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Key Points:  13 

• The maternal environment (nutrition and physiological status) can influence 14 

neonatal mortality and morbidity.  15 

• The effects of gestational nutrition upon birthweight, dystocia and calf 16 

survival vary with the timing and duration of dietary interventions and the sex 17 

of the offspring.  18 

• The ability to thermoregulate, stand, suckle, and ingest sufficient quantities of 19 

colostrum are critical to neonate survival and may be altered by in utero 20 

environment 21 

• The quantity of colostral  immunoglobulins  ingested by the neonate may be 22 

affected by prenatal ambient temperature and gestational diet.   23 

• Gestational dietary restriction may alter thyroid function, and diminish BAT 24 

capacity concomitantly effecting lymphoid atrophy and neonatal immune 25 

function. 26 

 27 

Synopsis 28 

The greatest loss in ruminant production systems occurs during the neonatal period. 29 

The maternal environment (nutrition and physiological status) influences neonatal 30 

mortality and morbidity as it reportedly affects; a) dystocia; both via increasing 31 

birthweight and placental dysfunction, b) neonatal thermoregulation; both via altering 32 

the amount of brown adipose tissue and its ability to function via effects upon the 33 

HPT axis, c) modification of the developing immune system and its symbiotic 34 

nutrient sources, d) modification of maternal and neonatal behavior.    35 

 36 



Introduction 37 

The greatest loss in ruminant production systems occurs during the neonatal period, 38 

i.e. between birth and 28d of life. In extensive production systems, neonatal losses are 39 

reportedly between 10-30% and 6-16% for lambs and calves, respectively 1,2.  With 40 

90% of these offspring born alive, this is considered a preventable welfare issue1 and 41 

a high economic burden to the livestock industry.  42 

 43 

It is well established that in utero environment3 affects ruminant progeny health and 44 

welfare.  This phenomenon is known as fetal programming and is contingent upon the 45 

particularly long gestation period in ruminants during which physiological systems 46 

develop; such that at birth, the ontogeny of these systems is complete. The effects of 47 

this fetal programming in the neonate may be mediated by epigenetic modifications 48 

which regulate gene expression in both the placenta and fetus 4 (Figure 1).  These 49 

epigenetic modifications may occur as early as embryogenesis5 through to late 50 

gestation 6. The placenta mediates fetal supply of nutrients, hormones and oxygen7,8 51 

with both the placenta and fetus responding to maternal perturbations in a sexually 52 

dimorphic manner 9,10. This has significant consequences as survival in the male, 53 

during gestation and at birth, is reduced11 compared to the female. 54 

 55 

Significantly for this review, many of the contributing factors associated with 56 

increased risk of neonatal mortality, i.e. premature birth12, birthweight13, dystocia14,15 57 

and poor adaptation to the postnatal environment16,17, are consequent to the prevailing 58 

prenatal environment18. Moreover, neonatal appetite, adiposity and immune function, 59 

may be influenced by gestational diet in cattle 19,20 and sheep 21. In this review, we 60 

will address those aspects of neonatal mortality affected by fetal programming with 61 

particular reference to the bovine. 62 

 63 



 64 

 65 

Birthweight, dystocia and neonatal survival 66 

Dystocia is the main cause of neonatal calf mortality14,22 either directly, or indirectly, 67 

via decreased vigour 23. Calves which survive dystocia are reported to experience 68 

lower passive immunity transfer, increased risk of postnatal morbidity and mortality24, 69 

and display higher indicators of physiological stress11.  70 

 71 

The incidence of dystocia in nulliparous beef heifers is higher than in multiparous 72 

cows13,25, despite birthweight of first parity progeny generally being lower26. High 73 

birthweight sufficient to cause dystocia is the major cause of neonatal calf loss 23,27. A 74 

disproportionately large calf is the major contributor to dystocia in heifers 24,25 with 75 

calf birthweight28 and heifer size15 considered the primary factors causing this fetal-76 
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maternal disproportion. In growing heifers, particularly those calving at two years of 77 

age, there is greater nutrient competition between the dam and rapidly developing 78 

fetus. They are effectively an adolescent 29 and display a greater response to dietary 79 

restriction compared to adults30 similar to that observed in the ewe.31 However, both 80 

low and high birthweight extremes may be caused by dietary perturbations during 81 

gestation with extremely low birthweight calves also showing increased susceptibility 82 

to morbidity in cold climates 32 as observed in the lamb. Intriguingly, cold climate 83 

temperatures during gestation may be sufficient in themselves to reduce birthweight33. 84 

 85 

As illustrated in Table 1, the timing of dietary interventions impacts the observed 86 

effect upon birthweight: Interventions imposed prior to 100 days post-conception 87 

(dpc), although causing greater effects upon fetal organ development34, generally 88 

result in similar birthweights at term 35,36. Nutrient restriction during the second 89 

trimester, however, may have the greatest influence on calf birthweight30 2,37 90 

sufficient to influence dystocia and thereby survival in the neonate.  91 

 92 

Dietary interventions aimed at reducing birthweight and dystocia during the third 93 

trimester have produced varied responses 26,38-41. These appear to be dependent upon 94 

the severity of maternal weight loss 30.  However, this effect is generally not 95 

associated with reductions in dystocia perhaps due to increased length of second stage 96 

labour 42. In contrast, studies in sheep show maternal undernutrition43 or over 97 

nutrition44 in late pregnancy may reduce lamb birthweight with this effect 98 

commensurate with the level of weight change in the ewe3. 99 

 100 

 101 

 102 

 103 

 104 



Table 1. The effects of gestational dietary interventions upon fetal development, birthweight and dystocia 105 

Legend: Green block= period of intervention, white block= re-alimentation period, NA= variable not measured/tested,= no effect; ↓ = decrease; ↑ = increase, RUP = rumen 106 
undegradable protein, Mreq: Maintenance requirement according to NRC(†) or ARC(‡); E: energy; CP: crude protein. 107 

Refs 
Dam Parity 
(Hf=heifer 
& C=cow) 

n = 

Period of 
intervention 

(days to 
conception) 

Treatment 

Effects of treatment on 
(L compare to H or control) 

Pregnancy stage / trimester 
(days relative to conception) 

Sex Placenta Fetal Birthweight Dystocia 
Pre 

(-60d) 
First 

(0-90d) 
Second 

(90-180d) 
Third 

(>181d) 

Hernan
dez-

Medran
o 

(2015)9 
& 

Copping 
et al 

(2014) 
29 

Hf 120 

-60d to 23d 
& 

24 to 90d 
 

2x2 Factorial 
design  

L= 7%CP‡ 
vs 

H= 14%CP‡  

Y 
(M>F) 

↑ MUA 
blood flow 

↓ wt (98d) 
& 

↓ CRL (32d) 
= =  

 
  

Mossa 
et al 

(2013)34 
Hf 23 

-11d to 110d 
 

RA: 110d to 
term 

Female Only. 
† 

L= 60% E 

Mreq† 
vs 

H= 120% E 

Mreq† 
 

RA: 140% E 

Mreq† 

 NA  = =   

 

 

Sullivan 
et al 

(2010)8 
& Micke 

et al 
(2010)2 

Hf 120 

0 to 93d 
& 

94 to 180d 
 

2x2 Factorial 
design 

L= 4%CP‡ 
vs 

H=13%CP‡  

Y NA ↓ CRL (36d) 

= (1st) 
 
 
 

↓ (2nd) 

↓   
 

 



Refs 
Dam Parity 
(Hf=heifer 
& C=cow) 

n = 

Period of 
intervention 

(days to 
conception) 

Treatment 

Effects of treatment on 
(L compare to H or control) 

Pregnancy stage / trimester 
(days relative to conception) 

Sex Placenta Fetal Birthweight Dystocia 
Pre 

(-60d) 
First 

(0-90d) 
Second 

(90-180d) 
Third 

(>181d) 

Miguel-
Pachec
o et al 

(2016)37 

Hf 80 

14 to 90d 
& 

90 to 180d 
 

2x2 Factorial 
design 

L= 6% CP‡ & 
vs 

H= 16% CP‡ 
(RA) 

Y  
(F>M) 

NA NA ↓  =   
  

Meyer 
et al 

201045 
& 

Vonnah
me et al 
(2007)46 

C 40 

30 to 125d 
 

with 
 

RA: 125 to 
220d 

Female Only. 
† 

L= 68% Mreq 
(9.9%CP) 

vs 
Ct= 100% 

Mreq (12%CP) 
 

RA (13.2%CP) 

 

↓ wt 
(cotyl+caru

nc) 
↓ 

vascularity 
(cotyl) 

↓wt (125d) 
but 

= (after RA) 
& 

↑ GI tract 

NA NA    
 

Perry et 
al 

(1999)47 
Hf 16 

42 to 90d 
 

& 
 

90 to 180d 

L=7%CP‡ 
vs 

H=14%CP‡ 
 

2x2 Factorial 
design 

 

↑ cotyl wt 
(LL/LH) 

& ↑ troph 
vol (LH/HL) 

NA = =   
 

 

Anthony 
et al 

(1986)48 
Hf 59 75d to term 

L=81% Mreq 
vs 

H= 141% Mreq 
(CPreq) 

 N/A N/A = NA   
 

 

Freetly 
et al 

(2000)30 
C 144 90d to term 28kg wt loss   NA ↓ NA     



Refs 
Dam Parity 
(Hf=heifer 
& C=cow) 

n = 

Period of 
intervention 

(days to 
conception) 

Treatment 

Effects of treatment on 
(L compare to H or control) 

Pregnancy stage / trimester 
(days relative to conception) 

Sex Placenta Fetal Birthweight Dystocia 
Pre 

(-60d) 
First 

(0-90d) 
Second 

(90-180d) 
Third 

(>181d) 

Summer
s et al 

(2015)49 
Hf 114 167 to 226d 

Isocaloric and 
isonitrogenous 

with 
 L=34% RUP 

vs  
H=59% RUP 

RA 

N NA NA = =    

 

Bellows 
et al 

(1978)50 
Hf & C  190d to term 

L= 3.2-3.4kg 
TDN 
vs 

H=6.3-6.4kg 
TDN 

 NA NA ↓ (Hf only) ↓     

Tudor 
(1972)51 

Hf & C 
79 

(Hf=36 
& C=43) 

180d to term 
L= 12.5%CP† 

vs 

H =14.4%CP† 

 NA 
↓ 

pregnancy 
length 

↓ =    
 

Corah 
et al 

(1975)52 
Hf 59 180d to term 

L=65% Mreq† 
vs 

H=100% 

Mreq† 

 N/A N/A ↓ (2kg) =    
 

 108 

 109 

 110 

 111 

 112 



There is a sex-specific variation in dystocia rates in cattle with greater occurrence 113 

typically associated with male offspring experiencing increased dystocia, neonatal 114 

morbidity and mortality concomitant with their heavier birthweight52 and placental 115 

dysfunction11.  This is commensurate with the observed greater effect of early 116 

gestational perturbation to male fetal and placental growth and uterine hemodynamics 117 

9,10,29. Reductions in birthweight have also been observed following heat stress53 and 118 

individual dietary nutrient restrictions54-57. Protein supplementation in mid- to late 119 

gestation has been reported to have either no effect on birthweight 41,57-59 or increase 120 

calf birthweight when cows graze low-quality winter pasture 56. Protein 121 

supplementation during the second trimester in Bos indicus heifers increased 122 

birthweight by 8% while increasing dystocia rates three fold 55. 123 

  124 

Table 1 illustrates effects of maternal nutrient restriction during gestation upon calf 125 

birthweight and dystocia vary dependent upon age and parity of the dams studied, the 126 

nutritional regimens and the timing of perturbation 14,40,55. This effectively clarifies 127 

the importance of timing and duration of gestational intervention, severity of the 128 

intervention and sex of the offspring in the neonatal phenotype at birth. 129 

 130 

Neonatal adaptation  131 

Neonatal survival is dependent upon the ability of the neonate to adapt rapidly to the 132 

ex utero environment. Sequentially, the ability to thermoregulate, stand, suckle, and 133 

ingest sufficient quantities of colostrum in the first hours of life is required60.  134 

 135 

A calf’s ability to thermoregulate is largely determined by the function of brown 136 

adipose tissue (BAT). BAT constitutes only 2% of body fat at birth but provides 50% 137 

of thermogenic response as non-shivering thermogenesis61. Adipogenesis, as with 138 

myogenesis and organogenesis, is complete in cattle and sheep prior to birth as it is in 139 

the human62. It is not surprising therefore that adipose tissue, including BAT, is 140 

significantly influenced by prenatal diet19,63,64. Adipose tissue has an important 141 

regulatory and homeostatic function particularly in the neonate 65. BAT produces heat 142 

at 300 W/kg compared with 1W/kg of in all other tissues66, by expressing a BAT-143 

specific gene called uncoupling protein (UCP)1 which dramatically increases fuel 144 

oxidation67. One critical process in ensuring maximal activation of BAT is intra-145 

cellular conversion of the thyroid hormone thyroxine (T4) to its active form, 146 



triiodothyronine (T3), by the enzyme 5’monodeiodinase type 2 (DIO2)68. 147 

Thermoregulation and overall neonatal survival is influenced by the interaction 148 

between thyroid hormones, deiodenases and BAT69. Restricted maternal diet during 149 

pregnancy has shown to increase levels of thyroid hormones in the neonate which 150 

may be able to upregulate UCP1 expression, acting to increase thermogenesis.10 151 

Suggested as a means by which low birthweight calves can increase heat production. 152 

Interestingly, in rats, low birth weight offspring have raised UCP1 compared to 153 

normal sized litter mates70. 154 

As fetal thyroid gland differentiates between 75 and 90 dpc, maternal dietary 155 

restriction during early-gestation may reset the physiology of the HPT axis by altering 156 

ontogeny of the thyroid71. This is reflected in increased free T3 (FT3) levels in the 157 

neonatal calf10 and lamb72. As reported in lambs 72,73, this increased FT3 may 158 

contribute to the “catch-up growth” of these low birth weight calves 74 particularly as 159 

FT3 was positively correlated with average daily weight gain and fetal growth rate in 160 

calves in this study10. 161 

 162 

Feeding behaviour at birth is fundamental to calf survival, with the licking of the cow 163 

first stimulating the calf to stand and suckle75. This initiates the bond between mother 164 

and offspring76. Dairy calves take an average of 90 min to stand after birth and up to 165 

6hrs to suckle for the first time75,77,78, whereas beef calves take up to 2 hrs79.  This 166 

time to first standing influences colostrum intake within the first 24 hours after 167 

birth80,81 . Calves that take longer to stand will take longer to suckle77,  potentially 168 

delaying the passive transfer of immunity and the provision of energy in the initial 169 

hours after birth. 170 

 171 

Cows with highly responsive calves are more likely to provide maternal care82, which 172 

is important in free-ranging animals. The ability of a calf to stand and suckle is 173 

influenced by calf birth weight, sex and ease of calving 11. Periconception and first 174 

trimester restricted protein intake in heifers, has been shown to affect neonatal 175 

behaviour of offspring83. Calves from heifers fed a low protein diet before conception 176 

showed higher duration of suckling behaviour83 sufficient to increase milk output 84 85. 177 

Low birth weight calves have been reported to stimulate nursing bouts more 178 

frequently than calves with a higher birth weight 82. This enhanced appetite may be 179 

prenatally programmed as neural pathways that are pivotal to appetite and voluntary 180 



food intake which develop early in fetal ruminant life86. Gestational dietary restriction 181 

alters gene expression for primary appetite regulating hypothalamic neuropeptides 87 182 

and thereby appetite in the neonate. 183 

 184 

Neonatal immune function 185 

Ontogeny of the bovine immune response is parallel to the human due to similar 186 

gestational periods88 with differentiation complete by the end of the first trimester. 187 

Three critical windows of vulnerability exist during the first trimester of 188 

gestation89 ;the period of embryonic stem cell formation, fetal liver development as 189 

the primary hematopoietic organ, and colonization and establishment of bone marrow 190 

and thymus. In the calf lymphoid development of the thymus is complete at 42 dpc, 191 

with the spleen structurally present at 55 dpc, and peripheral and mesenteric lymph 192 

nodes at 60 dpc and 100 dpc, respectively. Thymic and splenic indices reach maximal 193 

values from 205 dpc. Therefore the thymus has been suggested as the mediator of the 194 

effects of early gestational perturbation upon immune function in neonates90,91. 195 

Copping et al., report that fetal thymus size, and antibiotic use in the neonate may be 196 

altered by protein restriction early in gestation concomitant with effects upon colostral 197 

immunoglobulins.10,90 198 

 199 

Allied with BAT’s role in thermogenesis, is the relationship with the function of 200 

neonatal immune and lymph systems. Prenatal dietary restriction may alter both 201 

thyroid function (as above), and diminish BAT capacity92 concomitantly effecting 202 

lymphoid atrophy93. Lymphoid tissues are susceptible to in utero perturbations early 203 

in gestation as thymic differentiation occurs by 42 dpc in the calf (similar to the 204 

human94) with other lymphoid structures present by 100dpc88. BAT depots surround 205 

lymphoid tissues (including the thymus) in neonatal calves and lambs. It is proposed 206 

that they act, not only as a dedicated lipid resource fuelling immune activation in 207 

lymph nodes95, but also to provide key fatty-acid, cellular and adipokine 208 

immunoregulatory material that support and regulate local immunity96. BAT located 209 

around the prescapular lymph node and sternal areas leading to the thymus is 210 

abundant in the neonatal calf 97 as it is in the lamb64. This BAT depot exhibits a 211 

different gene expression profile to perirenal BAT but may equally be susceptible to 212 

in utero intervention.64,98. Interestingly cattle breeds with better neonatal cold survival 213 

have increased expression of genes associated with BAT and immune function99,100. 214 



 215 

Late gestational stressors such as heat 101 , disease, drought 22, or even dystocia11, may 216 

also affect immune function in the neonatal calf. The mechanisms driving this effect 217 

may include a reduction in food intake during the prenatal stress period. Nutritional 218 

supplementation with methionine, in combination with a high energy diet, during the 219 

last trimester of pregnancy causes a decrease inflammatory response in the neonatal 220 

calf, by modulation of cellular responses 102. These stress or nutritional interventions 221 

are thought to effect the calf via changes in cellular interactions with pathogens 222 

(CD18 and CD14) and changes in acute phase cytokines and pathogen recognition 60  223 

 224 

Acquisition of passive immunity via colostral immunoglobulins (Ig) in the first 24hrs 225 

of life 103 104 105 is required for calf survival 106,107 108. The quantity of colostral Ig 226 

ingested is affected by dam age, prenatal ambient temperature102 and gestational diet 227 

109-111. Timing, severity and period of prenatal intervention modifies the observed 228 

affect:  229 

 230 

Cows restricted from 90dpc to term show IgG concentrations double that compared to 231 

cattle on a high plane of nutrition 112. The latter effect may occur as the cow attempts 232 

to maintain transfer of passive immunity in the face of restricted diet 112. Increased 233 

ambient temperatures late in gestation may decrease colostral IgG and IgA 111.  234 

Primiparous heifers may produce less colostrum with lower concentration of Igs 235 

compared to multiparous cows113. Calves from such heifers, however, have been 236 

reported to have higher antibody concentrations despite lower levels of Ig being 237 

present in the colostrum114. This adaptation may be associated with necessity 238 

considering the lower birthweight of primiparous heifer calves.  239 

Conclusion 240 

We have illustrated that the prenatal period influences neonatal mortality. Total 241 

nutrient restriction, protein restriction, elevated ambient temperature, or a stress event, 242 

during gestation may affect neonatal survival. This occurs via affects upon; a) 243 

dystocia; both via increasing birthweight and placental dysfunction, b) 244 

thermoregulation; both via altering the amount of brown adipose tissue and its ability 245 

to function via effects upon the HPT axis, c) modification of the developing immune 246 



system and its symbiotic nutrient sources, d) modification of maternal and neonatal 247 

behaviour. A lack of attention to these critical windows during prenatal life is 248 

hazardous to the commercial production of live calves. 249 
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