulting in its inactivation and subsequent activation of Smo. Smo is able to activate 

the Gli transcription factor, allowing for transcription of Gli target genes. Adapted from Yao et al. 

(2016). 
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Hh is known to be vital for embryonic patterning during development (Fuccillo et al., 2004). 

Sonic hedgehog (Shh) controls the patterning of neural progenitors during development, and 

is believed to play a role in hippocampal neural plasticity (Komada et al., 2008; Machold et 

al., 2003). Activation of Shh signalling has been found to accelerate axon outgrowth and 

increase synaptic function (Mitchell et al., 2012; Yao et al., 2015), whilst disruptions in Shh 

signalling is believed to contribute to the pathology of several developmental and adult-onset 

neurological disorders (Blassberg et al., 2016; Boyd et al., 2015; Filges et al., 2011; Roper et 

al., 2006). 

 

1.3.2 Neurogenesis in MPS 

Studies which have examined the effects of the MPS disease state on neurogenesis have 

encountered dysregulation of the FGF signalling pathway. FGF-1, FGF-2 and FGFR mRNA 

expression was reduced within the brain in MPS IIIB mice compared to normal, with a 

concomitant reduction in proliferation in both the developing and adult brain of the MPS IIIB 

mouse model (Li et al., 2002). The FGF pathway was also disrupted in MPS I, where MPS I 

HS was found to interfere with FGF-2:FGFR interactions (Pan et al., 2005).  

 

A reduction in stem cell proliferation and differentiation capacity has also been seen in MPS. 

Induced pluripotent stem cells (iPSCs) generated from MPS IIIB patient skin fibroblasts were 

unable to proliferate without an exogenous supply of the missing MPS IIIB enzyme, α-N-

acetylglucosaminidase (NAGLU). The authors hypothesised, but did not confirm, that the 

iPSCs’ inability to proliferate was a result of deficient FGF signalling due to aberrant HS 

(Lemonnier et al., 2011). Proliferation of NPCs isolated from MPS II mice was unaffected; 

however, mature neuron survival appeared to be reduced compared to normal NPCs (Fusar 

Poli et al., 2013).  
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1.4 Modelling Neurological Disease 

Neurological disorders have proven to be difficult to model, primarily due to the difficulties 

in accessing human CNS tissue. Animal models and stem cells derived from somatic tissues 

are an alternative for investigating mechanisms of pathology and possible treatments for CNS 

disease. 

 

1.4.1 Animal Models 

Animal models have proven utility in investigating neurological diseases. Currently, two 

naturally occurring animal models of MPS IIIA exist; canine and murine (Bhaumik et al., 

1999; Fischer et al., 1998). The MPS IIIA dog results from a c.737_739del (p.T246del) 

mutation whilst the MPS IIIA mouse carries a missense mutation of c.91 G>A (p.D31N) 

(Aronovich et al., 2000; Bhattacharyya et al., 2001). Sulphamidase activity is approximately 

2% and 3% of wildtype in the canine and murine models respectively, resulting in 

intracellular HS accumulation and increased urinary excretion (Bhaumik et al., 1999; Fischer 

et al., 1998). The first clinical symptoms are seen at three years of age in MPS IIIA dogs, with 

the development of progressive ataxia and proprioceptive defects, leading to severe cerebellar 

ataxia and tremors at six years of age. However, no change in neurological function has been 

noted (Fischer et al., 1998; Jolly et al., 2007). The disease phenotype of the MPS IIIA mouse 

model closely mirrors the human disease. Mice appear normal at birth, with the first 

symptoms developing from 7-8 weeks of age. As the disease progresses mice become less 

active, developing a “scruffy” appearance and exhibiting a hunched posture and abdominal 

distension compared to normal littermates (Bhaumik et al., 1999). Functional neurological 

pathology is evident, with MPS IIIA mice consistently performing poorly in a range of 

behaviour tests (Crawley et al., 2006; Hemsley et al., 2007; Hemsley et al., 2009; McIntyre et 

al., 2010; Roberts et al., 2007). Due to its close mirroring of the human disease, the MPS IIIA 

murine model has been used extensively. 
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1.4.2 Modelling MPS IIIA neurogenesis in vitro 

Although animal models are invaluable for research into neurological disorders, they have 

their limitations. In MPS IIIA, the microenvironment of the brain is complex; in vitro models 

of disease allow the contribution of a single component of the disease phenotype, such as 

GAG storage, towards overall neurological pathology to be determined. Stem cells with 

neurogenic properties have previously been isolated from MPS animal models, with murine-

derived embryonic stem cells (ESCs) and NPCs used to model various MPS types (Fusar Poli 

et al., 2013; Heuer et al., 2001; Walton & Wolfe, 2007). Human in vitro models of disease 

provide an advantage over animal-derived cells, eliminating the confounding differences in 

development, lifespan and cellular pathways seen between species. Whilst CNS-derived 

human cell lines are difficult to obtain, the availability of cells from more readily available 

somatic tissues that are either able to be induced, or else inherently capable, of 

transdifferentiation into cells of the CNS provide an opportunity to model MPS IIIA 

neurogenesis in vitro. 

 

1.4.2.1   Mesenchymal Stem Cells 

Mesenchymal stem cells (MSC) were first described by Friedenstein et al. (1974). Fibroblast-

like, spindle-shaped clonogenic cells were isolated from the bone marrow and defined as 

colony-forming unit fibroblasts capable of differentiating into adipocytes, osteocytes and 

chondrocytes of the mesodermal lineage (Friedenstein et al., 1974; Pittenger et al., 1999). 

MSCs were later found to exhibit transdifferentiation properties, producing cells of unrelated 

germline lineages under specific culture conditions (Figure 1.10) (Arthur et al., 2008; Azizi et 

al., 1998; Hermann et al., 2004; Kopen et al., 1999; Pereira et al., 1995; Pereira et al., 1998). 

The neurogenic properties of human MSCs were of particular interest and were identified 

upon culture with EGF, FGF-2 or retinoic acid, exposure to chemical compounds such as β-

mercaptoethanol, co-culturing with neural lineage cells or increasing cyclic AMP levels 
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(Arthur et al., 2008; Bossolasco et al., 2005; Deng et al., 2001; Farzi-Molan et al., 2018; 

Gonmanee et al., 2018; Hermann et al., 2004; Mukai et al., 2016; Sanchez-Ramos et al., 2000; 

Woodbury et al., 2000). 

 

 

 

 

 

Figure 1.10: Transdifferentiation of MSCs 

In addition to generating cells from their own mesodermal germline, MSCs can also differentiate 

into cells from the other two unrelated germline lineages. Adapted from Uccelli et al. (2008). 
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Due to their neurogenic properties, MSCs have been proposed as therapeutic agents to treat 

CNS disorders. Haematopoietic stem cells (HSCs), another bone marrow-derived cell type, 

are currently used to treat MPS I, MPS VI and MPS VII (Hobbs et al., 1981; Krivit et al., 

1984; Yamada et al., 1998). Allogenic HSC transplants targeting the CNS rely on the ability 

of HSCs to cross the blood brain barrier and secrete the deficient enzyme into the CNS, where 

it can be taken up into neighbouring cells by mannose-6-phosphate receptors, targeting the 

enzyme to the lysosomes and decreasing GAG storage (Krivit et al., 1995). Unfortunately, 

HSC transplants carry significant risks, including the development of graft vs host disease, 

resulting in significant morbidity and mortality (Wang et al., 2016). MSCs have been 

proposed as an alternative to HSC transplants for MPS, their immunomodulatory effects 

hypothesised to reduce the risk of immune reactions from allogenic transplants. Furthermore, 

their ability to differentiate into neurons, as opposed to forming a component of the microglial 

cell system, provides a distinct advantage (Bartholomew et al., 2002; Di Nicola et al., 2002; 

Jackson et al., 2015; Krivit et al., 1995). Administration of MSCs was found to reduce GAG 

content and improve corneal defects in MPS VII mice and improve behavioural deficits in 

MPS I mice (Coulson-Thomas et al., 2013; da Silva et al., 2012; Meyerrose et al., 2008). Both 

HSCs and MSCs have been proposed for use in stem cell gene therapy. Following 

transfection with lentivirus encoding enzymes deficient in multiple MPS disorders, MSCs 

expressed higher levels of the deficient enzyme compared to transfected HSCs. Vector 

transduction efficiency was also higher in MSCs compared to HSCs. (Jackson et al., 2015). 

MSCs isolated from MPS I patients successfully overexpressed the enzyme deficient in MPS 

I, IDUA, following transfection with retrovirus encoding the IDUA gene. The ability of the 

secreted enzyme to correct human MPS I fibroblast pathology indicated their potential use for 

autologous MSC transplants (Baxter et al., 2002). MSCs have been used successfully in stem 

cell gene therapy to overexpress MPS enzymes in vivo (da Silva et al., 2012; Meyerrose et al., 

2008). 
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Due to their multi-lineage potential, MSCs are an excellent candidate for modelling MPS IIIA 

in vitro, as they are able to model both the neurological and skeletal pathology typical of the 

disease. Our lab has recently determined that application of GAGs isolated from MPS I, MPS 

II and MPS VI patients to human MSCs from healthy human donors significantly delayed 

osteoblast differentiation and mineralisation and reduced osteoblast calcium deposition (Rout-

Pitt et al., unpublished data). Similar methods can be used to examine the effect of HS 

isolated from MPS IIIA patients on neurogenesis. In vitro analysis with human MSCs is ideal; 

unlike cells of the CNS, MSCs are readily available from healthy donors and GAGs can be 

isolated from MPS IIIA patient or mouse urine, enabling the individual effect of MPS IIIA 

GAGs on neurogenesis to be directly determined in a human model.  

 

To model the effects of intracellular GAG accumulation on neurogenesis, MSCs would need 

to be isolated from MPS patients; previously, MSCs have been isolated from MPS I patients 

to examine osteoclast formation (Gatto et al., 2012). Unfortunately, MSCs are difficult to 

procure from MPS IIIA patients due to the invasive nature of an MSC harvest. Murine models 

of MPS IIIA provide an alternate source of disease MSCs, due to their close mirroring of the 

MPS IIIA phenotype (section 1.4.1). Isolation and neurodifferentiation of MSCs isolated from 

the MPS IIIA mouse model would enable the development of an in vitro model of MPS IIIA 

neurogenesis. MSCs have previously been isolated from murine compact bone, bone marrow, 

dental pulp and umbilical cord and successfully differentiated along the neural lineage 

(Boregowda et al., 2016; Guimaraes et al., 2011; Sanchez-Ramos et al., 2000; Zhang et al., 

2018; Zhao et al., 2016; Zhu et al., 2010). However, to date MSCs have not been isolated 

from murine models of any of the MPS disorders. It should be noted that the CNS is more 

directly accessible in mice than in humans and thus cells from the CNS, such as NSCs, could 

be isolated from the MPS IIIA mouse model, as has been achieved MPS II (Fusar Poli et al., 

2013). MPS IIIA murine NSCs would be an alternate option to model neurogenesis in vitro 
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and would be of interest to examine further. However, for direct comparison to human MSC 

experiments examining the effects of extrinsic MPS IIIA GAG on neural differentiation 

(discussed previously), an MPS IIIA MSC model is advantageous to maintain consistency, 

due to the inherent differences between MSCs and NSCs and their neural differentiation 

(Ahmed et al., 2011; Lepski et al., 2010; New et al., 2015; Rossignol et al., 2014). However, 

due to the confounding differences between species, validation with a human source of cells 

with neurogenic properties would be advantageous. Induced pluripotent stem cells (iPSCs) are 

an example of one such cell type. 

 

1.4.2.2   Induced Pluripotent Stem Cells 

iPSCs have many advantages for disease modelling. They are by definition pluripotent and 

thus able to differentiate into cells of all three germline lineages; this is particularly useful for 

generating cells such as cardiomyocytes and neurons which are difficult to procure from 

humans (Figure 1.11) (Takahashi et al., 2007). They can be generated from easily accessible 

somatic cells, enabling modelling of disease without the ethical consideration plaguing ESC 

research. Indeed, even excluding the ethical considerations, it can be argued that iPSCs 

provide additional advantages over ESCs, as they provide a theoretically infinite source of 

pluripotent cells and enable disease modelling of a wide range of disorders (Bayart & Cohen-

Haguenauer, 2013). 

 

iPSCs were first generated from mouse embryonic fibroblasts and adult mouse tail-tip 

fibroblasts by Takahashi and Yamanaka (2006). Of the 24 candidate genes for maintaining 

pluripotency selected, four transcription factors were identified which, following retroviral-

mediated transfer, successfully produced cells exhibiting the morphology and growth 

properties of ESCs; Oct3/4, Sox2, c-Myc and Klf4 (Takahashi & Yamanaka, 2006). The 
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Figure 1.11: Generation and differentiation of iPSCs 

Adult somatic cells such as skin fibroblasts can be reprogrammed into iPSCs through exposure to a 

cocktail of reprogramming growth factors. The pluripotency of iPSCs enables their differentiation 

down the three germline lineages. Adapted from Kaebisch et al. (2015). 

 

 

 

ESC-like cells generated were found to be pluripotent, expressing ESC marker genes and 

contributing to mouse embryonic development following injection into blastocysts, and were 

subsequently designated iPSCs (Takahashi & Yamanaka, 2006). iPSCs were later 

successfully generated from adult human fibroblasts using the same methods (Takahashi et 

al., 2007). Whilst the original “Yamanaka” factors are the most frequently used, iPSCs have 

also been generated using the reprogramming factor combination of Oct4, Sox2, Nanog and 

Lin28 (Yu et al., 2007). Permutations of these two common reprogramming factor cocktails 

using polycistronic vectors encoding up to six reprogramming factors have also successfully 
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established iPSC lines (Buecker et al., 2010; Kamata et al., 2010; Lee et al., 2010; Liao et al., 

2008; Maherali et al., 2008).  

 

Various delivery methods for the required growth factors have been established. Non-

integrating delivery systems are the method of choice, due to the risks associated with 

insertional mutagenesis (Hacein-Bey-Abina et al., 2008; Hacein-Bey-Abina et al., 2003; 

Hennemann et al., 2000; Howe et al., 2008; Hu et al., 2011). The non-integrating Sendai 

virus, which exists in the cytoplasm as single stranded RNA, is commonly used as a delivery 

system due to their transient expression and efficient transduction efficiency (Fusaki et al., 

2009; Ono et al., 2012; Seki et al., 2012).  

 

iPSCs are an excellent candidate for modelling neurological disease in the MPS disorders. 

Skin fibroblasts are the most common somatic cell type used to generate iPSCs and are 

available from many MPS patients, as skin fibroblasts are commonly required for disease 

diagnosis (Lehman et al., 2011). iPSCs have been successfully generated from somatic cells 

of patients with MPS I, MPS II, MPS IIIB, MPS IIIC and MPS VII, in addition to a murine 

model of MPS VII (Bayo-Puxan et al., 2018; Canals et al., 2015; Griffin et al., 2015; 

Lemonnier et al., 2011; Meng et al., 2010; Rybova et al., 2018; Swaroop et al., 2018; Tolar et 

al., 2011; Vallejo-Diez et al., 2018; Varga et al., 2016a; Varga et al., 2016b, 2016c). An iPSC 

line has also been developed from an unaffected carrier of MPS II (Varga et al., 2016d). All 

MPS iPSCs were characterised as pluripotent, expressing ESC marker genes and 

demonstrating the ability to differentiate along all three germlines lineages. Vitally, the MPS 

iPSCs maintained key molecular hallmarks of the disease phenotype, exhibiting a significant 

reduction in activity of the relevant enzyme and an increase in stored GAG (Bayo-Puxan et 

al., 2018; Canals et al., 2015; Griffin et al., 2015; Lemonnier et al., 2011; Meng et al., 2010; 
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Swaroop et al., 2018; Tolar et al., 2011; Vallejo-Diez et al., 2018; Varga et al., 2016a; Varga 

et al., 2016b, 2016c).  

 

A dysfunction in proliferation has been noted in some MPS iPSC lines. Murine MPS VII 

iPSCs displayed reduced proliferation compared to normal iPSCs; it was hypothesised that 

stored hyaluronan influenced E-cadherin expression, a regulator of cell-cell adhesions which 

in turn influence proliferation (Meng et al., 2010; Park et al., 2017; Stockinger et al., 2001). 

Embryoid body (EB) formation was subsequently significantly impaired in MPS VII iPSCs, 

with fewer, smaller EBs forming compared to control iPSCs. Treatment with β-glucuronidase, 

the enzyme deficient in MPS VII, successfully rescued the phenotype (Meng et al., 2010). EB 

growth was similarly decreased in MPS II iPSCs compared to normal (Rybova et al., 2018). 

Human MPS IIIB iPSCs required supplementation with the deficient NAGLU enzyme to 

circumvent impaired cell proliferation. Once cells had expanded sufficiently, they were 

successfully differentiated down the neural lineage in the absence of NAGLU (Lemonnier et 

al., 2011). In contrast, human MPS I, MPS II, MPS IIIC, and MPS VII iPSCs and iPSC-

derived NPCs expanded normally in culture without exogenous supplementation of the 

deficient enzyme (Bayo-Puxan et al., 2018; Canals et al., 2015; Griffin et al., 2015; Swaroop 

et al., 2018; Tolar et al., 2011; Vallejo-Diez et al., 2018; Varga et al., 2016a; Varga et al., 

2016b, 2016c). 

 

Few of these studies generating MPS iPSC lines have directly compared control and MPS 

iPSC neural differentiation, instead simply demonstrating the ability of MPS iPSC lines to 

generate cells of the neuronal lineage as part of their pluripotency characterisation, without 

quantitative comparison to controls. Bayo-Puxan et al. (2018) examined βIII-tubulin 

expression in control and MPS VII iPSCs throughout neural induction, with no disparities 
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identified. A decrease in synaptotrophin was observed, indicating synaptic dysfunction in 

MPS VII iPSC-derived neurons. A decrease in GABAergic inhibitory neurons and neuronal 

activity was also noted. Synaptic activity was similarly decreased in MPS IIIC iPSC-derived 

neurons, with reduced spontaneous neuronal activity compared to normal iPSC-derived 

neurons. Lentiviral mediated gene correction of the HGSNAT gene rescued the phenotype 

(Canals et al., 2015). Migration and neural differentiation were examined following the 

administration of normal and MPS VII iPSC-derived NSCs to the striatum of normal mice; 

however, no discrepancies were identified (Griffin et al., 2015).  

 

1.5 Significance, Hypothesis and Aims 

MPS IIIA is caused by a deficiency in the enzyme sulphamidase, leading to accumulation of 

aberrantly structured HS. Patients with MPS IIIA exhibit severe CNS pathology, leading to a 

poor quality of life and early death. There is currently no effective treatment for MPS IIIA 

patients. To develop more effective therapies, the mechanisms of disease in MPS IIIA need to 

be elucidated; however, the contribution of the MPS IIIA HS towards the severe neurological 

disease characteristic of MPS IIIA is currently poorly understood. MPS-derived GAGs have 

previously been found by our lab to affect MSC osteoblast differentiation potential (Rout-Pitt 

et al., unpublished data), indicating an ability to disrupt developmental processes, and thus we 

hypothesise that these aberrant GAGs may similarly affect neural development. MPS IIIA 

GAGs are present throughout development in MPS IIIA, with GAG storage present in the 

developing CNS in utero, supporting a role for them in altering neurogenesis in MPS IIIA 

(Ceuterick et al., 1980; Greenwood et al., 1978; Harper et al., 1974; Martin & Ceuterick, 

1983). To date, few studies have examined the early stages of neural development in MPS 

IIIA; to our knowledge, neurogenesis has not been examined. Therefore, this study aims to 

determine if altered CNS development contributes to the neurological pathology of MPS IIIA 
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patients, by exploiting the neurogenic capacity of stem cells to the model one of the earliest 

processes of CNS development, neurogenesis. 

 

 

 

Hypothesis: The neurogenic potential of stem cells is altered in MPS IIIA 

 

Aim 1: To characterise the timecourse of neural gene expression in human and murine MSC 

neural induction for use in Aims 2 and 3. 

Aim 2: To determine the effect of extrinsic MPS IIIA GAGs on MSC differentiation. 

Aim 3: To develop in vitro models of MPS IIIA to identify alterations in stem cell 

proliferation and neurogenesis 
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2.1 Materials 

Materials are listed in Appendix A. 

 

2.2 MPS GAG isolation 

MPS IIIA mice were placed in metabolic cages (Hatteras Instruments) for eight hours to 

collect urine. GAGs were isolated from urine as per Byers et al. (1998). MPS I, MPS II and 

MPS VI GAGs were previously isolated from patient urine and donated by Dr. Sharon Byers.  

 

2.2.1 GAG quantification 

Uronic acid content was determined as per Blumenkrantz and Asboe-Hansen (1973). 

 

2.3 Human MSC in vitro studies 

2.3.1 Human MSC cell culture 

Human MSCs were sourced from bone marrow (hBM) and dental pulp (hDP) of healthy 

human donors as previously described (Gronthos et al., 2000; Gronthos et al., 2003). Human 

MSCs were cultured in human MSC basal growth media consisting of α-MEM (+ 

nucleosides) supplemented with 10% (v/v) foetal calf serum (FCS), 2mM L-glutamine, 

100μM L-ascorbate-2-phosphate, 1mM sodium pyruvate, 50U/mL penicillin and 50μg/mL 

streptomycin. Cells were maintained at 37°C in 5% CO2 and 90% humidity, with media 

changed twice weekly. At 90% confluency, cells were passaged by washing two times in 

phosphate buffered saline (PBS) followed by incubation with 10% (v/v) trypsin-EDTA for 

five minutes. The cell suspension was centrifuged at 390 x g for five minutes and the pellet 

resuspended in human MSC basal growth media. Cells were split at a 1:3 ratio. 
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2.3.2 Human MSC neurogenic differentiation 

6-well or 12-well plates were coated with 10µg/mL poly-L-ornithine overnight at room 

temperature. Wells were washed twice with sterile water and coated with 5µg/mL laminin 

overnight at 37°C. Wells were washed once with PBS and once with human MSC basal 

growth media. hDP MSCs were harvested between passages seven to eight as per section 

2.3.1 and plated at 1.6 x 104 cells per cm2 onto poly-L-ornithine/laminin-coated plates in 

human MSC basal growth media. Cells were setup in triplicate for each timepoint and 

incubated at 37°C for three days before transfer into either neural priming (NP) or maturation 

(M) media. Basal media control samples were setup in triplicate and maintained in human 

MSC basal growth media. 

 

2.3.2.1  Neural priming and maturation method 

hDP MSCs plated on poly-L-ornithine/laminin-coated plates were transferred into NP media, 

consisting of Neurobasal A supplemented with 1X B27, 20 ng/mL EGF (ProSpec), 40 ng/mL 

FGF-2 (ProSpec), 50 U/mL penicillin and 50 g/mL streptomycin for seven days. Cells were 

then transferred into M media consisting of a 1:1 ratio of DMEM (high glucose) and Ham’s 

F-12 supplemented with 1x ITS+ premix stock, 40ng/mL FGF-2 (ProSpec), 0.5µM retinoic 

acid, 50 U/mL penicillin and 50 g/mL streptomycin for a maximum of 21 days. For extrinsic 

GAG experiments (Chapter Four), GAGs were added to the neurogenic media at a 

concentration of 2µg/mL. Basal media control samples were maintained in human MSC basal 

growth media and RNA collected as below after 24 hours. Cells were fed with NP media or M 

media every two days. For timecourse experiments (Chapter Three), RNA was isolated with 

the PureLink™ RNA Micro Kit (Life Technologies) as per the manufacturer’s instructions 1, 

3, 5, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 and 28 days post-induction. For extrinsic GAG 

experiments (Chapter Four), RNA was isolated with TRIzol (Life Technologies) followed by 

RNA clean-up with the RNeasy Mini Kit (Qiagen) as per the manufacturer’s instructions 14 
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and 21 days post-induction. Expression of neural marker genes was determined by real-time 

PCR (section 2.10).  

 

2.3.2.2  Maturation only method 

hDP MSCs plated on poly-L-ornithine/laminin-coated plates were transferred into M media as 

per 2.3.2.1 for a maximum of 28 days. Basal media control samples were maintained in 

human MSC basal growth media and RNA collected as below after 24 hours. Cells were fed 

with M media every two days. For timecourse experiments (Chapter Three), RNA was 

isolated with the PureLink™ RNA Micro Kit (Life Technologies) as per the manufacturer’s 

instructions 1, 3, 5, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 and 28 days post-induction. 

Expression of neural marker genes was determined by real-time PCR (section 2.10).  

 

2.3.3 Human MSC mesodermal differentiation assays 

2.3.3.1  Human MSC osteogenic differentiation 

hBM MSCs were harvested at passage seven as per section 2.3.1 and plated at 2.5 x 104 cells 

per cm2 into 96-well plates in human MSC basal growth media. Cells were setup in triplicate 

for von Kossa staining and calcium quantification at each timepoint and condition. Cells were 

incubated at 37°C for overnight before transfer into osteogenic media consisting of α-MEM 

(+ nucleosides) supplemented with 5% (v/v) FCS, 2mM L-glutamine, 1mM sodium pyruvate, 

100µM L-ascorbate-2-phosphate, 0.1µM dexamethasone, 10mM HEPES, 1.8mM potassium 

phosphate (KH2PO4), 50U/mL penicillin and 50μg/mL streptomycin. For extrinsic GAG 

experiments (Chapter Four), GAGs were added to the osteogenic media at a concentration of 

3µg/mL. Basal media controls were maintained in human MSC basal growth media. Cells 

were fed with osteogenic media or human MSC basal growth media twice weekly. Cells were 

fixed with 1% (v/v) formaldehyde in PBS for 30 minutes at 4°C for von Kossa staining or 
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collected in 0.6M HCl for 48 hours at 4°C for calcium quantification one, two, three and four 

weeks post-induction. von Kossa staining was undertaken as per Bills et al. (1971). Calcium 

content was determined using the Calcium Assay Kit (Cayman Chemicals) as per the 

manufacturer’s instructions.  Following calcium extraction, CelLytic-M (Sigma Aldrich) was 

added to the cells and incubated overnight at 4ᵒC to extract protein. Total protein was 

determined using the QuantiPro BCA Assay Kit (Sigma Aldrich) (section 2.7.2.2) and 

calcium content was normalised to protein content. 

 

2.3.3.2  Human MSC chondrogenic differentiation 

hBM MSCs were harvested at passage seven as per section 2.3.1 and 2 x 105 cells were 

transferred to V-bottomed 96-well plates in chondrogenic media consisting of DMEM (high 

glucose) supplemented with 1x ITS+ premix stock, 2mM L-glutamine, 1mM sodium 

pyruvate, 100µM L-ascorbate-2-phosphate, 0.1µM dexamethasone, 10ng/mL TGFβ, 50U/mL 

penicillin and 50μg/mL streptomycin. Cells were setup in triplicate for each timepoint and 

condition. For extrinsic GAG experiments (Chapter Four), GAGs were added to the 

chondrogenic media at a concentration of 5µg/mL. Basal media controls were maintained in 

human MSC basal growth media. Cells were centrifuged for 30 minutes at 300 x g to pellet 

cells. Cells were fed with chondrogenic media or human MSC basal growth media every 

other day. Cell pellets were collected for GAG synthesis analysis six days post-induction. 

GAG synthesis was determined by 35SO4 incorporation as per Roberts et al. (2006). 

 

2.3.3.3  Human MSC adipogenic differentiation 

hBM MSCs were harvested at passage seven as per section 2.3.1 and plated at 2.5 x 104 cells 

per cm2 into 96-well plates in human MSC basal growth media in triplicate for each timepoint 

and condition. Cells were incubated at 37°C for overnight before transfer into adipogenic 
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media consisting of α-MEM (+ nucleosides) supplemented with 5% (v/v) FCS, 2mM L-

glutamine, 1mM sodium pyruvate, 100µM L-ascorbate-2-phosphate, 0.5nM 

isobutylmethylxanthine, 0.5µM hydrocortisone, 60µM indomethacin, 50U/mL penicillin and 

50μg/mL streptomycin. For extrinsic GAG experiments (Chapter Four), GAGs were added to 

the adipogenic media at a concentration of 5µg/mL. Basal media controls were maintained in 

human MSC basal growth media. Cells were fed with adipogenic media or human MSC basal 

growth media twice weekly. Cells were fixed with 3.7% (v/v) formaldehyde in water for two 

minutes at room temperature for oil red O staining one, two, three, four and five weeks post-

induction. Oil red O staining to identify adipocytes was undertaken as per Tang et al. (2003). 

 

2.4 Animal husbandry and genotyping 

All experimental procedures were approved by the Women’s and Children’s Health Network 

and The University of Adelaide animal ethics committees. Normal and MPS IIIA mice were 

bred from a colony maintained by the Matrix Biology Unit and housed at the Women’s and 

Children’s Hospital. Mice were housed in same sex groups on a 14/10 hour light/dark cycle at 

22°C. Food and water available ad libitum and cages were cleaned weekly. Pups were 

tattooed for identification and a tail clip taken for genotype determination on day ten and 

weaned at three weeks of age. Tissue lysate was generated from toe clippings with lysis buffer 

(Viagen Biotech) containing 0.4 mg/mL Proteinase K as per the manufacturer’s instructions. 

Tissue lysate was used in a polymerase chain reaction (PCR) based-genotyping protocol as 

per Roberts et al. (2009). 
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2.5 Murine MSC in vitro studies 

2.5.1 Murine MSC isolation 

MSCs were isolated from compact bone of wild-type and MPS IIIA mice. The MiniMACS™ 

separation system (Miltenyi Biotec) was used to remove haematopoietic stem cells (CD45.2 

depletion) before selection of the remaining stem cells (Sca.1 selection). For each MSC 

preparation, four mice of the same sex and genotype were humanely killed at two months of 

age by isoflurane asphyxiation followed by cervical dislocation. Femurs and tibia were 

removed and cleaned of surrounding connective tissue. Bones were crushed into small 

fragments using a mortar and pestle, and then flushed repeatedly with 2% (v/v) FCS to 

remove bone marrow and red blood cells. Bone fragments were incubated with 3mg/mL 

collagenase type I for five minutes at 37°C. Bone fragments were then cut into smaller 

fragments and incubated with 3mg/mL collagenase type I for 60 minutes with shaking at 

37°C. Bone fragments were washed with 2% (v/v) FCS and the suspension passed through a 

70µM sieve. The suspension was centrifuged at 390 x g and the pellet resuspended in 2mL of 

murine MSC basal growth media, consisting of α-MEM (+ nucleosides) supplemented with 

10% (v/v) FCS, 50U/mL penicillin and 50μg/mL streptomycin. Cell number was determined 

using trypan blue exclusion on a Countess™ automated cell counter (Life Technologies). 

Cells were transferred to a 10mL centrifuge tube and 8mL of 2% (v/v) FCS was added. The 

cell suspension was centrifuged at 390 x g for five minutes. Cells were resuspended in 

blocking solution consisting of 3% (w/v) bovine serum albumin (BSA) in PBS (refer Table 

2.1 for volumes) and incubated on ice for 10 minutes. 1.5mL MACS buffer, consisting of 

0.5% BSA (w/v) in 2mM Na2EDTA.2H2O (PBS), was added to the tube and centrifuged at 

390 x g for five minutes. The pellet was resuspended in anti-CD45.2-biotin antibodies 

(Miltenyi Biotec) at a 1/11 dilution in MACS buffer (refer Table 2.1 for volumes) and 

incubated on ice for 10 minutes. CD45.2 depletion was undertaken using anti-biotin 

microbeads in the MiniMACS™ separation system (Miltenyi Biotec) as per the 

manufacturer’s instructions. The elute was retained in a new 10mL centrifuge tube and 
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centrifuged at 390 x g for five minutes. The pellet was resuspended in anti-Sca.1-biotin 

antibodies (Miltenyi Biotec) at a 1/11 dilution in MACS buffer (refer Table 2.1 for volumes) 

and incubated on ice for 10 minutes. Sca.1 selection was undertaken using anti-biotin 

microbeads in the MiniMACS™ separation system (Miltenyi Biotec) as per the 

manufacturer’s instructions. The elute was discarded and the bound cells were recovered. The 

cell suspension was centrifuged at 390 x g for five minutes and the pellet resuspended in 

murine MSC basal growth media. All cells were transferred to a single well of a 24-well plate. 

After 24 hours, the well was washed three times with murine MSC basal growth media to 

remove floating cells and then maintained as per section 2.5.2.  

 

2.5.2 Murine MSC cell culture 

Murine MSCs were cultured in murine MSC basal growth media, consisting of α-MEM (+ 

nucleosides) supplemented with 10% (v/v) FCS, 50U/mL penicillin and 50μg/mL 

streptomycin. Cells were maintained at 37°C in 5% O2, 10% CO2 and 90% humidity, with 

media changed three times weekly. At 80% confluency, cells were passaged by washing two 

times in PBS followed by incubation with neat trypsin-EDTA for four minutes. The cell 

suspension was centrifuged at 390 x g for five minutes and the pellet resuspended in murine 

MSC basal growth media. Normal and MPS IIIA murine MSCs were split at 1:3 and 1:2 

ratios respectively. To maintain proliferation, MPS IIIA murine MSCs were cultured in 

murine MSC basal growth media as above supplemented with 5ng/mL FGF-2 (ProSpec) from 

passage five. 

 

2.5.3 Colony forming unit assay 

Murine MSCs were harvested at passage five as per section 2.5.2 and plated at three different 

cell densities in murine MSC basal growth media: 8.0 x 101 cells per cm2, 1.0 x 102 cells per 

cm2 and 1.2 x 102 cells per cm2 into 6-well plates. Cells were setup in triplicate for each
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Table 2.1: Dilutions and volumes for murine MSC isolation reagents  

Volumes of reagents and MACS buffer is for up to 107 total cells immediately following isolation 

from compact bone. For higher cell numbers, volumes were increased proportionally. 

 

 

 

timepoint. Cell were fed with murine MSC basal growth media three times weekly. Cells were 

fixed with 10% (v/v) formaldehyde in water for ten minutes at room temperature for crystal 

violet staining one and two weeks post-seeding. Cells were washed twice with water and then 

stained with 3% (w/v) crystal violet in water for 30 minutes at room temperature. Cells were 

washed twice with water and stored in water for colony counts. Colony width was measured 

using Olympus analySIS® LS Research Olympus Soft Imaging Solutions version 3.1 

(Olympus Australia Pty. Ltd). Colonies were excluded if less than 2mm in width. 

 

2.5.4 Murine MSC neurogenic differentiation 

12-well plates were coated with 10µg/mL poly-L-ornithine overnight at room temperature. 

Wells were washed twice with sterile water and coated in 5µg/mL laminin overnight at 37°C. 

Wells were washed once with PBS and once with murine MSC basal growth media. Murine 

MSCs were harvested at passage eight as per section 2.5.2 and plated at 1.6 x 104 cells per 

cm2 onto poly-L-ornithine/laminin-coated plates in murine MSC basal growth media. Cells 

Solution Dilution
Volume reagent 

per 107 cell (µL)

Volume MACS buffer 

per 107 cells (µL)

Blocking solution - 110 -

Anti-CD45.2-biotin 1/11 10 100

Anti-Sca.1-biotin 1/11 10 100

Anti-biotin microbeads 1/4.5 20 70
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were setup in triplicate for each timepoint and incubated at 37°C for three days before transfer 

into either NP or M media. Basal media control samples were setup in triplicate and 

maintained in murine MSC basal growth media. 

 

2.5.4.1  Neural priming only method 

Murine MSCs plated on poly-L-ornithine/laminin-coated plates were transferred into NP 

media as per section 2.3.2.1 for a maximum of 48 hours. Basal media control samples were 

maintained in murine MSC basal growth media and RNA collected as below after four hours. 

RNA was isolated with the PureLink™ RNA Micro Kit (Life Technologies) as per the 

manufacturer’s instructions 4, 8, 12, 16, 24, 36 and 48 hours post-induction. Expression of 

neural marker genes was determined by real-time PCR (section 2.10).  

 

2.5.4.2  Maturation only method 

Murine MSCs plated on poly-L-ornithine/laminin-coated plates were transferred into M 

media as per section 2.3.2.2 for a maximum of 48 hours. Basal media control samples were 

maintained in murine MSC basal growth media and RNA collected as below after four hours. 

RNA was isolated with the PureLink™ RNA Micro Kit (Life Technologies) as per the 

manufacturer’s instructions 4, 8, 12, 16, 24, 36 and 48 hours post-induction. Expression of 

neural marker genes was determined by real-time PCR (section 2.10). 

 

2.5.4.3  Neural priming and maturation method 

Murine MSCs plated on poly-L-ornithine/laminin-coated plates were transferred into NP 

media as per section 2.3.2.1 for seven days. Cells were then transferred into M media as per 

section 2.3.2.1 for a maximum of 14 days. Basal media control samples were maintained in 

murine MSC basal growth media. Cells were fed with NP media, M media or murine MSC 
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basal growth media every two days. RNA was isolated with the PureLink™ RNA Micro Kit 

(Life Technologies) as per the manufacturer’s instructions 1, 3, 5, 7, 8, 10, 12, 14, 16, 18 and 

20 days post-induction. Expression of neural marker genes was determined by real-time PCR 

(section 2.10).  

 

2.6 Human iPSC in vitro studies 

2.6.1 Fibroblast culture 

Human MPS IIIA fibroblasts were sourced from the National Referral Laboratory at the 

Women’s and Children’s Hospital, SA, Australia. Control fibroblasts were purchased from the 

Coriell Institute, USA. Fibroblasts were cultured in fibroblast basal growth media, consisting 

of DMEM (high glucose) supplemented with 10% (v/v) foetal calf serum (FCS), 50U/mL 

penicillin and 50μg/mL streptomycin. Cells were maintained at 37°C in 5% CO2 and 90% 

humidity, with media changed twice weekly. At 90% confluency, cells were passaged by 

washing two times in PBS followed by incubation with 20% (v/v) trypsin-EDTA for five 

minutes. The cell suspension was centrifuged at 170 x g for five minutes and the pellet 

resuspended in fibroblast basal growth media. Cells were split at a 1:3 ratio. 

 

For gene expression analysis, fibroblasts were plated at 2.0 x 104 cells per cm2 in triplicate in 

6-well plates in fibroblast basal growth media. RNA was isolated with TRIzol (Life 

Technologies) followed by RNA clean-up with the RNeasy Mini Kit (Qiagen) as per the 

manufacturer’s instructions. Expression of pluripotency genes was determined by real-time 

PCR (section 2.10). 
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2.6.2 Fibroblast reprogramming to iPSCs 

Human fibroblasts were reprogrammed to iPSCs via transduction with Sendai virus vectors 

expressing the Yamanaka factors, Oct3/4, Sox2, Klf2 and c-Myc (Takahashi & Yamanaka, 

2006) using the CytoTune™-iPS 2.0 Sendai Reprogramming Kit (Life Technologies) as per 

the manufacturer’s instructions. Three weeks post-transduction, single colonies with ESC-like 

morphology were manually picked and transferred to irradiated mouse embryonic fibroblast 

(MEF) coated 6-well plates, with one colony per well. MEF plates were prepared as per 

2.6.2.1. A minimum of 11 colonies were picked per fibroblast cell line. 

 

2.6.2.1  Feeder-dependent iPSC culture 

Feeder-dependent iPSCs were cultured on MEFs (StemCore). MEF plates were prepared by 

coating 6-well plates with 0.1% (w/v) gelatin solution for two hours to overnight at 37°C. 

Gelatin was aspirated and plates dried for one hour at room temperature. MEFs were plated 

on dried gelatin-coated plates at 1.9 x 104 cells per cm2 in DMEM (high glucose) 

supplemented with 10% (v/v) FCS, 100µM non-essential amino acids, 50U/mL penicillin and 

50μg/mL streptomycin. Cells were incubated overnight at 37°C. MEF plates were washed 

once with PBS immediately before use. 

 

iPSCs were cultured in DMEM/F-12 (+ GlutaMAX) supplemented with 20% (v/v) KnockOut 

™ Serum Replacement, 100µM non-essential amino acids, 55µM β-mercaptoethanol, 

20ng/mL FGF-2 (Life Technologies), 50U/mL penicillin and 50μg/mL streptomycin. Cells 

were maintained at 37°C in 5% CO2 and 90% humidity, with media changed daily. Cells were 

passaged manually approximately every five days onto fresh MEF plates. MEFs were only 

able to condition the iPSCs media for six days; on day six, any iPSCs remaining on MEFs 
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were transferred into conditioned media as prepared in section 2.6.2.1.1 supplemented with 

20ng/mL FGF-2 (Life Technologies) and 55µM β-mercaptoethanol.  

 

2.6.2.1.1  Conditioned media 

A T175 flask was coated with 0.1% (w/v) gelatin for two hours to overnight at 37°C. Gelatin 

was aspirated and the flask dried for one hour at room temperature. MEFs were plated on the 

dried gelatin-coated T175 flask at 6.0 x 104 cells per cm2 in DMEM (high glucose) 

supplemented with 10% (v/v) FCS, 100µM non-essential amino acids, 50U/mL penicillin and 

50μg/mL streptomycin. Cells were incubated overnight at 37°C and then transferred into 

70mL DMEM/F-12 (+ GlutaMAX) supplemented with 20% (v/v) KnockOut ™ Serum 

Replacement, 100µM non-essential amino acids, 50U/mL penicillin and 50μg/mL 

streptomycin. Cells were maintained at 37°C in 5% CO2 and 90% humidity. After 24 hours 

the media was collected and stored at 4ᵒC, and 70mL fresh media was added to the T175 

flask. Media was collected and stored at 4ᵒC for a total of six days. The combined media was 

filtered through a 0.22µM filter and stored at -80ᵒC. Conditioned media was thawed at 4ᵒC 

overnight as required. 

 

2.6.2.2  Feeder-free iPSC culture 

For feeder-free culture, iPSCs were transferred from MEF plates to vitronectin-coated plates. 

6-well plates were coated with 10µg/mL vitronectin in CellAdhere Dilution Buffer (StemCell 

Technologies) for one hour at room temperature. Wells were washed once with CellAdhere 

Dilution Buffer, following which 2mL TeSR-E8 media (StemCell Technologies), prepared as 

per the manufacturer’s instructions, was added to each well. iPSCs were manually passaged 

from MEF plates to prepared vitronectin-coated plates and incubated overnight at 37°C. 

Feeder-free iPSCs were maintained at 37°C in 5% CO2 and 90% humidity, with TeSR-E8 



54 

 

media changed daily. Feeder-free iPSCs were passaged approximately every five days with 

Gentle Cell Dissociation Reagent (StemCell Technologies) onto fresh vitronectin-coated 

plates as per the manufacturer’s instructions.  

 

For gene expression analysis, iPSCs were plated in triplicate in vitronectin-coated 6-well 

plates in TeSR-E8 media. RNA was isolated with TRIzol (Life Technologies) followed by 

RNA clean-up with the RNeasy Mini Kit (Qiagen) as per the manufacturer’s instructions. 

Expression of pluripotency and neural marker genes was determined by real-time PCR 

(section 2.10). For immunofluorescence, iPSCs were plated in triplicate in vitronectin-coated 

NUNC 35mm dishes in TeSR-E8 media. Cells were fixed in 4% (w/v) PFA for 15 minutes at 

room temperature and washed three times in PBS before being stored at 4ᵒC in PBS for 

immunofluorescence staining (section 2.11). 

 

2.6.2.3  Karyotype analysis 

G-band chromosome analysis of iPSCs was performed by SA Health (Cytogenetics, Women’s 

and Children’s Hospital, Adelaide).  

 

2.6.3 iPSC differentiation to NPCs 

iPSCs maintained in feeder-free conditions were differentiated to NPCs as per the cortical 

neural differentiation protocol established by Shi et al. (2012a) and optimised by Homan et al. 

(2018). Following dissociation with Accutase (StemCell Technologies) as per step 43 in Shi 

et al. (2012a), cells were plated on ECM-coated NUNC 6-well plates or flasks in neural 

expansion media consisting of a 1:1 ratio of Neurobasal and DMEM/F-12 (+ GlutaMAX) 

supplemented with 20ng/mL FGF-2 (Life Technologies), 1x B27 supplement, 1x N2 

supplement, 5µg/mL insulin, 100µM non-essential amino acids, 100µM β-mercaptoethanol, 
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1mM L-glutamine, 50U/mL penicillin and 50μg/mL streptomycin. To prepare ECM-coated 6-

well plates and flasks, ECM was diluted 1:100 in cold DMEM/F-12 (+ GlutaMAX), added to 

6-well plates or flasks and incubated for two hours to overnight at 37°C. Wells and flasks 

were washed once with PBS immediately prior to use. Cells were plated at 2.1 x 105 cells per 

cm2 and incubated at 37°C. Cells were maintained at 37°C in 5% CO2 and 90% humidity, 

with media changed every two days. 

 

At 90-100% confluency, iPSC-NPCs were passaged by washing once with PBS followed by 

incubation with 70µL per cm2 pre-warmed Accutase (StemCell Technologies) per well/flask 

for up to ten minutes or until cells were forming single cells and detaching from the surface. 

An equal volume of neural expansion media was added to neutralise the Accutase (StemCell 

Technologies). Cells were centrifuged at 120 x g for three minutes and resuspended in neural 

expansion media. Cells were plated at 2.1 x 105 cells per cm2 on ECM-coated plates and 

flasks (as prepared in section 2.6.3) for further expansion. 

 

For gene expression analysis, iPSC-NPCs were plated at 2.1 x 105 cells per cm2 in triplicate in 

ECM-coated 6-well plates in neural expansion media. RNA was isolated with TRIzol (Life 

Technologies) followed by RNA clean-up with the RNeasy Mini Kit (Qiagen) as per the 

manufacturer’s instructions. Expression of neural marker genes was determined by real-time 

PCR (section 2.10). For immunofluorescence, iPSC-NPCs were plated in triplicate at 5.0 x 

104 cells per cm2 on ECM-coated coverslips in 12-well plates. Cells were fixed in 4% (w/v) 

PFA for 15 minutes at room temperature and washed three times in PBS before being stored 

at 4ᵒC in PBS for immunofluorescence staining (section 2.11). 
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2.6.4 iPSC-derived NPC neurogenic differentiation 

NUNC 6-well plates were coated with 100µg/mL poly-L-ornithine for four hours at 37°C. 

Wells were washed twice with PBS and coated in 20µg/mL laminin overnight at 37°C. Wells 

were washed once with Neurobasal media immediately prior to use. iPSC-NPCs were 

harvested at passage six with Accutase (StemCell Technologies) as per section 2.6.3 and 

plated at 5.0 x 104 cells per cm2 onto poly-L-ornithine/laminin-coated plates in neural 

expansion media. Cells were setup in triplicate each timepoint and incubated at 37°C 

overnight before transfer into neural maintenance media consisting of a 1:1 ratio of 

Neurobasal and DMEM/F-12 (+ GlutaMAX) supplemented with 1x B27 supplement, 1x N2 

supplement, 5µg/mL insulin, 100µM non-essential amino acids, 100µM β-mercaptoethanol, 

1mM L-glutamine, 50U/mL penicillin and 50μg/mL streptomycin. Cells were fed with neural 

maintenance media 3, 5, 7 and 10 days post-seeding. From 13 days post-seeding, cells were 

fed every three days by removing 1mL old neural maintenance media and gently feeding with 

1mL fresh neural maintenance media. For gene expression analysis, RNA was isolated 14, 21 

and 28 days post-induction with TRIzol (Life Technologies) followed by RNA clean-up with 

the RNeasy Mini Kit (Qiagen) as per the manufacturer’s instructions and expression of neural 

marker genes was determined by real-time PCR (section 2.10).  

 

2.7 Biochemical assays 

2.7.1 Sulphamidase enzyme assay 

Sulphamidase activity was determined on cell lysates of murine MSCs, human fibroblasts and 

iPSCs. MSCs and fibroblasts were plated in triplicate at 1.05 x 104 cells per cm2 into 6-well 

plates. iPSC colonies were plated at high confluency into vitronectin-coated 6-well plates. 

Cells were lysed in 0.1% Triton X-100 (v/v) in PBS at room temperature for 10 minutes, 

removed by scraping and transferred to 1.5mL centrifuge tube and frozen at -20ᵒC. Enzyme 

activity was determined on 5µL samples as per Karpova et al. (1996), with the first incubation 
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decreased from 17 hours to 4.5 hours. Total protein was determined using the Bicinchoninic 

Acid (BCA) Assay Kit (Sigma Aldrich) (section 2.7.2.1) and enzyme activity was normalised 

to protein content. 

 

2.7.2 Protein assays 

2.7.2.1  BCA assay 

Total protein was determined on cell lysates using the BCA Assay Kit (Sigma Aldrich) as per 

the manufacturer’s instructions.  

 

2.7.2.2  QuanitPro BCA assay 

Samples with a lower protein content had protein determined using the QuantiPro BCA Assay 

Kit (Sigma Aldrich) as per the manufacturer’s instructions. 

 

2.8 CyQuant Proliferation assay 

2.8.1 MPS IIIA MSC proliferation assay 

Normal and MPS IIIA murine MSCs were seeded immediately post-isolation from compact 

bone (section 2.5.1) in four wells of a 24-well plate in murine MSC basal growth media 

(components listed in section 2.5.2). Cells were maintained at 37°C in 5% O2, 10% CO2 and 

90% humidity. Wells were washed three times with media after 24 hours, following which 

media was changed every two days. Proliferation was determined using the CyQuant® Direct 

Cell Proliferation Assay kit (Life Technologies) as per the manufacturer’s instructions 2, 9, 12 

and 15 days post-seeding.  
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2.8.1.1  MPS IIIA MSC rescue proliferation assay 

MPS IIIA murine MSCs were harvested at passage six as per section 2.5.2 and plated at 9.4 x 

103 cells per cm2 into 96-well plates in murine MSC basal growth media (components listed 

in section 2.5.2). Exogenous sulphamidase was produced through lentiviral-mediated 

overexpression of sulphamidase in CHOK1 cells (section 2.9) and added to the murine MSC 

basal growth media at concentrations of 0.1, 0.3 and 1.0 pmol/min as required. FGF-2 

(ProSpec) was added to the culture media at concentrations of 1ng/mL, 3ng/mL and 5ng/mL 

as required. MPS IIIA murine MSCs were maintained in murine MSC basal growth media as 

controls. Cells were maintained at 37°C in 5% O2, 10% CO2 and 90% humidity, with media 

changed every two days. Proliferation was determined using the CyQuant® Direct Cell 

Proliferation Assay kit (Life Technologies) as per the manufacturer’s instructions one hour 

post-seeding and then each day for a total of three days. 

 

2.8.2 MPS IIIA iPSC-NPC proliferation and rescue assay 

ECM-coated plates were prepared as per section 2.6.3. Normal and MPS IIIA human iPSC-

NPCs were harvested at passage five as per section 2.6.3 and plated at 9.4 x 103 cells per cm2 

into 96-well plates in neural expansion media (components listed in section 2.6.3). Exogenous 

sulphamidase was produced through lentiviral-mediated overexpression of sulphamidase in 

CHOK1 cells (section 2.9) and added to the neural expansion media of MPS IIIA human 

iPSC-NPCs at concentrations of 0.1, 0.3 and 1.0 pmol/min as required. Normal and MPS IIIA 

human iPSC-NPCs were maintained in neural expansion media as controls. Cells were 

maintained at 37°C in 5% CO2 and 90% humidity, with media changed every two days. 

Proliferation was determined using the CyQuant ® Direct Cell Proliferation Assay kit (Life 

Technologies) as per the manufacturer’s instructions one hour post-seeding and then each day 

for a total of three days.  
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2.9 Sulphamidase production 

A lentiviral vector encoding sulphamidase (pHIV-EF1αmmCOS) was produced as per 

Jackson et al. (2015). CHO-K1 cells were seeded 5.0 x 104 cells per cm2 in Ham’s F-12 

supplemented with 10% (v/v) FCS and incubated at 37°C. After three hours, CHOK1 cells 

were transferred into Ham’s F-12 supplemented with 8µg/mL polybrene, 100µg/mL 

gentamycin and 1.5µg of p24 protein of pHIV-EF1αmmCOS lentivirus and incubated at 

37°C. After 24 hours, the media was removed and replaced with Ham’s F-12 supplemented 

with 2mM L-glutamine, 50U/mL penicillin and 50μg/mL streptomycin and incubated at 37°C. 

After 48 hours, the media was collected and stored at 4ᵒC. Sulphamidase activity was 

determined using the sulphamidase enzyme assay (section 2.7.1).  

 

2.10 Gene expression 

2.10.1 Reverse transcription 

RNA was isolated from cell layers with either the PureLink™ RNA Micro Kit (Life 

Technologies) or with TRIzol (Life Technologies) followed by RNA clean-up with the 

RNeasy Mini Kit (Qiagen) as per the manufacturer’s instructions. RNA concentration was 

determined using a nanodrop spectrophotometer (Thermo Scientific, USA). Between 100ng 

and 500ng of RNA was reverse transcribed to cDNA using the QuantiTect Reverse 

Transcriptase Kit (Qiagen) as per the manufacturer’s instructions. 

 

2.10.2 Real-time PCR 

Real-time PCR was performed to determine gene expression. Exon-exon boundary gene 

specific primers were designed for all human and murine neural marker genes. Primers for 

pluripotency markers Oct-4, Nanog and Sox-2 were designed as previously described (Homan 

et al., 2018). Cyclophilin A was included as a housekeeping gene. See Table 2.2 for primer 

sequences. Each 25µL real-time PCR reaction included 1µL cDNA, 1x SYBR™ Green PCR 
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Mastermix (Life Technologies), 0.45µM forward primer and 0.45µM reverse primer. Real-

time reactions were carried out on an ABI 7300 thermocycler (Applied Biosystems) with 

initial steps of one cycle for two minutes at 50°C and one cycle for ten minutes at 95°. cDNA 

amplification consisted of 40 cycles of 15 seconds at 95°C and one minute at 60°C. A 

dissociation step of one cycle for 15 seconds at 95°C, 30 seconds at 60°C and 15 seconds at 

95°C was added after the amplification step. The 2-ΔΔCt method was used to determine the fold 

change in gene expression as per Livak and Schmittgen (2001). The relative expression 

method was used to determine mean normalised gene expression as per Pfaffl (2001) for 

iPSC-NPC gene expression.  

 

2.11 Immunofluorescence 

Immunofluorescent detection of Oct-4 and SSEA4 on 4% (w/v) PFA-fixed iPSCs was 

undertaken using the PSC 4-Marker Immunocytochemistry Kit (Life Technologies) as per the 

manufacturer’s instructions (Lot# 1913522). Immunofluorescent detection of Pax6 and Nestin 

on 4% (w/v) PFA-fixed iPSC-NPSs was undertaken as per Homan et al. (2018). See Tables 

2.3 and 2.4 for antibody specifications. 

 

2.12 Statistics 

The statistical significance of differences between means was determined using a Student’s t-

test, a one sample t-test or a one-way analysis of variance (ANOVA) followed by Tukey’s 

HSD post-hoc test as appropriate in GraphPad Prism Version 7.03 for Windows (GraphPad 

Software., USA). 
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Table 2.2: Real-time PCR Primers 

 

Gene Species Forward primer Reverse primer Published

Oct-4 Human GACAGGGGGAGGGGAG

GAGCTAGG

CTTCCCTCCAACCAGTT

GCCCCAAAC

Homan et al., 2018

Nanog Human AGTCCCAAAGGCAAACA

ACCCACTTC

TGCTGGAGGCTGAGGT

ATTTCTGTCTC

Homan et al., 2018

Sox2 Human GGGAAATGGGAGGGGT

GCAAAAGAGG

TTGCGTGAGTGTGGAT

GGGATTGGTG

Homan et al., 2018

Pax6 Human CCAGGGCAACCTACGCA

A

CTGAATCTTCTCCGTTG

GAACT

Nestin Human CGCACCTCAAGATGTCCC

TC

CAGCTTGGGGTCCTGAA

AGC

Nestin Murine CTCAGATCCTGGAAGGT

GGG

GCAGAGTCCTGTATGT

AGCCA

NCAM Human GTTACAGGCGAGGATGG

CA

TCACACACAATCACGGC

ATC

NCAM Murine CGGAACATCAGCAGTGA

AGAAA

CAAGGAGGACACACGA

GCAT

NeuroD1 Human ACTACATCTGGGCTCTG

TCGG

TTGGTGGTGGGTTGGG

ATAAG

βIII-tubulin Human GGGCCAAGTTCTGGGAA

GTC

ATCCGCTCCAGCTGCAA

GT

Jackson et al., 2015

βIII-tubulin Murine ATGGACAGTGTTCGGTC

TGG

AGCACCACTCTGACCA

AAGAT

NF-M Human GACGGCGCTGAAGGAAA

TC

CTCTTCGCCCTGGTGCA

TAT

Jackson et al., 2015

NF-M Murine CGGGGAACCAAGTGGGA

AAT

CCCCCTCTAGGAGTTTC

CTGT

NF-H Human GGACCTGCTCAATGTCAA

GATG

GCCAAAGCCAATCCGA

CAC

MAP2 Human GGAACCAACTCTCTCTG

GATTT

GCATTCTCTCTTCAGCC

TTCT

MAP2 Murine TAAGCGGAAAACCACAG

CAG

CGTTTCTCTGGGCTCTT

GCT

NSE Human GGGCACTCTACCAGGAC

TTTG

CCCTACATTGGCTGTGA

ACT

NSE Murine GCGGCTTTGCCCCCAAT

A

TCACCATCTTTTCCGTG

TAGC

Cyclophilin A Human TCCTAAAGCATACGGGT

CCT

CTTGCCATCCAACCACT

CA

Cyclophilin A Murine AGCATACAGGTCCTGGC

ATC

TTCACCTTCCCAAAGAC

CAC
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Table 2.3: Primary Antibodies 

 

 

 

 

Table 2.4: Secondary Antibodies 

 

 

 

 

 

 

 

Target
Host 

Species
Type Dilution

Concentration 

used
Catalogue Number Company

Oct-4 Rabbit
Withheld by 

supplier
1:100

Withheld by 

supplier

A24867 (PSC 4-Marker 

Immunocytochemistry 

Kit)

Life Technologies

SSEA4
Mouse 

IgG3

Withheld by 

supplier
1:100

Withheld by 

supplier

A24866 (PSC 4-Marker 

Immunocytochemistry 

Kit )

Life Technologies

Pax6 Rabbit Polyclonal 1:500 4µg/mL 901301 BioLegend

Nestin Mouse Monoclonal 1:300 3.33µg/mL MAB5326 Millipore

Antibody Conjugate Type Dilution
Concentration 

used
Catalogue Number Company

Rabbit IgG
Alexa 

Fluor® 555

Withheld 

by supplier
1:250

Withheld by 

supplier

A24869 (PSC 4-Marker 

Immunocytochemistry 

Kit) 

Life 

Technologies

Mouse IgG3
Alexa 

Fluor® 488

Withheld 

by supplier

1:250 Withheld by 

supplier

A24877 (PSC 4-Marker 

Immunocytochemistry 

Kit)

Life 

Technologies

Rabbit IgG
Alexa 

Fluor® 488
Polyclonal 1:700 2.86µg/mL A21206

Life 

Technologies

Mouse IgG
Alexa 

Fluor® 555
Polyclonal 1:700 2.86µg/mL A31570

Life 

Technologies
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 Chapter Three: Gene expression during 

neurogenic differentiation of human and 

murine mesenchymal stem cells 
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3.1 Introduction 

Neural induction is well established in human MSCs, with multiple factors used to induce 

neurogenesis in vitro (section 1.4.2.1). In contrast, significantly less is available in the 

literature on the neural induction of murine MSCs. Similarly to human, murine MSC neural 

induction protocols use a variety of culture conditions, with growth factors such as EGF and 

FGF-2, neurotrophic factors, retinoic acid, chemical compounds such as β-mercaptoethanol 

and co-culturing with foetal midbrain cells all previously used, either singularly or in 

combination (Locatelli et al., 2003; Sanchez-Ramos et al., 2000; Taha & Hedayati, 2010). In 

addition to reagent variability, timeframes vary greatly in murine MSC neural induction, with 

protocols ranging from 34 hours to three weeks in length (Mohammad et al., 2016; Taha & 

Hedayati, 2010). Long-term neural induction protocols are dominant in murine MSCs, with 

changes in neural gene expression not examined until many days following the initiation of 

neurogenesis (Abdullah et al., 2016; Chudickova et al., 2015; Liu et al., 2011; Locatelli et al., 

2003; Parivar et al., 2015; Rezaei et al., 2011; Sanchez-Ramos et al., 2000; Taha & Hedayati, 

2010; Tropel et al., 2006). As a result, these studies risk missing any alterations occurring at 

earlier stages of neural induction. Studies which have investigated the earlier stages of murine 

MSC neurogenesis have identified morphological changes from six hours post-induction and 

increases in the expression of neural marker genes nestin, MAP2 and NF-L from 24 hours 

post-induction (Fujimura et al., 2005; Mohammad et al., 2016). However, none of these 

studies continued their analysis of murine MSC neurogenesis after 34 hours of neural 

induction. As a result, the current studies do not provide an extensive analysis of neural 

marker gene expression throughout the entire course of murine MSC neural induction. 

 

This chapter aimed to characterise the timecourse of neural gene expression for human and 

murine MSC neural induction, to determine the most appropriate culture conditions for use in 

Chapters Four and Five. An established human neural induction protocol consisting of neural 
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priming followed by neuronal maturation (Jackson et al., 2015) was used for the neural 

induction of MSCs isolated from wildtype mice, to determine if the method could be directly 

transferred between species. Further studies were then undertaken to determine if neural 

priming was required for neural differentiation of human and murine MSCs. The stages of 

neurogenesis were tracked by determining changes in the expression of a number of genes 

which are tightly regulated throughout CNS development (Figure 3.1). This allowed, for the 

first time, the development of a comprehensive timeline of neural differentiation from human 

and murine MSCs, enabling easy identification of the optimal protocol for both human and 

murine MSC neural induction. 
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Figure 3.1: The stages of neurogenesis can be identified through the analysis of neural marker 

gene expression 

Neural marker gene expression was used to identify the different stages of neurogenesis. Pax6, 

nestin and NCAM recognised neural progenitors; pax6 is a paired homeobox transcription factor 

expressed in early human NE and RG cells. Nestin encodes an intermediate filament protein and is 

highly expressed in neural progenitors within the CNS (Lendahl et al., 1990; Thakurela et al., 2016; 

Zhang et al., 2010). NCAM promotes neural progenitor proliferation and migration and is 

considered a marker of late-stage neural progenitors (Guan et al., 2015; Kolkova et al., 2000; 

Quartu et al., 2008). βIII-tubulin is a marker of immature, post-mitotic neurons, as it is known to be 

expressed in neurons that have recently exited the cell cycle (Lee et al., 1990; Menezes & Luskin, 

1994). MAP2, NF-M, NF-H and NSE are markers of mature neurons. MAP2, NF-M and NF-H are 

all associated with cytoskeletal formation whilst NSE encodes an enzyme only expressed at the later 

stages of neurogenesis (Carpenter & Ip, 1996; Harada et al., 2002; Hoffman et al., 1987; Isgro et al., 

2015; Zhang et al., 2002). 

 

Neural Progenitors Immature Neurons Mature Neurons
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3.2 Results 

3.2.1 Transfer of the human MSC neural induction method to murine MSCs 

Human and murine MSCs were differentiated along the neural lineage using the previously 

established neural priming and maturation method (NP+M) (detailed in section 2.3.2.1) 

(Arthur et al., 2008; Jackson et al., 2015). The expression of neural marker genes relative to 

undifferentiated MSCs maintained in MSC basal growth media (basal media controls) was 

analysed 14 days and 21 days post-neural induction. As expected, human MSCs were 

successfully induced along the neural lineage. Nestin, a marker of neural progenitors, was 

upregulated with an increase of 4.66 ± 0.53 fold at 14 days post-induction and significantly 

increased by 9.16 ± 3.17 fold 21 days post-induction. Expression of βIII-tubulin, a marker of 

immature post-mitotic neurons, was unchanged compared to basal media controls. NF-M, a 

marker of late-stage neurogenesis, was upregulated 9.32 ±3.59 fold compared to basal media 

controls 14 days post-induction respectively, suggesting the presence of post-mitotic neurons; 

however, this difference did not reach significance. Expression had decreased to only a 2.97 ± 

0.68 fold increase compared to basal media controls 21 days post-induction (Figure 3.2A). 

When transferred to murine MSCs, this protocol was successful in inducing murine MSCs 

along the neural lineage, as evidenced by upregulation of all tested neural marker genes 

(Figure 3.2B). βIII-tubulin expression was significantly elevated both 14 and 21 days post-

induction, with 20.58 ± 4.28 and 30.48 ± 5.16 fold increases respectively. NF-M expression 

was also significantly elevated, with a 17.26 ± 1.75 fold increase 21 days post-induction, 

indicating the formation of post-mitotic neurons (Figure 3.2B). Thus, in comparison to human 

MSC neural differentiation, murine MSC neural differentiation appeared to be accelerated, 

with earlier and significantly higher expression of βIII-tubulin and NF-M.  

 

 

 



68 

 

 

 

 

 

 

 

 

Figure 3.2: Transfer of the human MSC neural induction protocol to murine MSCs 

Expression of neural genes in human (A) and murine (B) MSCs grown in NP+M media 14 and 21 

days post-neural induction. Gene expression was normalised to cyclophilin A and the fold change 

relative to MSCs maintained in MSC basal growth media for 24 hours (basal media controls) was 

calculated using the ΔΔCt method. Results are expressed as mean ± SEM (n=3). * indicates 

significant difference between neuronal and basal media controls (p<0.05; one-way ANOVA, 

Tukey’s HSD). 
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3.2.2 Timecourse of neural gene expression during human MSC neurogenesis 

Our previously established method examined neural marker gene expression 14 and 21 days 

post-induction; however, gene expression was not examined at any other timepoints, either 

here or in previous publications using this method (Arthur et al., 2008; Jackson et al., 2015). 

Therefore, the timecourse of neural gene expression throughout human MSC neural induction 

was established. To determine if neural priming was required for neural induction, human 

MSCs were cultured in neural priming media followed by maturation media (NP+M) or in 

maturation media alone (M). The NP media used EGF and FGF-2 as neurogenic factors, 

whilst the M only media contained FGF-2 and RA (detailed in section 2.3.2.1). 

 

 Both the NP+M and M only methods successfully induced human MSCs along the neural 

lineage, with significant increases in multiple neural marker genes. The NP+M method 

significantly increased nestin and NCAM expression above that of basal media controls from 

14 days-post induction, remaining elevated throughout neural induction, indicating the 

presence of neural progenitors (Figure 3.3A). Both early markers were also elevated when 

using the M only method; however, expression was lower than that of MSCs cultured using 

the NP+M method, with significant upregulation of nestin and NCAM not evident until 16 and 

20 days post-induction respectively, indicating a delay in neural progenitor formation (Figure 

3.3B). Expression of pax6, another early marker of neurogenesis, was unchanged throughout 

neural induction in both methods (Figure 3.3A and 3.3B). No expression of NeuroD1, a 

marker of early to intermediate neurogenesis, was observed at any time in either method (data 

not shown).  

 

Both methods successfully formed post-mitotic neurons; increases in βIII-tubulin expression 

were evident from 16 days post-induction, with 8.65 ± 0.59 and 7.58 ± 0.95 fold increases 
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relative to basal media controls when using the NP+M and M only methods respectively 

(Figures 3.3C and 3.3D). Increases reached significance on days 16 and 24 of the NP+M 

method and day 24 of the M only method. NF-M was expressed at very low levels during the 

early stages of neurogenesis using both methods. Expression peaked in cells cultured in the 

NP+M media at 24 days post-induction, with a 16.26 ± 4.90 fold increase; however, this 

difference did not reach significance (Figure 3.3C). In contrast, human MSCs cultured using 

the M only method displayed a clear upregulation of NF-M, with a statistically significant 

26.97 ± 9.75 fold increase in NF-M expression 24 days-post induction. Expression was 

maintained and peaked at 28 days post-induction, with a significant 41.01 ± 8.34 fold increase 

in expression compared to basal media controls (Figure 3.3D). Furthermore, NF-M expression 

at 28 days-post-induction was significantly elevated in MSCs cultured in the M only media 

compared to those cultured in the NP+M media (Figure 3.3C and 3.3D). In both methods, 

expression of NF-H, a marker of mature neurons, was significantly elevated 12 days post-

induction; however, expression then dropped before increasing to reach significance once 

again at 18 days post-induction. NF-H was significantly upregulated from 18 days post-

induction, with 32.30 ± 3.05 and 34.15 ± 3.57 fold increases at day 18 when using the NP+M 

and the M only methods respectively. NF-H remained elevated for the remainder of the neural 

induction protocol for both methods; however, gene expression was generally higher in the M 

only method, with statistically significant increases in NF-H compared to those cultured in the 

NP+M method at 22 and 24 days post-induction (Figure 3.3C and 3.3D). NSE, which encodes 

an enzyme expressed only by mature neurons, was significantly elevated compared to basal 

media controls media between 16 and 22 days post-induction when using the NP+M method 

(Figure 3.3C). A similar trend was seen for the M only method; however, NSE expression was 

significantly higher 16 days post-induction for human MSCs cultured in the M only media 

compared to those in the NP+M media (Figure 3.3C and 3.3D). From 24 days post-induction, 

NSE expression dropped to below significance in both neural induction methods (Figure 3.3C 

and 3.3D). MAP2, another marker of mature neurons, was not expressed over the course of 
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neural induction for either method (data not shown). Thus, both methods successfully induced 

human MSCs along the neural lineage, forming neural progenitors and post-mitotic neurons 

from 14-16 days post-induction. However, the original NP+M method significantly improved 

the formation of neural progenitors, whilst the M only method enhanced neuronal maturation. 

 

3.2.3 Optimising methodology for neural induction of murine MSCs 

3.2.3.1   Initial timecourse of gene expression throughout murine MSC neural induction 

A similar timecourse was setup to analyse neural gene expression throughout murine MSC 

neural induction in NP+M media (detailed in section 2.5.4.3). Nestin (Figure 3.4A) and NF-M 

(Figure 3.4B) expression was significantly elevated within 24 hours of transfer into neural 

priming media, with 2.72 ± 0.12 and 10.52 ± 1.90 fold increases in gene expression 

respectively. NF-M expression remained elevated until five days post-induction, peaking at 

five days with a 17.53 ± 2.77 fold increase compared to basal media controls (Figure 3.4B). 

βIII-tubulin was elevated from 24 hours post-induction; however, this increase did not reach 

significance until five days post-induction where a 10.64 ± 3.61 fold increase compared to 

basal media controls was evident (Figure 3.4B). Expression of neural marker genes was 

downregulated compared to basal media control expression levels by seven days post-

induction; however, secondary elevations in some genes were seen following the addition of 

the maturation media. Nestin and NF-M were both significantly elevated eight days post-

induction, with NF-M expression also significantly upregulated at 12 days post-induction 

(Figure 3.4A and 3.4B). Nestin and NF-M expression returned to basal media control 

expression levels for the remainder of the protocol. No significant increase in NCAM, MAP2 

or NSE expression was evident over the course of neural induction (Figure 3.4A and 3.4B). 

This data confirmed the previous conclusion (section 3.2.1) that murine MSC neural induction 

was accelerated compared to human, with significant increases in neural gene expression 

within 24 hours of neural induction. 
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Figure 3.3: Timecourse of neural gene expression throughout human MSC neurogenesis 

Expression of early (A, B) and late (C,D) neural marker genes in human MSCs grown in NP+M (A, 

C) and M only (B, D) media. Gene expression was normalised to cyclophilin A and the fold change 

relative to MSCs maintained in human MSC basal growth media for 24 hours (basal media controls) 

was calculated using the ΔΔCt method. Black line denotes transfer from NP media to M media (M). 

Results are expressed as mean ± SEM (n=3). Letters a-f indicate significant difference between 

neuronal and basal media controls: a = nestin, b = NCAM, c = βIII-tubulin, d = NF-M, e = HF-H, f = 

NSE. Letters g-i indicate significant difference between NP+M media and M only media at the same 

timepoint: g = NF-M, h = NF-H, i = NSE (p<0.05; one-way ANOVA, Tukey’s HSD). 
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a 

  

Figure 3.4 Timecourse of neural gene expression throughout murine MSC neurogenesis in 

NP+M media 

Expression of early (A) and late (B) neural marker genes in murine MSCs grown in NP+M media. 

Gene expression was normalised to cyclophilin A and the fold change relative to MSCs maintained 

in murine MSC basal growth media for 24 hours (basal media controls) was calculated using the 

ΔΔCt method. Black line denotes transfer from NP media to M media (M). Results are expressed as 

mean ± SEM (n=3). Letters indicate significant difference between neuronal and basal media 

controls: a = nestin, b = βIII-tubulin, c = NF-M (p<0.05; one-way ANOVA, Tukey’s HSD). 
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3.2.3.2   Timecourse of gene expression throughout the first 48 hours of murine MSC 

neural induction 

To further investigate the accelerated nature of murine MSC neurogenesis, a timecourse of 

gene expression over the first 48 hours of neural induction was undertaken. Murine MSCs 

were cultured in either the NP media, with the maturation step excluded due to the reduced 

timeframe, or the M only media, to determine the optimum method for murine MSC neural 

induction. Morphological changes were evident within four hours of neural induction when 

using both the NP only (Figure 3.5B) and M only methods (Figure 3.5C) compared to basal 

media controls (Figure 3.5A). However, further changes in morphology manifested earlier in 

the NP only method, with cell elongation evident 12 hours post-induction (Figure 3.5D). 

Similar morphology was not seen in the M only method until 16 hours post-induction (Figure 

3.5G). No morphological changes were evident in basal media controls over the first 24 hours 

of neural induction (Figure 3.5A and 3.5H). 

 

Early markers nestin and NCAM were expressed in murine MSCs induced along the neural 

lineage using both induction methods; however, expression was never significantly elevated 

above basal media controls (Figure 3.6A and 3.6B). βIII-tubulin expression was increased 

when using the NP only method from four hours post-induction and remained elevated over 

the 48 hour protocol, with expression fluctuating between 1.73 ± 0.29 and 2.87 ± 0.47 fold 

higher than basal media controls (Figure 3.6C), indicating the formation of immature, post-

mitotic neurons. In contrast, βIII-tubulin expression was never elevated above basal media 

controls when using the M only method; indeed, βIII-tubulin was significantly lower in 

murine MSCs cultured in the M only media than those in the NP only media at multiple 

timepoints over the 48 hour protocol (Figure 3.6C and 3.6D). NF-M expression was 

significantly higher than basal media controls from eight hours post-induction when using the 

NP only method, indicating the presence of a more mature neuron population (Figure 3.6C).
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Figure 3.5 Murine MSC morphology throughout neural induction 

Images of murine MSCs maintained in murine MSC basal growth media (basal media controls) (A, 

H), NP media (B, D, F, I) and M only media (C, E, G, J) over the course of neural induction. Red 

arrows indicate an elongated cell. Boxed insert shows an enlarged region. Images taken on an 

iPhone 7.0 at 10x magnification. 
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In contrast, NF-M expression was never significantly elevated above basal media controls 

when using the M only method; expression was also significantly lower than that of murine 

MSCs cultured in the NP only media (Figure 3.6C and 3.6D). Overall, increased neural gene 

expression was evident within four hours of neural induction when using the NP only method, 

with neurons formed within eight hours. In comparison, whilst the M only method induced 

neurogenesis, it was decreased and delayed in comparison to the NP only method.  

 

3.3 Discussion 

MSCs were first identified to have neurogenic properties in vitro by Woodbury et al. (2000) 

and Sanchez-Ramos et al. (2000), with human, rat and mouse MSCs able to differentiate into 

neurons in the presence of β-mercaptoethanol or EGF and BDNF respectively. Brazelton et al. 

(2000) were the first to demonstrate the neural plasticity of MSCs in vivo, with bone-marrow 

derived cells expressing neural markers visible in the brains of mice administered 

intravenously with MSCs. The neural properties of MSCs are believed to originate from their 

basal expression of several neural marker genes; a previous study found MSCs cultured in 

basal growth media expressed multiple neural markers, with 100% of cells expressing nestin, 

12% expressing βIII-tubulin and 13.2% expressing NF-M (Deng et al., 2006). Low levels of 

NSE, NeuN, MAP2 and GFAP expression have also been identified in undifferentiated MSCs 

(Sanchez-Ramos et al., 2000; Tondreau et al., 2004; Woodbury et al., 2000). These basal 

expression levels have been hypothesised to prime MSCs for neural differentiation, with 

expression subsequently significantly upregulated following transfer into neural induction 

conditions. Due to these neurogenic properties, MSCs have been identified as an ideal 

candidate for modelling disease neurogenesis in vitro. In comparison to ESCs, iPSCs and 

NSCs, MSCs are easily accessible and require only basic culture conditions. MSCs can be 

isolated from a wide range of species, including both humans and mice. Whilst human MSCs
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Figure 3.6: Timecourse of neural gene expression throughout the early stages of murine MSC 

neurogenesis  

Expression of early (A, B) and late (C,D) neural marker genes in murine MSCs grown in NP only 

(A, C) and M only (B, D) media. Gene expression was normalised to cyclophilin A and the fold 

change relative to MSCs maintained in murine MSC basal growth media for four hours (basal 

media controls) was calculated using the ΔΔCt method. Results are expressed as mean ± SEM 

(n=3). Letters a-b indicate significant difference between neuronal and basal media controls: a = 

βIII-tubulin, b = NF-M (p<0.05; one-way ANOVA, Tukey’s HSD). Letters c-d indicate significant 

difference between NP+M and M only medias at same timepoint: c = βIII-tubulin, d = NF-M 

(p<0.05; one-way ANOVA, Tukey’s HSD. 
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are preferred when modelling human neurogenesis in vitro, murine disease models provide an 

ideal source of MSCs when they are unavailable from patients. 

 

3.3.1 Human MSC neural induction 

This study used well-established neurogenic factors for MSC neural induction, namely EGF, 

FGF-2 and RA. EGF is commonly used for early stages of in vitro neurogenesis, due to its 

role as a promoter of proliferation and differentiation during development, inducing neural 

progenitor proliferation and promoting neural crest cell neurogenesis in vitro (Garcez et al., 

2009; Reynolds et al., 1992). FGF-2 is an established and well-studied neurogenic factor, and 

is commonly used for neural induction of multiple cells types (Arthur et al., 2008; 

Chudickova et al., 2015; Locatelli et al., 2003; Palmer et al., 1999; Shi et al., 2012a). During 

development, high levels are present from the initiation of neurulation, with its temporo-

spatial expression in the developing CNS corresponding with neurogenesis in specific brain 

regions (Murphy et al., 1994; Powell et al., 1991). Despite the vital roles of EGF and FGF-2 

in early neural development, this study found that priming with these growth factors was not 

required for promoting neurogenesis in human MSCs, with significant increases in the 

expression of nestin and NSE, markers of neural progenitors and mature neurons respectively, 

occurring concurrently 16 days post-induction when using the M only method. However, 

neural priming appeared to increase the neural progenitor population, evidenced by significant 

increases in the expression of early neural marker genes nestin and NCAM from 14 days post-

induction when using the NP+M method. In contrast, significant increases in nestin and 

NCAM expression were not seen until 16 and 20 days post-induction, respectively, when 

using the M only method. This is in line with previous data which found that EGF and FGF-2 

promoted the expansion of human neural progenitors (Vescovi et al., 1999).  

 



79 

 

Whilst RA is often associated with neuronal maturation, RA is also implicated in early 

neurogenesis (Jackson et al., 2015; Jones-Villeneuve et al., 1982; Okada et al., 2004; Tan et 

al., 2015). A reduction in RG proliferation and decreased formation of intermediate neural 

progenitors is evident in RA-deficient mice (Haushalter et al., 2017). Similarly, RA depletion 

resulted in a decrease of newborn neural progenitors in the early stages of adult neurogenesis 

(Jacobs et al., 2006). It is subsequently unsurprising that M only conditions successfully 

induced neurogenesis and generated neural progenitors. However, it should be noted that 

neuronal maturation appeared to be favoured when using the M only method, with NF-M, NF-

H and NSE expression significantly upregulated in MSCs cultured in the M only method 

compared to those in the NP+M media. It is therefore likely that whilst the M only conditions 

are amenable to neural progenitor formation, differentiation to neurons is promoted. This 

appeared to deplete the early neural progenitor population. The neural progenitor population 

appeared to recover when using the M only method over the timecourse, with early neural 

marker gene expression reaching the levels seen when using the NP+M method by day 20 of 

the protocol. 

 

3.3.1.1   Human MSC-derived neurons are unable to survive in long-term culture 

conditions 

Whilst both the NP+M and M only methods successfully induced neurogenesis in human 

MSCs, neither method allowed for long-term survival in vitro. The significant decreases in 

βIII-tubulin and NF-M from 26 days post-induction in the NP+M method suggested 

cytoskeletal alterations, which have previously been associated with increased neuronal death 

(Bursch et al., 2000; Hoffman, 1989; reviewed in McMurray, 2000; Nixon & Logvinenko, 

1986; Paris et al., 2010). Intermediate filaments (IF) are formed by tetrapolymers containing, 

amongst others, a combination of NF-L, NF-M and NF-H. IF formation does not require all 

neurofilament subunits; for example, NF-L and NF-H are able to form IFs in the absence of 
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NF-M (Beaulieu et al., 1999; Carpenter & Ip, 1996; Carter et al., 1998). The maintained 

expression of NF-H indicates that IFs are still present during neural induction; however, when 

coupled with the decreased expression of NF-M at 26 days post-induction, it is likely the 

number decreases in the later stages of the protocol. Furthermore, IFs function best when 

composed of all three neurofilament subunits; it is likely that these cytoskeletal alterations 

resulting from downregulated NF-M have an adverse effect on neuron function (Carpenter & 

Ip, 1996). This hypothesis is supported by the decreased expression of NSE in the NP+M 

method, as NSE is only expressed by functional mature neurons. In the M only method, NF-M 

expression remains elevated, indicating that neurofilament production is unaffected; however 

the decreases in βIII-tubulin and NSE suggest a decreased survival of neurons. Therefore, it is 

likely that neuron survival is higher in the M only conditions; however, neither method is 

conducive to long-term survival of human MSC-derived neurons in vitro. In contrast, the 

continued expression of nestin and NCAM throughout neural induction indicated that neural 

progenitor survival was unaffected by long-term culture in either the NP+M or M only 

conditions.  

 

3.3.2 Murine MSC neural induction 

3.3.2.1   Murine MSC neurogenesis is accelerated compared to human MSCs 

Transfer of the human MSC neural induction protocol to murine MSCs quickly demonstrated 

the accelerated nature of murine MSC neurogenesis compared to human. Initial investigations 

determined that neural gene expression was elevated 24 hours post-induction, in line with 

previous studies (Fujimura et al., 2005; Mohammad et al., 2016; Safford et al., 2002). Further 

analysis determined that the NP protocol resulted in upregulation of βIII-tubulin four hours 

post-induction, indicating the formation of immature neurons. Upregulation of NF-M eight 

hours post-induction indicated that neuronal maturation had commenced. Therefore, the first 

48 hours of neural induction were identified as the critical period for murine MSC 
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neurogenesis; in contrast, increases in neural markers were not evident until 14 days post-

induction in human MSCs. The rapid neural induction of murine MSCs compared to human 

MSCs in vitro mirrored the shorter developmental timeframe of mice in utero. The murine 

gestational period is on average 21 days, in contrast to 280 days for humans; cortical 

neurogenesis is similarly accelerated, being a 6 day process in mice compared to 100 days in 

humans (Caviness et al., 1995; Takahashi et al., 1996). Similarly to MSCs, other stem cell 

types display accelerated neurogenesis in murine-derived cells compared to human. Mouse 

ESC neural differentiation protocols are generally between 6 days and 18 days in length (Bain 

et al., 1995; Chen et al., 2013; Fraichard et al., 1995; Jing et al., 2011; Kim et al., 2009; 

Mohamad et al., 2013; Strubing et al., 1995), whereas human methods can take anywhere 

from 28 days to 82 days (Espuny-Camacho et al., 2013; Gaspard et al., 2008; Li et al., 2009; 

Shi et al., 2012b). Likewise, iPSC neural induction timeframes are extended for human-

derived cells, with murine-derived iPSC neural induction protocols commonly requiring two 

weeks (Chen et al., 2013; Mohamad et al., 2013), in comparison to human-derived iPSC 

neural induction protocols which can be as long as 90 days (Gunhanlar et al., 2018; Shi et al., 

2012a; Shi et al., 2012b). Thus, the accelerated nature of murine MSC neural induction is 

likely a result of the shorter developmental timeframe of mice compared to humans. 

 

3.3.2.2   Previous murine MSC neural induction protocols and timeframes 

Previous studies have noted the accelerated nature of murine MSC neural induction; Fujimura 

et al. (2005) found an increase in nestin positive cells six hours post-induction, with MAP2 

and NF-L staining increased 24 hours post-induction. However, the method of induction used 

in this study varied greatly from our protocols, with neurogenesis promoted through culture 

with insulin, indomethacin and IBMX. These factors are commonly used to induce 

neurogenesis in vitro; insulin and insulin-like growth factors are highly involved in 

neurogenesis in vivo, being tightly regulated throughout neural development, whilst 
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indomethacin is a known anti-inflammatory, preventing the formation of microglia whilst 

promoting the formation of neurons (Lopes et al., 2016; McGuiness et al., 2017; Pimentel et 

al., 1996). IBMX is commonly used to elevate cAMP levels, resulting in activation of the 

proteinase K pathway, which is known to be integral for MSC neurogenesis (Deng et al., 

2001; Kim et al., 2002; Mayr & Montminy, 2001; Wang et al., 2007). However, the use of 

chemical factors for in vitro neural induction is disputed, due to the cellular stress and toxicity 

created by their use (Lu et al., 2004; Neuhuber et al., 2004; Tropel et al., 2006). Mohammad 

et al. (2016) similarly noted increased nestin expression six hours post-induction, with 

increases in expression of NF-L from 12 hours post-induction and MAP2 24 hours post-

induction. However, neurogenesis was induced using β-mercaptoethanol; it has been 

suggested that neuron-like morphological changes and increases in neural gene expression in 

the presence of β-mercaptoethanol are likely to be the result of cellular stress and toxicity, 

with cellular shrinkage and cytoskeleton changes responsible as opposed to neural 

differentiation (Lu et al., 2004). 

 

Other studies have used methods for murine MSC neural induction which more closely mirror 

our own, which attempt to replicate the brain microenvironment to induce neurogenesis; 

however, none have examined the early stages of neurogenesis. In our protocol, EGF and 

FGF-2 successfully induced murine MSCs along the neural lineage. Locatelli et al. (2003) 

previously found that nestin and βIII-tubulin expression was upregulated 7 days post-

induction with EGF and FGF-2, followed by upregulation of βIII-tubulin, NF-L and NSE 

expression 14 days post-induction. Similar results were seen in studies by Liu et al. (2011) 

and Rezaei et al. (2011) in response to EGF and FGF-2. FGF-2 has also been used alone to 

induce neurogenesis, with increases in neural gene expression evident from four days post-

induction (Parivar et al., 2015; Tropel et al., 2006). RA was the major component of our M 

only media and has previously been used in conjunction with foetal midbrain cells and brain-
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derived neurotrophic factor (BDNF) to induce murine MSC neurogenesis, with an increase in 

NeuN positively stained cells seen seven days post-induction (Sanchez-Ramos et al., 2000). 

Culture conditions such as these which replicate the brain microenvironment are generally 

considered superior to those reliant on a response to chemicals (discussed previously). In line 

with previous studies of chemical-induced neurogenesis, Deng et al. (2006) found that 

neuron-like morphology following culture with IBMX in vitro was likely to be a response to 

cellular stress, as no increase in neural marker genes was evident. In contrast, MSCs 

implanted into the brain responded to environmental cues, differentiating into neurons and 

astrocytes. Therefore, this chapter presents the first study in which neural gene expression is 

examined within the first 24 hours of murine MSC neural induction, where neurogenesis was 

incited by replicating the brain environment in vitro. 

 

3.3.2.3   The NP method increases neural gene expression above that of the M only 

method 

A direct comparison between the NP and M only methods determined that murine MSC 

neuronal maturation was not dependent on RA; indeed, whilst both methods were able to 

increase the expression of neural marker genes, these increases only reached significance in 

murine MSCs cultured in under NP conditions. Furthermore, mature neural marker gene 

expression was consistently significantly higher in murine MSCs cultured in NP media than 

those cultured in M only media. The presence of EGF and RA were the primary differences 

between the NP and M only methods, with EGF included in the NP media and RA in the M 

only media; FGF-2 was present in both. EGF has previously been found to be effective in 

forming mature neurons in murine-derived cells and acts by binding to the EGF receptor, 

activating pathways capable of upregulating neural genes (Kelly et al., 2005; Reynolds et al., 

1992). Furthermore, the combination of EGF and FGF-2 successfully promotes neural 

differentiation of ESCs, with combination culture increasing the proportion of neurons 
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compared to their singular use (Garcez et al., 2009). RA regulates neurogenesis by binding to 

a transcription complex heterodimer in the nucleus, comprising of the retinoic acid receptor 

(RAR) and retinoic X receptor (RXR), which then binds to the retinoic acid response 

elements (RARE) DNA sequence. This enables the upregulation of a number of target genes, 

many of which promote neurogenesis (reviwed in Maden, 2007). Whilst RA is commonly 

implicated in both the early and later stages of neurogenesis both in vitro and in vivo (section 

3.3.1), a previous study by Haushalter et al. (2017) noted that radial glial progenitor 

maturation occurred earlier in a mouse model displaying an RA deficiency, with increased 

βIII-tubulin expression, compared to wildtype mice. The combination of EGF and FGF-2, in 

addition to the absence of RA, are likely contributing to the increased neural gene expression 

in the NP method.  

 

3.3.3 Chapter conclusions and future directions 

This chapter aimed to determine the optimal culture conditions for the neural induction of 

human and murine MSCs, for use in Chapters Four and Five. In human MSCs, the original 

NP+M method previously used by our lab (Jackson et al., 2015) was found to be ideal, 

promoting neural progenitor formation and self-renewal in addition to differentiation to 

neurons. This contrasted with the M only method, which appeared to favour progenitor 

differentiation to neurons, potentially depleting the early neural progenitor pool. A method 

capable of forming distinct neural progenitor and neuron populations is advantageous; if used 

to model disease neurogenesis, changes in either cell population can then be easily identified. 

Our previous timepoints (Jackson et al., 2015) of 14 and 21 days post-induction appeared to 

be appropriate for monitoring the progress of neurogenesis, with the first upregulation of 

neural marker genes seen 14 days post-induction and downregulation of mature markers 

evident at 24 days post-induction, indicating a loss in neuron survival from this time. 
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The NP method appeared to be optimal for murine MSC neural induction, promoting a 

significant increase in neural marker gene expression above both growth controls and MSCs 

cultured under M only conditions. Furthermore, due to the accelerated nature of murine MSC 

neurogenesis compared to human MSCs, the first 48 hours were determined to be the most 

vital. The NP only conditions were found to be sufficient for neuronal maturation of murine 

MSCs, with no requirement for further culture in M only media. 

 

This study supports previous findings that both human and murine MSCs are capable of 

neural differentiation and are therefore appropriate for modelling neurogenesis in vitro. This 

study has been the first to develop a timecourse of neural gene expression throughout MSC 

neurogenesis for both human and murine-derived cells; notably, this is the first study to 

examine gene expression in murine MSCs over the first 48 hours of neural induction. Both 

human and murine-derived MSCs have their own advantages. MSCs of human origin are 

likely to more closely model the human disease phenotype, which is of especial benefit when 

considering MSCs as a potential therapy. However, the easy availability of MSCs from 

murine models of neurological disorders provides a distinct advantage when modelling 

disease neurogenesis in vitro. Furthermore, the accelerated nature of murine MSC 

neurogenesis enables succinct experiments in comparison to human MSCs. Therefore, 

depending on the application, both human and murine MSCs can be used to great effect for in 

vitro modelling of neurogenesis. 
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4.1 Introduction 

In addition to intracellular accumulation of HS, MPS IIIA is also characterised by increased 

extracellular HS, with elevated levels in circulation, excreted in urine and within the ECM 

(Holley et al., 2011; Meikle et al., 2004; Neufeld & Muenzer, 2001; Tomatsu et al., 2005). HS 

is hypothesised to be released from cells by several mechanisms, including exocytosis, 

microglial phagocytosis and apoptosis (Fedele, 2015; Huang et al., 1997; Martins et al., 2015; 

McGlynn et al., 2004; Wada et al., 2000). In contrast to normal HS, the HS released in MPS 

IIIA exists as partially degraded fragments and display significant increases in sulphation 

(Wilkinson et al., 2012). Extracellular HS is required for many signalling pathways involved 

in development, including the FGF, Wnt, Hh and TGFβ pathways. HS acts to modulate 

interactions between the morphogen and its receptor, or to increase ligand concentration at the 

cell surface (section 1.3.1) (Baeg et al., 2001; Chang et al., 2000; Hacker et al., 1997; Lin et 

al., 1999; Pfeiffer et al., 2002). The ability of HS to bind to morphogens and initiate signal 

transduction is determined by the patterns of sulphation across the length of the chain 

(reviewed in Hacker et al., 2005). Thus, the GAGs found in MPS IIIA are likely to affect HS-

dependant signalling pathways; indeed, mutations in HSPG synthesis have been shown to 

reduce FGF signal transduction and downregulate Wnt signalling (Hacker et al., 1997; Venero 

Galanternik et al., 2015). Due to their vital role in development, changes in HS-dependent 

signalling pathways are likely to have downstream effects on stem cell differentiation, which 

could provide a potential mechanism of pathology for MPS IIIA. 

 

In this chapter, the effect of MPS IIIA GAG on stem cell differentiation was examined for the 

first time. MSCs from healthy human donors were induced along the neural lineage using the 

NP+M method established in Chapter Three, in the presence of MPS IIIA GAG and 

commercially available HS, to compare the effects of these different structures on 

neurogenesis. The effect of commercially available DS and heparin, and MPS I, MPS II and 
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MPS VI GAGs on neurogenesis was also examined, to determine if any changes in 

neurogenesis as a result of MPS IIIA GAG were unique. In addition, MSCs were induced 

along the traditional mesodermal lineages (Friedenstein et al., 1974; Pittenger et al., 1999), to 

determine if MPS IIIA GAG resulted in any other alterations in stem cell development. 

 

4.2 Results 

4.2.1 The effect of extrinsic MPS IIIA GAG on neurogenesis 

In accordance with the human MSC neural differentiation method established in Chapter 

Three, MSCs isolated from healthy human donors were initially induced along the neural 

lineage in the absence of GAG (0 GAG controls). As expected, the data was in line with the 

results presented in Chapter Three, with significant elevations in the expression of several 

neural marker genes 14 and 21 days post-induction (data not shown). All neural gene 

expression presented in this chapter will be determined relative to this 0 GAG control data. 

 

To determine their effect on neurogenesis, commercially available HS and heparin were 

added to the culture media throughout the course of neural induction. Commercial HS 

increased the expression of several neural marker genes, with 3.66 ± 1.54, 2.22 ±0.72 and 

3.06 ±0.46 fold increases in nestin, NCAM and βIII-tubulin, respectively, 14 days post-

induction, indicating an increase in the formation of neural progenitors and immature post-

mitotic neurons (Figure 4.1A). By 21 days post-induction, all gene expression had returned to 

baseline levels (Figure 4.1C). The addition of heparin also upregulated neural gene 

expression, with significant increases of 7.08 ± 0.85, 3.58 ±0.40 and 2.90 ± 0.29 in nestin, 

NCAM and βIII-tubulin respectively at 14 days post-induction (Figure 4.1A). Heparin also 

increased expression of NSE, a marker of mature neurons, 3.48 ± 1.13 fold 21 days post-

induction; however, this did not reach significance (Figure 4.1C). In contrast to the 
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commercially available GAGs, the addition of MPS IIIA GAG had little effect on 

neurogenesis 14 days post-induction, with no significant change in gene expression (Figure 

4.1A). However, at 21 days post-induction, NCAM and βIII-tubulin expression was 

significantly downregulated, indicating a decrease in neural progenitors and immature 

neurons (Figure 4.1C). Thus, HS was able to promote the early stages of neurogenesis, with 

the more highly sulphated heparin (Kjellen & Lindahl, 1991) promoting both the early and 

late stages of neurogenesis; in contrast, HS-containing MPS IIIA GAG was found to disrupt 

neurogenesis. 

 

Other neuropathic forms of MPS store DS in addition to HS. Thus, as a comparison to MPS 

IIIA HS-containing GAGs, GAGs from MPS I and MPS II were added to the culture media to 

determine their effects on neurogenesis. As a comparison, GAG from MPS VI, a DS/CS-

storing non-neuropathic form of MPS, was also added to the neural induction media, in 

addition to commercially available DS. In contrast to commercial HS and heparin, 

commercial DS had little effect on neurogenesis, with no change in neural marker gene 

expression 14-days post-induction (Figure 4.1B). A small but significant increase of 1.73 ± 

0.13 fold in βIII-tubulin expression was evident 21 days post-induction (Figure 4.1D). MPS I 

GAG, containing aberrant HS and DS, had little effect on neurogenesis, aside from a 1.87 ± 

0.22 fold decrease in NCAM expression 21 days post-induction (Figure 4.1D). In contrast, 

MPS II GAG mirrored the results seen for MPS IIIA GAG, with significant reductions of 4.13 

± 0.85 and 5.0 ± 1.36 fold in NCAM and βIII-tubulin expression, respectively, 21 days post-

induction, despite storing the same GAGs as MPS I (Figure 4.1D). GAG from MPS VI, a 

DS/CS-storing MPS type, was found to promote early neurogenesis; nestin and NCAM 

expression was significantly increased 14 days post-induction, with a small but significant 

increase in nestin expression remaining 21 days post-induction (Figure 4.1B and D). 

Therefore, of the HS-storing MPS types, MPS II GAG was found to disrupt neurogenesis in a 
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similar manner to MPS IIIA GAG, whilst MPS I had little effect. In contrast, MPS VI GAG 

promoted the early stages of neurogenesis. 

 

4.2.2 The effect of extrinsic MPS IIIA GAG on traditional MSC lineages 

The primary focus of this study was to determine the effect of MPS IIIA GAG on 

neurogenesis, due to the severe neurological pathology of MPS IIIA. However, the effects of 

MPS IIIA GAG on MSC differentiation along traditional mesodermal lineages was also of 

interest. Skeletal pathology is less pronounced in MPS IIIA compared to many other MPS 

types; however, mild pathology has been reported in a number of MPS IIIA patients (Chen et 

al., 1996; de Ruijter et al., 2013b; Neufeld & Muenzer, 2001; Nur et al., 2016; Rigante & 

Caradonna, 2004; Scaramuzzo et al., 2012; White et al., 2011). No studies have examined the 

molecular mechanisms underlying this pathology in MPS IIIA. By examining the effects of 

MPS IIIA GAG on MSC differentiation along other lineages, we can determine if MPS IIIA 

GAG directly impairs neurogenesis, as opposed to a global inhibition of MSC differentiation.  

 

4.2.2.1   Osteogenesis 

MSCs isolated from healthy human donors were successfully differentiated along the 

osteogenic lineage in the absence of GAG (0 GAG controls), as demonstrated by calcium 

levels of 4.60 ± 0.85µg/µg protein one week post-induction compared to 0.53 ± 0.06µg/µg 

protein in undifferentiated MSCs maintained in human MSC basal growth media (basal media 

controls) (Figure 4.2). Calcium content continued to increase in 0 GAG controls over the four 

weeks of osteogenic induction, with 12.48 ± 0.91 µg/µg protein four weeks post-induction 

(Figure 4.2). Positive von Kossa staining was evident within one week of osteogenic 

induction, indicating an increase in mineral formation (Figure 4.3). The addition of
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Figure 4.1: The effect of commercially available and MPS GAGs on neurogenesis of human 

MSCs 

Expression of neural genes in the presence of commercially available and MPS GAGs 14 (A-B) and 

21 (C-D) days post-neural induction. Gene expression was normalised to cyclophilin A and the fold 

change relative to MSCs induced along the neural lineage in the absence of GAG (0 GAG controls) 

was calculated using the ΔΔCt method. Red line denotes baseline 0 GAG gene expression. Results 

are expressed as mean ± SEM (n=3). * indicates significant difference compared to 0 GAG controls 

(p<0.05; one sample t-test). 
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commercial HS had little effect on the early stages of osteogenesis, with calcium levels in line 

with 0 GAG controls. Further mineralisation appeared to be delayed in the presence of HS, 

with calcium content at 4.65 ± 0.80 µg/µg protein three weeks post-induction, significantly 

lower than 0 GAG controls (Figure 4.2). However, calcium content remained increased 

compared to basal media controls (0.99 ± 0.38µg/µg protein) and von Kossa staining 

continued to be evident (Figure 4.2 and 4.3). Calcium content reached 0 GAG control levels 

in the presence of HS by four weeks post-induction (Figure 4.2). Commercial heparin had 

little effect on osteogenesis, aside from a small decrease in calcium content one week post-

induction in comparison to 0 GAG controls; however, this difference did not reach 

significance (Figure 4.2). Positive von Kossa staining was evident throughout osteogenesis in 

the presence of commercial heparin (Figure 4.3).  

 

In contrast to the commercially available GAGs, the addition of MPS IIIA GAG to the 

osteogenic media reduced osteogenesis, with calcium levels of only 0.78 ± 0.25µg/µg protein 

and 0.54 ± 0.17µg/µg protein one and two weeks post-induction respectively. In contrast, 0 

GAG controls had calcium levels of 4.60 ± 0.85µg/µg protein and 5.06 ± 0.99µg/µg protein 

respectively (Figure 4.2). Calcium levels remained low in the presence of MPS IIIA GAG for 

the remainder of osteogenesis, with significant reductions in calcium compared to 0 GAG 

controls three and four weeks post-induction (Figure 4.2). Furthermore, von Kossa staining 

was not visible in the presence of MPS IIIA GAG (Figure 4.3), thereby indicating that, in 

contrast to commercial HS and heparin, MPS IIIA GAG inhibited osteogenesis. 
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Figure 4.2: The effect of commercially available and MPS GAGs on osteogenesis of human 

MSCs 

Calcium content in human MSCs induced along the osteogenic lineage for four weeks in the 

presence of HS, heparin and MPS IIIA GAG. Results are expressed as mean ± SEM (n=3). * 

indicates significant difference compared to basal media control at same timepoint; # indicates 

significant difference compared to 0 GAG control at same timepoint; % indicates significant 

difference compared to HS at the same timepoint; & indicates significant difference compared to 

heparin at the same timepoint (p<0.05; one-way ANOVA, Tukey’s HSD). 
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Figure 4.3: von Kossa staining for human MSC osteogenesis 

von Kossa staining in human MSCs induced along the osteogenic lineage for four weeks in the 

presence of HS, heparin and MPS IIIA GAG. Images taken on a Nikon Eclipse TS2 at 10x 

magnification. Scale bar represents 100µm. 
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4.2.2.2   Chondrogenesis 

MSCs were successfully differentiated along the chondrogenic lineage in the presence of 

normal and MPS GAGs, as evidenced by increases in 35SO4 incorporation into proteoglycans. 

The addition of commercially available HS and heparin significantly decreased 

chondrogenesis compared to 0 GAG controls, being at 51.13 ± 1.93% and 76.11 ± 2.97% of 0 

GAG controls respectively (Figure 4.4). In contrast, MPS IIIA GAG had no significant effect 

on chondrogenesis compared to 0 GAG controls (Figure 4.4). Commercial HS had the 

greatest effect on chondrogenesis, being significantly reduced compared to both heparin and 

MPS IIIA GAG (Figure 4.4).  

 

4.2.2.3   Adipogenesis 

MSCs isolated from healthy human donors were successfully differentiated along the 

adipogenic lineage in the absence of GAG (0 GAG control). Adipogenesis was obvious from 

three weeks post-induction, with a cell count of 27 ± 4 oil red O positive cells. In contrast, 

undifferentiated MSCs maintained in human MSC basal growth media (basal media controls) 

had no positive oil red O stained cells at any timepoint (Figure 4.5). 

 

The addition of commercially available HS to the adipogenic induction media had little effect 

on MSC adipogenesis until four weeks post-induction, where a significant increase in 

adipocyte counts was seen, with counts of 137.5 ± 17.5 compared to 19 ± 2 for 0 GAG 

controls. HS continued to promote adipogenesis, with cell counts again significantly higher 

than 0 GAG control five weeks post-induction (Figure 4.5). Similarly to commercial HS, the 

more highly sulphated heparin had little effect on adipogenesis until four weeks post-

induction; here, adipocyte counts increased to 80.5 ± 9.5, significantly higher than 0 GAG 

controls. However, heparin did not promote adipogenesis to the same degree as HS, with
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Figure 4.4: The effect of commercially available and MPS GAGs on chondrogenesis of human 

MSCs 

35SO4 incorporation into proteoglycans in human MSCs induced along the chondrogenic lineage for 

six days in the presence of HS, heparin and MPS IIIA GAG. Results are shown as a percentage of 

the values for 0 GAG controls. Red line denotes 0 GAG levels (100%). Results are expressed as 

mean ± SEM (n=3). * indicates significant difference compared to basal media control; # indicates 

significant difference compared to 0 GAG control; % indicates significant difference compared to 

HS (p<0.05; one-way ANOVA, Tukey’s HSD).  
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adipocyte counts significantly lower in the presence of heparin compared to HS. This trend 

continued at five weeks post-induction, with adipocyte counts significantly higher in the 

presence of heparin compared to 0 GAG controls, but unable to reach the counts seen in the 

presence of HS (Figure 4.5). Therefore, whilst both HS and heparin increased adipocyte 

formation, HS was the most successful in promoting adipogenesis. 

 

MPS IIIA GAG had a notably disparate effect on adipogenesis compared to the commercially 

available GAGs. Three weeks post-induction, adipocyte counts were only at 8 ± 2 in the 

presence of MPS IIIA GAG compared to 0 GAG controls, which had adipocyte counts of 27 

± 4 (Figure 4.5). Adipocyte counts continued to be lower in the presence of MPS IIIA GAG 

compared to 0 GAG controls four and five weeks post-induction; counts of 11.5 ± 3.5 were 

seen in the presence of MPS IIIA GAG compared to 19 ± 2 for 0 GAG controls four weeks 

post-induction, and counts of 18.5 ± 0.5 compared to 33 ± 1 in MPS IIIA GAG and 0 GAG 

controls respectively five weeks post-induction (Figure 4.5). However, whilst notable 

decreases, these differences did not reach significance. MPS IIIA GAG significantly reduced 

adipocyte counts compared to MSCs cultured with HS and heparin four and five weeks post-

induction (Figure 4.5). Therefore, in contrast to commercial HS and heparin, MPS IIIA GAG 

was found to delay and decrease adipogenesis. 
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Figure 4.5: The effect of commercially available and MPS GAGs on adipogenesis of human 

MSCs 

Positive oil red O cell counts in human MSCs induced along the adipogenic lineage for five weeks 

in the presence of HS, heparin and MPS IIIA GAG. Results are expressed as mean ± SEM (n=3). 

No oil red O positive cells were present in basal medical control samples (white bars). * indicates 

significant difference compared to basal media control at the same timepoint; # indicates significant 

difference compared to 0 GAG control at the same timepoint; % indicates significant difference 

compared to HS at the same timepoint; & indicates significant difference compared heparin at the 

same timepoint (p<0.05; one-way ANOVA, Tukey’s HSD).  
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4.3 Discussion 

 

4.3.1 Neurogenesis 

4.3.1.1   Commercial full-length HS and heparin promote neurogenesis by promoting 

neural progenitor survival and proliferation 

Commercially available full-length HS and heparin were both found to promote neurogenesis, 

with the more highly sulphated heparin having the greatest effect. Promotion of early 

neurogenesis was the most noticeable, with elevated expression of nestin, NCAM and βIII-

tubulin 14 days post-induction, indicating increased neural progenitor proliferation and 

differentiation. HS chains are integral to several signalling pathways involved in proliferation 

and neurogenesis, stabilising morphogens and increasing their concentration at the cell 

surface or acting as co-receptors for signal transduction (section 1.3.1). The HS–dependent 

signalling pathways are involved in neurogenesis, with the Wnt, Hh and FGF pathways 

known to promote neural differentiation (Charytoniuk et al., 2002; Fuccillo et al., 2004; 

Hirabayashi et al., 2004; Machold et al., 2003; Munji et al., 2011). The FGF signalling 

pathway is one of the most central and highly studied pathways involved in neural progenitor 

proliferation and differentiation, and will be used here as an example. HS chains are required 

to modulate interactions between FGF and the FGFR via formation of the FGF:FGFR:HS 

complex (section 1.3.1.1). One pathway activated by formation of the FGF:FGFR:HS 

complex is the MAPK/ERK pathway, which upregulates a number of genes involved in CNS 

development, promoting neural progenitor proliferation and differentiation (Figure 4.6) 

(Hurtado & De Robertis, 2007; Jiang et al., 2015; Kuroda et al., 2005). 

 

Activation of the MAPK pathway further promotes neurogenesis through inhibition of 

specific signalling pathways. One example is the BMP signalling pathway, which must be 

inhibited for neurogenesis. Similarly to FGF, HS chains are required for BMP signalling, with
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Figure 4.6: The FGF signalling pathway 

HS chains are required for formation of the FGF:FGFR:HS complex, which activates the 

MAPK/ERK pathway, promoting proliferation and neurogenesis. Adapted from Goetz and 

Mohammadi (2013). 

 

 

 

 HS binding preventing BMP morphogen degradation and interaction with its antagonist, 

noggin (Irie et al., 2003; Kraushaar et al., 2012; Kuo et al., 2010; Murali et al., 2013; Zhao et 

al., 2006); however, activation of the MAPK pathway acts to inhibit downstream targets of 

BMP signalling via differential phosphorylation of Smad1 (Aubin et al., 2004; Kretzschmar et 

al., 1997; Lim et al., 2000; Pera et al., 2003; Rogers et al., 2011; Shou et al., 1999). In 

addition to its role in differentiation, attenuation of BMP signalling has also been shown to 

increase neural progenitor proliferation, with an increased population of neural progenitors in 

the hippocampus of aging mice following BMP inhibition (Yousef et al., 2015). Thus, in our 

Cell fate determination
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study, increased commercially available HS and heparin are likely increasing the 

concentration of FGF morphogens at the cell surface, promoting FGF-mediated MAPK 

signalling whilst concurrently inhibiting BMP signalling, thereby increasing neural progenitor 

survival and proliferation and promoting progenitor maturation. 

 

4.3.1.2   MPS IIIA GAG disrupts neurogenesis 

In contrast to commercially available HS and heparin, MPS IIIA GAG decreased neural gene 

expression. The most significant alterations in neural gene expression were seen 21 days post-

induction, with significant reductions in NCAM and βIII-tubulin expression, markers of neural 

progenitors and immature neurons respectively, thus indicating a decrease in neural 

progenitor survival, proliferation and maturation. In contrast to the full length, typically 

sulphated HS and heparin used in this study, MPS IIIA GAG exists as partially degraded 

fragments, due to the sulphamidase deficiency distinctive of the disease (Neufeld & Muenzer, 

2001). Distinct patterns of sulphation are integral for HS binding to signalling factors (section 

1.3.1); however, MPS IIIA HS is known to be highly sulphated in comparison to normal HS, 

with significant increases in the tri-sulphated disaccharide HexA(2S)-GlcNS(6S) and the di-

sulphated disaccharide HexA(2S)-GlcNS, and significant decreases in the mono-sulphated 

disaccharide HexA-GlcNS and the acetylated disaccharides HexA-GlcNA(6S) and HexA-

GlcNA, where HexA represents either GlcA or IdoA (see Appendix B for abbreviations) 

(Table 4.1) (Hochuli et al., 2003; Wilkinson et al., 2012). Whilst the actual sequence of 

fragments is unknown, these changes in disaccharide composition of HS demonstrate an 

increase in sulphation and suggest alterations in the distinct patterns of sulphation involved in 

morphogen binding.  
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Table 4.1 HS disaccharide composition 

Disaccharide composition of HS from wildtype, MPS I, MPS II and MPS IIIA mouse brains. 

Values were estimated from figures in Wilkinson et al. (2012) and Gleitz et al. (2018). * denotes 

significance compared to wildtype disaccharide as determined in the literature. 

 

 

 

As before (section 4.3.1.1), the well-studied FGF signalling pathway was selected as an 

example and examined in more detail, due to its integral role in neural progenitor proliferation 

and differentiation. Normal FGF signalling relies on a balance of binding affinities to form 

the FGF:FGFR:HS complex, with high affinity interactions between FGF and FGFRs (KD = 

10-500pM) and low affinity interactions between FGF and HS (KD = 5-50nM) (reviewed in 

Gallagher & Turnbull, 1992). This balance enables HS to increase FGF concentration at the 

cell surface whilst allowing FGF:FGFR interactions, enabling the transfer of FGF from ECM-

localised HSPGs to cell surface-bound FGFRs. However, the existence of MPS IIIA HS 

within the ECM may act to alter this balance. MPS IIIA HS exists as GAG fragments devoid 

of a PG core protein within the ECM, as opposed to normal HS, which exists primarily as cell 

surface-bound PGs (Filmus & Selleck, 2001; Iozzo, 1998; Zimmermann & David, 1999). 

These MPS IIIA HS fragments are extracellular soluble components, able to reside in and 

affect processes in the ECM in addition to the cell surface. MPS IIIA HS interferes with FGF 

HexA(2S)-

GlcNS(6S) 

(% of total HS)

HexA-

GlcNS(6S) 

(% of total HS)

HexA(2S)-

GlcNS

(% of total HS)

HexA-GlcNS

(% of total HS)

HexA-

GlcNA(6S) 

(% of total HS)

HexA-GlcNA

(% of total HS)

Wildtype 9 8 15 18 9 50

MPS I 19 (*) 7 25 (*) 10 (*) 7 38 (*)

MPS II 31 (*) 3 32 (*) 10 (*) 9 20 (*)

MPS IIIA 22 (*) 5 (*) 30 (*) 8 (*) 6 (*) 30 (*)
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signalling by competing with normal HS; FGF bound to MPS IIIA HS is more likely to be 

located extracellularly, away from the cell surface HS and receptors. This has previously been 

shown in MPS I, where aberrant 2-O-sulphated HS inhibited CXCL12 binding to its cell 

surface receptor, due to MPS I HS sequestering of CXCL12 within the ECM (Watson et al., 

2014). Similarly, masking the action of excess extracellular HS in MPS I and MPS IIIB 

fibroblasts restored FGF-2 signalling (De Pasquale et al., 2018). Therefore, excess, 

extracellular MPS IIIA HS is likely binding FGF, decreasing its concentration at the cell 

surface and reducing FGF signalling, thus impairing neural progenitor proliferation and 

neurogenesis. 

 

Any changes in FGF proximity to cell surface receptors by MPS IIIA HS may be exacerbated 

by alterations in MPS IIIA HS morphogen binding capacity compared to normal HS. Due to 

the dependence of the FGF signalling pathway on HS chains, signalling is likely to be 

affected by alterations in HS sulphation within the NS regions of the HS chains. Of all the 

HS-dependent signalling pathways involved in neurogenesis, the distinct sulphation patterns 

required in the FGF pathway are the most well-established. FGF:HS interactions are 

dependent on N-sulphation and 2-O-sulphation, with 6-O-sulphation of HS instead involved 

in FGF:FGFR interactions (Ashikari-Hada et al., 2004; Guglier et al., 2008; Pye et al., 2000; 

Pye et al., 1998). MPS IIIA HS displays a significant increase in composition of all sulphate 

groups; however, the highest increases are seen in N-sulphation and 2-O-sulphation, with 2-O 

sulphation displaying the highest increase, with 52% of  MPS IIIA HS disaccharides 

containing a 2-O-sulphate group, compared to 20% of disaccharides in normal HS (Wilkinson 

et al., 2012). HS chains with long stretches of N-sulphation and 2-O sulphation are known to 

have high affinity for FGF-2 (Turnbull et al., 1992). When specifically looking at the FGF-2 

ligand, one of the most well-studied within the FGF family and highly implicated in CNS 

development, interactions between the FGF-2 morphogen and HS are dependent on the 
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distinct GlcNS(6S)-IdoA(2S)-GlcNS(6S)-IdoA(2S) tetrasaccharide (Guglier et al., 2008; Pye 

et al., 1998; Raman et al., 2003). MPS IIIA HS fragments have been shown to display 

increases in HexA(2S)-GlcNS(6S) disaccharides, where HexA represents either GlcA or IdoA 

(see Appendix B for abbreviations), following digestion with heparitinases (Table 4.1) 

(Wilkinson et al., 2012). Thus, if these two disaccharides appear in tandem, MPS IIIA HS will 

contain a higher proportion of the minimum FGF-2 binding motif compared to normal HS, 

increasing the likelihood of FGF-2 binding to MPS IIIA HS as opposed to normal HS; 

however, this is dependent on specific tetrasaccharide formations.  

 

Altered sulphation patterns and the subsequent modified morphogen binding affinities have 

the potential to have significant effects on signalling pathways. Indeed, it could be that the 

altered and increased sulphation of MPS IIIA HS has a more significant effect on FGF 

signalling in MPS IIIA than the existence of excess GAG; if FGF-2 were to have a higher 

affinity for MPS IIIA HS than the FGFR, formation of the FGF:FGFR;HS complex would be 

prevented entirely, resulting in significant disruption of the FGF signalling pathway. 

However, significant research into the specific patterns of sulphation across the MPS IIIA HS 

backbone would be required to further investigate this hypothesis. 

 

Therefore, this study has identified impaired stem cell proliferation and differentiation as a 

potential mechanism for the CNS pathology of MPS IIIA. It is likely that extracellular MPS 

IIIA HS binds FGF-2, creating a reservoir of FGF-2 within the ECM, decreasing FGF-

2:FGFR interactions at the cell surface and subsequently reducing FGF-2 signalling and 

impairing both neural progenitor proliferation and neurogenesis. Alterations in the sulphation 

patterns of MPS IIIA HS compared to normal HS are likely exacerbating this effect by 

increasing the binding affinity of FGF-2 for MPS IIIA HS compared to normal HS; however, 
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further investigation into the precise arrangement of disaccharides within MPS IIIA HS 

should be considered to determine if this increase in implicated disaccharides translates to an 

increase in FGF-2 affinity.  

 

4.3.1.3   GAGs from different MPS types have diverse effects on neurogenesis  

MPS II GAG was found to have a similar effect on MSC neurogenesis as MPS IIIA GAG, 

with a significant decrease in multiple neural marker genes. MPS II and MPS IIIA both result 

from sulphatase deficiencies, resulting in significant increases in N-sulphation, 2-O-

sulphation and 6-O-sulphation across the length of the HS chain compared to normal HS and 

similar disaccharide compositions, indicating similar sulphation patterns (Gleitz et al., 2018; 

Wilkinson et al., 2012). Further investigation into the precise arrangements of MPS II and 

MPS IIIA disaccharides would be required for confirmation; however, any similarities in the 

distinct patterns of sulphation across the HS backbone in MPS II and MPS IIIA HS would 

likely be responsible for the similar effects on neurogenesis, with both structures altering HS 

binding capacity and consequently the HS-dependent signalling pathways involved in 

neurogenesis.  

 

In contrast to MPS II and MPS IIIA, MPS I GAG was found to have little effect on 

neurogenesis compared to 0 GAG controls. A significant decrease of 1.87 ± 0.22 fold NCAM 

expression compared to 0 GAG controls was seen 21 days post-induction; however, 

expression remained increased compared to MPS II and MPS IIIA GAG, which had 4.13 ± 

0.85 and 3.33 ± 0.18 fold decreases in NCAM expression respectively. The disparate effect of 

MPS I GAG on neurogenesis compared to MPS II and MPS IIIA was unexpected, given the 

overlap in pathology between the disorders, with all storing HS and resulting in CNS disease. 

The different effects of MPS I and MPS II GAG was particularly surprising, given their 
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similarity in disease phenotype. Furthermore, both MPS I and MPS II store a combination of 

HS and DS. However, it has previously been found that the composition of individual HS and 

DS chains stored differs between the MPS types (Gleitz et al., 2018; Holley et al., 2011; 

Tomatsu et al., 2005; Wilkinson et al., 2012). MPS I results from an iduronidase deficiency, 

as opposed to the sulphatase deficiencies seen in MPS II and MPS IIIA. Therefore, the 

partially degraded HS fragments found in MPS I are enriched in unsulphated iduronic acid 

residues, in contrast to the sulphate residues seen in MPS II and MPS IIIA. Despite this, MPS 

I HS remains more highly sulphated than normal HS, with significant increases in N-

sulphation, 2-O-sulphation and 6-O-sulphation compared to normal HS (Holley et al., 2011; 

Wilkinson et al., 2012). However, this increase in sulphation did not reach the levels seen in 

MPS IIIA HS, with the greatest difference seen in 2-O-sulphate composition, with a 

significant decrease in MPS I HS compared to MPS IIIA HS (Wilkinson et al., 2012). 

Specifically, a significant decrease in the di-sulphated disaccharide HexA(2S)-GlcNS was 

seen in MPS I compared to MPS IIIA, whilst comparable levels were seen between MPS II 

and MPS IIIA (Table 4.1) (Gleitz et al., 2018; Wilkinson et al., 2012). 2-O-sulphation is 

known to be integral for HS:FGF interactions (Turnbull et al., 1992). Thus, it is possible that 

this small decrease in HS sulphation in MPS I in comparison to MPS II and MPS IIIA HS is 

altering its FGF binding capacity. A reduction in the ability of ECM-localised MPS I HS to 

bind to FGF would enable FGF to reach the cell surface-anchored HS and FGFR, increasing 

FGF signalling and thus neurogenesis. 

 

However, it should be noted that whilst MPS I HS is less sulphated than MPS IIIA HS, it still 

displays higher levels of sulphation than normal HS (Table 4.1), and has been previously 

shown to alter the ability of HS to bind to morphogens FGF-2 and BMP-4 and the chemokine 

CXCL12 (Khan et al., 2008; Pan et al., 2005; Watson et al., 2014). Thus, the limited effect of 

MPS I GAG on neurogenesis was unexpected. Whilst the sulphation patterns of MPS GAGs 
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play an important role in their function, GAG concentration is also likely to contribute. MPS I 

and MPS II both store HS and DS; however, the composition varies between the two types. 

MPS I GAG is known to have a higher ratio of DS compared to HS, in contrast to MPS II 

GAG, which has a higher composition of HS (Table 4.2) (Chuang et al., 2014; Langereis et 

al., 2015; Tomatsu et al., 2005). It is clear from the MPS IIIA data that increased extracellular 

HS impairs neurogenesis; in contrast, increased MPS VI GAG, largely composed of DS 

(Table 4.2) was able to promote early neurogenesis, supporting the concept that stored HS in 

the MPS disorders is the major contributor towards neurological pathology. Thus, the 

increased volume of extracellular HS in MPS II would result in more FGF being bound by HS 

in the ECM and prevented from reaching the FGFR to initiate signalling, thus impairing 

neurogenesis. A lesser amount of HS within the ECM in MPS I would decrease the amount of 

FGF being bound by HS in the ECM compared to MPS II, therefore allowing more to reach 

the cell surface and form the FGF:FGFR:HS complex required for FGF signalling. However, 

further study, preferably involving the analysis of the effects of MPS I and MPS II HS and DS 

individually on neurogenesis, would be required for confirmation. 

 

MPS VI GAG did not impair neurogenesis; in contrast, early neurogenesis appeared to be 

promoted, with a significant increase in nestin and NCAM expression 14 days post-induction, 

indicating an increase in the progenitor population. This is likely a result of the absence of 

HS, as MPS VI stores only DS/CS (Table 4.2) (Neufeld & Muenzer, 2001). Similarly to HS, 

DS is known to be involved in neurogenesis and development, with chondroitin 

sulphate/dermatan sulphate proteoglycan (CS/DSPG) expression regulated throughout neural 

development (Bao et al., 2005; Ishii & Maeda, 2008; Mitsunaga et al., 2006; Shimazaki et al., 

2005; Yamada et al., 2018). DSPGs have also been found to promote neuron survival and 

development in vitro (Faissner et al., 1994; Junghans et al., 1995; Kappler et al., 1997; Koops 

et al., 1996; Long et al., 2016). Thus, change in DS sulphation patterns may explain the
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Table 4.2 HS and DS compositions 

Total urinary HS and DS isolated from MPS I, MPS II, MPS IIIA and MPS VI patients and healthy 

controls (Chuang et al., 2014). 

 

 

 

promoter effect of MPS VI GAG on neurogenesis, as changes in DS sulphation levels and 

patterning have previously been shown to alter downstream processes (Vicente et al., 2001). 

Similarly to HS, DS is able to bind to FGF-2; indeed, wound healing experiments have shown 

that DS stimulated FGF2-mediated proliferation to a greater extent than heparin (Penc et al., 

1998). Due to the N-acetylgalactosamine 4-sulphatase deficiency of MPS VI, the stored DS 

has increased 4-O-sulphation compared to normal, MPS I and MPS II DS (Hochuli et al., 

2003). Increases in 4-O sulphation of DS has previously been associated with an increase in 

FGF signalling, a known promoter of proliferation and neurogenesis (Taylor et al., 2005). An 

increase in FGF-mediated proliferation is likely to have a significant effect on the neural 

progenitor population, with increased survival and proliferation. Thus, the increase in neural 

gene expression in the presence of MPS VI GAG is likely a result of a combination of 

alterations in DS structure and an absence of excess, aberrant HS.  

HS (µg/mL) DS (µg/mL)

Wildtype 3.88 1.68

MPS I 7.3 276.9

MPS II 824 164

MPS IIIA 8901 0.73

MPS VI 1.26 105.5
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In summary, this study demonstrated that GAGs from different MPS types had varied effects 

on neurogenesis. This is likely due to the integral role of GAGs in many neurogenic signalling 

pathways, with changes in GAG concentration and sulphation patterns modifying morphogen 

binding, subsequently altering these signalling pathways. 

 

4.3.2 Traditional mesodermal lineage differentiation 

4.3.2.1   Commercial HS and MPS IIIA GAG have converse effects on MSC 

differentiation  

No inhibitory effects were seen following the addition of commercial HS and heparin to the 

adipogenic and osteogenic culture media throughout differentiation along either lineage; 

osteogenesis was maintained, with calcium content and von Kossa staining in line with 0 

GAG controls, whilst adipogenesis increased in the presence of commercial HS and heparin. 

In contrast, MPS IIIA GAG was found to disrupt both osteogenesis and adipogenesis, 

inhibiting calcium production and mineralisation, and reducing adipocyte formation. As with 

neurogenesis, a complex of HS-mediated signalling pathways are involved in mesodermal 

differentiation, requiring distinct patterns of sulphation for ligand binding (Allen et al., 2001; 

Behr et al., 2010; Brickman et al., 1998; Rodda & McMahon, 2006; Wang et al., 2004). 

Osteogenesis is particularly reliant on HS-dependent signalling pathways, with activation of 

the FGF, Wnt, Hh and TGBβ pathways required for bone development, promoting osteoblast 

activation, maturation and mineralisation, bone remodelling and trabecular bone formation 

(Chen & Long, 2013; Gazzerro et al., 2007; Hu et al., 2005; Mishina et al., 2004; Montero et 

al., 2000; Okamoto et al., 2006; Rodda & McMahon, 2006; Xiao et al., 2010). However, 

many of these pro-osteogenic pathways have also been identified as anti-adipogenic, such that 

induction along one lineage comes at the expense of the other (Bennett et al., 2002; Kawai et 

al., 2007; Suh et al., 2006; Xiao et al., 2010; Zehentner et al., 2000). One HS-dependent 

signalling pathway which is notable in promoting both osteogenesis and adipogenesis is the 
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BMP pathway, a member of the TGFβ superfamily (Mishina et al., 2004; Okamoto et al., 

2006; Tang et al., 2004; Zehentner et al., 2000; zur Nieden et al., 2005). Binding of the BMP 

ligand to its receptor activates both the canonical Smad-dependent pathways and the non-

canonical MAPK pathway, both of which upregulate expression of Runx2 and PPARγ, the 

primary osteogenic and adipogenic genes respectively (James, 2013). Given the pro-

osteogenic nature of many HS-dependent signalling pathways, the maintenance of 

osteogenesis observed in our study in the presence of normal HS and heparin was 

unsurprising; however, the significant increase in adipogenesis indicates that the BMP 

pathway is likely being promoted, thereby allowing for both osteogenic and adipogenic 

differentiation. 

 

Both osteogenesis and adipogenesis were disrupted in the presence of MPS IIIA HS, likely a 

result of increased HS and altered sulphation patterns increasing the propensity of MPS IIIA 

HS to bind morphogens, creating a morphogen reservoir within the ECM and preventing 

interactions with receptors at the cell surface. Osteogenesis was the most severely affected, 

with complete inhibition of bone formation in the presence of MPS IIIA GAG; this is likely 

due to the integral role of multiple HS-dependent signalling pathways on osteogenesis. 

Supporting this, both FGF and BMP signalling have previously been shown to decrease in the 

presence of MPS I GAG (Khan et al., 2008; Pan et al., 2005). The concurrent decrease in 

differentiation along both lineages once again suggests the involvement of BMP signalling. A 

reduction in BMP signalling would subsequently decrease PPARγ expression; downregulation 

of this vital adipogenic gene is likely to compensate for any pro-adipogenic signals resulting 

from reduced osteogenesis. Thus, MPS IIIA HS-mediated morphogen binding is likely to be 

responsible for the disruption of the normal co-ordination of osteogenesis and adipogenesis, 

resulting in a decrease in both processes. 
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In contrast to osteogenesis and adipogenesis, commercial HS reduced chondrogenesis, with a 

significant reduction in 35SO4 incorporation compared to 0 GAG controls. MPS IIIA GAG had 

little effect on chondrogenesis, with no significant decrease in 35SO4 incorporation compared 

to 0 GAG controls. The effect of heparin on chondrogenesis appeared to fall between that of 

commercial HS and MPS IIIA GAG; 35SO4 incorporation was significantly lower than 0 GAG 

controls, but significantly higher than when cultured in the presence of HS. The role of HS-

dependent signalling pathways on chondrogenesis is complex; the FGF and Hh pathways 

have been shown to link chondrogenesis to osteogenesis, promoting cartilage formation, 

whilst the canonical Wnt pathway is a known inhibitor of MSC chondrogenic differentiation 

(Correa et al., 2015; Day et al., 2005; Hill et al., 2005; Huang et al., 2018; Im & Quan, 2010; 

Mundy et al., 2016; Schmidt et al., 2018; Steinert et al., 2012). Whilst BMP signalling is 

integral for osteogenesis and adipogenesis, its involvement in chondrogenesis is less well 

understood; BMP signalling is known to promote chondrogenesis (de Mara et al., 2013; 

Denker et al., 1999; Kramer et al., 2000; Majumdar et al., 2001); however, upregulation of a 

downstream gene target, Runx2, has been shown to inhibit chondrogenesis, with Runx2-

deficient cells preferentially differentiating into chondrocytes instead of osteoblasts in the 

presence of BMP-2 (Armiento et al., 2017; Hinoi et al., 2006; Kobayashi et al., 2000; Lengner 

et al., 2005). Increased HS is likely promoting Runx2 expression via an increase in the HS-

mediated Wnt signalling pathway, preventing chondrogenic differentiation of MSCs. Thus, 

MPS IIIA HS-mediated morphogen binding, as discussed previously, would result in a 

subsequent decrease in Runx2 expression, thereby allowing chondrogenesis.  

 

Heparin appeared to disrupt chondrogenesis, but to a significantly lesser extent than 

commercial HS. Heparin is known to be a “promiscuous” binder, due to a significant increase 

in sulphation compared to HS; consisting largely of tri-sulphated disaccharide units, heparin 

will generally contain the combinations of sulphate groups required for morphogen 
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interactions (Loo et al., 2001; Pye et al., 1998). It is possible that this increase in sulphation 

results in extracellular heparin binding morphogens in a similar manner to MPS IIIA GAG, 

subsequently decreasing Runx2 expression, as has been suggested by others (Irie et al., 2003). 

However, it would be unexpected for heparin and MPS IIIA GAG to bind morphogens in a 

similar manner, as heparin and MPS IIIA GAG have had converse effects in all other MSC 

differentiation pathways presented in this chapter. As an alternate hypothesis, heparin may be 

upregulating all HS-dependent pathways, due to its increased ability to bind and activate 

morphogens. Therefore, both chondrogenic pathways such as FGF and Hh and anti-

chondrogenic pathways such as the Wnt pathway would be upregulated, potentially creating a 

compensatory relationship with chondrogenic upregulation rescuing anti-chondrogenic 

upregulation. Further investigation would be required to determine the exact mechanisms 

underlying heparin-mediated signalling in chondrogenesis. In brief, this data suggests that 

alterations in MSC differentiation in the presence of MPS IIIA GAG were a result of aberrant 

signalling of HS-dependent pathways, due to MPS IIIA HS-mediated morphogen binding. 

 

4.3.2.2   A mechanism for MPS IIIA skeletal pathology 

In contrast to all other MPS types, patients with MPS III have traditionally displayed only 

minimal skeletal pathology (Chen et al., 1996; Neufeld & Muenzer, 2001; Scaramuzzo et al., 

2012). The dominance of the MPS IIIA neurological phenotype has limited investigation into 

the prevalence of skeletal pathology. However, recent studies have identified that orthopaedic 

abnormalities are more prevalent in MPS IIIA than previously thought, contributing to a poor 

quality of life in patients. Musculoskeletal manifestations have been reported in MPS IIIA 

patients, with hip deformities such as acetabular dysplasia and osteonecrosis of the femoral 

head common ailments (de Ruijter et al., 2013b; White et al., 2011). Epiphyseal dysplasia 

resulting from osteonecrosis of the femoral head has in particular been associated with 

increased hip pain in both ambulatory and non-ambulatory patients, due to the slow but 
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persistent resorption and fragmentation of the femoral head (White et al., 2011). Spinal 

deformities have also been reported, with vertebral body hypoplasia and scoliosis present in 

paediatric patients with MPS IIIA (White et al., 2011).  

 

The primary osteogenic phenotype identified in MPS IIIA patients is osteopenia, which can 

lead to an increased risk of fractures in patients. Reduced bone mineral density (BMD) has 

been identified in a number of patients, with increased age, the use of anti-epileptic 

medication and reduced mobility identified as risk factors for decreasing BMD (Nur et al., 

2016; Rigante & Caradonna, 2004). Rigante and Caradonna (2004) concluded that the skeletal 

pathology was likely a result of neurological pathology outcomes rather than an underlying 

molecular cause, concurring with long-standing assumptions that skeletal pathology in MPS 

III patients was a result of reduced mobility throughout their lifetime, resulting in disuse 

osteopenia. Patients commonly become non-ambulatory from their early teens (White et al., 

2011). However, the effects of MPS IIIA GAG identified in this study, with MPS IIIA GAG 

inhibiting osteogenesis, provides a potential underlying, direct mechanism for skeletal disease 

in MPS, with extracellular MPS IIIA GAG likely binding morphogens and disrupting HS-

mediated pro-osteogenic signalling pathways. 

 

4.3.3 Chapter conclusions 

This chapter aimed to determine the effects of excess, extracellular MPS IIIA GAG on MSC 

differentiation. Commercial HS and heparin were found to promote neurogenesis, 

osteogenesis and adipogenesis; in contrast, MPS IIIA GAG disrupted all three pathways, 

implicating disrupted neurogenesis and osteogenesis as contributors towards the severe 

neurological and mild skeletal pathology seen in MPS IIIA. It was hypothesised that 

extracellular MPS IIIA GAG binds to growth factors, creating reservoirs of growth factors 
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within the ECM, preventing growth factor binding to cell surface bound HS and receptors in 

several HS-dependent signalling pathways involved in stem cell proliferation and 

differentiation. Contributing to this was the increased sulphation of MPS IIIA HS compared 

to normal HS, with the sulphation patterns present on MPS IIIA HS associated with an 

increased likelihood of morphogen binding and thus increased growth factor sequestration. 

The effect of exogenous HS on chondrogenesis was unique, with commercial HS disrupting 

chondrogenesis and MPS IIIA GAG having little effect, supporting previous findings that 

cartilage and joint pathology have not been reported in MPS IIIA patients. This indicated that 

MPS IIIA GAG was disrupting specific signalling pathways and differentiation lineages, as 

opposed to a global inhibition of all MSC differentiation. This provides a potential 

mechanism for the severe neurological pathology evident in MPS IIIA patients, which may 

also contribute toward the skeletal pathology observed.  
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5.1 Introduction 

MPS IIIA is characterised by the intracellular accumulation of the GAG HS (Neufeld & 

Muenzer, 2001). It has previously been demonstrated that HS accumulation commences 

prenatally, including within cells of the CNS, indicating that developmental pathways may be 

affected in MPS IIIA and thus contributing to the disease pathology (Ceuterick et al., 1980; 

Greenwood et al., 1978; Harper et al., 1974; Martin & Ceuterick, 1983). In particular, HS 

accumulation within foetal neurons (Ceuterick et al., 1980; Martin & Ceuterick, 1983) could 

disrupt neurodevelopmental pathways such as neurogenesis, indicating a thus far 

uninterrogated mechanism of pathology for the severe CNS disease of MPS IIIA. Using 

MSCs from healthy human donors, Chapter Four identified that extrinsic MPS IIIA GAG 

disrupted neurogenesis (refer section 4.2.1). For further investigation into neurogenesis in 

MPS IIIA, this chapter aimed to develop and characterise two neurogenic in vitro models of 

MPS IIIA, a murine MSC line and a human iPSC line.  

 

The neurogenic properties of MSCs has identified them as a potential cell type for modelling 

disease neurogenesis in vitro (Sanchez-Ramos et al., 2000). MSCs from MPS patients would 

provide an excellent source of stem cells for modelling cell development in vitro. MSCs have 

previously been isolated from MPS I patients and exhibited increased osteoclast formation 

capacity compared to normal MSCs (Gatto et al., 2012). Unfortunately, MSCs are difficult to 

procure from MPS IIIA patients due to the invasive nature of a stem cell harvest. Due to its 

close mirroring of the human disease phenotype, the murine MPS IIIA mouse model has been 

suggested as an alternative source of MPS IIIA MSCs (Bhaumik et al., 1999; Crawley et al., 

2006). For our study, murine MPS IIIA MSCs provide an additional advantage, allowing 

direct comparison to the human MSC experiments examining the effects of extrinsic MPS 

IIIA GAG on neural differentiation (Chapter Four). Previously, our lab has isolated MSCs 

exhibiting a CD45.2-, CD34-, CD29+ and Sca.1+ phenotype typical of murine MSCs from 
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normal mice by magnetic activated cell sorting (MACS) (Rostovskaya & Anastassiadis, 2012) 

(Matrix Biology Unit, unpublished data). However, MSCs have not been isolated from mouse 

models of any of the MPS subtypes.  

 

iPSCs present as an ideal cell type of human origin for modelling MPS IIIA neurogenesis in 

vitro. Skin fibroblasts are commonly used for iPSC reprogramming and, in contrast to MSCs, 

are readily available from MPS IIIA patients due to their use in diagnostic procedures 

(Lehman et al., 2011). Furthermore, as a variety of mutations are available, iPSCs also allow 

for the assessment of genotype/phenotype correlations, which can be valuable for clinicians at 

diagnosis. iPSCs have previously been successfully generated from somatic cells of patients 

with MPS I, MPS II, MPS IIIB, MPS IIIC and MPS VII (Bayo-Puxan et al., 2018; Canals et 

al., 2015; Griffin et al., 2015; Lemonnier et al., 2011; Rybova et al., 2018; Swaroop et al., 

2018; Tolar et al., 2011; Vallejo-Diez et al., 2018; Varga et al., 2016a; Varga et al., 2016b, 

2016c). Neurogenesis was examined in MPS VII iPSCs by quantifying βIII-tubulin 

expression throughout neural induction; no disparities were identified between MPS VII and 

control iPSCs (Bayo-Puxan et al., 2018). MPS iPSCs have also been used previously to model 

synaptogenesis in vitro, identifying decreases in synaptic activity in MPS VII and MPS IIIC 

(Bayo-Puxan et al., 2018; Canals et al., 2015).  

 

Overall, this chapter aimed to develop two neurogenic in vitro models of MPS IIIA; a murine 

MSC line and a human iPSC line. Following phenotypic characterisation, these cell lines were 

used to identify any alterations in stem cell proliferation or neurogenesis in MPS IIIA. 
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5.2 Results 

5.2.1 Generation and neurogenic differentiation potential of MPS IIIA MSCs 

The MPS IIIA mouse model provides a source of disease MSCs to examine MPS IIIA 

proliferation and neurogenesis in vitro. CD45.2-, CD34-, CD29+ and Sca.1+ cells were isolated 

from normal and MPS IIIA mouse long bones by MACS separation (section 2.5.1) and were 

identified as MSCs based on their fibroblast-like morphology and plastic adherent properties 

(data not shown).  

 

5.2.1.1   CFU assay 

The ability to form colonies following seeding at low density is an essential property of MSCs 

(Friedenstein, 1980; Friedenstein et al., 1974; Samsonraj et al., 2015). Therefore, a colony 

forming unit (CFU) assay was conducted as part of the characterisation of MPS IIIA MSCs. 

Following plating at the lowest seeding density of 800 cells/well, normal MSCs successfully 

formed colonies one week post-seeding, as was expected, with an average of 13.63 ± 3.61 

colonies per well. The average number of colonies formed increased to 27.26 ± 11.16 and 

47.70 ± 1.36 colonies per well following the plating of normal MSCs at the higher seeding 

densities of 1000 and 1200 cells/well respectively (Figure 5.1A). Colony number increased in 

normal MSCs two weeks post-seeding at all seeding densities; however, normal MSC 

colonies had increased in size and number such that colonies were overlapping, and it was 

therefore difficult to discern and count individual colonies (data not shown). 

 

 In contrast to normal MSCs, no distinct colonies were visible in MPS IIIA MSCs one week 

following plating at the lowest seeding density of 800 cells/well. Colonies successfully 

formed at the higher seeding densities, with an average of 1.36 ± 1.36 colonies and 8.18 ± 

4.72 colonies formed one week post-seeding at 1000 and 1200 cells/well respectively. 
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However, colony number was significantly reduced compared to normal MSCs (Figure 5.1A). 

Thus, MPS IIIA MSCs were able to form colonies, a defining feature of MSCs; however, 

colony formation was significantly reduced compared to normal murine MSCs. 

 

5.2.1.2   Sulphamidase activity 

MPS IIIA MSCs were found to exhibit significantly reduced sulphamidase activity compared 

to normal MSCs, with sulphamidase activities of 0.41 ± 0.41 pmol/hr/mg protein and 79.04 ± 

8.02 pmol/hr/mg protein respectively, with MPS IIIA MSC sulphamidase activity 0.52% of 

normal activity (Figure 5.1B). This recapitulated the sulphamidase deficiency typical of MPS 

IIIA disease (Neufeld & Muenzer, 2001). 

 

5.2.1.3   Proliferation 

The CFU assay (section 5.2.1.1) indicated the potential of a decrease in MPS IIIA MSC 

proliferation compared to normal MSCs. For confirmation, a proliferation assay was 

conducted on normal and MPS IIIA MSCs immediately after isolation from murine compact 

bone. MPS IIIA MSC cell number was 53.83 ± 14.71% of normal MSC cell number nine 

days post-isolation, indicating a reduction in MPS IIIA MSC proliferation compared to 

normal. MPS IIIA MSC proliferation declined over time; MPS IIIA cell number was 

significantly lower than normal MSCs 12 and 15 days post-isolation, with significant 

decreases to 49.34 ± 2.13% and 42.67 ± 5.08% of normal MSCs respectively (Figure 5.2A).  

 

Decreased proliferation has been observed previously in MPS IIIB iPSCs. It was hypothesised 

to be due to impaired FGF-2 signalling resulting from interactions with excess MPS IIIB HS.; 

proliferation was rescued through supplementation with the deficient MPS IIIB enzyme, 

NAGLU (Lemonnier et al., 2011). Therefore, the ability of recombinant sulphamidase or
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Figure 5.1: Characterisation of MPS IIIA murine MSCs 

A: The number of colonies formed by normal (white bars) and MPS IIIA (black bars) MSCs one 

week post-seeding at different seeding densities. Results are expressed as mean ± SEM (n=3). * 

indicates significant difference compared to normal MSCs at same timepoint; # indicates significant 

difference compared to 800 seeding density of same genotype (p<0.05; one-way ANOVA, Tukey’s 

HSD). B: Sulphamidase activity in cell layers of normal and MPS IIIA murine MSCs. Results are 

expressed as mean ± SEM (n=3). * indicates significant difference compared to normal MSCs 

(p<0.05; Student’s t-test). 
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FGF-2 to rescue MPS IIIA MSC proliferation was determined by adding each to the MSC 

culture medium (section 2.8.1.1). Supplementation with sulphamidase resulted in a small but 

significant increase in cell number one day post-seeding to 137.5 ± 6.93% of untreated MPS 

IIIA MSCs in the presence of 0.3pmol/min sulphamidase (Figure 5.2B). However, this effect 

did not persist at subsequent timepoints. Additional concentrations of sulphamidase had no 

effect on MPS IIIA MSC cell number. In contrast, FGF-2 was found to have a dose-

dependent response on cell number. The lowest concentration of 1ng/mL FGF-2 had little 

effect on MPS IIIA MSC proliferation, with no change in cell number compared to untreated 

MPS IIIA MSCs. The addition of 3ng/mL FGF-2 increased cell number, with a significant 

increase to 168 ± 5.67% of untreated MPS IIIA MSCs after two days. The highest FGF-2 

concentration of 5ng/mL had the greatest effect, being significantly higher than untreated 

MPS IIIA MSCs at all timepoints (Figure 5.2C). Thus, whilst exogenous sulphamidase had 

limited effects in rescuing the impaired proliferation phenotype of MPS IIIA MSCs, 

exogenous FGF-2 was able to promote proliferation in a dose dependent manner. 

 

5.2.1.4   Neural differentiation of MPS IIIA murine MSCs 

Normal and MPS IIIA MSCs were induced along the neural lineage using the NP method 

previously established in Chapter Three. The expression of neural marker genes was 

determined relative to undifferentiated MSCs maintained in murine MSC basal growth media 

for four hours (basal media controls). Neural gene expression of normal MSCs induced along 

the neural lineage mirrored that seen in Chapter Three (section 3.2.3.2). Expression of nestin, 

a marker of progenitors, decreased over the 48 hour timecourse, indicating a decrease in the 

presence of cells with a neural progenitor-like phenotype; however, this difference did not 

reach significance and so should be interpreted with caution (Figure 5.3A). Significant 

increases in neuronal markers βIII-tubulin and NF-M expression were evident from four hours
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Figure 5.2: MPS IIIA murine MSC proliferation 

A: Cell number of MPS IIIA murine MSCs as a percentage of normal murine MSC cell number. Red 

line denotes normal murine MSC cell number (100%). Results are expressed as mean ± SEM (n=3). * 

indicates significant difference compared to normal MSCs at the same timepoint (p<0.05; one sample 

t-test). B-C: Cell number of MPS IIIA murine MSCs treated with exogenous sulphamidase (B) or 

FGF-2 (C) as a percentage of untreated MPS IIIA murine MSC cell number. Red line denotes 

untreated MPS IIIA murine MSC cell number (100%). Results are expressed as mean ± SEM (n=3). 

Letters a-c indicate significant difference compared to untreated MPS IIIA MSCs at the same 

timepoint: a = 0.3 pmol/min sulphamidase, b = 3ng/mL FGF-2, c = 5ng/mL FGF-2 (p<0.05; one 

sample t-test). 
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and eight hours post-induction, respectively, compared to basal media controls, suggesting the 

formation of post-mitotic neurons from progenitor cells (Figure 5.3B-C). 

 

Nestin expression decreased in MPS IIIA MSCs compared to basal media controls four hours 

post-induction, whilst βIII-tubulin, increased 4.32 ± 0.21 fold, indicating the formation of 

immature neurons (Figure 5.3 A-B). However, βIII-tubulin expression decreased steadily over 

the 48 hour timecourse, with expression significantly lower than that seen in normal MSCs 48 

hours post-induction, with only a 1.35 ± 0.06 fold increase in βIII-tubulin expression 

compared to basal media controls. In contrast, normal MSC βIII-tubulin expression was 5.64 

± 0.72 hold higher than basal media controls 48 hours post-induction (Figure 5.3B). No 

significant change in expression of NF-M, a marker of mature post-mitotic neurons, was seen 

compared to basal media controls over the 48 hour timecourse in MPS IIIA MSCs, indicating 

that immature neurons were unable to survive and mature into post-mitotic neurons (Figure 

5.3C). 

 

5.2.2 Generation of MPS IIIA human iPSC lines 

The MPS IIIA murine MSC model identified decreased stem cell proliferation and immature 

neuron survival and maturation as potential underlying mechanisms of pathology. Whilst 

murine MSCs are an easily accessible source of MPS IIIA stem cells with neurogenic 

properties, their non-human origin is a disadvantage, due to differences in development, 

lifespan and cellular pathways between species. Therefore, confirmation with a human-based 

cell model is advantageous. Unfortunately, MSCs are difficult to obtain from MPS IIIA 

patients; however, fibroblasts are easily accessible as they are required for disease diagnosis 

or confirmation. In addition, human iPSC lines allow for the analysis of various SGSH 

mutations and sulphamidase activities on disease phenotype. The pluripotent nature of iPSCs
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Figure 5.3: MPS IIIA murine MSC neural differentiation 

Expression of nestin (A), βIII-tubulin (B) and NF-M (C) throughout neural differentiation of normal 

(black line) and MPS IIIA (grey line) murine MSCs. Gene expression was normalised to cyclophilin 

A and the fold change relative to MSCs maintained in murine MSC basal growth media for four 

hours (basal media controls) was calculated using the ΔΔCt method. Red line denotes basal media 

control baseline gene expression. Results are expressed as mean ± SEM (n=3). * indicates 

significant difference between neuronal MSC and basal media controls; # indicates significant 

difference between normal neuronal MSC and MPS IIIA neuronal MSC gene expression at the 

same timepoint (p<0.05; one-way ANOVA, Tukey’s HSD). 

 

 

 

enables in vitro modelling of neurogenesis; in addition, iPSCs can be differentiated along 

multiple neurogenic lineages as required, forming astrocytes and oligodendrocytes (Krencik 

& Zhang, 2011; Wang et al., 2013). To date, an MPS IIIA iPSC line has not been developed. 

This study aimed to develop iPSC lines from two MPS IIIA patients, and to use these models 

to identify any changes in neurogenesis as a result of the disease.  

 

5.2.2.1   Fibroblasts 

Fibroblasts were obtained from one unaffected donor and two MPS IIIA patients, designated 

Patient 1 and Patient 2. All fibroblast lines expanded easily in culture. The clinical records 

and mutational analysis of Patient 1 and Patient 2, provided by the National Referral 

Laboratory at the Women’s and Children’s Hospital, is summarised in Table 5.1. A review of 

the literature identified that the compound heterozygous missense mutations in Patient 1 have 

been previously published and are associated with an intermediate phenotype, in line with our
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Table 5.1: Patient fibroblast summary 

Fibroblasts were obtained from MPS IIIA patients. Clinical information and SGSH mutation 

analysis were provided by the National Referral Laboratory at the Women’s and Children’s 

Hospital, SA, Australia.  

 

 

 

patient’s clinical records (Di Natale et al., 2003; Valstar et al., 2010). The homozygous 

nonsense mutation of Patient 2 has not been previously published. 

 

5.2.2.1.1   Sulphamidase activity 

Sulphamidase activity was significantly reduced in MPS IIIA fibroblasts compared to control 

fibroblasts. Control fibroblasts sulphamidase activity was at 116.1 ± 6.53 pmol/hr/mg protein, 

compared to Patient 1 fibroblasts which had sulphamidase activity of 16.4 ±7.75 pmol/hr/mg 

protein. Sulphamidase activity was further reduced in Patient 2 fibroblasts, with activity at 

0.85 ±0.77 pmol/hr/mg protein; however, the difference between the two MPS IIIA fibroblast 

lines did not reach significance (Figure 5.4). Activity was below the detectable limit of the 

assay in many Patient 2 fibroblast samples. Thus, the MPS IIIA fibroblasts were found to 

mirror the enzyme deficiency phenotype of MPS IIIA, with decreased sulphamidase activity 

correlating with an increase in disease severity. 

Phenotype
Age of 

diagnosis
Mutation in SGSH

Patient 1 Intermediate 7
c.892 T>C (p.S298P)

c.1828 G>A (p.R433Q)

Patient 2 Severe 2 c.672 C>A (p.Y224*) 
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Figure 5.4: MPS IIIA fibroblast sulphamidase activity 

Sulphamidase activity in cell layers of normal, Patient 1 (IIIA intermediate) and Patient 2 (IIIA 

severe) fibroblasts. Results are expressed as mean ± SEM (n=3). * indicates significant difference 

compared to normal fibroblasts (p<0.05; one-way ANOVA, Tukey’s HSD). 
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5.2.2.2 MPS IIIA iPSC lines 

Control, Patient 1 and Patient 2 fibroblasts were reprogrammed to iPSCs. Following 

reprogramming, a minimum of 11 clones with ESC-like morphology were selected per 

fibroblast cell line for continued passage. As expected, a number of clones did not survive 

multiple passages; by passage five, eight control, four Patient 1 and four Patient 2 clones 

remained. Both Patient 1 and Patient 2 iPSCs were able to expand easily in culture at a similar 

rate to control iPSCs. After a minimum of 13 passages, four control, two Patient 1 and three 

Patient 2 iPSC clones were sent for karyotype analysis. All control iPSC clones analysed were 

found to have normal karyotypes of 46, XY. One Patient 1 clone was found to display a 

normal karyotype of 46, XY, with the second exhibiting an abnormal karyotype of 46, XY, -

21, t(5:21)(q12;p11.2). Two Patient 2 iPSC clones had normal karyotypes of 46, XX. The 

remaining clone had an abnormal karyotype of 46, XX, del(7)(q32). One karyotypically 

normal clone of each cell line was chosen for further analysis (Figure 5.5).  

 

5.2.2.2.1 Pluripotency 

Control, Patient 1 and Patient 2 iPSCs were identified as pluripotent, with significant 

increases in expression of Oct-4, Sox2 and Nanog compared to the original fibroblasts from 

which the iPSCs were derived (Figure 5.6A). Positive Oct-4 and SSEA4 staining of colonies 

provided additional evidence of pluripotency (Figure 5.6B). No significant difference in iPSC 

morphology (Figure 5.5 D-F) or pluripotency profile (Figure 5.6 A-B) was seen between 

control, Patient 1 or Patient 2 iPSCs.  
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Figure 5.5: MPS IIIA iPSC karyotype and morphology 

Karyogram (A-C) and morphology (D-F) of control, Patient 1 (IIIA intermediate) and Patient 2 

(IIIA severe) iPSCs after a minimum of 13 passages. Morphology images taken on an AxioCam 

MRm high resolution camera at 5x magnification. Scale bar represents 200µm. 
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5.2.2.2.2 Sulphamidase activity 

In a similar manner to the MPS IIIA fibroblasts (Figure 5.4), the reprogrammed MPS IIIA 

iPSC clones had reduced sulphamidase activity compared to control iPSC clones. Control 

iPSC sulphamidase activity was at 73.46 ± 7.36 pmol/hr/mg protein; in contrast, Patient 1 

iPSC sulphamidase activity was significantly reduced to 29.43 ± 3.82 pmol/hr/mg protein. 

Sulphamidase activity was further reduced in Patient 2 iPSCs to 0.07 ± 0.07 pmol/hr/mg 

protein, significantly lower than both control and Patient 1 iPSCs (Figure 5.6C). Thus, MPS 

IIIA iPSCs appear to recapitulate the molecular hallmarks of the human disease, with reduced 

sulphamidase activity compared to normal iPSCs. These results also mirror those seen in 

fibroblasts (Figure 5.4), with decreased enzyme activity correlating with an increase in 

disease severity, indicating that the underlying biochemical deficit was maintained post-

reprogramming. 

 

5.2.3 Generation of MPS IIIA human iPSC-derived NPCs 

Control and Patient 1 (MPS IIIA intermediate) iPSCs were differentiated along the neural 

lineage to form NPCs (section 2.6.3). Both control and MPS IIIA iPSCs successfully formed 

neural rosette structures, with no difference seen between the two lines, indicating that neural 

progenitor induction was not affected in MPS IIIA (data not shown). Neural progenitors were 

isolated from neural rosettes and cultured in the presence of FGF-2. After two passages, 

morphology typical of neural progenitors was evident in both control and Patient 1 cells 

(Figure 5.7A). The formation of neural progenitors was confirmed through 

immunofluorescent detection of Pax6 and nestin, two markers of neural progenitors. Positive 

staining was detected in both control and Patient 1 cells after six passages (Figure 5.7B). 

These cells were thus designated iPSC-derived NPCs (iPSC-NPCs). Pax6 and nestin 

expression in iPSC-NPCs was confirmed by real-time PCR. Both control and MPS IIIA iPSC-

NPCs exhibited significant expression of pax6; however, it was of note that pax6 expression 
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Figure 5.6: Characterisation of MPS IIIA iPSCs 

A: Expression of pluripotency genes in control, Patient 1 (IIIA intermediate) and Patient 2 (IIIA 

severe) iPSCs. Gene expression was normalised to cyclophilin A and the fold change relative to the 

corresponding normal or patient fibroblasts calculated using the ΔΔCt method. Results are 

expressed as mean ± SEM (n=3). * indicates significant difference compared to fibroblasts (p<0.05; 

one-way ANOVA, Tukey’s HSD). B: Immunofluorescence of control, Patient 1 (IIIA intermediate) 

and Patient 2 (IIIA severe) iPSCs. Images taken on an AxioCam MRm high resolution camera at 

10x magnification. Scale bar represents 100µm. C: Sulphamidase activity of cell layers of control, 

Patient 1 (IIIA intermediate) and Patient 2 (IIIA severe) iPSCs. Results are expressed as mean ± 

SEM (n=3). * indicates significant difference compared to control iPSCs; # indicates significant 

difference compared to Patient 1 (IIIA intermediate) iPSCs (p<0.05; one-way ANOVA, Tukey’s 

HSD). 
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was higher in MPS IIIA iPSC-NPC than in control iPSC-NPCs (Figure 5.7C). In line with 

positive immunofluorescent staining, both control and MPS IIIA iPSC-NPCs expressed 

nestin; however, expression levels were not significant (Figure 5.7C). 

 

5.2.3.1 Proliferation 

Due to the decreased proliferative capacity of MPS IIIA MSCs, proliferation was examined in 

MPS IIIA iPSC-NPCs. Similarly to MSCs, MPS IIIA iPSC-NPCs were found to exhibit an 

impaired proliferation phenotype. In control iPSC-NPCs, cell number increased to 263.9 ± 

14.54% of the cell number seen one hour post-seeding (T0) after three days, significantly 

higher than at one day post-seeding. In contrast, MPS IIIA iPSC-NPC cell number did not 

significantly increase over the cell number seen one day post-seeding, with cell number only 

at 162.9 ± 31.7% of T0 cell number after three days (Figure 5.8A). Distinct differences were 

also evident when examining the slope of the line for the two iPSC-NPC cell lines, with a 

slope of 77.5%/day for control iPSC-NPCs and 45.3%/day for MPS IIIA iPSC-NPCs. 

Examination of the slope of the line only between days two and three further demonstrated 

the decreased proliferation of MPS IIIA iPSC-NPCs; the control iPSC-NPCs slope was 

82.9%/day, whilst the MPS IIIA iPSC-NPC slope was only 9.4%/day (Figure 5.8A). In line 

with this finding, MPS IIIA iPSC-NPC cell number was significantly lower than control 

iPSC-NPCs three days post-seeding (Figure 5.8A).  
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Figure 5.7: MPS IIIA iPSC-derived NPCs 

A: Brightfield images of control and MPS IIIA iPSC-NPCs at passage two. Images were taken on 

an AxioCam MRm high resolution camera at 5x magnification. B: Immunofluorescence of control 

and Patient 1 (IIIA intermediate) iPSC-derived NPCs at passage six. Images taken on an AxioCam 

MRm high resolution camera at 20x magnification. Scale bar represents 50µm. C: Expression of 

neural marker genes in control and Patient 1 (IIIA intermediate) iPSC-NPCs at passage six. Mean 

normalised gene expression relative to cyclophilin A was calculated using the relative expression 

method as per Pfaffl (2001). Results are expressed as mean normalised expression ± SEM (n=3). * 

indicates significant difference compared to theoretical value of zero (p<0.05; one sample t-test).  
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Similar to murine MPS IIIA MSCs, exogenous sulphamidase was added to the culture media 

of MPS IIIA iPSC-NPCs to attempt to rescue the impaired proliferation phenotype. As iPSC-

NPCs were cultured in neural expansion media containing 20ng/mL FGF-2, an FGF-2 based 

rescue assay was not conducted. The addition of exogenous sulphamidase had little effect on 

proliferation of MPS IIIA iPSC-NPCs, with no significant change in cell number (Figure 

5.8B). 

 

5.2.4 Neural differentiation of human iPSC-derived NPCs 

Control and MPS IIIA iPSC-NPCs were induced to form neurons by withdrawing FGF-2 

from the neural maintenance media for a total of four weeks (section 2.6.4). One day post-

plating, prior to the removal of FGF-2, iPSC-NPCs maintained a neural progenitor-like 

morphology (Figure 5.9A and 5.9B). However, MPS IIIA iPSC-NPCs appeared to display 

more features characteristic of neurons, with a slightly more elongated morphology and 

neurite extensions visible (Figure 5.9B). iPSC-NPCs continued to proliferate in the first seven 

days of neural induction, with an increase in cell density evident. However, control iPSC-

NPCs appeared more confluent than MPS IIIA iPSC-NPCs seven days post-induction, 

covering the entire surface of the well (Figure 5.9C and 5.9D). This supported the previously 

identified impaired proliferation phenotype of MPS IIIA iPSC-NPCs (Section 5.2.3.1). By 

day 10 of neural induction, a distinct neuron-like morphology was evident in control iPSC-

NPCs cultures. Neuronal bodies were beginning to aggregate together and axon extensions 

were forming across the well (Figure 5.9E). Axon extensions were visible in MPS IIIA iPSC-

NPCs; however, this was to a lesser extent that in control iPSC-NPCs. Aggregations of 

neuronal bodies were not evident in MPS IIIA iPSC-NPCs after 10 days of neural induction 

(Figure 5.9F).  

 



135 

 

 

 

 

 

 

 

Figure 5.8: MPS IIIA iPSC-NPC proliferation 

A: Cell number of iPSC-NPCs as a percentage of cell number one hour post-seeding (T0). Red line 

denotes T0 cell number (100%). Results are expressed as mean ± SEM (n=3). * indicates significant 

difference compared to control iPSC-NPCs at the same timepoint; # indicates significant difference 

compared to day one of the same genotype (p<0.05; one-way ANOVA, Tukey’s HSD). B: Cell 

number of MPS IIIA iPSC-NPCs treated with exogenous sulphamidase as a percentage of untreated 

MPS IIIA iPSC-NPC cell number one hour post-seeding (T0). Red line denotes T0 cell number 

(100%). Results are expressed as mean ± SEM (n=3). No significance (p<0.05; one-way ANOVA, 

Tukey’s HSD). 
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Figure 5.9: First 10 days of MPS IIIA iPSC-NPC neural differentiation 

Brightfield images of control and MPS IIIA iPSC-NPCs one (A-B), seven (C-D) and ten (E-F) days 

post-induction. Arrows indicate an elongated cell (red), neurite extension (white), neuronal body 

aggregation (blue) and neurite extension (green). Boxed insert shows enlarged region of distinct 

morphology. Images were taken on an AxioCam MRm high resolution camera at 10x 

magnification. Scale bar represents 50µm. 
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Further changes in control iPSC-NPC morphology to that typical of neurons continued over 

the course of neural induction (Figures 5.10A, 5.10D and 5.10F). By day 28 of neural 

induction, large aggregations of neuronal bodies dominated the culture, connected by distinct 

axonal bundles (Figure 5.10F). This morphology was consistent across the wells in all 

replicates. Whilst neuron-like morphology was evident in MPS IIIA iPSC-NPCs 21 days 

post-induction, neuronal body aggregations were significantly smaller than what was seen in 

control iPSC-NPCs (Figure 5.10B). Indeed, cell body aggregates were still forming at day 21 

of neural induction in MPS IIIA iPSC-NPCs, with characteristic morphology not seen in all 

aggregates (Figure 5.10C). By day 28 of neural induction, typical neuronal morphology was 

evident in MPS IIIA iPSC-NPCs, with clear aggregations of neuronal bodies and large axonal 

bundles extending across the culture (Figure 5.10G). However, neuronal body aggregates 

were much smaller in MPS IIIA iPSC-NPCs compared to control iPSC-NPCs at day 28 days 

of neural induction and axonal networks appeared less extensive (Figures 5.10F and 5.10G). 

Furthermore, neuron-like morphology was not consistent across the cultures. Confluent areas 

of cells without neuronal body aggregates were visible in MPS IIIA iPSC-NPCs 28 days post-

induction (Figure 5.10H). Overall, both control and MPS IIIA iPSC-NPCs displayed 

morphological changes characteristic of various stages of neurogenesis over the course of 

neural induction; however, MPS IIIA iPSC-NPCs displayed a decrease in neuronal body 

aggregate and axonal bundle network formation compared to control iPSC-NPCs. 

 

The expression of neural marker genes was examined to further investigate the observed 

morphological changes and quantify to any differences between control and MPS IIIA iPSC-

NPC neurogenesis. Neural marker gene expression was determined relative to 

undifferentiated iPSC-NPCs cultured in neural expansion media containing FGF-2 

(undifferentiated controls). Both control and MPS IIIA iPSC-NPCs expressed nestin, a 

marker of neural progenitors, throughout the course of neural induction. However, little 

change in expression was seen compared to undifferentiated controls, indicating that a neural 
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Figure 5.10: Final 8 days of MPS IIIA iPSC-NPC neural differentiation 

Brightfield images of control and MPS IIIA iPSC-NPCs 21 (A-C), 25 (D-E) and 28 (F-H) days 

post-induction. Arrows indicates a neuronal body aggregation (blue) and axonal extension bundles 

(green). Boxed insert shows enlarged region of distinct morphology. Images were taken on an 

AxioCam MRm high resolution camera at 10x magnification. Scale bar represents 50µm. 
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progenitor population was maintained over the timecourse in both control and MPS IIIA 

iPSC-NPCs (Figure 5.11A). βIII-tubulin expression was increased in control iPSC-NPCs from 

14 days post-induction, with 17.58 ± 7.10 and 23.94 ± 10.52 fold increases in expression 14 

and 21 days post-induction compared to undifferentiated controls respectively, indicating the 

formation of immature neurons. Expression peaked 28 days post-induction with a significant 

26.51 ± 6.31 fold increase compared to growth controls. βIII-tubulin expression was also 

upregulated in MPS IIIA iPSC-NPCs compared to undifferentiated controls following the 

initiation of neural induction; however, expression was consistently lower than in control 

iPSC-NPCs, with a 4.43 ± 2.59, 6.48 ± 5.65 and 1.76 ± 0.78 fold increase in βIII-tubulin 

expression compared to undifferentiated controls 14, 21 and 28 days post-induction 

respectively (Figure 5.11B). 

 

Very little change in the expression of NF-M, a marker of mature neurons, was seen in either 

control or MPS IIIA iPSC-NPCs compared to undifferentiated controls following the 

initiation of neural differentiation. Expression appeared to decrease in MPS IIIA iPSC-NPCs, 

with 1.05 ± 0.54 fold and 7.77 ± 0.14 fold decreases in NF-M expression compared to 

undifferentiated controls 14 and 28 days post-induction respectively (Figure 5.11C). 

However, these differences did not reach significance. A distinct disruption in the expression 

of NF-H and NSE, additional markers of mature neurons, was seen in MPS IIIA iPSC-NPCs. 

NF-H expression increased steadily over the course of neural induction in control iPSC-

NPCs, with significant increases of 2.01 ± 0.02 and 3.23 ± 0.27 fold compared to 

undifferentiated controls 21 and 28 days post-induction respectively. In contrast, no 

significant change in NF-H expression was seen in MPS IIIA iPSC-NPCs compared to 

undifferentiated controls, with expression significantly lower than control iPSC-NPCs 21 and 

28 days post-induction, indicating a dysfunction in neuron formation (Figure 5.11D). This 

was supported by the decreased expression of NSE in MPS IIIA iPSC-NPCs compared to 
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control iPSC-NPCs. NSE expression was significantly increased in control iPSC-NPCs 

compared to undifferentiated controls at all timepoints, with expression peaking at 28 days 

post-induction with a 485.1 ± 26.87 fold increase in expression. NSE expression did increase 

in MPS iPSC-NPCs compared to undifferentiated controls, with the highest increase of 20.34 

± 15.68 fold seen 28 days post-induction, indicating the presence of neurons; however, 

expression was significantly lower than what was seen in control iPSC-NPCs throughout 

neural induction, indicating a comparative disruption in neuron formation or survival (Figure 

5.11E).  

 

5.3 Discussion 

 

5.3.1 MPS IIIA MSCs and iPSCs recapitulate the molecular hallmarks of disease 

This study has developed the first reported MPS IIIA murine MSC and human iPSC lines 

which recapitulate the disease phenotype seen in patients. Murine MPS IIIA MSCs and 

human MPS IIIA iPSCs were both found to display reduced sulphamidase activity compared 

to normal cells, recapitulating the disease phenotype and establishing in vitro models of MPS 

IIIA. This is in line with previously published MSC and iPSC-based models of other MPS 

subtypes. MSCs isolated from MPS I patients were found to recapitulate the MPS I disease 

phenotype, exhibiting less than 1% of normal IDUA activity, the enzyme deficient in MPS I. 

MPS I MSCs were used to model mesodermal differentiation in vitro, identifying increased 

osteoclastic capacity in MPS I MSCs compared to normal MSCs (Gatto et al., 2012). Human 

iPSC lines of MPS I, MPS II, MPS IIIB, MPS IIIC and MPS VII have been developed, all 

displaying decreased activity of their deficient enzyme (Bayo-Puxan et al., 2018; Canals et 

al., 2015; Griffin et al., 2015; Lemonnier et al., 2011; Rybova et al., 2018; Swaroop et al., 

2018; Tolar et al., 2011; Vallejo-Diez et al., 2018; Varga et al., 2016a; Varga et al., 2016b, 

2016c). Generating cells of the CNS is the most common use of MPS iPSCs, with MPS I, 
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Figure 5.11: MPS IIIA iPSC-NPC neural differentiation 

Expression of nestin (A), βIII-tubulin (B), NF-M (C), NF-H (D) and NSE (E) expression throughout 

neural differentiation of control (black line) and MPS IIIA (grey line) iPSC-NPCs. Gene expression 

was normalised to cyclophilin A and the fold change relative to undifferentiated iPSC-NPCs 

cultured in neural expansion media (undifferentiated controls) was calculated using the ΔΔCt 

method. Red line denotes undifferentiated control baseline gene expression. Results are expressed 

as mean ± SEM (n=3). * indicates significant difference between neuronal iPSC-NPC and 

undifferentiated controls; # indicates significant difference between control neuronal iPSC-NPC and 

MPS IIIA neuronal iPSC-NPC gene expression at the same timepoint (p<0.05; one-way ANOVA, 

Tukey’s HSD). 

 

 

 

MPS II, MPS IIIB, MPS IIIC and MPS VII iPSCs all previously differentiated along the 

neural lineage. MPS IIIC and MPS VII iPSCs were used to model neuronal network 

formation and connectivity, identifying decreases in synaptic activity in MPS neurons 

compared to normal (Bayo-Puxan et al., 2018; Canals et al., 2015). MPS I iPSC-derived 

NPCs were used to identify alterations in the autosomal/lysosomal pathways, with 

upregulation of the autophagy pathways seen in MPS I compared to normal. MPS II and MPS 

IIIB iPSCs were induced to form neurons, identifying disorganised lysosomes and Golgi 

apparatus in affected cells (Lemonnier et al., 2011; Rybova et al., 2018; Swaroop et al., 2018). 

In addition to exploiting their neurogenic properties, MPS I iPSCs have also been used to 

model differentiation along the haematopoietic lineage in order to determine their efficacy as 

an alternative to HSC transplant (Tolar et al., 2011). 
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In this study, both the MPS IIIA MSC and iPSC lines were used for neural differentiation, 

allowing for in vitro modelling of MPS IIIA neurogenesis; however, in the future, these cell 

lines could be used to model differentiation along multiple lineages. Of particular interest 

would be the mesodermal lineages, due to the deleterious effect of MPS IIIA GAG on 

osteogenesis and adipogenesis identified in Chapter Four.  

 

5.3.2 MSC and iPSC-NPC proliferation is decreased in MPS IIIA 

Both MSC and iPSC-NPC proliferation was found to be impaired in MPS IIIA. Interestingly, 

the addition of exogenous sulphamidase was unable to rescue the phenotype. This is in 

contrast to MPS IIIB iPSCs, where decreased proliferation was rescued by the addition of the 

deficient enzyme, NAGLU (Lemonnier et al., 2011). Similarly, treatment with β-

glucuronidase, the deficient enzyme in MPS VII, rescued the impaired embryoid body 

formation phenotype seen in murine MPS VII iPSCs (Meng et al., 2010). Lysosomal HS 

should be metabolised in the presence of sulphamidase; the maintenance of decreased 

proliferation suggests that either the amount added was insufficient to restore normal 

sulphamidase function or that sulphamidase was unable to reach the lysosomes. The amounts 

of sulphamidase used to promote proliferation in this study were based on previously 

successful cross-correction experiments, where exogenous sulphamidase was added to the 

culture media of MPS IIIA fibroblasts, to be taken up and delivered to the lysosomes and 

reduce GAG storage; however, the efficacy in MPS IIIA MSCs or iPSC-NPCs has not been 

previously examined. Interestingly, normal MSCs in this study displayed sulphamidase 

activity of 0.67 ± 0.07 pmol/min (presented as 79.04 ± 8.02 pmol/hr/mg protein when 

normalised to total protein content), well within the scope of the sulphamidase activities of 

0.1, 0.3 and 1.0 pmol/min used in the proliferation rescue assay, indicating that the amount 

added should have been sufficient to restore normal sulphamidase function; however, MPS 

IIIA MSCs remained unable to proliferate. Measuring sulphamidase activity within the 
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lysosomes of MPS IIIA MSCs, and likewise iPSC-NPCs, would determine if exogenous 

sulphamidase was reaching the lysosomes following its addition to the culture media. 

Furthermore, due to the vital role of the cation independent mannose 6-phosphate receptors 

(CI-M6PR) in the trafficking of sulphamidase into the lysosomes in fibroblasts, it would be of 

interest to determine if sulphamidase uptake is similarly mediated by CI-M6PRs in MSCs and 

iPSC-NPCs. Determining CI-M6PR expression and turnover in MPS IIIA MSCs and iPSC-

NPCs would be of interest, as any alterations would influence the ability of exogenous 

sulphamidase to reach the lysosomes and thus the concentration of sulphamidase required to 

restore normal sulphamidase function. 

  

Exogenous FGF-2 was found to increase proliferation of MPS IIIA MSCs in a dose dependent 

manner, with cell number increasing as the FGF-2 concentration increased. The ability of 

exogenous FGF-2 to rescue the impaired proliferation seen in MPS IIIA MSCs suggests a role 

for FGF-2 signalling in the proliferation phenotype. FGF-2, reliant on HS chains for 

signalling, is a known promoter of proliferation, playing a vital role in formation of the CNS, 

with high levels present throughout neural development (refer section 1.3.1.1). One potential 

mechanism is that excess intrinsic MPS IIIA HS secreted from MSCs, displaying altered 

sulphation patterns compared to normal HS, is sequestering FGF-2, preventing FGF-2 

signalling, as discussed at length in Chapter Four. This hypothesis is supported by the 

increase in proliferation seen in the presence of FGF-2, as this would allow more of the 

morphogen to reach the cell surface and initiate FGF-2 signalling. The dose dependent effect 

of FGF-2 on MPS IIIA MSC proliferation further supports this hypothesis. Indeed, MPS I HS 

has previously been shown to interfere with FGF-2:FGFR1:HS interactions, resulting in 

decreased FGF-2 mediated proliferation (Pan et al., 2005). However, due to the mitogenic 

effect of FGF-2, further investigation would be required for confirmation. This is the first 

report of MSC isolation from an MPS mouse model and thus it is unknown if other MPS 



145 

 

subtypes also display alterations in proliferation. MSCs isolated from MPS I patients were 

able to expand normally in culture, suggesting that the disrupted proliferation of MPS IIIA 

MSCs may be unique; however, further analysis would be required for confirmation.   

 

An FGF-2 rescue assay was not conducted in MPS IIIA iPSC-NPCs as the cells were cultured 

in neural expansion media containing 20ng/mL FGF-2, a significantly higher concentration 

than the 5ng/mL used as the maximum concentration in the MPS IIIA MSC rescue assay. The 

disrupted proliferation of MPS IIIA iPSC-NPCs in the presence of such high concentrations 

of FGF-2 suggests that an alternate mechanism was impairing iPSC-NPC proliferation 

compared to MSC proliferation in MPS IIIA; other HS-dependant signalling pathways, such 

as the Wnt and Hh pathways, are also involved in proliferation and are therefore likely 

candidates (Chenn & Walsh, 2002; Hirabayashi et al., 2004; Plaisant et al., 2011). It would 

also be of interest to examine the effect of further increases in FGF-2 concentration in MPS 

IIIA iPSC-NPCs on proliferation; however, it should be noted that changes in FGF-2 

concentration may influence the ability of iPSC-NPCs to maintain a neural progenitor state. 

To date, no other MPS iPSC-derived NPC cell lines have displayed reductions in proliferation 

and thus the phenotype present in MPS IIIA appears to be, thus far, unique to this MPS type. 

 

In contrast to MSCs and iPSC-NPCs, MPS IIIA iPSCs did not appear to display disruptions in 

proliferation. However, it should be noted that iPSC proliferation was not quantified, due the 

propensity of iPSCs to grow as colonies rather than as single cells. However, colony size and 

density, in addition to the days between passages, was not notably different between control, 

Patient 1 and Patient 2 iPSCs. This contrasts with MPS IIIB and MPS VII iPSCs, which were 

observed, by eye, to have a clear, obvious reduction in growth (Lemonnier et al., 2011; Meng 

et al., 2010). Supplementation with their deficient enzymes was required to stimulate 
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proliferation. However, the proliferative capacity of previously derived MPS iPSCs has been 

variable, with all other MPS iPSC lines expanding easily in culture without exogenous 

enzyme supplementation (refer section 1.4.2.2). iPSC media consistently contains FGF-2 to 

maintain pluripotency; therefore, it is possible that disparities in FGF-2 concentration are 

contributing towards the varied proliferation phenotypes evident amongst MPS iPSC lines. 

Proliferation was only disrupted in MPS IIIB iPSCs grown under feeder-dependent conditions 

of 10ng/mL FGF-2; under feeder-free conditions, iPSCs were cultured in the presence of 

100ng/mL FGF-2 and exhibited a normal proliferation phenotype (Lemonnier et al., 2011). 

For our studies, iPSCs were cultured in 100ng/mL FGF-2 under feeder-free conditions, a 

significant increase to the 20ng/mL used in iPSC-NPC culture and the 5ng/mL used for MSC 

rescue assays. This increase in FGF-2 concentration may have promoted MPS IIIA iPSC 

proliferation by rescuing any potential disruptions as a result of aberrant HS.  

 

Overall, this study has identified that stem cell proliferation appears to be impaired in MPS 

IIIA MSCs and iPSC-NPCs, but not iPSCs, likely as a result of alterations in the FGF-2 

signalling pathway by MPS IIIA HS. Further investigation into downstream processes of 

FGF-2 signalling, such as activation of the MAPK pathway, should be examined for 

confirmation. In addition, it would be of note to determine the contribution of other HS-

dependent signalling pathways, such as the Wnt, BMP and Hh pathways, towards the 

impaired proliferation phenotype of MPS IIIA. 

 

5.3.3 MSC and iPSC neurogenesis is disrupted in MPS IIIA 

MPS IIIA appeared to disrupt neurogenesis, with significant decreases in neural gene 

expression in both MPS IIIA MSCs and iPSC-NPCs compared to control cells. In MPS IIIA 

MSCs, a rapid decrease in βIII-tubulin expression was seen over the course of neurogenesis 

and expression of NF-M was significantly decreased compared to normal MSCs from eight 
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hours post-induction, indicating a dysfunction in immature neuron survival and maturation 

into post-mitotic neurons.  

 

When examining iPSC-derived neural induction, neural progenitor formation appeared 

unaffected in MPS IIIA, with formation of the integral neuroepithelial sheet and neural 

rosettes unchanged between control and Patient 1 (MPS IIIA intermediate) derived-iPSCs. 

Both control and MPS IIIA iPSC-NPCs displayed neural progenitor-like morphology and 

expressed markers of neural progenitors, pax6 and nestin, indicating the successful formation 

of a neural progenitor population from patient-derived iPSCs. Expression of the generic NSC 

marker, nestin, was comparable between control and MPS IIIA iPSC-NPCs, indicating a 

similar global neural progenitor population and formation capacity. However, MPS IIIA 

iPSC-NPCs were found to express higher levels of the dorsal cortical progenitor marker, 

pax6, compared to control iPSC-NPCs, suggesting that the specific makeup of the 

heterogenous neural progenitor population may vary between the two lines (Zhang et al., 

2010). Confirmation of the neural progenitor population in the two cell lines through analysis 

of additional generic neural progenitor markers such as Sox1 (Venere et al., 2012) would be 

advantageous. Further investigation would be required to interrogate any underlying 

differences in the makeup of the control and MPS IIIA heterogenous neural progenitor 

populations  

 

Similarly to MPS IIIA MSCs, neuronal differentiation was impacted in MPS IIIA iPSC-

NPCs. MPS IIIA iPSC-NPC morphology appeared more “neuronal” immediately prior to 

neural induction, with neurite extensions and a more elongated morphology evident. 

However, upon differentiation, several lines of evidence suggested that MPS IIIA iPSC-NPC 

cultures had reduced numbers of neurons. MPS IIIA cultures did not display the same degree 
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of overt neuronal morphology, with delayed formation and reduced presence of neuronal 

body aggregates (ganglion-like structures) and less prominent axonal bundles. The expression 

of several post-mitotic neuron marker genes was decreased in MPS IIIA iPSC-NPCs 

compared to control iPSC-NPCs, with the difference becoming more prominent as 

neurogenesis progressed. In contrast, no significant change in nestin expression was seen 

between control and MPS IIIA iPSC-NPCs throughout neural induction, indicating that neural 

progenitor formation was unaffected in MPS IIIA iPSC-NPCs. Thus, this data indicated that 

MPS IIIA iPSCs were able to form neural progenitors; however, the formation or survival of 

neurons was disrupted. 

 

FGF-2 was implicated in disrupting MSC proliferation (section 5.2.1.3); due to its integral 

role in CNS development (refer section 1.3.1.1), it was hypothesised that aberrant FGF-2 

signalling may also contribute towards the disruptions in neurogenesis observed in MPS IIIA 

MSCs and iPSC-NPCs. Aberrations in neurogenesis in MPS IIIA iPSC-NPCs may result from 

intrinsic MPS IIIA HS-mediated sequestration of FGF-2 ligands, as discussed previously, as 

exogenous FGF-2 is withdrawn from iPSC-NPCs for neural differentiation, thus decreasing 

its bioavailability. However, murine MSC neural differentiation is promoted through 

supplementation with 40ng/mL FGF-2; the high bioavailability of FGF-2 throughout neural 

differentiation suggests that FGF-2 sequestration is an unlikely underlying mechanism for 

disrupted neural differentiation in MPS IIIA MSCs. Thus, a different mechanism may be 

involved in disrupted MSC neurogenesis compared to iPSC-NPC neurogenesis. It is likely 

that other HS-dependent signalling pathways are also affected by excess, aberrantly sulphated 

MPS IIIA HS and contribute towards disrupted neurogenesis. One likely pathway is the Wnt 

signalling pathway, which requires HS chains to function and is highly involved in 

neurogenesis (refer section 1.3.1.2). Canonical Wnt signalling is responsible for regulating the 

switch between proliferation and neurogenesis, with increases in Wnt signalling inhibiting 
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proliferation and promoting differentiation of neural progenitors. Inhibition of Wnt signalling 

was found to decrease neural differentiation (Hirabayashi et al., 2004). Therefore, a disruption 

of Wnt signalling, likely via sequestration of Wnt morphogens by intrinsic, aberrant MPS 

IIIA HS in the ECM, could potentially contribute towards the disruptions in neurogenesis 

seen in this study.  

 

The contribution of the sulphamidase deficiency towards impaired neurogenesis was not 

directly examined in this study. Previous work has identified that an increase in activity of the 

deficient enzyme reversed or partially reversed aberrant pathology seen in MPS iPSCs or 

MPS iPSC-derived neural cells (Bayo-Puxan et al., 2018; Canals et al., 2015; Lemonnier et 

al., 2011; Meng et al., 2010). Therefore, it would be of interest to determine if 

supplementation with exogenous enzyme would be sufficient to restore the neural 

differentiation capacity of MPS IIIA MSCs or iPSC-NPCs. A further point of interest would 

be to examine any changes in neural differentiation between Patient 1 and Patient 2 iPSCs. 

Whilst sulphamidase activity was lower in both Patient 1 and Patient 2 fibroblasts and iPSCs 

compared to control cells, enzyme activity was lowest in the cells from Patient 2, who 

clinically displayed the most severe phenotype. Identifying a correlation between residual 

enzyme activity level and neural differentiation capacity could assist in identifying the 

contribution of sulphamidase activity towards the neurological pathology of MPS IIIA. A 

correlation between patient disease severity and iPSC phenotype (i.e. enzyme activity, GAG 

storage and lysosomal size) has recently been identified in MPS I (Swaroop et al., 2018). 

Neurogenesis was not examined; however, alterations in the expression of lysosomal and 

autosomal genes compared to normal were identified, with the most extensive changes seen in 

the severe Hurler syndrome subgroup and the least changes seen in the milder Scheie 

syndrome (Swaroop et al., 2018). Finally, CRISPR-mediated correction of the mutation in the 
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SGSH gene would be required to confirm the contribution of the SGSH mutation and 

subsequent reduction in sulphamidase activity towards impaired neurogenesis.  

 

5.3.4 Chapter conclusions 

This chapter aimed to develop MPS IIIA stem cell lines in order to model MPS IIIA 

neurogenesis in vitro. MSCs were isolated from an MPS IIIA mouse model and found to have 

significantly reduced sulphamidase activity compared to MSCs isolated from normal mice, 

modelling the human disease phenotype. Fibroblasts obtained from MPS IIIA patients 

similarly displayed significantly decreased sulphamidase activity compared to controls, with 

this reduced enzyme activity maintained following reprogramming to iPSCs. Both MSCs and 

iPSCs were used to model MPS IIIA neurogenesis in vitro, identifying a reduction in 

proliferation and a disruption in neurogenesis, primarily in neuron formation and survival, 

likely a result of alterations in HS-dependent signalling pathways due to the presence of 

excess, aberrantly sulphated MPS IIIA HS. The FGF and Wnt pathways are suggested as 

potentially affected pathways due to their roles in regulating neural progenitor proliferation 

and maturation. This supports the findings of Chapter Four and indicates that disruptions in 

neurodevelopmental pathways, including neural progenitor proliferation and neurogenesis, are 

a potential mechanism of pathology for the neurological disease of MPS IIIA.  
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Chapter Six: Discussion and 

Conclusions 
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6.1 Disrupted stem cell proliferation and neurogenesis are likely contributors 

towards CNS pathology in MPS IIIA 

MPS IIIA results from a deficiency in the enzyme sulphamidase, leading to the accumulation 

of the GAG HS (Neufeld & Muenzer, 2001). Patients with MPS IIIA display severe 

neurological pathology and mild skeletal disease; however, the contribution of MPS IIIA HS 

accumulation to disease pathology is poorly understood. Currently, no treatments are available 

for MPS IIIA patients and thus determining the underlying mechanisms of pathology is 

integral for designing more effective therapies. 

 

This study identified that MPS IIIA HS, in contrast to normally sulphated HS, impaired MSC 

differentiation along the neurogenic lineage following its addition to the culture media. 

Therefore, disrupted neurogenesis is likely an underlying mechanism contributing to the 

severe CNS pathology of MPS IIIA. Osteogenesis was similarly disrupted by MPS IIIA HS, 

indicating that impaired osteogenesis may be contributing towards the mild skeletal pathology 

seen in MPS IIIA patients. 

 

Two in vitro cell models of MPS IIIA were developed to investigate the effects of MPS IIIA 

on neurogenesis. A reduction in cell proliferation was seen in MPS IIIA murine MSCs and 

human iPSC-NPCs compared to normal cells, indicating that decreased progenitor 

proliferation may contribute towards MPS IIIA disease pathology. Similarly to the results 

seen for extrinsic MPS IIIA HS, both models identified disruptions in neurogenesis in the 

MPS IIIA cell lines, supporting the original findings that MPS IIIA HS alters the neurogenic 

potential of stem cells. Therefore, disrupted stem cell proliferation and neurogenesis were 

identified as major contributors to CNS pathology in MPS IIIA.  
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The effects of HS accumulation (or reduced HS turnover) on CNS pathology are likely to 

commence during development, as increased HS content can be seen prenatally in MPS IIIA 

(Ceuterick et al., 1980; Greenwood et al., 1978; Harper et al., 1974; Martin & Ceuterick, 

1983). Reduced proliferative capacity is likely to decrease the initial pool of neuroepithelial 

and radial glial (RG) cells; developmental neurogenesis is also likely to be disrupted, and thus 

potentially irreversible CNS damage may be occurring in utero. Indeed, stabilisation of CNS 

pathology, not improvement, is the best report from therapies currently at the clinical trial 

stage for MPS IIIA (Jones et al., 2016; Tardieu et al., 2014). The implication of neural 

progenitor expansion and neurogenesis as contributors to CNS pathology in MPS IIIA 

suggests that neurodevelopmental pathways are disrupted in MPS IIIA and contributing to the 

disease phenotype. This was surprising due to the neurodegenerative phenotype and 

classification of the disease. However, this supports a previous suggestion that the CNS 

pathology of MPS IIIA may have a neurodevelopmental component, likely due to the 

presence of excess, aberrant MPS IIIA HS, following the finding that excitatory postsynaptic 

structure and function is abnormal in the developing somatosensory cortex in the MPS IIIA 

mouse model (Dwyer et al., 2017). In patients, the delayed onset of symptoms and late 

diagnosis prevent examination for any potential changes in CNS phenotype at birth; earlier 

changes suggest aberrations in neurodevelopmental pathways compared to neurodegenerative. 

To our knowledge, CNS structure and potential brain malformations have not been 

investigated in MPS IIIA patients through Magnetic Resonance Imaging (MRI) imaging at 

birth. However, MRI has identified structural abnormalities, increased white matter lesions, a 

decrease in grey matter volume, cortical atrophy and hydrocephalus from between 12 months 

and 2 years of age, indicating that changes in the CNS are present from an early age, often 

before the onset of symptoms, suggesting that changes in neurodevelopmental neurogenesis 

may contribute to the CNS pathology of MPS IIIA (Reichert et al., 2016; Shapiro et al., 2016; 

Truxal et al., 2016).  
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Neurogenesis continues in the SGZ in the dentate gyrus of the hippocampus and the SVZ of 

the lateral ventricles in adult mammals; therefore, reduced adult neurogenesis may also 

contribute to the progressive, neurodegenerative nature of MPS IIIA CNS pathology 

(Cameron et al., 1993; Garcia-Verdugo et al., 1998). Whilst commencing prenatally, GAG 

storage increases over time, likely resulting in ongoing complications within the adult NSC 

niches. Indeed, due to the adult source of our stem cells, our neurogenesis studies may more 

closely model adult neurogenesis. Progressive deterioration of adult neurogenesis is linked 

with ageing in normal rodents and is prominent in other CNS disorders, including animal 

models of Alzheimer’s disease and Parkinson’s disease (Faure et al., 2011; Hoglinger et al., 

2004; Wirths, 2017). Adult neurogenesis is particularly implicated in neural plasticity, the 

ability of the brain to adapt to new experiences and create new neural pathways  (Ming & 

Song, 2005; Schmidt-Hieber et al., 2004; Toda & Gage, 2018). Neural plasticity is integral for 

memory and the ability to learn new skills, and thus a decrease in adult neurogenesis could 

underly the inability of MPS IIIA patients to learn and retain new information and skills as 

their disease progresses (Mangina & Sokolov, 2006; Neufeld & Muenzer, 2001; Schmidt-

Hieber et al., 2004). Decreased adult neurogenesis could contribute towards the severe 

cortical atrophy seen in MPS IIIA patients at the later stages of the disease. It has been 

suggested that neuronal death may not be the sole underlying mechanism of this phenotype; 

thus, a reduction in adult neurogenesis, including RG survival and expansion, could provide 

an additional potential mechanism for this phenotype (Hassiotis et al., 2014; Jardim et al., 

2010; Neufeld & Muenzer, 2001; Wilkinson et al., 2012).  

 

6.2 Dysfunctions in stem cell proliferation and differentiation in MPS IIIA are likely 

a result of alterations in growth factor signalling 

This study identified a potential mechanism for the severe neurological pathology of MPS 

IIIA, with MPS IIIA HS disrupting neural progenitor proliferation and maturation. However, 
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the specific means by which MPS IIIA HS disrupted stem cell development was not 

investigated in detail and was beyond the scope of this thesis. It was hypothesised that the HS 

which accumulates in MPS IIIA was disrupting signalling pathways integral to stem cell 

proliferation and differentiation, due to reliance of these pathways on HS chains to function. 

The data in this thesis suggested that a “morphogen sequestration” model may occur, whereby 

excess, partially degraded extracellular MPS IIIA HS secreted from the lysosomes is able to 

bind signalling molecules. Whilst the sequence of HS fragments that accumulate in MPS IIIA 

has not been determined, the altered patterns of sulphation along the HS backbone in partially 

degraded MPS IIIA GAG are likely to alter its ability to bind to morphogens. For example, 

MPS IIIA HS is known to be enriched for disaccharides contained within the GlcNS(6S)-

IdoA(2S)-GlcNS(6S)-IdoA(2S) tetrasaccharide integral for interactions between HS and FGF-

2, one of the most well-studied morphogens (refer section 4.3.1.2 for detailed discussion) 

(Guglier et al., 2008; Pye et al., 1998; Raman et al., 2003; Wilkinson et al., 2012). This is 

likely to result in a subsequent increase in FGF-2 binding to MPS IIIA HS compared to 

normal HS. However, this is dependent on specific tetrasaccharide formations. Therefore, the 

combination of high extracellular GAG concentrations and the presence of aberrant 

sulphation patterns may result in extracellular MPS IIIA HS binding morphogens, resulting in 

morphogen sequestration and preventing their binding to receptors located on the cell surface 

(Figure 6.1). This was supported by the observation that excess FGF-2 was able to rescue 

proliferation of MPS IIIA MSCs, likely a result of a higher amount of FGF-2 able to saturate 

the ECM located MPS IIIA HS and reach the cell-surface-bound receptors (section 5.2.1.3). 

Decreased morphogen-receptor interactions would result in a subsequent reduction in 

signalling activity in pathways such as the FGF, Wnt, BMP and Hh pathways, thus decreasing 

the expression of target genes involved in stem cell proliferation and differentiation. 
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Figure 6.1: The proposed “morphogen sequestration” model 

MPS IIIA HS may disrupt stem cell proliferation and differentiation by binding to morphogens and 

sequestering them within the ECM, away from their receptors at the cell surface. A: Under normal 

conditions, HS functions as a PG at the cell surface and within the ECM and is later metabolised 

within the lysosomes. Extracellular HS binds to morphogens through low affinity interactions, 

increasing morphogen concentration at the cell surface. Morphogens are released from ECM HS 

and instead bind to cell surface-bound receptors, mediated by cell surface-bound HS chains. 

Binding of morphogens to their receptors initiates the subsequent signalling pathway, resulting in 

upregulation of genes involved in stem cell proliferation and differentiation. B: In MPS IIIA, 

partially degraded HS accumulates within the lysosomes and is released into the ECM. High 

volumes of MPS IIIA HS within the ECM bind to morphogens. Morphogens remain bound to ECM 

MPS IIIA HS and are sequestered within the ECM, unable to reach cell surface-bound receptors and 

cell surface-bound HSPGs. As a result, signalling pathway is decreased, resulting in decreased 

expression of genes involved in stem cell proliferation and differentiation.  
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6.3 Potential uses of MPS IIIA stem cell models 

6.3.1 Mechanisms of pathology 

This study determined that MPS IIIA HS impairs stem cell proliferation and differentiation, 

with the dysfunction in neural progenitor proliferation and maturation likely contributing to 

the severe CNS pathology evident in patients. This was determined through the development 

of multiple in vitro models of MPS IIIA, allowing the effects of both extrinsic and intrinsic 

MPS IIIA HS to be determined. These models could now be used for further investigation of 

mechanisms of pathology in MPS IIIA.  

 

6.3.1.1   Further investigation into the effects of MPS IIIA HS on neurogenesis 

To continue the initial findings presented in this thesis, the cell models developed in these 

studies could be used to investigate the mechanisms underlying disrupted MPS IIIA 

neurogenesis. For example, the MPS IIIA cell lines developed in this thesis could be used to 

investigate and test the proposed “morphogen sequestration” model (Figure 6.1). Morphogen 

sequestration could be examined by investigating defects in the downstream HS-dependent 

signalling pathways, a functional outcome of the proposed model. Investigating specific 

pathways will also provide evidence of the precise growth factors involved. The FGF 

signalling pathway in particular has been discussed at length throughout this thesis; 

examining levels of downstream proteins in the MAPK pathways would be beneficial to 

confirm its role. However, examining levels of downstream proteins in the β-catenin, Gli and 

Smad pathways would allow the role of the Wnt, Hh and BMP pathways, respectively, to be 

elucidated. 

 

Chapter Four demonstrated that extrinsic GAGs from different MPS types differed in their 

effects on neurogenesis. It would be of interest to compare the effects of intrinsic GAG 

accumulation in the different MPS subtypes on neurogenesis. The availability of mouse 
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models of MPS I, MPS II, MPS IIIA, MPS IIIB, MPS IIIC, MPS IIID and MPS VII would 

enable the isolation of MSCs from all MPS types with neurological pathology (Bhaumik et 

al., 1999; Birkenmeier et al., 1989; Clarke et al., 1997; Li et al., 1999; Marco et al., 2016; 

Muenzer et al., 2002; Roca et al., 2017; Tomatsu et al., 2002). iPSC lines have been 

established for MPS I, MPS II, MPS IIIB, MPS IIIC and MPS VII, providing cells of human 

origin to investigate if intrinsic MPS IIIA HS is uniquely pathogenic  (Bayo-Puxan et al., 

2018; Canals et al., 2015; Griffin et al., 2015; Lemonnier et al., 2011; Rybova et al., 2018; 

Swaroop et al., 2018; Tolar et al., 2011; Vallejo-Diez et al., 2018; Varga et al., 2016a; Varga 

et al., 2016b, 2016c). MPS VII iPSC lines have been used to study neurogenesis in vitro and 

in vivo in comparison to normal cells. In vitro, no change in βIII-tubulin expression was seen 

over the course of neural induction in MPS VII iPSCs compared to normal iPSCs, indicating 

that GUSB mutation and MPS VII GAG storage had no effect on immature neuron formation 

(Bayo-Puxan et al., 2018). Similarly, no difference in migration or neural differentiation was 

seen between normal and MPS VII iPSC-derived NSCs following their administration to 

normal mice, once again indicating that MPS VII GAG had little effect on neurogenesis 

(Griffin et al., 2015). In MPS IIIC, synaptic activity was reduced in MPS IIIC iPSC-derived 

neurons, indicating that HGSTAT mutation and MPS IIIC GAG disrupted synaptogenesis. No 

dysfunction in neuron formation was reported (Canals et al., 2015). Therefore, currently MPS 

IIIA is the only MPS disorder to report impaired neurogenesis as a potential underlying 

mechanism of pathology, as identified in this thesis.  

 

In addition, to further investigate the effects of MPS IIIA HS on neurogenesis, these cell 

models could be used to determine any other dysfunctions in CNS development which could 

contribute to MPS IIIA disease pathology. In particular, the MPS IIIA iPSC line could be used 

to investigate alterations in synaptic activity compared to controls; MPS IIIC and MPS VII 

iPSCs have previously been used to model neuronal network formation and have identified 
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dysfunctions in neuronal activity and synaptic connectivity (Bayo-Puxan et al., 2018; Canals 

et al., 2015).  

 

6.3.1.2   Contribution of the MPS IIIA CNS environment to neurological pathology 

The addition of exogenous MPS IIIA GAG decreased neurogenesis in normal MSCs (section 

4.2.1), indicating that, in additional to primary HS storage, the MPS IIIA microenvironment 

plays a role in CNS dysfunction. The microenvironment of the MPS IIIA brain is extremely 

complex, with increased ganglioside and cholesterol storage and significant 

neuroinflammation (Constantopoulos & Dekaban, 1978; McGlynn et al., 2004). Through the 

combination of the MPS IIIA mouse model and MPS IIIA iPSCs, the effect of the MPS IIIA 

brain microenvironment on neurogenesis could be determined. Administrations of MPS IIIA 

iPSCs to normal mice and normal iPSCs to MPS IIIA mice would allow direct comparison of 

the effects of the intrinsic cellular pathology and the external aberrant microenvironment on 

stem cell survival and proliferation. This would be integral for determining the efficacy of 

stem cell-based therapies, which will be discussed in section 6.3.2. 

 

6.3.1.3   Modelling MPS IIIA mesodermal lineage differentiation 

In addition to examining the effects of intrinsic MPS IIIA HS on neurogenesis, the MPS IIIA 

stem cell models developed in this thesis could be used to determine their effects on other 

lineages. Chapter Four identified a decrease in osteogenesis and adipogenesis of normal 

human MSCs in the presence of extrinsic MPS IIIA HS (section 4.2.2.1 and 4.2.2.3). 

Similarly to the work done for neurogenesis, as presented in this thesis, inducing the MPS 

IIIA MSC line along the mesodermal lineage would allow for in vitro modelling of MPS IIIA 

osteogenesis, chondrogenesis or adipogenesis. Methods are well established for differentiation 

of iPSCs along the mesodermal lineage to form MSCs (Hynes et al., 2016); differentiation of 

MPS IIIA iPSCs to MSCs is currently underway by our group, which will likewise allow for 
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analysis of MPS IIIA mesodermal differentiation in comparison to normal. In particular, 

identifying a disruption in osteogenesis in the MPS IIIA MSC or iPSC lines would provide 

confirmation that MPS IIIA HS affects the osteogenic capacity of stem cells, as identified in 

Chapter Four. This would provide further evidence for a potential molecular mechanism 

underlying the mild skeletal pathology of MPS IIIA. 

 

6.3.1.4   Identifying contributing factors to previously unsuccessful therapies 

Finally, these cell models could be used to investigate the mechanisms underlying previously 

proposed therapies which were unsuccessful in MPS IIIA. Of particular interest would be 

HSC transplants, which have only been successful in treating CNS disease in MPS I 

(Hoogerbrugge et al., 1995; Lange et al., 2006; Lau et al., 2010; Sivakumur & Wraith, 1999). 

Chapter Four demonstrated the different effects of MPS GAGs on MSC neural induction, with 

MPS IIIA GAG disrupting neurogenesis whilst MPS I GAG had little effect. In a similar 

manner, MPS GAGs could influence the HSC survival and treatment efficacy, with the MPS I 

environment potentially being more conducive for HSC survival. MPS II GAG had a similar 

effect to MPS IIIA GAG on MSC neurogenesis; interestingly, HSC transplants are also often 

unsuccessful in treating MPS II CNS pathology (Akiyama et al., 2014; Guffon et al., 2009; 

McKinnis et al., 1996; Shapiro et al., 1995; Vellodi et al., 1999). Thus, it is possible that MPS 

IIIA GAGs impair HSC survival and proliferation, reducing the efficacy of HSC transplants. 

Identifying factors which contributed to previously unsuccessful treatments is integral for the 

development of more effective therapies.  

 

6.3.2 Potential treatments 

The development of MPS IIIA cell lines could assist in the development of new therapies. 

Enzyme replacement therapy, bone marrow transplant, substrate deprivation therapy and gene 
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therapy have all been suggested as potential treatments for MPS IIIA. However, to date these 

treatments had limited efficacy or been highly invasive (de Ruijter et al., 2012; Delgadillo et 

al., 2011; Hemsley et al., 2007; Hoogerbrugge et al., 1995; Jones et al., 2016; Lange et al., 

2006; Rozaklis et al., 2011; Tardieu et al., 2014). The MPS IIIA cell models developed in this 

study could be used to test the efficacy of new treatments in vitro, before transfer to an in vivo 

model. Due to the primary CNS disease in MPS IIIA, cell models with neurogenic potential 

provide a distinct advantage over the currently used somatic cells such as fibroblasts (Anson 

et al., 2007; Jackson et al., 2015; Roberts et al., 2006). The MPS IIIA cell lines developed in 

this thesis were used here to identify impaired neurogenesis as a potential contributor towards 

the severe neurological disease seen in MPS IIIA patients; in the future, these same cell lines 

could be used to test the efficacy of treatments designed to combat this phenotype.  

 

In addition, the MPS IIIA cell lines developed in this thesis could themselves be used as a 

treatment for MPS IIIA. MSCs have previously been suggested as an alternative to the HSCs 

currently used in bone marrow transplants, with their immunomodulatory effects and 

neurogenic properties providing an advantage over the currently used HSCs (da Silva et al., 

2012). iPSC-derived cells have been proposed by many as a potential therapeutic for 

untreatable genetic diseases (reviewed in Barral & Kurian, 2016; reviewed in Xie & Tang, 

2016). Both MSCs isolated from MPS IIIA patients and iPSC-NPCs derived from patient 

somatic cells could be used for autologous stem cell therapy. Stem cells isolated from an MPS 

IIIA patient would undergo CRISPR modification to correct the SGSH gene, resulting in 

expression of cDNA with the correct nucleotide sequence and thus normal sulphamidase 

activity. Following the administration of cells to the original patients, the secreted enzyme 

would be able to cross-correct patient cells, resulting in HS degradation. Furthermore, the 

CRISPR-corrected cells could themselves differentiate into neurons, supplementing the 

affected patient neurons with new, unaffected cells. The use of autologous cells would provide 
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a distinct advantage, eliminating the need for HLA matched donors. The allogenic HSC 

transplants currently used to treat CNS pathology in MPS I patients carry significant risks, 

including the development of graft vs host disease, resulting in significant morbidity and 

mortality (Wang et al., 2016). However, the neurogenic capacity of CRISPR corrected patient 

MSCs and iPSCs would need to be investigated in vitro, to determine if CRISPR correction 

rescues the disruption in neurogenesis that was identified in this study, before further in vivo 

studies could be conducted. 

 

6.4 Conclusions 

This study aimed to examine a potential underlying mechanism for the severe neurological 

pathology seen in MPS IIIA patients; that the aberrant HS found in MPS IIIA affects the 

proliferative and neurogenic potential of stem cells. Following the identification of optimal 

methods for human and murine MSC neural differentiation, MSCs and iPSCs were used to 

model stem cell proliferation and differentiation in MPS IIIA. Overall, MPS IIIA HS was 

found to impair neural progenitor proliferation, survival and maturation, indicating that 

disrupted stem cell proliferation and neurogenesis contributes towards the severe CNS 

pathology in MPS IIIA. In addition, MPS IIIA HS was found to disrupt osteogenesis, 

providing a potential mechanism for the moderate skeletal disease in patients. It was 

hypothesised that stem cell proliferation and differentiation were disrupted due to the 

presence of excess, partially degraded MPS IIIA HS fragments enriched in sequences 

required for morphogen binding. In the proposed “morphogen sequestration” model, 

extracellular MPS IIIA HS binds to morphogens, reducing morphogen-receptor interactions at 

the cell surface and thus limiting the upregulation of genes involved in stem cell proliferation 

and differentiation. The MPS IIIA cell models developed in this thesis can be used to further 

investigate the underlying mechanisms of pathology contributing to the severe neurological 

phenotype, specifically the proposed “morphogen sequestration” method. Finally, the 
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identification of disrupted proliferation and neurogenesis as a mechanism contributing to 

MPS IIIA CNS pathology, as presented in this thesis, will assist in the development of more 

efficacious therapies for MPS IIIA patients.  
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Appendix A: Material List 

 

12-well plates 

 

Corning Inc., USA 

24-well plates Corning Inc., USA 

4-Methylumbelliferyl 2-deoxy-2-sulfamino 

-a-D-glucopyranoside sodium salt 

Carbosynth, USA 

6-well plates Corning Inc., USA 

96-well plates Corning Inc., USA 

Accutase StemCell Technologies Pty.Ltd., VIC, Australia 

anti-biotin antibody Miltenyi Biotec Pty. Ltd., NSW, Australia 

anti-CD45.2-biotin antibody Miltenyi Biotec Pty. Ltd., NSW, Australia 

anti-Sca.1-biotin antibody Miltenyi Biotec Pty. Ltd., NSW, Australia 

Ascorbate-2-phosphate WAKO Chemicals, USA 

B27 supplement (50x) Life Technologies Pty. Ltd., VIC, Australia 

Bicinchoninic Acid (BCA) Assay Kit  

(cat# BCA1-1KT) 

Sigma-Aldrich Pty. Ltd., NSW, Australia 

Bovine serum albumin Sigma-Aldrich Pty. Ltd., NSW, Australia 

Calcium Assay Kit (cat# 701220) Cayman Chemical Company, USA 

CellAdhere Dilution Buffer StemCell Technologies Pty.Ltd., VIC, Australia 

CELLSTAR 175cm2 cell culture flask Greiner Bio-One, Austria 

CELLSTAR 25cm2 cell culture flask Greiner Bio-One, Austria 

CELLSTAR 75cm2 cell culture flask Greiner Bio-One, Austria 

CelLytic M Sigma-Aldrich Pty. Ltd., NSW, Australia 

Collagenase type I from Clostridium  

histolyticum 

Sigma-Aldrich Pty. Ltd., NSW, Australia 
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CyQuant direct cell proliferation assay kit  

(cat# C35011) 

Life Technologies Pty. Ltd., VIC, Australia 

CytoTune™-iPS 2.0 Sendai  

Reprogramming Kit (cat# A16517) 

Life Technologies Pty. Ltd., VIC, Australia 

Dermatan Sulphate Sigma-Aldrich Pty. Ltd., NSW, Australia 

Dexamethasone Sigma-Aldrich Pty. Ltd., NSW, Australia 

DMEM (high glucose) Life Technologies Pty. Ltd., VIC, Australia 

DMEM/F-12 Life Technologies Pty. Ltd., VIC, Australia 

DMEM/F-12 (GlutaMAX)  Life Technologies Pty. Ltd., VIC, Australia 

ECM gel from Engelbreth-Holm-Swarm  

murine sarcoma 

Sigma-Aldrich Pty. Ltd., NSW, Australia 

EGF Prospec-Tany TechnoGene Ltd., Israel 

Fetal calf serum Life Technologies Pty. Ltd., VIC, Australia 

FGF-2 (iPSC studies) Life Technologies Pty. Ltd., VIC, Australia 

FGF-2 (MSC studies) Prospec-Tany TechnoGene Ltd., Israel 

Formaldehyde ChemSupply, SA, Australia 

Gelatin from bovine skin Sigma-Aldrich Pty. Ltd., NSW, Australia 

Gentamycin Life Technologies Pty. Ltd., VIC, Australia 

Gentle Cell Dissociation Reagent StemCell Technologies Pty.Ltd., VIC, Australia 

Glutamine Sigma-Aldrich Pty. Ltd., NSW, Australia 

Ham's F-12 Life Technologies Pty. Ltd., VIC, Australia 

Heparan Sulphate (Bovine Kidney) Sigma-Aldrich Pty. Ltd., NSW, Australia 

Heparin (Porcine Intestinal Mucosa) Sigma-Aldrich Pty. Ltd., NSW, Australia 

HEPES Sigma-Aldrich Pty. Ltd., NSW, Australia 

Hydrocortisone Sigma-Aldrich Pty. Ltd., NSW, Australia 

Indomethacin Sigma-Aldrich Pty. Ltd., NSW, Australia 
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Insulin Sigma-Aldrich Pty. Ltd., NSW, Australia 

Isobutylmethylxanthine  Sigma-Aldrich Pty. Ltd., NSW, Australia 

Isopropanol ChemSupply, SA, Australia 

ITS Supplement Sigma-Aldrich Pty. Ltd., NSW, Australia 

KnockOut™ Serum Replacement Life Technologies Pty. Ltd., VIC, Australia 

Laminin from Engelbreth-Holm-Swarm 

murine sarcoma (α1β1γ1) 

Life Technologies Pty. Ltd., VIC, Australia 

 

MEFs StemCore, QLD, Australia 

Metabolic cages Hatteras Instruments Inc., USA 

Microfuge tubes Eppendorf South Pacific Pty. Ltd, NSW, Australia 

MiniMACS separator Miltenyi Biotec Pty. Ltd., NSW, Australia 

MS columns Miltenyi Biotec Pty. Ltd., NSW, Australia 

N2 Supplement (100x) Life Technologies Pty. Ltd., VIC, Australia 

Na2EDTA.2H2O Sigma-Aldrich Pty. Ltd., NSW, Australia 

NaOH Sigma-Aldrich Pty. Ltd., NSW, Australia 

Neurobasal Life Technologies Pty. Ltd., VIC, Australia 

Neurobasal A  Life Technologies Pty. Ltd., VIC, Australia 

Neutral Red ProSciTech, QLD, Australia 

Non-essential amino acids Life Technologies Pty. Ltd., VIC, Australia 

NUNC 35mm dishes Thermo Fischer Scientific Pty. Ltd., VIC, Australia 

NUNC nunclon delta surface plates Thermo Fischer Scientific Pty. Ltd., VIC, Australia 

Oil Red O ProSciTech, QLD, Australia 

PBS Life Technologies Pty. Ltd., VIC, Australia 

Penicillin/Streptomycin Sigma-Aldrich Pty. Ltd., NSW, Australia 

Polybrene Sigma-Aldrich Pty. Ltd., NSW, Australia 

Poly-L-orthinine Sigma-Aldrich Pty. Ltd., NSW, Australia 
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Proteinase K Sigma-Aldrich Pty. Ltd., NSW, Australia 

PSC 4-Marker Immunocytochemistry Kit  

(cat# A24881) (lot# 1913522) 

Life Technologies Pty. Ltd., VIC, Australia 

PureLink™ RNA Micro Kit  

(cat# 12183-016) 

Life Technologies Pty. Ltd., VIC, Australia 

QuantiPro BCA protein kit  

(cat# QPBCA-1KT) 

Sigma-Aldrich Pty. Ltd., NSW, Australia 

QuantiTect Reverse Transcription Kit  

(cat# 205311) 

Qiagen Pty. Ltd, VIC, Australia 

Retinoic acid Sigma-Aldrich Pty. Ltd., NSW, Australia 

RNeasy mini kit (cat# 74104) Qiagen Pty. Ltd, VIC, Australia 

Silver nitrate Merck, VIC, Australia 

Sodium pyruvate Sigma-Aldrich Pty. Ltd., NSW, Australia 

Sodium Thiosulphate Thermo Fischer Scientific Pty. Ltd., VIC, Australia 

SYBR™ Green PCR Mastermix (2x) Life Technologies Pty. Ltd., VIC, Australia 

TeSR-E8 StemCell Technologies Pty.Ltd., VIC, Australia 

TGFβ Prospec-Tany TechnoGene Ltd., Israel 

Triton-X Sigma-Aldrich Pty. Ltd., NSW, Australia 

TRIzol Life Technologies Pty. Ltd., VIC, Australia 

Trypsin-EDTA Sigma-Aldrich Pty. Ltd., NSW, Australia 

V-botton 96 well plates Corning Inc., USA 

Viagen lysis buffer Australian Biosearch Inc., WA, Australia 

Vitronectin XF StemCell Technologies Pty.Ltd., VIC, Australia 

α-MEM (nucleosides) Life Technologies Pty. Ltd., VIC, Australia 

β-mercaptoethanol Life Technologies Pty. Ltd., VIC, Australia 
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All other reagents used in this study were of analytical reagent grade and were obtained 

from: 

Ajax Finechem Pty. Ltd., Seven Hills, NSW 

BDH (VWR), Bio-Strategy Pty. Ltd., VIC, Australia 

Sigma-Aldrich Pty. Ltd., NSW, Australia 
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Appendix B: Glycosaminoglycan Abbreviations 

 

2S 

 

2-O-sulphate 

6S 6-O-sulphate 

GlcA Glucuronic acid 

GlcN Glucosamine 

GlcNA N-acetylated glucosamine 

GlcNA(6S) 6-O-suphated N-acetylated glucosamine 

GlcNS N-sulphated glucosamine 

GlcNS(6S) 6-O-suphated N-sulphated glucosamine 

HexA Glucuronic acid or Iduronic acid 

HexA(2S) 2-O-sulphated glucuronic acid or 2-O-sulphated iduronic acid 

IdoA Iduronic acid 

IdoA(2S) 2-O-sulphated iduronic acid 

NA N-acetylated 

NS N-sulphated 
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Appendix C: Publications 

 

Published abstracts arising from this thesis: 

Lehmann R, Selway C., Byers S., Derrick Roberts A. (2018). Aberrant heparan sulphate impairs 

mesenchymal stem cell proliferation and neurogenesis in Mucopolysaccharidosis type IIIA. Molecular 

Genetics and Metabolism. 123(2): S84.  

 

Lehmann R, Derrick Roberts A, Byers S. (2016). Accumulation of MPS GAG influences stem cell 

differentiation. Molecular Genetics and Metabolism. 117(2): S72.  
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