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Abstract

Ancient DNA (aDNA) techniques have demonstrated its power to reveal past
events and reconstruct the evolutionary histories of animals. However, many ques-
tions regarding the rapid adaptation of animals cannot be solely explained by ge-
nomic evidence and thus remain to be further investigated.

Gut bacterial communities (microbiota) perform essential functions for their
hosts, including nutrient synthesis, dietary toxin degradation, and host immunity
development. Epigenetics, including DNA methylation and microRNAs (miRNAs),
participates in the regulation of the gene expression as well as many critical cellular
processes. These non-genomic mechanisms tend to be highly dynamic and suscep-
tible to internal (i.e., genetics) and external factors (i.e., environmental cues). It is
possible that microbiota alterations and epigenetic modifications swiftly transfer ex-
ternal cues to animal phenotypic alterations and exert durative influence on animal
fitness and adaptation, whereas the evidence from modern animal models remains
scarce and controversial.

The most recently developed aDNA techniques allowed the recovery of micro-
biomic and epigenomic information from ancient animal remains. In this thesis, I
employed advanced ancient DNA (aDNA) techniques to explore the role of non-
genomic mechanisms in bovid adaptation to environmental changes over an evolu-
tionary timescale. Two bovid taxa, Myotragus and Bison, were used for case studies
to explore the possible roles of microbiota and epigenetics in animal adaption. In the
first case study, I was able to find evidence suggesting the gut microbiota of Myotra-
gus facilitate its adaptation to a toxic diet; in the second case study, the potential
methylation hotspots responding to mammal-environment interactions were iden-
tified. Furthermore, novel protocols and bioinformatics tools were developed and
optimised to retrieve ancient epigenetic and microbial information from extremely
degraded and contaminated DNA sources. Overall, these studies suggest the micro-
biota and epigenetic modifications play a role in the adaption to the environment
of the past animals. These findings also highlight the potential of aDNA techniques

for resolving long-standing evolutionary questions.
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1.1 Ancient DNA research

DNA can be preserved within organic remains for thousands, or even hundreds of
thousands of years (Hofreiter et al.; 2001). The ability to extract ancient DNA
(aDNA) allowed the retrieval of genetic information from past animals, which pro-
vided insights into the interactions between animals and the environment as well as
their potential genetic adaptations (Miller et al.; 2008; Shapiro and Hofreiter; 2014;
Soubrier et al.; 2016).

Although aDNA is now routinely recovered from sub-fossil (i.e. not yet fully
fossilised) specimens, aDNA research faces several challenges (Pé&ébo et al.; 2004).
First, the opportunistic nature of sampling, whereby making experimental groups
from the same place and time is often impossible—at least for non-human organisms
that are not systematically buried in given places. Taphonomy represents another
major challenge in aDNA research. After an organism dies, organic tissues im-
mediately start to decompose, and DNA is initially degraded by endogenous and
microbial nucleases (Dabney et al.; 2013). Subsequently, biochemical processes fur-
ther break down DNA at a rate that is dependent on environmental conditions, such
as temperature, humidity, and oxygen availability (Padabo et al.; 2004; Hebsgaard
et al.; 2005). However, taphonomic processes do not affect all samples uniformly, re-
sulting in a high experimental failure rate, discrepancies between results even from
the same individual, and a decrease in the number of usable samples. Even us-
ing approaches tailored for low-biomass samples (e.g., (Gansauge and Meyer; 2013;
Gansauge et al.; 2017)), the amount of retrieved aDNA is very low and usually only
quantifiable after amplification. The surviving aDNA is highly fragmented, with
an average length typically less than 100 bp. The aDNA damage also results in 1)
lesions that inhibit in vitro DNA amplification, and 2) nucleotide substitutions (i.e.
C-to-T and G-to-A substitutions) in the sequencing data (Figure 1.1) (Briggs et al.;
2007; Rohland et al.; 2015).

Moreover, the proportion of endogenous aDNA retrieved from a given sample is
typically very low due to post-mortem contamination with exogenous DNA (mainly
from microbial sources), as the sub-fossil material used in ancient genomic research
is generally exposed to the environment for a long period (Hofreiter et al.; 2001).
During experimental processing, laboratory staff, reagents, and consumables can
also introduce additional contaminant and human DNA directly onto the sample or
into the aDNA extracts (Llamas et al.; 2017). Therefore, it is critical to minimise
and monitor contamination and authenticate aDNA sequences. Several measures
can be taken to reduce such bias in paleogenetic research, including carrying out
experiments in low-DNA facilities, using blank controls throughout the whole exper-

imental process, authenticating aDNA sequences based on DNA damage patterns,
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Figure 1.1: An example of aDNA damage. A. the fragment length distribution of
aDNA, with an average length of 70 bp. B. The nucleotide substitutions in aDNA.
C-to-T and G-to-A substitutions are increased at the end of the aDNA molecules.
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and assessing the reproducibility of the findings (Llamas et al.; 2017).

Despite the challenges and difficulties of aDNA research, this field experienced
an explosion in the past decade following the advent of high throughput sequencing
(HTS) techniques (Marciniak and Perry; 2017). Taking human research as an exam-
ple, only two archaic hominin genomes (and no ancient anatomically modern human,
AMH) were recovered at low depth of coverage (<1x) in 2007, while in 2017 over
a thousand of ancient AMH and archaic hominin genomes had been reconstructed,
and over 35% of the reconstructed genomes had a depth of coverage greater than
1x (Marciniak and Perry; 2017). Advances in HT'S techniques not only drastically
increased the accessibility to ancient genetic information, but also paved the way

for new avenues of research such as paleomicrobiomes and paleoepigenomes.

1.2 Paleomicrobiome and paleoepigenome studies

in animals

Paleomicrobiome and paleoepigenome informations have recently been recovered
from ancient animals (Table 1.1 and Table 1.2) (Adler et al.; 2013; Warinner et al.;
2014; Weyrich et al.; 2017; Cano et al.; 2014; Gokhman et al.; 2014, 2017; Hanghgj
et al.; 2016; Pedersen et al.; 2014; Seguin-Orlando et al.; 2015).

Paleomicrobiome information (the taxonomic and functional profile of ancient
bacterial communities) largely originated from human dental calculus (calcified den-
tal plaque) and coprolites (ancient faeces deposits). Dental calculus can entrap and
preserve microbial DNA, and it has been routinely used for the recovery of oral
microbiome information in paleomicrobiology studies (Lieverse; 1999; Jin and Yip;
2002; Adler et al.; 2013; Weyrich et al.; 2017). As dental calculus is less prevalent
in non-human animals, the application of this technique was restricted to ancient
human research. Coprolites can potentially preserve diet, pathogen, and gut micro-
biome information of past animals (Wood et al.; 2008; Tito et al.; 2012; Boast et al.;
2018). However, it is very difficult to recover reliable gut microbiome information
from coprolites because once exposed to the environment, animal faeces are very
susceptible to contamination (Warinner, Speller, Collins and Lewis Jr; 2015; Eisen-
hofer et al.; 2017). Thus, a large proportion of DNA in the coprolites can come from
environmental sources, and it is hard to distinguish environmental DNA from the
gut microbial DNA. Also, because faeces contain organic material, the gut bacterial
community, along with bacteria from the environment, can continue to change over
time, which can bias the abundance of the endogenous bacterial community (Amir
et al.; 2017).
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Table 1.1 Paleomicrobiome studies on animals

Study Animal (genus)  Sample Method Data Age of samples (years BP)
Weyrich et al.; 2017 Homo Dental calculus Amplicon and shotgun sequencing Oral microbiome 70 to ~36,000

Adler et al.; 2014 Homo Dental calculus Amplicon sequencing Oral microbiome 400 to 7,550

Warinner et al.; 2014 Homo Dental calculus Amplicon and shotgun sequencing Oral microbiome ~900 to ~1,000

Welker et al.; 2014 Myotragus Coprolites DNA barcoding Two bacterial species ~5,000

Tito et al.; 2012 Homo Coprolites Amplicon sequencing Gut microbiome 1,400 to ~8000

Cano et al,; 2014 Homo Coprolites Amplicon sequencing Gut microbiome ~250 to 2000
Santiago-Rodriguez etal.;  Homo Coprolites Amplicon sequencing Gut microbial community ~ 900

2013, 2016 information (the data have been

suggested to be biased by
contaminants (Eisenhofer et al;

Table 1.2 Paleoepigentics studies on animals

Study Animal (genus)  Sample Method Data Age of samples (years BP)
Briggs et al.; 2009 Homo Bone DNA damage based Genome wide methylation signals ~38,000
Llamas et al.; 2012 Bison Bone Bisulfite conversion Methylation status of several ~26,000
locus
Smith et al.; 2014 Homo Bone Bisulfite conversion Methylation status of a ~200 to 4,500
retrotranposon
Pedersen et al.; 2014 Homo Hair DNA damage-based Methylome and nucleosome map ~4,000
Gokhman et al.; 2014 Homo Bone DNA damage-based Methylome ~38,000 to > 50,000
Gokhman et al.; 2017 Homo Bone DNA damage-based Methylome 7,000 to > 50,000
Seguin-Orlando, 2015 Homo, Bone, hair, skin, Methylated Binding Domains- Estimated regional methylation ~8,000 to 45,000
Mammuthus, skeletal muscle, based enrichment combined with levels

Ursus, and Equus heart, and liver DNA damage-based

Hanghgj et al.; 2016 Homo Bone, tooth,and DNA damage-based Methylome 1,400 to ~50,000
hair
Keller et al.; 2017 Homo Muscle tissue, RT-gPCR miRNA profiles 5,300

stomach mucosa,
and stomach

Smith et al.; 2019 Canis Liver RNA extraction adapted for Transcriptome (RNA) 12,000
ancient samples

Ancient bacterial communities can be reconstructed using amplicon sequenc-
ing and shotgun sequencing methods (Weyrich et al.; 2015; Warinner et al.; 2017).
Amplicon sequencing is cost-effective, but it can bias the bacterial abundance of the
ancient microbiome (Ziesemer et al.; 2015). This is mainly because aDNA are highly
degraded and fragmented, and taxa with short amplicon lengths tends to be over-
amplified (Ziesemer et al.; 2015). Shotgun sequencing obtains both the taxonomic
and functional information and can be used for the assembly of ancient bacterial
genomes, but it is relatively expensive (Adler et al.; 2013; Lloyd-Price et al.; 2017).
Two major concerns in the paleomicrobiome data analysis are contamination and
database bias (Warinner, Speller and Collins; 2015). Bioinformatically, contamina-
tion can be largely removed from animal paleogenomic data through filtering out
sequences that failed to map to the reference genome. Additionally, damage patterns
of the retained sequences—such as the increase of C-to-T and G-to-A substitutions
at the end of mapped sequencing reads—can further help for authentication of the
results (e.g., Figure 1.1). However, paleomicrobiome data cannot be mapped to
a single bacterial genome, thus removal of unmapped reads will not work. For the
same reason, damage patterns of the whole microbiome dataset cannot be generated.
An alternative is to check the damage pattern of individual bacterial genomes, but
it can only authenticate a small proportion of the dataset. Paleomicrobiome data

are also susceptible to database bias (Warinner, Speller and Collins; 2015). For
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example, MALT, a metagenomic data analysis pipeline, tends to assign conserved
sequences to well-studied organisms (Warinner, Speller and Collins; 2015; Herbig
et al.; 2016). Additionally, a large proportion of paleomicrobiome data cannot be
identified (Eisenhofer; 2018). This is probably partially because there is still a
large number of bacteria that remain unknown, and potentially large phylogenetic
distances between modern and ancient bacteria further reduce the power of identifi-
cation (e.g., using BLAST for the identification). This is an important reason why
the assembly of ancient bacteria genomes is crucial, as the newly assembled genomes
can be incorporated into mapping databases and can assist future identification of

closely related ancient bacteria.

Methylation patterns in DNA sequences, an epigenomic feature, participate in
the regulation of gene expression and many critical cellular processes (Jones; 2012).
Paleomethylomes have been reconstructed from the damage patterns of ancient
genomes (Gokhman et al.; 2014; Hanghgj et al.; 2016; Pedersen et al.; 2014). This
method uses the differential damage patterns of cytosines and methylated cytosines
to distinguish between the two. It performs well on ancient genomes with high cov-
erage but damage patterns are typically estimated over sliding windows, thus the
resolution of this approach is limited (Hanghgj et al.; 2016). Methylation patterns
at single-base resolution can be recovered using bisulfite conversion (Llamas et al.;
2012; Smith et al.; 2014a), but this experimental method performs poorly on de-
graded samples. Therefore, the application of bisulfite was restricted to the profiling

of the methylation of a few loci from well-preserved ancient samples.

Unlike genomic information that is similar across cells within an individual,
different types of tissues have different methylation patterns (Ziller et al.; 2013; Lokk
et al.; 2014). Methylome profiles also vary in regard to sex, age, and physiology of
the individual (Ziller et al.; 2013; Lokk et al.; 2014). In modern methylome studies,
such tissue- and individual-specificity can be accounted for by utilising replicates
(Bock 2012). However, using replicates is not applicable to paleomethylome studies
due to the opportunistic nature of sampling. Statistical methods can compensate
this issue to some degree (Wu et al.; 2015; Teschendorff and Relton; 2018), but
paleomethylome studies are still susceptible to bias caused by random variances.
Better databasing of tissue-, sex-, age-, and disease-specific methylation may help to
reduce such bias. Also, the function and phenotypic consequences of unique features
identified from paleomethylomes can be only inferred and need to be validated using

modern animal models.

RNA has been recovered from several ancient specimens (Fordyce et al.; 2013;
Keller et al.; 2017; Smith et al.; 2017). The majority of ancient RNA (aRNA)
was recovered from plant remains (Smith et al.; 2014b, 2017), but the recovery of

aRNA from ancient animal tissues has been recently reported (Keller et al.; 2017;
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Smith et al.; 2019). However, our current understanding of aRNA is very limited.
Nucleotide substitutions similar to aDNA have been observed in aRNA, but it is
not clear if it is sufficient for the authentication of the results (Smith et al.; 2019).
Analysis of ancient microRNA (miRNA; a miRNA is a small non-coding RNA that
regulates target transcripts), is very challenging, as the majority of aRNA have a
length <50 nt (e.g., (Smith et al.; 2019)), and the mappability of sequence with such
short length is very limited. Therefore, it is very difficult to determine if the obtained
aRNA is from ancient organisms or from the environment. Moreover, the abundance
of miRNA estimated using aRNA data is highly biased due to degradation and in

vitro amplification, and it might bias the inference of related gene expression levels.

1.3 Studying past animal adaptation from epige-

netic and microbiomic perspectives

Darwinian natural selection affects traits that are heritable and variable. Mendelian
inheritance and genetic variation addressed the theoretical and molecular bases for
the natural selection theory, resulting in the proposal of the Modern Synthesis
(Provine; 2001). However, even with the unprecedented ability to obtain genetic
information from various organisms, it is still difficult to underpin the genetic basis
of many adaptive traits (Ellegren and Sheldon; 2008; Mackay et al.; 2009). With
the increasing awareness that non-genetic information can have lasting and pro-
found influences on animal phenotypes (reviewed in Chapter 2), it is reasonable
to hypothesise that mechanisms beyond genetics play a role in animal adaption
(Danchin et al.; 2011; Laland et al.; 2014).

Adaptive evolutionary research faces several challenges (Merild and Hendry;
2014). Primarily, it is very difficult, if not impossible, to accurately infer the
past animal-environmental interactions using data from contemporary populations
(Merilda and Hendry; 2014). Directly generating data from experimental studies also
has limitations, as animal model analyses usually require long-term studies on a
small number of populations or are limited to small organisms with short genera-
tion time (Charmantier et al.; 2008; Mackay et al.; 2009). One possible alternative
is to use ancient DNA (aDNA) techniques to obtain desired information from an-
imals over evolutionary timescales (Hofreiter et al.; 2001). Using advanced aDNA
techniques, this thesis examined how epigenetic mechanisms and the microbiome
of bovid taxa has changed and potentially provided a non-genetic way to adapt to

changing environments over millennia.
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1.4 Bovid taxa used for case studies in the thesis

Two bovidae taxa, the Myotragus and bison (extant American bison, Bison bison,
and extinct steppe bison, Bison priscus), were used for case studies in this the-
sis. Muyotragus is an extinct dwarf fossil caprine that lived in the Balearic Islands
(Mediterranean Sea) from the Late Pleistocene to the Holocene (Figure 2) (Martinez,
Surinach et al. 1997). The ancestors of Myotragus are estimated to have arrived to
the islands circa five million years ago (Ramis and Bover; 2001). Since then, My-
otragus has evolved in this isolated environment until its human-caused extinction
around 4,300 years ago (Ramis and Bover; 2001). The fossil records (skeletal fossils
and coprolites) suggest many evolutionary features that were shaped by the insular
environment: morphologically, Myotragus had a small body size (dwarfism) with
strong limb bones; behaviourally, they seemed to be able to exploit all available
plant food on the islands, including Buzus balearica, a plant that is toxic to rumi-
nants (Alcover et al.; 1999; Kohler and Moya-Sola; 2004; Ata and Andersh; 2008;
Bover et al.; 2014). As the gut microbiome play important roles in food digestion
and resilience to harmful dietary components (Huttenhower et al.; 2012; Kohl et al.;
2014), we hypothesised that the gut microbiome assisted Myotragus to adapt to its
toxic diet.

The Late Pleistocene (110 to 11.65 thousand years ago—kya) was characterised
by a series of climate fluctuations (Cooper et al.; 2015) and is associated to the
mass extinction of many megafauna species. However, steppe bison were part of the
few survivors who made it into the Holocene (last 11,000 years) and they are now
identified as American bison (Cooper et al.; 2015). The morphological classification
of the extinct steppe bison into tens of species based on their fossil record is poorly-
supported by genetic evidence (Shapiro and Hofreiter; 2014; Soubrier et al.; 2016).
Non-genetic mechanisms like epigenetics possibly played a role in the past bison
morphological diversity. Therefore, we reconstructed a methylome history of bison
and explored the possible role of methylome in their adaptation to climate changes.
We also explored the possibility to obtain oral microbiome information from ancient
bison teeth.

1.5 Thesis overview

The thesis consists of one review chapter (Chapter 2) and four research chapters
(Chapter 3-6). Chapter 3 and 5 investigated how the microbiome and methylome
assisted the adaptation of the two bovid taxa. Chapter 4 and 6 explored the possibil-
ity to extend the scopes of current paleomicrobiology and paleoepigenetics research

using laboratory methods optimised for highly degraded samples.
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Figure 1.2: Bovid taxa used for case studies in the thesis (left: the reconstructed
Myotragus (Lalueza-Fox et al.; 2002); right: bison (Dykinga; 2018))

Chapter 2: More arrows in the ancient DNA quiver: use of paleoepigenomes
and paleomicrobiomes to investigate animal adaptation to environment

This chapter reviewed the existing evidence indicating that non-genetic mech-
anisms can play a role in animal adaptation. Epigenetics and microbiome are dy-
namically shaped by the environment and can lead to phenotypic variation, thereby
affecting animal fitness. A proportion of the epigenetics and microbiome alterations
can be maintained over multiple generations. In this chapter, we underscored the
feasibility of using aDNA techniques to reconstruct a history of epigenetics and mi-
crobiome of various animal species over evolutionary timescales, thus providing new
insights into the animal adaption.

Chapter 3: Ancient DNA analysis of coprolites reveals the role of gut microbiota
in mammal adaptation to environment

This chapter is a case study that investigated whether and how the gut micro-
biome assisted an extinct cave goat (M. balearicus) to adapt to a diet containing the
toxic plant Buzus balearica. Robust ancient gut microbiome results were retrieved
from coprolites, and taxonomical and functional analyses revealed a detoxification
role of the Myotragus gut microbiome. These results suggest that Myotragus har-
boured a unique gut microbial community, which likely played a key role in their
adaptation to a toxic diet.

Chapter 4: Recovery of oral microbiome signal from ancient bison teeth

This chapter explored the possibility to recover oral microbiome information by
utilising cementum and a dental “plaque-like” structure from bison teeth. Although
a large proportion of the obtained DNA originated from the environment, DNA of
oral, mucosal, and ruminal microorganisms was successfully obtained from ancient
and modern bison specimens. This chapter demonstrates that ancient teeth can

serve as a promising proxy to recover oral microorganisms and host information
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from ancient animals.

Chapter 5: Reconstruction of a bison methylome history over the past 50,000
years

This chapter optimised a DNA sequencing library method (the hairpin method)
for the retrieval of high-quality methylome data from highly degraded DNA sam-
ples. Using the hairpin method, 11 ancient bison and 14 modern bison methylomes
with single-base resolution were reconstructed. The robustness of this method was
verified, and tissue-specificity was observed in ancient methylomes. Through recon-
struction of the bison methylome history over 50,000 years, we were able to identify
potential methylation hotspots responding to mammal-environment interactions.
This chapter shows the strengths and the great potential of the hairpin method in
revealing novel dynamics in mammal methylome history.

Chapter 6: Recovery of ancient RNA from a 30, 000-year-old bison bone

This chapter applied an optimised RNA extraction protocol to a 30,000-year-old
bison bone and aRNA was successfully obtained. We evaluated potential contami-
nation by co-extracted DNA and the necessity of an RNA molecule end repair step
for sequencing library construction. This study highlights the feasibility of recov-
ering aRNA from sub-fossil bones—which represent most of the animal sub-fossil

record—and the necessity for a better understanding of aRNA properties.
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The Role of Epigenetics and Microbiome in Bovid Adaptation

Abstract

Whether and how epigenome mechanisms and the microbiome play a role in mam-
malian adaptation raised considerable attention and controversy, mainly because
they have the potential to add new insights into the Modern Synthesis. Recent
attempts to reconcile neo-Darwinism and neo-Lamarckism in a unified theory of
molecular evolution give epigenetic mechanisms and microbiome a prominent role.
However, supporting empirical data is still largely missing. Because experimen