SUBMITTED VERSION

V.E.A. Perry, K.J. Copping, G. Miguel-Pacheco, J. Hernandez- Medrano **The effects of developmental programming upon neonatal mortality** Veterinary Clinics of North America: Food Animal Practice, 2019; 35(2):289-302

© 2019 Elsevier Inc. All rights reserved.

Published at: http://dx.doi.org/10.1016/j.cvfa.2019.02.002

PERMISSIONS

https://www.elsevier.com/about/policies/sharing

Preprint

- Authors can share their preprint anywhere at any time.
- If accepted for publication, we encourage authors to link from the preprint to their formal publication via its Digital Object Identifier (DOI). Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.
- Authors can update their preprints on arXiv or RePEc with their accepted manuscript .

Please note:

- Some society-owned titles and journals that operate double-blind peer review have different preprint policies. Please check the journals Guide for Authors for further information
- Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles.

18 May 2020

http://hdl.handle.net/2440/121169

1	"The Effects of Developmental Programming upon Neonatal Mortality"					
2 3	V.E.A. Perry ^{af} , K. J. Copping ^a , G. Miguel-Pacheco ^b , J. Hernandez- Medrano ^c ,					
4 5 7 8 9 10 11	a. Robinson Institute, University of Adelaide, Frome Rd, SA, 5001 Australia b. School of Veterinary and Medical Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK c. Academic Division of Child Health, Obstetrics & Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UK, <i>f Corresponding author. Email: viv.perry@adelaide.edu.au</i>					
12	Key Words: fetal programming, calf, neonate, neonatal mortality					
13	Key Points:					
14 15 16 17 18 19 20 21	 The maternal environment (nutrition and physiological status) can influence neonatal mortality and morbidity. The effects of gestational nutrition upon birthweight, dystocia and calf survival vary with the timing and duration of dietary interventions and the sex of the offspring. The ability to thermoregulate, stand, suckle, and ingest sufficient quantities of colostrum are critical to neonate survival and may be altered by <i>in utero</i> environment 					
22	• The quantity of colostral immunoglobulins ingested by the neonate may be					
23	affected by prenatal ambient temperature and gestational diet.					
24	• Gestational dietary restriction may alter thyroid function, and diminish BAT					
25	capacity concomitantly effecting lymphoid atrophy and neonatal immune					
26	function.					
27						

27

28 Synopsis

29 The greatest loss in ruminant production systems occurs during the neonatal period.

- 30 The maternal environment (nutrition and physiological status) influences neonatal
- 31 mortality and morbidity as it reportedly affects; a) dystocia; both via increasing
- 32 birthweight and placental dysfunction, b) neonatal thermoregulation; both via altering
- the amount of brown adipose tissue and its ability to function via effects upon the
- 34 HPT axis, c) modification of the developing immune system and its symbiotic
- 35 nutrient sources, d) modification of maternal and neonatal behavior.
- 36

37 Introduction

- 38 The greatest loss in ruminant production systems occurs during the neonatal period,
- 39 i.e. between birth and 28d of life. In extensive production systems, neonatal losses are
- 40 reportedly between 10-30% and 6-16% for lambs and calves, respectively 1,2 . With
- 41 90% of these offspring born alive, this is considered a preventable welfare issue¹ and
- 42 a high economic burden to the livestock industry.
- 43
- It is well established that *in utero* environment³ affects ruminant progeny health and 44 45 welfare. This phenomenon is known as fetal programming and is contingent upon the 46 particularly long gestation period in ruminants during which physiological systems 47 develop; such that at birth, the ontogeny of these systems is complete. The effects of 48 this fetal programming in the neonate may be mediated by epigenetic modifications which regulate gene expression in both the placenta and fetus ⁴ (Figure 1). These 49 epigenetic modifications may occur as early as embryogenesis⁵ through to late 50 gestation ⁶. The placenta mediates fetal supply of nutrients, hormones and oxygen^{7,8} 51 52 with both the placenta and fetus responding to maternal perturbations in a sexually dimorphic manner ^{9,10}. This has significant consequences as survival in the male, 53 during gestation and at birth, is reduced¹¹ compared to the female. 54 55 56 Significantly for this review, many of the contributing factors associated with increased risk of neonatal mortality, i.e. premature birth¹², birthweight¹³, dystocia^{14,15} 57

58 and poor adaptation to the postnatal environment 16,17 , are consequent to the prevailing

59 prenatal environment¹⁸. Moreover, neonatal appetite, adiposity and immune function,

60 may be influenced by gestational diet in cattle 19,20 and sheep 21 . In this review, we

- 61 will address those aspects of neonatal mortality affected by fetal programming with
- 62 particular reference to the bovine.

63

64 65

66 Birthweight, dystocia and neonatal survival

67 Dystocia is the main cause of neonatal calf mortality^{14,22} either directly, or indirectly,

68 via decreased vigour ²³. Calves which survive dystocia are reported to experience

- 69 lower passive immunity transfer, increased risk of postnatal morbidity and mortality²⁴,
- 70 and display higher indicators of physiological stress 11 .
- 71

72 The incidence of dystocia in nulliparous beef heifers is higher than in multiparous

- 73 cows^{13,25}, despite birthweight of first parity progeny generally being lower²⁶. High
- 74 birthweight sufficient to cause dystocia is the major cause of neonatal calf loss ^{23,27}. A
- 75 disproportionately large calf is the major contributor to dystocia in heifers ^{24,25} with
- 76 calf birthweight²⁸ and heifer size¹⁵ considered the primary factors causing this fetal-

77 maternal disproportion. In growing heifers, particularly those calving at two years of 78 age, there is greater nutrient competition between the dam and rapidly developing fetus. They are effectively an adolescent ²⁹ and display a greater response to dietary 79 restriction compared to adults³⁰ similar to that observed in the ewe.³¹ However, both 80 81 low and high birthweight extremes may be caused by dietary perturbations during 82 gestation with extremely low birthweight calves also showing increased susceptibility to morbidity in cold climates ³² as observed in the lamb. Intriguingly, cold climate 83 temperatures during gestation may be sufficient in themselves to reduce birthweight³³. 84 85 86 As illustrated in Table 1, the timing of dietary interventions impacts the observed 87 effect upon birthweight: Interventions imposed prior to 100 days post-conception (dpc), although causing greater effects upon fetal organ development³⁴, generally 88

result in similar birthweights at term ^{35,36}. Nutrient restriction during the second

90 trimester, however, may have the greatest influence on calf birthweight $30 \ 2.37$

91 sufficient to influence dystocia and thereby survival in the neonate.

92

93 Dietary interventions aimed at reducing birthweight and dystocia during the third

94 trimester have produced varied responses ^{26,38-41}. These appear to be dependent upon

95 the severity of maternal weight loss ³⁰. However, this effect is generally not

96 associated with reductions in dystocia perhaps due to increased length of second stage

97 labour ⁴². In contrast, studies in sheep show maternal undernutrition⁴³ or over

98 nutrition⁴⁴ in late pregnancy may reduce lamb birthweight with this effect

99 commensurate with the level of weight change in the ewe^3 .

100

101

102

103

104

105 Table 1. The effects of gestational dietary interventions upon fetal development, birthweight and dystocia

106 Legend: Green block= period of intervention, white block= re-alimentation period, NA= variable not measured/tested,= no effect; \downarrow = decrease; \uparrow = increase, RUP = rumen 107 undegradable protein, Mreq: Maintenance requirement according to NRC(\uparrow) or ARC(\ddagger); E: energy; CP: crude protein.

Pofo	Dam Parity	n –	Period of intervention	d of Intion Treatment		Effects of treatment on (L compare to H or control)					Pregnancy sta days relative	age / trimeste to conceptio	er n)
Nei3	& C=cow)	=	(days to conception)	Treatment	Sex	Placenta	Fetal	Birthweight	Dystocia	Pre (-60d)	First (0-90d)	Second (90-180d)	Third (>181d)
Hernan dez- Medran o (2015) ⁹ & Copping et al (2014) ²⁹	Hf	120	-60d to 23d & 24 to 90d 2x2 Factorial design	L= 7%CP‡ vs H= 14%CP‡	Y (M>F)	↑ MUA blood flow	↓ wt (98d) & ↓ CRL (32d)	=	=				
Mossa et al (2013) ³⁴	Hf	23	-11d to 110d RA: 110d to term	Female Only. + L= 60% E Mreq† vs H= 120% E Mreq† RA: 140% E Mreq†		NA		=	=				
Sullivan et al (2010) ⁸ & Micke et al (2010) ²	Hf	120	0 to 93d & 94 to 180d 2x2 Factorial design	L= 4%CP‡ vs H=13%CP‡	Y	NA	↓ CRL (36d)	= (1st) ↓ (2nd)	Ļ				

Pofe	Dam Parity	n –	Period of intervention	Trootmont		Effects of treatment on Pregnancy stag (L compare to H or control) (days relative to					age / trimeste to conceptior	er n)	
Reis	& C=cow)	=	(days to conception)	Treatment	Sex	Placenta	Fetal	Birthweight	Dystocia	Pre (-60d)	First (0-90d)	Second (90-180d)	Third (>181d)
Miguel- Pachec o et al (2016) ³⁷	Hf	80	14 to 90d & 90 to 180d 2x2 Factorial design	L= 6% CP‡ & vs H= 16% CP‡ (RA)	Y (F>M)	NA	NA	Ļ	=				
Meyer et al 2010 ⁴⁵ & Vonnah me et al (2007) ⁴⁶	С	40	30 to 125d with RA: 125 to 220d	Female Only. + L= 68% Mreq (9.9%CP) vs Ct= 100% Mreq (12%CP) RA (13.2%CP)		↓ wt (cotyl+caru nc) ↓ vascularity (cotyl)	↓wt (125d) but = (after RA) & ↑ GI tract	NA	NA				
Perry et al (1999) ⁴⁷	Hf	16	42 to 90d & 90 to 180d	L=7%CP‡ vs H=14%CP‡ 2x2 Factorial design		↑ cotyl wt (LL/LH) & ↑ troph vol (LH/HL)	NA	=	=				
Anthony et al (1986) ⁴⁸	Hf	59	75d to term	L=81% Mreq vs H= 141% Mreq (CPreq)		N/A	N/A	=	NA				
Freetly et al (2000) ³⁰	С	144	90d to term	28kg wt loss			NA	Ļ	NA				

- <i>i</i>	Dam Parity		Period of intervention	'eriod of Effects of treatment on ervention				nent on or control)	n Pregnancy stage / trimester rol) (days relative to conception)				
Refs	(Hf=helfer & C=cow)	n =	(days to conception)	Treatment -	Sex	Placenta	Fetal	Birthweight	Dystocia	Pre (-60d)	First (0-90d)	Second (90-180d)	Third (>181d)
Summer s et al (2015) ⁴⁹	Hf	114	167 to 226d	Isocaloric and isonitrogenous with L=34% RUP vs H=59% RUP RA	N	NA	NA	=	=				
Bellows et al (1978) ⁵⁰	Hf & C		190d to term	L= 3.2-3.4kg TDN vs H=6.3-6.4kg TDN		NA	NA	↓ (Hf only)	Ļ				
Tudor (1972) ⁵¹	Hf & C	79 (Hf=36 & C=43)	180d to term	L= 12.5%CP ⁺ vs H =14.4%CP ⁺		NA	↓ pregnancy length	Ļ	=				
Corah et al (1975) ⁵²	Hf	59	180d to term	L=65% Mreq† vs H=100% Mreq†		N/A	N/A	↓ (2kg)	=				

- 113 There is a sex-specific variation in dystocia rates in cattle with greater occurrence
- typically associated with male offspring experiencing increased dystocia, neonatal
- 115 morbidity and mortality concomitant with their heavier birthweight⁵² and placental
- 116 dysfunction¹¹. This is commensurate with the observed greater effect of early
- 117 gestational perturbation to male fetal and placental growth and uterine hemodynamics
- ^{9,10,29}. Reductions in birthweight have also been observed following heat stress⁵³ and
- 119 individual dietary nutrient restrictions⁵⁴⁻⁵⁷. Protein supplementation in mid- to late
- 120 gestation has been reported to have either no effect on birthweight ^{41,57-59} or increase
- 121 calf birthweight when cows graze low-quality winter pasture ⁵⁶. Protein
- 122 supplementation during the second trimester in Bos indicus heifers increased
- 123 birthweight by 8% while increasing dystocia rates three fold ⁵⁵.
- 124

125 Table 1 illustrates effects of maternal nutrient restriction during gestation upon calf

- 126 birthweight and dystocia vary dependent upon age and parity of the dams studied, the
- 127 nutritional regimens and the timing of perturbation ^{14,40,55}. This effectively clarifies
- 128 the importance of timing and duration of gestational intervention, severity of the
- intervention and sex of the offspring in the neonatal phenotype at birth.
- 130

131 Neonatal adaptation

132 Neonatal survival is dependent upon the ability of the neonate to adapt rapidly to the 133 *ex utero* environment. Sequentially, the ability to thermoregulate, stand, suckle, and 134 ingest sufficient quantities of colostrum in the first hours of life is required⁶⁰.

135

136 A calf's ability to thermoregulate is largely determined by the function of brown

adipose tissue (BAT). BAT constitutes only 2% of body fat at birth but provides 50%

138 of thermogenic response as non-shivering thermogenesis⁶¹. Adipogenesis, as with

- 139 myogenesis and organogenesis, is complete in cattle and sheep prior to birth as it is in
- 140 the human⁶². It is not surprising therefore that adipose tissue, including BAT, is
- 141 significantly influenced by prenatal diet^{19,63,64}. Adipose tissue has an important
- 142 regulatory and homeostatic function particularly in the neonate ⁶⁵. BAT produces heat
- 143 at 300 W/kg compared with 1W/kg of in all other tissues⁶⁶, by expressing a BAT-
- specific gene called uncoupling protein (UCP)1 which dramatically increases fuel
- 145 oxidation⁶⁷. One critical process in ensuring maximal activation of BAT is intra-
- 146 cellular conversion of the thyroid hormone thyroxine (T4) to its active form,

- triiodothyronine (T3), by the enzyme 5'monodeiodinase type $2 (DIO2)^{68}$.
- 148 Thermoregulation and overall neonatal survival is influenced by the interaction
- 149 between thyroid hormones, deiodenases and BAT⁶⁹. Restricted maternal diet during
- 150 pregnancy has shown to increase levels of thyroid hormones in the neonate which
- 151 may be able to upregulate UCP1 expression, acting to increase thermogenesis.¹⁰
- 152 Suggested as a means by which low birthweight calves can increase heat production.
- Interestingly, in rats, low birth weight offspring have raised UCP1 compared to
 normal sized litter mates⁷⁰.
- 155 As fetal thyroid gland differentiates between 75 and 90 dpc, maternal dietary
- 156 restriction during early-gestation may reset the physiology of the HPT axis by altering
- 157 ontogeny of the thyroid⁷¹. This is reflected in increased free T3 (FT3) levels in the
- 158 neonatal calf¹⁰ and lamb⁷². As reported in lambs ^{72,73}, this increased FT3 may
- 159 contribute to the "catch-up growth" of these low birth weight calves ⁷⁴ particularly as
- 160 FT3 was positively correlated with average daily weight gain and fetal growth rate in
- 161 calves in this study¹⁰.
- 162

163 Feeding behaviour at birth is fundamental to calf survival, with the licking of the cow first stimulating the calf to stand and suckle⁷⁵. This initiates the bond between mother 164 165 and offspring⁷⁶. Dairy calves take an average of 90 min to stand after birth and up to 6hrs to suckle for the first time^{75,77,78}, whereas beef calves take up to 2 hrs⁷⁹. This 166 167 time to first standing influences colostrum intake within the first 24 hours after birth^{80,81}. Calves that take longer to stand will take longer to suckle⁷⁷, potentially 168 delaying the passive transfer of immunity and the provision of energy in the initial 169 170 hours after birth.

171

172 Cows with highly responsive calves are more likely to provide maternal care⁸², which 173 is important in free-ranging animals. The ability of a calf to stand and suckle is influenced by calf birth weight, sex and ease of calving ¹¹. Periconception and first 174 175 trimester restricted protein intake in heifers, has been shown to affect neonatal 176 behaviour of offspring⁸³. Calves from heifers fed a low protein diet before conception showed higher duration of suckling behaviour⁸³ sufficient to increase milk output ^{84 85}. 177 178 Low birth weight calves have been reported to stimulate nursing bouts more frequently than calves with a higher birth weight ⁸². This enhanced appetite may be 179

180 prenatally programmed as neural pathways that are pivotal to appetite and voluntary

181 food intake which develop early in fetal ruminant life⁸⁶. Gestational dietary restriction

alters gene expression for primary appetite regulating hypothalamic neuropeptides ⁸⁷

and thereby appetite in the neonate.

184

185 Neonatal immune function

186 Ontogeny of the bovine immune response is parallel to the human due to similar gestational periods⁸⁸ with differentiation complete by the end of the first trimester. 187 Three critical windows of vulnerability exist during the first trimester of 188 189 gestation⁸⁹ :the period of embryonic stem cell formation, fetal liver development as 190 the primary hematopoietic organ, and colonization and establishment of bone marrow 191 and thymus. In the calf lymphoid development of the thymus is complete at 42 dpc, 192 with the spleen structurally present at 55 dpc, and peripheral and mesenteric lymph 193 nodes at 60 dpc and 100 dpc, respectively. Thymic and splenic indices reach maximal 194 values from 205 dpc. Therefore the thymus has been suggested as the mediator of the effects of early gestational perturbation upon immune function in neonates^{90,91}. 195 196 Copping et al., report that fetal thymus size, and antibiotic use in the neonate may be 197 altered by protein restriction early in gestation concomitant with effects upon colostral immunoglobulins.^{10,90} 198

199

200 Allied with BAT's role in thermogenesis, is the relationship with the function of 201 neonatal immune and lymph systems. Prenatal dietary restriction may alter both 202 thyroid function (as above), and diminish BAT capacity⁹² concomitantly effecting lymphoid atrophy⁹³. Lymphoid tissues are susceptible to *in utero* perturbations early 203 in gestation as thymic differentiation occurs by 42 dpc in the calf (similar to the 204 205 human⁹⁴) with other lymphoid structures present by 100dpc⁸⁸. BAT depots surround 206 lymphoid tissues (including the thymus) in neonatal calves and lambs. It is proposed 207 that they act, not only as a dedicated lipid resource fuelling immune activation in 208 lymph nodes⁹⁵, but also to provide key fatty-acid, cellular and adipokine immunoregulatory material that support and regulate local immunity⁹⁶. BAT located 209 210 around the prescapular lymph node and sternal areas leading to the thymus is abundant in the neonatal calf ⁹⁷ as it is in the lamb⁶⁴. This BAT depot exhibits a 211 212 different gene expression profile to perirenal BAT but may equally be susceptible to in utero intervention.^{64,98}. Interestingly cattle breeds with better neonatal cold survival 213 have increased expression of genes associated with BAT and immune function^{99,100}. 214

Late gestational stressors such as heat ¹⁰¹, disease, drought ²², or even dystocia¹¹, may 216 217 also affect immune function in the neonatal calf. The mechanisms driving this effect 218 may include a reduction in food intake during the prenatal stress period. Nutritional 219 supplementation with methionine, in combination with a high energy diet, during the 220 last trimester of pregnancy causes a decrease inflammatory response in the neonatal 221 calf, by modulation of cellular responses ¹⁰². These stress or nutritional interventions 222 are thought to effect the calf via changes in cellular interactions with pathogens 223 (CD18 and CD14) and changes in acute phase cytokines and pathogen recognition ⁶⁰ 224

Acquisition of passive immunity via colostral immunoglobulins (Ig) in the first 24hrs of life ¹⁰³ ¹⁰⁴ ¹⁰⁵ is required for calf survival ^{106,107} ¹⁰⁸. The quantity of colostral Ig ingested is affected by dam age, prenatal ambient temperature¹⁰² and gestational diet ¹⁰⁹⁻¹¹¹. Timing, severity and period of prenatal intervention modifies the observed affect:

230

215

231 Cows restricted from 90dpc to term show IgG concentrations double that compared to

cattle on a high plane of nutrition ¹¹². The latter effect may occur as the cow attempts

to maintain transfer of passive immunity in the face of restricted diet ¹¹². Increased

ambient temperatures late in gestation may decrease colostral IgG and IgA ¹¹¹.

235 Primiparous heifers may produce less colostrum with lower concentration of Igs

compared to multiparous cows¹¹³. Calves from such heifers, however, have been

reported to have higher antibody concentrations despite lower levels of Ig being

present in the colostrum¹¹⁴. This adaptation may be associated with necessity

considering the lower birthweight of primiparous heifer calves.

240 Conclusion

241 We have illustrated that the prenatal period influences neonatal mortality. Total

242 nutrient restriction, protein restriction, elevated ambient temperature, or a stress event,

243 during gestation may affect neonatal survival. This occurs via affects upon; a)

244 dystocia; both via increasing birthweight and placental dysfunction, b)

thermoregulation; both via altering the amount of brown adipose tissue and its ability

to function via effects upon the HPT axis, c) modification of the developing immune

- system and its symbiotic nutrient sources, d) modification of maternal and neonatal
- 248 behaviour. A lack of attention to these critical windows during prenatal life is
- 249 hazardous to the commercial production of live calves.

250 Funding

- 251 We are grateful to the UK AHDB and, the Australian ARC, for grants awarded to
- 252 V.E.A Perry enabling the completion of this work.
- 253
- 254

255

LITERATURE CITED

- 256
 257 1. Mee J. Why Do So Many Calves Die on Modern Dairy Farms and What Can
 258 We Do about Calf Welfare in the Future? *Animals.* 2013;3(4):1036.
 259 2. Micke GC, Sullivan TM, Soares Magalhaes RJ, Rolls PJ, Norman ST, Perry
 260 VEA. Heifer nutrition during early- and mid-pregnancy alters fetal growth
 261 trajectory and birth weight. *Animal Reproduction Science.* 2010;117(1–
- 262 2):1-10.263 3. Sinclair KD, Rutherford KMD, Wallace JM, et al. Epigenetics and
- developmental programming of welfare and production traits in farm
 animals. *Reproduction, Fertility and Development.* 2016;28(10):1443-1478.
- 266 4. Vickaryous N, Whitelaw E. The role of early embryonic environment on
- 267 epigenotype and phenotype. *Reproduction, Fertility and Development.*268 2005;17(3):335-340.
- Bermejo-Alvarez P, Rizos D, Lonergan P, Gutierrez-Adan A.
 Transcriptional sexual dimorphism in elongating bovine embryos:
 implications for XCI and sex determination genes. *Reproduction.* 2011;141(6):801-808.
- Skibiel AL, Peñagaricano F, Amorín R, Ahmed BM, Dahl GE, Laporta J. In
 Utero Heat Stress Alters the Offspring Epigenome. *Scientific Reports*.
 2018;8(1):14609.
- Vaughan OR, Sferruzzi-Perri AN, Coan PM, Fowden AL. Environmental regulation of placental phenotype: implications for fetal growth.
 Reproduction, Fertility and Development. 2011;24(1):80-96.
- 279 8. Sullivan TM, Micke GC, Magalhaes RS, et al. Dietary protein during
 280 gestation affects circulating indicators of placental function and fetal
 281 development in heifers. *Placenta*. 2009;30(4):348-354.
- 9. Hernandez-Medrano JH, Copping KJ, Hoare A, et al. Gestational Dietary
 Protein Is Associated with Sex Specific Decrease in Blood Flow, Fetal
 Heart Growth and Post-Natal Blood Pressure of Progeny. *PLoS ONE.*2015;10(4):e0125694.
- 10. Micke GC, Sullivan TM, Kennaway DJ, Hernandez-Medrano J, Perry VEA.
 Maternal endocrine adaptation throughout pregnancy to nutrient
 manipulation: Consequences for sexually dimorphic programming of
 thyroid hormones and development of their progeny. *Theriogenology.*2015;83(4):604-615.

291	11.	Barrier AC, Haskell MJ, Birch S, et al. The impact of dystocia on dairy calf
292		health, welfare, performance and survival. The Veterinary Journal.
293		2013;195(1):86-90.
294	12.	Bloomfield FH, Oliver MH, Hawkins P, et al. A periconceptional nutritional
295		origin for noninfectious preterm birth. <i>Science</i> . 2003;300(5619):606.
296	13.	Morris CA, Bennett GL, Baker RL, Carter AH. Birth weight, dystocia and
297		calf mortality in some New Zealand beef breeding herds. <i>Journal of Animal</i>
298		<i>Science</i> , 1986:62:327-343.
299	14.	Hickson RE, Morris ST, Kenvon PR, Lopez-Villalobos N, Dystocia in beef
300		heifers: a review of genetic and nutritional influences. <i>N Z Vet I.</i>
301		2006:54(6):256-264.
302	15.	Zaborski D. Grzesiak W. Szatkowska I. Dybus A. Muszynska M. Jedrzeiczak
303	201	M. Factors affecting dystocia in cattle. <i>Reproduction in domestic animals</i> =
304		Zuchthvaiene, 2009:44(3):540-551.
305	16	Kleemann DO Kelly IM Rudiger SR et al Effect of periconceptional
306	10.	nutrition on the growth behaviour and survival of the neonatal lamb
307		Anim Reprod Sci 2015-160-12-22
308	17	Carstens GF Johnson DF Holland MD Odde KG Effects of prepartum
300	17.	protein nutrition and hirth weight on basal metabolism in hovine
310		neonates I Anim Sci 1987:65:745-751
310	18	Sinclair KD Rutherford KM Wallace IM et al Enigenetics and
311	10.	developmental programming of welfare and production traits in farm
312		animals Reproduction fertility and development 2016;28(10):1443-1478
313	19	Micke CC Sullivan TM McMillen IC Contili S Perry VEA Heifer nutrient
315	17.	intake during early, and mid-gestation programs adult offenring adinosity
315		and mPNA expression of growth-related genes in adjaced denote
310		Reproduction 2011.11.1(5).697-706
317 310	20	Sullivan TM Micko CC Porry VEA Influences of diet during gestation on
210	20.	potential postpartum reproductive performance and milk production of
220		boof boifors. Theriogenology 2000:72(0):1202 1214
320 221	21	McMillon IC MacLaughlin SM Muhlhauslor RS Contili S Duffield II
341 222	21.	Mominen IC, MacLaughini SM, Munnausier DS, Gentin S, Dunneiu JL,
344 222		of participational and footal nutrition. Pasia Clin Dharmagal Toyical
323 224		
324 275	22	2000;102(2):02-09. Arnott C. Boharts D. Booko IA. Turner SD. Lowronce AP. Butherford VM
323	22.	Allou G, Roberts D, Rooke JA, Turner SP, Lawrence AD, Rutherford RM.
320 227		of calves, maternal stressors and difficult births. <i>I Anim Sci</i>
327		
328 220	22	2012;90(15):5021-5054. Mag IE Drovalance and rick factors for directoria in daimy acttles A review.
329	23.	The Veteringen Journal 2000-17(-02 101
33U 221	24	The velerinary journal. 2008;176:93-101.
331	24.	Rice LE. Dystocia-related risk factors veterinary clinic of North America,
332	25	Pour Animal Practice, 1994;10:53-68.
333	25.	Philipsson J. Calving performance and call mortality. <i>Livestock Production</i>
334	26	Science. 1976;5:319-331.
335 226	26.	Benows KA, Snort KE. Effects of precaiving feed level on birthweight,
330	27	caiving difficulty and subsequent fertility. J Anim Sci. 1978;46:1522-1528.
33/ 220	27.	Comeriora Jw, Bertrana JK, Benysnek LL, Jonnson MH. Reproductive rates,
338		birth weight, calving ease and 24-h calf survival in a four-breed diallel

339		among Simmental, Limousin, Polled Hereford and Brahman beef cattle.
340		Journal of Animal Science. 1987;64:65-76.
341	28.	Arthur PF, Archer JA, Melville GJ. Factors influencing dystocia and
342		prediction of dystocia in Angus heifers selected for yearling growth rate.
343		Australian Journal of Agricultural Research. 2000;51:147-153.
344	29.	Copping KJ, Hoare A, Callaghan M, McMillen IC, Rodgers RJ, Perry VEA.
345		Fetal programming in 2-year-old calving heifers: peri-conception and first
346		trimester protein restriction alters fetal growth in a gender-specific
347		manner. Animal Production Science. 2014;54(9):1333-1337.
348	30.	Freetly HC, Ferrell CL, Jenkins TG. Timing of realimentation of mature
349		cows that were feed-restricted during pregnancy influences calf birth
350		weights and growth rates. Journal of Animal Science. 2000;78:2790-2796.
351	31.	Wallace J, Bourke D, Da Silva P, Aitken R. Nutrient partitioning during
352		adolescent pregnancy. <i>Reproduction.</i> 2001;122(3):347-357.
353	32.	Dwyer CM, Bünger L. Factors affecting dystocia and offspring vigour in
354		different sheep genotypes. Preventive Veterinary Medicine.
355		2012;103(4):257-264.
356	33.	Andreoli K, Minton J, Spire M, Schalles R. Influence of prepartum exposure
357		of beef heifers to winter weather on concentrations of plasma energy-
358		yielding substrates, serum hormones and birth weight of calves.
359		Theriogenology. 1988;29:631-642.
360	34.	Mossa F, Carter F, Walsh SW, et al. Maternal Undernutrition in Cows
361		Impairs Ovarian and Cardiovascular Systems in Their Offspring. <i>Biology of</i>
362		Reproduction. 2013;88(4):92, 91-99.
363	35.	Mossa F, Carter F, Walsh SW, et al. Maternal Undernutrition in Cows
364		Impairs Ovarian and Cardiovascular Systems in Their Offspring. <i>Biology of</i>
365		<i>Reproduction.</i> 2013;88(4):1-9.
366	36.	Long NM, Prado-Cooper MJ, Krehbiel CR, Wettemann RP. Effects of
367		nutrient restriction of bovine dams during early gestation on postnatal
368		growth and regulation of plasma glucose. <i>J Anim Sci.</i> 2010;88(10):3262-
369		3268.
370	37.	Miguel-Pacheco GG, Curtain LD, Rutland C, et al. Increased dietary protein
371		in the second trimester of gestation increases live weight gain and carcass
372		composition in weaner calves to 6 months of age. <i>animal.</i> 2016:1-9.
373	38.	Rasby RJ, Wettemann RP, Geisert RD, Rice LE, Wallace CR. Nutrition, body
374		condition and reproduction in beef cows: fetal and placental development,
375		and estrogens and progesterone in plasma. <i>Journal of Animal Science</i> .
376		1990;68:4267-4276.
377	39.	Tudor GD. The effect of pre- and post – natal nutrition on the growth of
378		beef cattle. I. The effect of nutrition and parity on the dam on calf birth
379		weight Australian Journal of Agricultural Research. 1972;23:389-395.
380	40.	Holland MD, Odde KG. Factors affecting calf birth weight: A review.
381		Theriogenology. 1992;38(5):769-798.
382	41.	Anthony RV, Bellows RA, Short RE, Staigmiller RB, Kaltenbach CC, Dunn
383		TG. Fetal growth of beef calves. I. Effect of prepartum dietary crude
384		protein on birth weight, blood metabolites and steroid hormone
385		concentrations. J Anim Sci. 1986;62(5):1363-1374.

386	42.	Zaborski D, Grzesiak W, Szatkowska I, Dybus A, Muszynska M, Jedrzejczak
387		M. Factors affecting dystocia in cattle. <i>Reproduction in Domestic Animals.</i>
389	43	Rooke IA Arnott G Dwwer CM Rutherford KMD The importance of the
390	45.	gestation period for welfare of lambs: maternal stressors and lamb vigour
391		and wellbeing The Journal of Agricultural Science 2014:153(3):497-519
392	44	Wallace IM Milne IS Aitken RP The effect of overnourishing singleton-
393		bearing adult ewes on nutrient partitioning to the gravid uterus. <i>British</i>
394		<i>Journal of Nutrition.</i> 2005:94(4):533-539.
395	45.	Meyer AM, Reed II, Vonnahme KA, et al. Effects of stage of gestation and
396		nutrient restriction during early to mid-gestation on maternal and fetal
397		visceral organ mass and indices of jejunal growth and vascularity in beef
398		cows1. Journal of Animal Science. 2010;88(7):2410-2424.
399	46.	Vonnahme KA, Zhu MJ, Borowicz PP, et al. Effect of early gestational
400		undernutrition on angiogenic factor expression and vascularity in the
401		bovine placentome. <i>J Anim Sci.</i> 2007;85(10):2464-2472.
402	47.	Perry VE, Norman ST, Owen JA, Daniel RC, Phillips N. Low dietary protein
403		during early pregnancy alters bovine placental development. Anim Reprod
404		<i>Sci.</i> 1999;55(1):13-21.
405	48.	Anthony RV, Bellows RA, Short RE, Staigmiller RB, Kaltenbach CC, Dunn
406		TG. Fetal growth of beef calves. I. Effect of prepartum dietary crude
407		protein on birth weight, blood metabolites and steroid hormone
408		concentrations. Journal of Animal Science. 1986;62:1363-1374.
409	49.	Summers AF, Meyer TL, Funston RN. Impact of supplemental protein
410		source offered to primiparous heifers during gestation on I. Average daily
411		gain, feed intake, calf birth body weight, and rebreeding in pregnant beef
412	-	heifers. Journal of Animal Science. 2015;93(4).
413	50.	Bellows RA, Carr JB, Patterson DJ, Thomas OO, Killen JH, Milmine WL.
414		Effects of ration protein content on dystocia and reproduction in beef
415		heifers. Proceedings of the Western Section of the American Society of
416	F 1	Animal Science. 1978;29:263-265.
41/	51.	I udor G. Effect of pre- and post- natal nutrition on the growth of beef
418		cattle I. The effect of nutrition and parity of the dam on call birth weight.
419	ГЭ	Australian Journal of Agricultural Research, 1972;23(3):389-395.
420	52.	the reproductive performance of heaf females and the performance of
421		their progeny Journal of Animal Science, 1975, 41(2), 910, 924
422	52	Montoire ADA Tao S Thompson IMT Dahl CE. In utore heat stross
423	55.	decreases calf survival and performance through the first lactation
424		Journal of Dairy Science 2016:99(10):8443-8450
426	54	Radunz AF, Flubarty FL, Day ML, Zerby HN, Loerch SC, Prenartum dietary
427	51.	energy source fed to beef cows: L Effects on pre- and postnartum cow
428		nerformance I Anim Sci 2010.88(8).2717-2728
429	55	Micke GC, Sullivan TM, Soares Magalhaes RI, Rolls PI, Norman ST, Perry
430	501	VE. Heifer nutrition during early- and mid-pregnancy alters fetal growth
431		trajectory and birth weight. Animal Reproduction Sceince. 2010:117(1-
432		2):1-10.
		,

433	56.	Larson DM, Martin JL, Adams DC, Funston RN. Winter grazing system and
434		supplementation during late gestation influence performance of beef
435		cows and steer progeny. J Anim Sci. 2009;87(3):1147-1155.
436	57.	Summers AF, Meyer TL, Funston RN. Impact of supplemental protein
437		source offered to primiparous heifers during gestation on I. Average daily
438		gain, feed intake, calf birth body weight, and rebreeding in pregnant beef
439		heifers. <i>Journal of Animal Science</i> . 2015:93(4):1865-1870.
440	58.	Martin IL, Vonnahme KA, Adams DC, Lardy GP, Funston RN, Effects of dam
441		nutrition on growth and reproductive performance of heifer calves. <i>I</i>
442		Anim Sci. 2007:85(3):841-847.
443	59.	Stalker LA, Adams DC, Klopfenstein TI, Feuz DM, Funston RN, Effects of
444		pre- and postpartum nutrition on reproduction in spring calving cows
445		and calf feedlot performance. <i>I Anim Sci.</i> 2006:84(9):2582-2589.
446	60.	Tao S, Monteiro AP, Thompson IM, Haven MJ, Dahl GE. Effect of late-
447		gestation maternal heat stress on growth and immune function of dairy
448		calves. I Dairv Sci. 2012:95(12):7128-7136.
449	61.	Alexander G. Williams D. Shivering and nonshivering thermogenesis
450		during summit metabolism in young lambs. <i>J Physiol. Lon.</i> 1968:198:251-
451		276.
452	62.	Vernon RG. The growth and metabolism of adipocytes. In: Buttery PJ,
453		Haynes NB, Lindsay DB, eds. <i>Control and manipulation of animal growth.</i>
454		London: Butterworths; 1986:67-83.
455	63.	Clarke L, Bryant MJ, Lomax MA, Symonds ME. Maternal manipulation of
456		brown adipose tissue and liver development in the ovine fetus during late
457		gestation. Br J Nutr. 1997;77:871-883.
458	64.	Fainberg HP, Birtwistle M, Alagal R, et al. Transcriptional analysis of
459		adipose tissue during development reveals depot-specific responsiveness
460		to maternal dietary supplementation. <i>Scientific Reports</i> . 2018;8.
461	65.	Hausman GJ, Richardson RL. Adipose tissue angiogenesis. <i>Journal of</i>
462		Animal Science. 2004;82(3):925-934.
463	66.	Power G. Biology of temperature: the mammalian fetus. <i>J Dev Physiol.</i>
464		1989;12:295-304.
465	67.	Clarke L, Heasman L, Firth K, Symonds ME. Influence of route of delivery
466		and ambient temperature on thermoregulation in newborn lambs. Am J
467		<i>Physiol Regul Integr Comp Physiol</i> . 1997;272(6 Pt 2):R1931-1939.
468	68.	Bianco AC, Silva JE. Intracellular conversion of thyroxine to
469		triiodothyronine is required for the optimal thermogenic function of
470		brown adipose tissue. J Clin Invest. 1987;79:295-300.
471	69.	Symonds ME, Clarke L. Influence of thyroid hormones and temperature
472		on adipose tissue development and lung maturation. Proc Nutr Soc.
473		1996;55:567-575.
474	70.	Dumortier O, Roger E, Pisani DF, et al. Age-Dependent Control of Energy
475		Homeostasis by Brown Adipose Tissue in Progeny Subjected to Maternal
476		Diet–Induced Fetal Programming. <i>Diabetes</i> . 2017;66(3):627-639.
477	71.	Johnsen L, Lyckegaard NB, Khanal P, Quistorff B, Raun K, Nielsen MO.
478		Fetal over- and undernutrition differentially program thyroid axis
479		adaptability in adult sheep. <i>Endocrine connections</i> . 2018;7(5):777-790.

480	72.	De Blasio MJ, Gatford KL, Robinson JS, Owens JA. Placental restriction
481		alters circulating thyroid hormone in the young lamb postnatally.
482		American Journal of Physiology. 2006;291:R1016-R1024.
483	73.	Hernandez MV, Etta KM, Reineke EP, Oxender WD, Hafs HD. Thyroid
484		function in the prenatal and neonatal bovine. <i>Journal of Animal Science</i> .
485		1972;34(5):780-785.
486	74.	Micke GC, Sullivan TM, Gatford KL, Owens JA, Perry VE. Nutrient intake in
487		the bovine during early and mid-gestation causes sex-specific changes in
488		progeny plasma IGF-I, liveweight, height and carcass traits. Anim Reprod
489		Sci. 2010;121(3-4):208-217.
490	75.	Jensen MB. Behaviour around the time of calving in dairy cows. Applied
491		Animal Behaviour Science. 2012;139(3-4):195-202.
492	76.	Johnsen JF, de Passille AM, Mejdell CM, et al. The effect of nursing on the
493		cow–calf bond. Applied Animal Behaviour Science. 2015;163:50-57.
494	77.	Ventorp M, Michanek P. Cow-calf behaviour in relation to first suckling.
495		Research in Veterinary Science. 1991;51(1):6-10.
496	78.	von Keyserlingk MAG, Weary DM. Maternal behavior in cattle. Hormones
497		and Behavior. 2007;52(1):106-113.
498	79.	Lidfors LM, Jensen P, Algers B. Suckling in Free - ranging Beef Cattle —
499		Temporal Patterning of Suckling Bouts and Effects of Age and Sex.
500		Ethology. 1994;98(3 - 4):321-332.
501	80.	Godden S. Colostrum Management for Dairy Calves. Veterinary Clinics of
502		North America: Food Animal Practice. 2008;24(1):19-39.
503	81.	Homerosky ER, Timsit E, Pajor EA, Kastelic JP, Windeyer MC. Predictors
504		and impacts of colostrum consumption by 4h after birth in newborn beef
505		calves. The Veterinary Journal. 2017;228:1-6.
506	82.	Stehulova I, Spinka M, Sarova R, Machova L, Knez R, Firla P. Maternal
507		behaviour in beef cows is individually consistent and sensitive to cow
508		body condition, calf sex and weight. <i>Applied Animal Behaviour Science.</i>
509		2013;144(3-4):89-97.
510	83.	Miguel-Pacheco G, Hernandez-Medrano J, Keisler DH, Voigt JP, Perry VE. Is
511		maternal behaviour affected by peri-conception diet? Paper presented at:
512		Proceedings of the 50th Congress of the International Society for Applied
513		Ethology2016; Edinburgh, United Kingdom.
514	84.	Bar-Peled U, Maltz E, Bruckental I, et al. Relationship between frequent
515		milking or suckling in early lactation and milk production of high
516		producing dairy cows. J Dairy Sci. 1995;78(12):2726-2736.
517	85.	Wall EH, McFadden TB. The Milk Yield Response to Frequent Milking in
518		Early Lactation of Dairy Cows Is Locally Regulated. J Dairy Sci.
519		2007;90(2):716-720.
520	86.	Muhlhausler BS, Adam CL, Findlay PA, Duffield JA, McMillen IC. Increased
521		maternal nutrition alters development of the appetite-regulating network
522		in the brain. <i>FASEB Journal</i> . 2006;20:1257-1259.
523	87.	Begum G, Stevens A, Smith EB, et al. Epigenetic changes in fetal
524		hypothalamic energy regulating pathways are associated with maternal
525		undernutrition and twinning. FASEB journal : official publication of the
526		Federation of American Societies for Experimental Biology.
527		2012;26(4):1694-1703.

528	88.	Schultz RD, Dunne HW, Heist CE. Ontogeny of the bovine immune
529		response. Infection and immunity. 1973;7(6):981-991.
530	89.	Merlot E, Couret D, Otten W. Prenatal stress, fetal imprinting and
531		immunity. Brain, Behavior, and Immunity. 2008;22(1):42-51.
532	90.	Copping KJ, D L, Flynn R, McMillen IC, Rodgers R, Perry VEA. Sex Specific
533		effects of early gestational diet upon the developing immune system.
534		Paper presented at: Society for Reproductive Biology; 2015, 2015;
535		Adelaide.
536	91.	Cronjé PB. Foetal programming of immune competence. Australian
537		Journal of Experimental Agriculture. 2003;43(12):1427-1430.
538	92.	Jones CT, Lafeber HN, Rolph TP, Parer JT. Studies on the growth of the
539		fetal guinea pig. The effects of nutritional manipulation on prenatal
540		growth and plasma somatomedin activity and insulin-like growth factor
541		concentrations. <i>Journal of developmental physiology</i> . 1990;13(4):189-197.
542	93.	Cromi A, Ghezzi F, Raffaelli R, Bergamini V, Siesto G, Bolis P.
543		Ultrasonographic measurement of thymus size in IUGR fetuses: a marker
544		of the fetal immunoendocrine response to malnutrition. <i>Ultrasound in</i>
545		Obstetrics and Gynecology. 2009;33(4):421-426.
546	94.	Chandra RK. Nutrition and the immune system: an introduction. <i>The</i>
547		American Journal of Clinical Nutrition. 1997;66(2):460S-463S.
548	95.	Pond WG, Maurer RR, Mersmann H, Cummins S. Response of fetal and
549		newborn piglets to maternal protein restriction during early or late
550		pregnancy. Growth Development and Aging. 1992;56(3):115-127.
551	96.	Pond CM. Adipose tissue and the immune system. <i>Prostaglandins,</i>
552		Leukotrienes and Essential Fatty Acids. 2005;73(1):17-30.
553	97.	Pickwell ND. Molecular profiles of brown, 'brite' and white bovine neonate
554		adipose tissues [Masters]. Nottingham: School of Veterinary Medicine and
555		Science, University of Nottingham; 2013.
556	98.	Henry BA, Pope M, Birtwistle M, et al. Ontogeny and thermogenic role for
557		sternal fat in female sheep. <i>Endocrinology</i> . 2017;158(7):2212-2225.
558	99.	Cundiff LV, MacNeil MD, Gregory KE, Koch RM. Between- and Within-
559		Breed Genetic Analysis of Calving Traits and Survival to Weaning in Beef
560		Cattle. J Anim Sci. 1986;63(1):27-33.
561	100.	Smith SB, Carstens GE, Randel RD, Mersmann HJ, Lunt DK. Brown adipose
562		tissue development and metabolism in ruminants. Journal of Animal
563		Science. 2004;82(3):942-954.
564	101.	Strong RA, Silva EB, Cheng HW, Eicher SD. Acute brief heat stress in late
565		gestation alters neonatal calf innate immune functions1. <i>Journal of Dairy</i>
566		Science. 2015;98(11):7771-7783.
567	102.	Jacometo CB, Alharthi AS, Zhou Z, Luchini D, Loor JJ. Maternal supply of
568		methionine during late pregnancy is associated with changes in immune
569		function and abundance of microRNA and mRNA in Holstein calf
570		polymorphonuclear leukocytes. J Dairy Sci. 2018;101(9):8146-8158.
571	103.	Ball PJ, Peters AR. <i>Reproduction in cattle.</i> Wiley Online Library; 2004.
572	104.	Porter P. Immunoglobulins in bovine mammary secretions: Quantitative
573		changes in early lactation and absorption by the neonatal calf.
574		Immunology. 1972;23(2):225.

575	105.	Jaster EH. Evaluation of Quality, Quantity, and Timing of Colostrum
576		Feeding on Immunoglobulin G1 Absorption in Jersey Calves. <i>Journal of</i>
577		Dairy Science. 2005;88(1):296-302.
578	106.	Robison JD, Stott GH, DeNise SK. Effects of Passive Immunity on Growth
579		and Survival in the Dairy Heifer1,2. <i>Journal of Dairy Science</i> .
580		1988;71(5):1283-1287.
581	107.	McEwan AD, Fisher EW, Selman IE. Observations on the immune globulin
582		levels of neonatal calves and their relationship to disease. <i>Journal of</i>
583		Comparative Pathology. 1970;80(2):259-265.
584	108.	Dewell RD, Hungerford LL, Keen JE, et al. Association of neonatal serum
585		immunoglobulin G1 concentration with health and performance in beef
586		calves. Journal of the American Veterinary Medical Association.
587		2006;228(6):914-921.
588	109.	Hough R, McCarthy F, Kent H, Eversole D, Wahlberg M. Influence of
589		nutritional restriction during late gestation on production measures and
590		passive immunity in beef cattle. <i>Journal of animal science</i> .
591		1990;68(9):2622-2627.
592	110.	McGee M, Drennan MJ, Caffrey PJ. Effect of Age and Nutrient Restriction
593		Pre Partum on Beef Suckler Cow Serum Immunoglobulin Concentrations,
594		Colostrum Yield, Composition and Immunoglobulin Concentration and
595		Immune Status of Their Progeny. Irish Journal of Agricultural and Food
596		Research. 2006;45(2):157-171.
597	111.	Nardone A, Lacetera N, Bernabucci U, Ronchi B. Composition of colostrum
598		from dairy heifers exposed to high air temperatures during late
599		pregnancy and the early postpartum period. Journal of Dairy Science.
600		1997;80(5):838-844.
601	112.	Shell T, Early R, Carpenter J, Buckley B. Prepartum nutrition and solar
602		radiation in beef cattle: II. Residual effects on postpartum milk yield,
603		immunoglobulin, and calf growth. Journal of animal science.
604		1995;73(5):1303-1309.
605	113.	McGee M, Drennan M, Caffrey P. Effect of age and nutrient restriction pre
606		partum on beef suckler cow serum immunoglobulin concentrations,
607		colostrum yield, composition and immunoglobulin concentration and
608		immune status of their progeny. <i>Irish J Agr Food Res.</i> 2006;45:157 - 171.
609	114.	Shivley CB, Lombard JE, Urie NJ, et al. Preweaned heifer management on
610		US dairy operations: Part II. Factors associated with colostrum quality
611		and passive transfer status of dairy heifer calves. J Dairy Sci.
612		2018;101(10):9185-9198.
613		