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A B S T R A C T

Understanding how microbial communities change with environmental degradation and restoration may offer
new insights into the understudied ecology that connects humans, microbiota, and the natural world.
Immunomodulatory microbial diversity and ‘Old Friends’ are thought to be supplemented from biodiverse
natural environments, yet deficient in anthropogenically disturbed or degraded environments. However, few
studies have compared the microbiomes of natural vs. human-altered environments and there is little knowledge
of which microbial taxa are representative of ecological restoration—i.e. the assisted recovery of degraded
ecosystems typically towards a more natural, biodiverse state. Here we use novel bootstrap-style resampling of
site-level soil bacterial 16S rRNA gene environmental DNA data to identify genus-level indicators of restoration
from a 10-year grassy eucalypt woodland restoration chronosequence at Mt Bold, South Australia. We found two
key indicator groups emerged: ‘opportunistic taxa’ that decreased in relative abundance with restoration and
more stable and specialist, ‘niche-adapted taxa’ that increased. We validated these results, finding seven of the
top ten opportunists and eight of the top ten niche-adapted taxa displayed consistent differential abundance
patterns between human-altered vs. natural samples elsewhere across Australia. Extending this, we propose a
two-dimensional mapping for ecosystem condition based on the proportions of these divergent indicator groups.
We also show that restoring a more biodiverse ecosystem at Mt Bold has increased the potentially immune-
boosting environmental microbial diversity. Furthermore, environmental opportunists including the pathogen-
containing genera Bacillus, Clostridium, Enterobacter, Legionella and Pseudomonas associated with disturbed
ecosystems. Our approach is generalizable with potential to inform DNA-based methods for ecosystem assess-
ment and help target environmental interventions that may promote microbiota-mediated human health gains.

1. Introduction

People are losing contact with nature due to rapid urbanization
(Rydin et al., 2012), biodiversity loss (Mace et al., 2018), and en-
vironmental degradation (Navarro et al., 2017). At the same time, rates
of immune-related disease are increasing (von Hertzen et al., 2011).
Many immunologists and medical researchers now believe these trends
are linked (WHO and SCBD, 2015). Microbial diversity and perhaps key
species (microbial ‘Old Friends’) from biodiverse and natural environ-
ments are thought to play a critical beneficial role in the development
and maintenance of human immune fitness (Rook, 2013; von Hertzen
et al., 2011). Environmental microbiota might supplement our own

protective human microbiota (e.g. in the skin, airway, gut), participate
in immune signalling (triggering defence or tolerance responses), and
help build immune memory (Flandroy et al., 2018; Rook, 2013). These
interactions underpin many aspects of our health, and can help regulate
both infectious and non-infectious disease (Ichinohe et al., 2011;
Ottman et al., 2018; Stein et al., 2016).
Meanwhile, human societies unwittingly affect landscape-scale

drivers of environmental microbiota. For example, land use and man-
agement, biomass production, plant species and diversity, and soil
quality each contribute to the development of characteristic plant and
soil microbiota (Bulgarelli et al., 2013; Delgado-Baquerizo et al., 2017;
Delgado-Baquerizo et al., 2018; Gellie et al., 2017a; Turner et al.,
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2013). Differing land use and management can also contribute distinct
microbial signatures to airborne microbiota (i.e. aerobiology) dispersed
among exposed neighbouring human populations (Bowers et al., 2013;
Bowers et al., 2011; Mhuireach et al., 2016). With estimates of up to
47% of the global ice-free land area considered degraded and up to 76%
impacted by human activities (Navarro et al., 2017), there is con-
siderable scope for the anthropogenic modification of environmental
microbiota to represent a potentially important but largely un-
appreciated feedback mechanism, linking ecosystems and human
health. Equally, restoring biodiverse ecosystems where people live may
offer promise to improve immune fitness and human health (Mills et al.,
2017; Robinson et al., 2018). Ecological restoration—i.e. the assisted
recovery of an ecosystem towards an ecological reference state (SER
International Science and Policy Working Group, 2004)—also has key
objectives to support native biodiversity, ecosystem functions, genetic
resources, resilience against environmental stressors, productive po-
tential and sustainable use.
However, large knowledge gaps remain concerning the im-

munomodulatory potential of environmental microbiomes. There are
few studies that compare the microbiomes (i.e. genetic material of
microbiota) of natural vs. human-altered outdoor environments from a
human health perspective. Microbiomes of indoor only environments
have received greater attention (Gilbert and Stephens, 2018). Suspected
Old Friends include environmental microorganisms that we have co-
evolved with, and for which we needed to develop tolerance (e.g. Sal-
monella, helminths, Mycobacterium vaccae; Rook, 2012). However the
membership and modes of action of microbial Old Friends remain lar-
gely unknown (Rook, 2013), in part due to the uncharacterized ‘mi-
crobial dark matter’ that dominates environmental microbiomes (Lloyd
et al., 2018). We do not yet know if it is microbial diversity alone,
microbial diversity with Old Friends, or possibly some other functional
component(s) of environmental microbiomes that may provide pro-
tective immune-training or other physiological benefits. However, if we
can identify indicator taxa for natural and biodiverse environments,
these might represent possible new candidate taxa to investigate further
for immunomodulatory potential and to otherwise help inform the as-
sessment, design and restoration of new nature-based public health
interventions.
To progress, there is a need to build the knowledge base of micro-

biomes that associate with different environment types. Soil environ-
mental DNA (eDNA) may provide a useful medium for tracking changes
in ecosystem condition (Gellie et al., 2017a; Yan et al., 2018) because
soils can retain a biological imprint from recent land use and man-
agement (Janzen, 2016). With the reducing costs of DNA sequencing
technology, soil bacterial 16S rRNA marker gene survey data are in-
creasingly used to help characterize soil microbiota. Also, soil-asso-
ciated microbes often represent a significant component of the aero-
biology derived from environments (Polymenakou, 2012), which
provides ambient biological connectivity to exposed human popula-
tions. Soils have also been highlighted elsewhere due to their often high
microbial diversity and immunomodulatory potential (Liddicoat et al.,
2018; von Hertzen and Haahtela, 2006).
The task of exploring potential human exposures to microbiota from

different characteristic environments suggests the need for microbiota
profiling methods that reflect a human-scale or site-level exposure. To
estimate the potential accumulative human-microbial exposure from
environmental samples alone, without human test subjects, it may be
necessary to consider multiple samples for each site. Such an approach
would provide a broader picture of the microbial diversity, composi-
tion, and key taxa within each particular environment type. For ex-
ample, we might expect the overall alpha diversity of microbiota en-
countered by a person interacting with a biodiverse site (represented by
a number of samples) to be greater than the maximum alpha diversity
of individual microbiota samples considered in isolation, due to natural
heterogeneity and particular taxa not occurring everywhere. However,
customary approaches to microbiome data analysis contain unexplored

uncertainty and have potential to overlook less abundant taxa. It is
common to rarefy marker gene survey data to a minimum sequence
read depth in order to normalize sampling effort (Weiss et al., 2017),
however this approach has been criticized for discarding valuable in-
formation about microbial communities (McMurdie and Holmes, 2014).
These issues point to the opportunity for employing general purpose
bootstrap resampling techniques on merged samples from across a site,
combined with rarefying to normalize sampling effort, as a means to
preserve survey data and obtain a deeper understanding of site-level
(multiple sample) microbiota characteristics. Through bootstrap-style
resampling we can also better understand the uncertainty or distribu-
tion of equally likely outcomes for the analyses undertaken.
Here we sought to answer the following research questions: (1) Can

we employ innovative bootstrap-style resampling methods for site-level
analysis of microbiome survey data to improve understanding of dif-
ferent environment types, potential human-environmental microbiome
exposures, and their uncertainty? (2) What are the key bacterial genera
(i.e. indicator taxa) that show directional trends where restoration has
been undertaken, and are there generalizable patterns in contrasting
human-altered vs. natural land uses at a continental scale? (3) Are there
trends in human-associated genera (e.g. commensals, potential patho-
gens, potential Old Friends) with restoration? Our findings highlight
characteristics of the trending microbial taxa from a localized restora-
tion study site that display generalizability to microbiota changes be-
tween human-altered and natural samples elsewhere across Australia.

2. Methods

2.1. Overview

We first consider existing soil microbiome data from a historic
chronosequence of restoration of a Eucalyptus leucoxylon-dominated
grassy woodland vegetation community at Mt Bold, South Australia
(Gellie et al., 2017a, 2017b, 2017c). Grassy woodland communities
typically comprise groundcover of grasses, herbs and shrubs between
scattered medium to large trees. Bacterial 16S rRNA marker gene
survey data from sites spanning a gradient from cleared land, various
revegetation ages (6, 7, 8, 10 years), and three reference patches of
native vegetation (Remnants A, B, C) provide a rare dataset to in-
vestigate microbial signatures of ecological restoration. We extend the
broad community and phylum-level trends described in Gellie et al.
(2017a) (Web Appendix, Figs. S1–S2) to highlight genus-level in-
dicators. To identify key trending taxa with restoration, and their un-
certainty, we propose an innovative merged-sample bootstrap resampling
framework (described below) based on triplicate 16S microbiome
samples that characterize each site, as an alternative to conventional
one-off rarefying of individual samples. We then looked for support for
the generalizability of patterns identified from Mt Bold within publicly-
available Australia-wide soil microbiome data from the Biomes of
Australian Soil Environments (BASE) dataset (https://data.
bioplatforms.com/organization/bpa-base; Bissett et al., 2016).

2.2. Study data

Methods for sample collection, soil chemical and physical analysis,
eDNA extraction, sequencing of the bacterial 16S rRNA gene, and
bioinformatic analyses to derive operational taxonomic unit (OTU)
abundance tables and taxonomic classifications are described in Gellie
et al. (2017a) and Bissett et al. (2016). Briefly, OTUs were based on
clustered sequences of ≥97% similarity and derived separately for the
Mt Bold and BASE datasets. In both cases, open reference OTU picking
and sequence abundance assignment workflows were used, with tax-
onomy mapped to the Greengenes (13–5) reference database, as de-
scribed in Bissett et al. (2016).
From Mt Bold, we used the three replicates of 16S data collected for

each restoration treatment (or sample type). We focussed our analyses
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on surface soil (0–10 cm; n= 24), although subsurface (20–30 cm;
n=24) data are also included in Web Appendix plots (described later)
to provide confidence in our observed trends. From BASE, after ex-
cluding the Mt Bold samples, we included surface soil 16S data using
the following selection steps. We excluded BASE data from off-shore
islands and external territories, and filtered samples with extreme,
outlying soil conditions to avoid undue influence from data associated
with atypical and limiting conditions for soil biology. Specifically, we
excluded samples that were strongly acid (pHH2O < 4.5), strongly al-
kaline (pHH2O > 9), saline (electrical conductivity> 2 dS/m), and
very high clay content (> 50%). From available 16S data, we assigned
samples with the following land uses to classes of either ‘natural’ (in-
cluding national park, nature conservation, strict nature reserves,
wilderness area), or ‘human-altered’ (including cereals–wheat, cotton,
irrigated seasonal horticulture, pasture legume/grass mixtures, re-
habilitation – i.e. once degraded land that is being restored towards a
reference state, sown grasses, sugar, tree fruits–apple). These assign-
ments were guided by interpreting Australian land use classification
guidelines (ABARES, 2016). Due to ambiguity, we excluded land uses of
grazing native vegetation, native/exotic pasture mosaic, natural feature
protection, other conserved area, protected landscape, reserve, and
residual native cover. Lastly, we did not wish to compare human-al-
tered and natural samples separated by large geographic distances, so
we used nearest neighbour calculations based on latitude and longitude
to exclude samples with>5 degrees of geographic separation from
their nearest complementary sample type (i.e. each natural sample is
≤5 degrees from a human-altered sample, and vice versa), to arrive at
the final human-altered (n=78) and natural (n= 139) samples (lo-
cations shown in Web Appendix, Fig. S3). The nearest neighbour fil-
tering eliminated the sample type of wilderness area.
Within the respective Mt Bold and Australia-wide BASE microbiome

data we only used taxa assigned as Bacteria, and excluded all taxa as-
signed as chloroplast or mitochondria and any taxa not assigned at the
bacterial phylum level. The two datasets were filtered separately to
remove taxa with< 100 sequence reads across all samples (Gellie et al.,
2017a), or that did not occur in at least two samples.

2.3. Data analysis

We used R software (R Core Team, 2018) for the majority of ana-
lyses, with purpose-built scripts (see Web Appendix) employing the
microbiome data analysis framework of the R phyloseq package
(McMurdie and Holmes, 2013). Phyloseq uses microbiome data objects
that facilitate linked analysis of OTU abundance, taxonomy and sample
contextual data. As described below, we used both rarefied and non-
rarefied OTU abundance data, reflecting different input and sample
normalization requirements for particular analyses. Briefly, rarefied
OTU abundance data were used in visualising beta diversity and per-
mutational multivariate analysis of variance (PERMANOVA; Anderson,
2017) testing of differences in microbiota groups, while non-rarefied
OTU abundances were used when comparing OTU relative abundance
(%) data and for differential abundance testing using the R DESeq2
package (Love et al., 2014). We implemented the new merged-sample
bootstrap resampling (described below) to examine mean responses and
uncertainty in OTU- and functional-alpha diversity, and associations
between OTU relative abundance and restoration at Mt Bold. We vi-
sualized the sequence depth of samples using rarefaction curves (Web
Appendix, Fig. S4). OTU alpha diversity in each sample was estimated
using the exponential transform of Shannon Index values to derive the
effective number of OTUs (Jost, 2006). We visualized differences be-
tween sample microbiota (beta diversity) using non-metric multi-
dimensional scaling (NMDS) ordination of Bray-Curtis distances based
on rarefied OTU abundances, at the minimum sequence read depth of
the samples concerned. PERMANOVA was used to examine the statis-
tical significance of compositional differences between rarefied OTU
abundances of sample groups, implemented using the adonis() function,

followed by the betadisper() function to test for homogeneity of group
dispersions, where both functions are from the R vegan package
(Oksanen et al., 2018). Distance-based redundancy analysis was used in
preliminary exploration of relationships between microbiota and soil
conditions at Mt Bold. Further analyses are described in more detail
below.

2.4. Merged-sample bootstrap resampling

To preserve microbiome survey data while examining site-level (i.e.
multiple sample) characteristics and their uncertainty, we implemented
the following resampling framework (also see Fig. 1):

1. Prepare OTU abundance data in non-rarefied form with varying
sequence depths across multiple sites. Here the full OTU table is
expressed in a single phyloseq microbiome data object with the
multiple samples per site given a respective site label in the phyloseq
sample contextual data table. In our case, the Mt Bold data have
triplicate samples at each site (i.e. treatment or sample type).

2. Set seed for pseudo-random number generator.
3. Rarefy all samples to an even sampling depth; equal to the minimum
sequence depth across all samples, using sampling with replace-
ment.

4. With the rarefied data from step 3, merge samples (i.e. group by site
label) and sum taxa counts by site. Transfer results to a new site-
level phyloseq microbiome data object.

5. Set seed for pseudo-random number generator.
6. Rarefy the merged data from step 4 to an even sampling depth, using
the same minimum sequence depth value from step 3, again using
sampling with replacement.

7. Evaluate the measure of interest based on the merged and rarefied
site-level data from step 6 (e.g. alpha diversity, evaluate taxa re-
lative abundance and correlation with revegetation age) and store
results as an element of an output list.

8. Repeat steps 2 to 7, up to the number of predefined iterations (e.g.
B=100).

Sampling with replacement was chosen for consistency with general
purpose bootstrap methods, and particularly in step 3 to avoid gen-
erating repeated data for the sample with the minimum sequence size.
We did, however, trial combinations of sampling with- and without-
replacement and achieved similar results (Web Appendix, Fig. S5). We
note that two rounds of rarefying (as above) achieved normalization of
sampling effort that contributes to site-level data and enables the
merged-sample bootstrap density distributions (for equally likely site-
level outcomes) to be plotted on the same scale as data derived from
one-off rarefied samples.

2.5. Assessing trends: Mt Bold restoration

We examined trends in taxa relative abundance with restoration by
considering metrics for effect size and significance. In a strict sense, the
restoration chronosequence represents an ordinal independent variable.
Using ordinal regression analysis of variance (AOV) (Gertheiss, 2015)
for each taxon, we tested the null hypothesis of no ordinal trend by
revegetation age, assuming ordinal values (cleared=1; 6 years= 2;
7 years= 3; 8 years= 4; 10 years= 5; Remnants A, B, C=6). How-
ever, treating the data in this way does not provide information on
effect size. So, we assessed effect size or strength of relationship
(Shinichi and Innes, 2007) by assuming pseudo-continuous values for
the missing revegetation ages (cleared=0 years; Remnants A, B,
C=20 years) to calculate the Pearson correlation coefficient with each
distribution of taxon relative abundance. These metrics were calculated
using the merged-sample bootstrap resampling framework, as above. The
top trending taxa were identified based on the magnitude and sign
(positive= increasing, negative= decreasing) of the mean correlation
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coefficient of taxon OTU relative abundance with revegetation age from
the merged-sample bootstrap results.
To minimize spurious results, taxa were excluded if they did not

appear in at least 30% of the resamples, or if they were not represented
across at least three different sample types. Significant P-values from
the ordinal regression AOV were adjusted using the Benjamini-
Hochberg method to control for false discovery rate at an alpha level of
0.05. For the trend analyses, we focussed on genera, except for un-
classified genera which were aggregated to the next available classified
taxonomic group. We also defined taxa that were missing in cleared or
remnant samples using a threshold of 95% absence from the merged-

sample bootstrap results. We tested for differences in the distribution of
OTU alpha diversity, derived from merged-sample bootstrap resampling,
among Mt Bold samples grouped by revegetation age using the 95%
confidence interval (CI) for the mean difference between groups, based
on the bootstrap results.

2.6. Analysing community shifts: Mt Bold vs. Australia-wide

DESeq2 differential abundance testing was used to estimate fold
changes in OTU abundance between the Australia-wide human-altered
and natural groups. The DESeq2 algorithm internally adjusts for testing

1. Prepare OTU abundance 
data in non-rarefied form. 
Replicate samples are 
annotated to facilitate 
merging of groups, as 
below, e.g. samples X1, X2, 
X3 are from site X.

OTU1 OTU2 OTU3 …
X1
X2
X3
Y1
Y2
Y3
…

OTU1 OTU2 OTU3 …
X

Y

…

For b = 1 to B

3. Rarefy to minimum 
sequence depth (Dmin), 
sampling with replacement.

2. Set seed for pseudo-random 
number generator.

5. Set seed for pseudo-random 
number generator.

OTU1 OTU2 OTU3 …
X1
X2
X3
Y1
Y2
Y3
…

4. Merge samples (i.e. sum 
taxa) belonging to the same 
group, e.g. replicates for 
site X, site Y, etc.

OTU1 OTU2 OTU3 …
X

Y

…

6. Rarefy again to minimum 
sequence depth (Dmin), 
sampling with replacement.

7. Evaluate measure of interest (e.g. 
alpha diversity) and save results.

8.
R

ep
ea

t
.001

=
B

ot
pu.g.e,spets

Analyze overall results

Merged-sample bootstrap resampling

Fig. 1. Flowchart of the merged-sample bootstrap resampling framework.
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multiple hypotheses by applying the Benjamini-Hochberg method to
control for false discoveries. To test whether microbiota shifts observed
at Mt Bold might be generalizable, we examined the increasing and
decreasing taxa most correlated with restoration to see if similar pat-
terns of differential abundance were found across the Australia-wide
samples. We plotted correlation with revegetation age against the log2-
fold-change results from differential abundance testing and highlighted
two quadrants where similar patterns were evident. In the first quad-
rant, defined by a positive correlation with revegetation age and posi-
tive log2-fold-change between human-altered and natural groups, taxa
are associated with a shift towards more natural or restored ecosystems.
Conversely, in the second quadrant (negative correlation and negative
log2-fold-change), taxa are associated with more altered or unnatural
ecosystems. Plots of taxa correlation with revegetation age (Mt Bold)
against log2-fold-change from human-altered to natural for Australia-
wide data were developed for the top-trending taxa identified from Mt
Bold and for selected human-associated bacterial genera identified in
the literature (Baumgardner, 2012; Berg et al., 2005; Bultman et al.,
2013; Jeffery and van der Putten, 2011).
To further validate results for the top-trending taxa from Mt Bold in

the Australia-wide samples, we compared taxon relative abundances
between human-altered and natural samples and performed one-sided
Wilcoxon rank-sum tests to detect significant differences between the
groups in the direction predicted by the respective trend seen at Mt
Bold.

2.7. Functional assignments and case study comparisons

To explore functional similarities and differences between sample
types we used PICRUSt v1.1.1, which infers functional gene abundance
from 16S data (Langille et al., 2013), as implemented in the R theme-
tagenomics package (https://github.com/eesi/themetagenomics;
Woloszynek et al., 2017). Greengenes sequence identifiers were needed
to make PICRUSt functional assignments, so we used VSEARCH (Rognes
et al., 2016) to seek matches for our study OTUs (represented by fasta-
format sequences) with the closest available Greengenes (13–5) fasta
sequences (see Web Appendix, Methods S1). Greengenes sequences
were substituted for study OTUs for use in PICRUSt only where ≥97%
sequence similarity was achieved and where the Nearest Sequenced
Taxon Index (NSTI) was ≤0.15. Beyond this NSTI threshold, PICRUSt
user documentation suggests functional predictions will be of low
quality (http://picrust.github.io/picrust/tutorials/quality_control.
html). We recorded the loss of functional representation for our study
OTUs where they could not be aligned to representative Greengenes
sequences, and then where function could not be reliably inferred due
to large phylogenetic distance (NSTI> 0.15) between representative
sequences and available functionally described sequences in the PI-
CRUSt reference genome database. When using PICRUSt we followed
the developers' recommendation to employ 16S copy number correc-
tion, which aims to account for different gene copy numbers in different
organisms. We expressed functional data using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) orthology option in PICRUSt. KEGG
orthologous gene data, or orthologs, refer to equivalent genes and gene
products (e.g. RNA and proteins) that arise in different organisms, and
are organized under categories including: metabolism, genetic in-
formation processing, environmental information processing, cellular
processes and human diseases (Kanehisa et al., 2012).
For comparison to the Mt Bold sites that are each represented by

triplicate samples, functional data were prepared for three randomly
selected samples from all the Australia-wide natural and human-altered
sites that contained at least three samples. Functional alpha diversity
was estimated using both merged-sample bootstrap resampling and in-
dividual rarefied sample data (based on the minimum sequence depth
across Mt Bold and Australia-wide samples). We also visualized bac-
terial functional profiles corresponding to rarefied OTU abundance data
using a heat map. Additional subsamples, representing the top 30

increasing taxa (isolated from the 10 year samples), and the top 30
decreasing taxa (isolated from the cleared samples) were included to
characterize functional trends associated with the Mt Bold restoration.
KEGG function relative abundance data from the three representative
samples per site for all Mt Bold and Australia-wide samples were
averaged to indicate site-level functional profiles. Lastly, for display in
the functional heat map, we ran row (i.e. sample-wise) and column (i.e.
function-wise) normalization by subtracting the mean from the ob-
served values and then dividing by the standard deviation.

3. Results

3.1. Shifting soil microbiota with restoration vs. Australia-wide patterns

Soil bacterial communities from the Mt Bold restoration chronose-
quence displayed compositional shifts that were consistent with a
transition between the broader groups of human-altered and natural
microbiota from elsewhere in Australia (Fig. 2). The Australia-wide,
human-altered and natural rarefied OTU abundance data (sequence
depth 6377) showed significantly different compositional centroids
(PERMANOVA based on the Bray-Curtis distance matrix: F=22.7,
P=0.001), not due to differences in beta dispersions of the two groups
(F=3.7, P=0.062).
We identified key trending taxa including bacterial genera and un-

classified groups associated with restoration at Mt Bold (Web Appendix,
Fig. S6, Table S1). To provide visual confirmation of trending taxa
identified using the merged-sample bootstrap resampling framework and
to compare with conventional rarefied data, we plotted OTU relative
abundance against revegetation age for the top 10 increasing and top
10 decreasing taxa associated with restoration at Mt Bold (Web
Appendix, Figs. S8–S9). We did not observe patterns that might indicate
undue bias from soil conditions on restoration treatments or micro-
biome samples at Mt Bold (Web Appendix, Fig. S10). Eight out of the
top 10 increasing taxa associated with restoration at Mt Bold (com-
prising DA101, Candidatus Xiphinematobacter, Bradyrhizobium,
Candidatus Solibacter, Candidatus Koribacter, unclassified (family:
Rhodospirillaceae), Rhodopila, and unclassified (family:
[Leptospirillaceae])), and seven out of the top 10 decreasing taxa
(comprising Bacillus, unclassified (order: Ellin5290), Sporosarcina, un-
classified (family: Ellin5301), Ammoniphilus, Flavisolibacter, unclassified
(class: C0119)), showed consistent trends when comparing OTU dif-
ferential abundance from the human-altered to natural samples else-
where in Australia (Table 1; Web Appendix, Figs. S11–S12). The Aus-
tralia-wide human-altered and natural samples separate into two
distinguishable clusters when mapped in two dimensions corresponding
to the cumulative OTU relative abundance of the top 10 increasing and
top 10 decreasing taxa that trend with restoration at Mt Bold (Fig. 3;
PERMANOVA on Euclidean distances: F=119.33, P=0.001; although
dispersions of the two groups were different: F=9.14, P=0.003).
Eight taxa were missing from cleared samples, increased in OTU re-
lative abundance with restoration, and were found in remnants (Web
Appendix, Table S2); while 14 taxa were found in cleared samples,
decreased with restoration, and were missing in remnants at Mt Bold
(Web Appendix, Table S3).
A range of taxa displayed outlying differential abundance in the

Australia-wide human-altered vs. natural samples (Web Appendix, Figs.
S13–S14; the top 30 increasing and top 30 decreasing taxa based on
fold change between human-altered to natural samples are listed in
Web Appendix, Table S4). However, the top-trending taxa with re-
storation at Mt Bold show consistent differential abundance patterns in
the Australia-wide data (Web Appendix, Fig. S13, Fig. S15). This as-
sociation is strongest for the top few taxa most correlated with re-
vegetation age at Mt Bold, and declined as more taxa were considered
(Web Appendix, Fig. S15).
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3.2. Patterns in human-associated bacteria

Human-associated genera that increased with restoration at Mt Bold
and had higher differential abundance in natural samples included
Actinomadura, Burkholderia, and Mycobacterium. Genera that decreased
with restoration and had higher differential abundance in human-al-
tered samples included Achromobacter, Bacillus, Bacteroides,
Chryseobacterium, Clostridium, Enterobacter, Flavobacterium, Legionella,
Pseudomonas, Rhodococcus, Sphingobacterium and Streptomyces (Fig. 4;
Web Appendix, Table S5, Figs. S16–S17).

3.3. Alpha diversity, functional diversity, and functional clustering

There was no apparent trend in OTU alpha diversity with restora-
tion at Mt Bold when only considering the rarefied OTU abundance
data. However, a different signal emerged when using site-level density
distributions from the merged-sample bootstrap results (Web Appendix,
Fig. S18a). We observed a significant rising trend in OTU alpha di-
versity with restoration at Mt Bold as determined from 95% CIs of
differences between mean bootstrap results across groupings of re-
vegetation age (Fig. 5). Estimated functional alpha diversity was,
however, highest for cleared samples and remained steady or declined
with revegetation age, although only 20–30% of OTUs were re-
presented when inferring functions (Web Appendix, Fig. S18b–c). We
observed no apparent trends in either OTU alpha diversity or functional
alpha diversity for the Australia-wide human-altered vs. natural case
study samples considering both rarefied OTU abundance data and the
merged-sample bootstrap density plots (Web Appendix, Fig. S19); nor was
there any relationship apparent between OTU alpha diversity and
functional alpha diversity in the Australia-wide data. Only 10–30% of
OTUs were represented when inferring functions (Web Appendix, Fig.
S19c).
Functional profiles for the top 30 increasing taxa with restoration at

Mt Bold clustered together with the majority of other Mt Bold samples,
except for the cleared samples whose mean functional profile was most
different to the other samples considered (Fig. 6). The top 30 decreasing

taxa with restoration at Mt Bold clustered with human-altered samples
from annual croplands of cotton, sugar and wheat; although this cluster
also contained samples from two national parks. The majority of four
national parks clustered together with human-altered samples from
perennial land uses including horticulture (apples) and pastures.

4. Discussion

4.1. Bacterial indicators of restoration

Our results broadly indicate a core microbiome that shifts with
ecological restoration. We demonstrate support for the relative abun-
dance patterns in the majority of top 10 increasing and top 10 de-
creasing, and human-associated taxa identified from Mt Bold, by
showing consistent differential abundance patterns within human-al-
tered and natural sites across Australia. We might expect restoration to
bring increased stability, perenniality and diversity of aboveground
plants, and increased rhizosphere interactions involving different plant
species and combinations of root exudates. Soils under restoration
would also accumulate organic matter including plant debris and fungal
hyphae networks due to reduced disturbance. With increasing com-
plexity and stability of microbial habitats and feedstocks (Adams and
Wall, 2000), it is unsurprising that soil microbiota would shift, in
comparison to highly disturbed or regularly cleared land. In disturbed
environments, where microbial habitats and feedstocks may undergo
large fluctuations and possibly collapse, there is potential for fast-
growing, adaptable environmental opportunists to thrive as vacant
ecological niches arise. Broad shifts in soil microbiota composition with
restoration have been previously identified (Gellie et al., 2017a),
however, here we reveal in fine taxonomic resolution the key genera
that are increasing and decreasing in these shifting communities.
The eight taxa we observed from the top 10 increasing with re-

storation at Mt Bold, that also showed higher differential abundance in
natural samples Australia-wide, include K-selected organisms asso-
ciated with stable, late-successional ecosystems (MacArthur and
Wilson, 1967) and organisms with particular resource requirements.

Fig. 2. Surface soil bacterial communities from the
Mt Bold restoration chronosequence (large filled
circles of red, greens, and blues; n= 24) traverse the
broader groupings of natural (cyan, n= 139) and
human-altered (pale red, n= 78) bacterial commu-
nities from elsewhere in Australia, as stylized in the
inset. Microbiota visualization is based on rarefied
(sequence depth= 6377) bacterial 16S OTU abun-
dance of taxa aggregated at the genus or next
available classified level, using NMDS ordination of
Bray-Curtis distances. (For interpretation of the re-
ferences to color in this figure legend, the reader is
referred to the web version of this article.)
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DA101 is one of the most abundant bacteria found in soil, particularly
in grasslands (Brewer et al., 2016). Candidatus Xiphinematobacter spe-
cies are maternally-transmitted endosymbionts of Xiphinema amer-
icanum-group nematodes, which have cosmopolitan distribution
(Archidona-Yuste et al., 2016) and field data suggest these nematodes
are K-selected organisms with a long lifespan and low reproduction rate
(Jaffee et al., 1987). Bradyrhizobium is another ubiquitous and abun-
dant genus of bacteria that dominates forest soils (VanInsberghe et al.,
2015) and tends not to overlap where DA101 dominates (Brewer et al.,
2016). Genomic investigation of Candidatus Solibacter and Candidatus
Koribacter suggest that these organisms are able to decompose complex
substrates such as plant litter in soils and are slow-growing with a K-
selected lifestyle (Ward et al., 2009). The family Rhodospirillaceae
contains genera mostly with a preferred photoheterotrophic growth
mode under anoxic conditions in light, or they grow chemotrophically
in the dark (Garrity et al., 2005). Rhodopila is an acid-loving member of
the Rhodospirillaceae family. Photoheterotrophs cannot use carbon di-
oxide as their sole carbon source, so they also use organic compounds
from the environment. The character of unclassified taxa from the fa-
mily Leptospirillaceae is uncertain; this family appears to be renamed as
Nitrospiraceae, and contains iron-oxidising Leptospirillum (Hippe, 2000)
and nitrate-oxidising Nitrospira (Watson et al., 1986).
The seven taxa from the top 10 decreasing with restoration at Mt

Bold, that also showed higher differential abundance in human-altered
samples Australia-wide, include fast-growing and opportunistic species.
Bacillus species are ubiquitous in nature, are often fast-growing, live in
aerobic or anaerobic conditions, and are capable of forming resistant
endospores to survive stressful environmental conditions for long per-
iods of time. They include medically significant B. anthracis (anthrax)
and B. cereus associated with food spoilage and poisoning, as well as
many normally harmless species. Unclassified taxa in the order

Fig. 3. Two-dimensional mapping of ecosystem condition based on soil bac-
terial 16S data. Natural (cyan crosses, n= 139) and human-altered (pale red
squares, n= 78) samples from across Australia form distinguishable groups
when characterized by the cumulative OTU relative abundance of the top 10
increasing (y-axis) and top 10 decreasing (x-axis) bacterial taxa that trend with
restoration at Mt Bold. Kernel density contours emphasize the weight of sam-
ples for each group. Mean site-level data for Mt Bold (annotated circles; n= 8)
indicate a shift in key microbiota from disturbance-adapted opportunistic taxa
(lower left of plot) to mature niche-adapted taxa (upper right of plot). (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 4. Mean correlation of human-associated taxa OTU relative abundance
with revegetation age from Mt Bold (x-axis) plotted against the mean differ-
ential OTU abundance between human-altered and natural samples elsewhere
in Australia. The quadrant labelled ‘Natural’ corresponds to taxa that increase
with restoration and have higher differential abundance in natural sites, while
the quadrant labelled ‘Disturbed’ corresponds to taxa that decrease with re-
storation and have higher differential abundance in human-altered sites.

Fig. 5. Boxplots of OTU alpha diversity for Mt Bold sites derived from merged-
sample bootstrap resampling (B= 100) then grouping by revegetation age
(Cleared to 6 years, n= 200; 7 to 10 years, n= 300; Remnants A, B, C, n= 300).
Bootstrap statistics for the mean difference in effective OTU count between
groups are: Cleared to 6 years – 7 to 10 years, mean Δ=−72.3 (95%
CI=−81.9, −62.2); 7 to 10 years – Remnants A, B, C, mean Δ=−38.6 (95%
CI=−47.9, −30.2); Cleared to 6 years – Remnants A, B, C, mean Δ=−110.9
(95% CI=−121.4, −99.6), as illustrated.
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Ellin5290, and in the family Ellin5301, are all from the phylum
Gemmatimonadetes which display cosmopolitan distribution and versa-
tile, generalist ecological strategies, adapting to a wide variety of en-
vironments including low moisture conditions (DeBruyn et al., 2011).
With similar features to Bacillus, Sporosarcina are facultatively anae-
robic or strictly aerobic heterotrophs, capable of forming endospores
that can persist in the environment (Yoon et al., 2001). Ammoniphilus
species are aerobic, spore-forming bacteria, dedicated to the use of
oxalate (a common constituent of fresh plant tissues; Libert and
Franceschi, 1987) for carbon and energy (De Vos et al., 2009). Flavi-
solibacter species are aerobic, non-motile, non-spore-forming rods,
which appear to be environmental opportunists, having been isolated
from various soils, fresh water, and a biofilm coating parts of an au-
tomotive air conditioning system (Kim et al., 2018). No information
was available on the character of unclassified taxa from the class C0119
(phylum Chloroflexi).
We suggest that microbial indicators of ecosystem condition should

be detectable across a range of environments and provide a meaningful
association with a limited range of organisms. Also, we expect that the
choice of taxonomic rank for such indicators will represent a trade-off
between sensitivity to detect effects, and specificity to particular or-
ganisms. Our bacterial 16S data are appropriate for genus-level ob-
servations (Fox et al., 1992) and reflect a common and cost-effective
mode of environmental microbiome survey data. Using correlation
coefficients as a measure of effect size (so that our results emphasize the
tightness of relationship with restoration) enabled us to identify trends
in abundant and rare taxa alike. This approach acknowledges that rare

taxa can play important ecological roles (Hol et al., 2010). Our two-
dimensional mapping of soil microbiome data, with axes highlighting
proportions of opportunistic vs. mature niche-adapted taxa, may have
use for ecosystem monitoring and management, as discussed further
below.

4.2. Patterns in alpha diversity and function

We observed an increasing trend in alpha diversity with restoration
at Mt Bold facilitated by the merged-sample bootstrap resampling ap-
proach. However, microbiome data relating to restoration treatments
were not available for any other samples considered in our study.
Considering just the one-off microbiome survey data for natural vs.
human-altered samples, we found no generalizable patterns in OTU
alpha diversity or functional alpha diversity between the two groups. In
other words, the variability in OTU and functional alpha diversity was
largely driven by site-specific factors rather than whether the samples
were classed as natural or human-altered. On the other hand, coherent
patterns in functional profiles did emerge. The top 30 increasing taxa
clustered with the majority of Mt Bold samples, perhaps reflecting local
adaptation. Perennial agriculture and the majority of natural samples
clustered together, possibly reflecting generally more stable and mature
soil ecosystems. Samples from annual crops (i.e. the most disturbed
soils) also clustered together. The functional data also suggest not all
natural samples behave the same, as two national park samples clus-
tered with annual crop samples.

Fig. 6. Inferred microbial function relative abundance based on site (row) and function (column) z-scores, derived from rarefied OTU abundance data (sequence
depth= 16,704). The method used to infer gene functions could only represent 20–30% of sequences from the rarefied sample microbiota data. Row groupings
highlight sites with similar functional profiles based on second-level branching of the row dendrogram. Row side colors indicate sample types. This plot illustrates
similarities in functional profiles—i.e. columns display variation in 5434 orthologous genes—however it is beyond the scope of this study to examine these functions
in detail. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.3. Implications for ecosystem restoration and management

We propose a two-dimensional index of ecosystem condition based
on soil bacterial 16S survey data, where soil eDNA samples might be
used to map study sites into zones ranging from degraded ecosystems,
through intermediate stages of restoration, to mature restored and re-
ference ecosystems. Such an index could have value in tracking the
progress of restoration activities, assessing the condition of land, and
prioritising areas for restoration investments. The axes of Fig. 3 reflect
shifting proportions of often fast-growing, environmental generalists
and opportunists (x-axis) vs. more stable niche-holders adapted to
mature and reference ecosystems (y-axis). We offer a first-cut approach
relevant to our temperate grassy woodland ecosystem which may be
improved by considering trending taxa from a wider diversity of en-
vironments. For example, similar microbiome datasets could be collated
from restoration sites (e.g. chronosequences like Mt Bold) across more
dissimilar environments with the objective to build a universal in-
dicator set. Alternatively, locally representative trajectories of restora-
tion or land improvement, for a given soil type and land use, could
provide a localized frame of reference for bacterial shifts in particular
ecosystems (e.g. low to medium to high sustainable production agri-
cultural land), against which neighbouring land could be evaluated.
Interestingly, we observed some natural environments can have

characteristics similar to disturbed and developing ecosystems, while a
minority of human-altered environments can resemble mature re-
ference ecosystems. Presumably, human-altered environments that are
close to mimicking natural systems would include stable, perennial land
cover, as suggested by the functional clustering of many natural sam-
ples with perennial horticulture and pastures. On the other hand, nat-
ural environments with low in-situ build-up of organic matter (e.g. due
to sandy or infertile soils) and therefore stunted soil biological activity
and buffering capacity, might cause the soil microbiota to resemble a
developing or degraded ecosystem. We acknowledge that soil micro-
biota may not always be representative of current land use and man-
agement. It is possible for soils to have legacy influences, and soil mi-
crobiota may undergo multi-decadal shifts as microbial habitats and
feedstocks move towards new equilibria following land use change (Bell
and Lawrence, 2009). Issues such as grazing pressure and isolation can
also cause native vegetation-based ecosystems to not necessarily func-
tion in a natural or reference state.
Biological indicators are used elsewhere in ecosystem monitoring

(Stanford and Spacie, 1994) due to the ability of organisms to reflect
cumulative or integrative responses across physical and chemical
parameters that may undergo short-term fluctuations. That is, physi-
cochemical monitoring often cannot fully represent the condition of
ecosystems without expensive multi-parameter, fine temporal resolu-
tion monitoring. Additionally, soil inoculation can be a powerful tool to
help facilitate restoration of disturbed terrestrial ecosystems and steer
plant community development (Wubs et al., 2016). Therefore identi-
fying beneficial microbial signatures may help in targeting soil micro-
biota for inoculations or recognizing sites with inherent remediation
potential.

4.4. Implications for microbiota-mediated human health

Our results suggest that there is potential for disturbed soils to
harbour environmental opportunists with potential pathogenic char-
acter. We found a number of often fast-growing, environmental op-
portunists that were associated with human-altered soil samples and
inversely correlated with restoration. Notable environmental taxa with
importance for human health in this category included the genera
Bacillus, Clostridium, Enterobacter, Legionella and Pseudomonas which
include opportunistic pathogens, often associated with nosocomial in-
fections. Through direct contact or wind-blown aerobiology these soil-
borne bacteria may impact susceptible individuals, neighbouring
buildings, and even highly sterilized (i.e. ecologically vacant) health

care facilities such as hospitals. Aerobiological access is likely via high
traffic areas for patients, staff and visitors. Such a prospect is of parti-
cular concern where environmental and/or exposed human micro-
biomes suffer declining microbial diversity, thus increasing the poten-
tial for pathogenic microbes from the environment to overpower the
defence mechanisms of resident environmental and/or exposed human
microbiota. That is, pathogenicity should be considered in the context
of the host-microbe system, as discussed later. To illustrate this possi-
bility, environmental sources were suspected as the most likely origin in
a recent Escherichia coli O55:H7 outbreak in Dorset England (Public
Health England, 2017). Strains of E. coli can become naturalized to live
in soils (Ishii and Sadowsky, 2008). It is also concerning that environ-
mental opportunists such as Klebsiella pneumoniae may be implicated in
spreading anti-microbial resistance genes to clinically-important pa-
thogens (Wyres and Holt, 2018). However, it may be possible to reduce
the threat from opportunistic potential environmental pathogens
through ecological restoration and preserving and enhancing natural
and biodiverse vegetation in urban areas. It may also be possible to
reduce the risk of hospital-acquired infections, which may in part be
due to airborne opportunistic microbes from environmental sources.
Although not all natural areas will be the same, nor have the same
immune-priming attributes, we expect that the maintenance of nature-
based microbial diversity, together with more slow-growing microbiota
adapted to restored and reference ecosystems, will have population
health benefits through building immune fitness and suppressing op-
portunistic pathogens.
Our analyses show that presumptions should not be made about the

level of microbial diversity, nor functional diversity, for natural sites in
comparison to human-altered sites, nor generalizations about sites of
the same class, based on single-time-point eDNA surveys. Variation in
16S OTU alpha diversity and functional alpha diversity appear to be
driven by site-specific factors, overshadowing any effect linked to the
natural or human-altered classification. On the other hand, where we
had eDNA survey data characterizing restoration from cleared (human-
altered) land towards a natural state at the single location of Mt Bold,
we saw an increase in microbial diversity (although not functional di-
versity). We did not have further data available to apply our new
methods more widely and test whether restoring native biodiversity
might lead to increased microbial diversity within particular locations
elsewhere. In short, our study provides early supporting evidence that
restoring a more biodiverse ecosystem may boost the microbial di-
versity within that location, which should then become available for
beneficial immunomodulation (Mills et al., 2017).
It is beyond the scope of our study to identify microbial Old Friends,

however we highlight example taxa that associate with ecological re-
storation and natural reference soil microbiomes vs. human-altered or
disturbed soil microbiomes (Table 1, Fig. 4; Web Appendix, Tables
S1–S5). These results offer potential targets for subsequent research
into possible immunomodulatory capabilities. From the human-asso-
ciated taxa that associated with natural samples and restoration, we
observed the often slow-growing Mycobacterium. This genus includes
the common non-pathogenic soil-dwelling M. vaccae which has been
associated with reduced anxiety-like behaviour in mice (Matthews and
Jenks, 2013). Although, Mycobacterium also contains pathogenic spe-
cies associated with infrequent but serious diseases including tubercu-
losis (M. tuberculosis) and leprosy (M. leprae). We note that new con-
ceptualisations of what makes a pathogen are relevant to this
discussion. Casadevall and Pirofski (2000) suggest the definition of a
pathogen should be based on the potential for host damage arising from
the host-microbe relationship, and not attributes of the microbe alone.
Examples where pathogenicity depends on both the microbe and host
environment include cell-to-cell signalling, termed quorum sensing,
where high cell densities of genetically-related bacteria can produce a
positive feedback and self-promotion of growth factors and higher
virulence (Rumbaugh et al., 2012). Conversely, through ecological
mechanisms, greater microbial diversity in soils can resist the invasion

C. Liddicoat, et al. Environment International 129 (2019) 105–117

114



and establishment of potentially pathogenic species (van Elsas et al.,
2012). In earlier work (Liddicoat et al., 2016), we sought to unite the
Biodiversity Hypothesis and microbial Old Friends concepts, suggesting
that optimum beneficial immunomodulation from a particular Old
Friend is likely to occur in the context of microbial diversity, required
to keep any potential pathogenic behaviour in check.

4.5. Limitations

Our analysis of bacterial indicators reflected a limited microbiome
dataset associated with restoration towards a grassy woodland eco-
system. Therefore, the top trending taxa we identified may not be ap-
plicable for very different environments. Also, as we analysed genera,
our study cannot inform the implications for particular and often rare
taxa. Instead, our study helps to build understanding of the distribution
patterns of larger groups of related organisms that may share similar
ecological niches. It is speculative to suggest that increased abundance
of genera such as Bacillus, Clostridium, Enterobacter, Legionella and
Pseudomonas may contribute to increased rates of human disease. Even
so, it is informative to appreciate that increased exposure to these taxa
is likely in disturbed environments, and as a consequence there may be
an increased likelihood of health impacts in susceptible individuals due
to their generally fast-growing and opportunistic nature (Benenson and
APHA, 1995; Ristuccia and Cunha, 1985).
Our study lacked data on the actual biomass of environmental mi-

crobiota, as well as actual human exposures. Also, amplicon-based OTU
abundance data are subject to taxon-specific biases (e.g. during DNA
extraction and polymerase chain reaction amplification of DNA).
However, despite such biases, using relative sequence abundance in-
formation, as we have done, has potential to provide more accurate
insights to actual biomass proportions compared to alternative analyses
using presence-absence only data (Deagle et al., 2018). Although eDNA
analyses do not permit true insight into actual bacterial exposures or
biomass, the increasing knowledge we gain into microbiota diversity
and the relative abundance of key taxa in different environments is
relevant to human exposures and microbial ecological interactions be-
tween environmental and host microbiotas.
We experienced limitations using PICRUSt v1.1.1 to infer functional

profiles for the different environmental microbiomes, in the conversion
of our study OTUs into Greengenes (13–5) sequence identifiers, and in
finding suitable nearest available taxa in the PICRUSt database. We
used copy number correction only for the functional analysis within the
PICRUSt software as this followed developers' recommendations.
However, in the remainder of our microbiome data analyses we did not
seek to correct for gene copy numbers, as this is routinely not included
elsewhere due to a lack of available knowledge (Louca et al., 2018).
Despite these issues, we believe our coherent findings from the analysis
of functional differences between the different soil communities has
provided useful insight. We acknowledge that attributing functions to
16S data and refining microbiome data analyses methods more broadly
represent areas of active research and development.

4.6. Conclusions

Using our new merged-sample bootstrap resampling framework, which
preserves microbiome data and permits more detailed study of site-level
information, we discovered emergent patterns that were not apparent
using conventional one-off rarefying of individual samples. Specifically,
we found patterns in OTU relative abundance and function for ecolo-
gically-relevant and human-associated key trending soil bacteria from a
localized restoration chronosequence at Mt Bold (South Australia),
which aligned with differences between human-altered and natural soil
microbiome samples from across Australia. Our results help build
knowledge towards using microbial indicators from soil eDNA to assess,
manage and restore ecosystem condition. We also show that environ-
mental opportunists, including potential human pathogens, increase in

OTU relative abundance in disturbed ecosystems; a finding that may
have important implications for microbiota-mediated human health
and possible new ecologically-based health improvement and pathogen
control interventions.
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