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A foundational aspect of space domain awareness is the ability to identify and track space objects, including

space object discovery and custody. This paper demonstrates the power of combining an efficient multiple

hypothesis joint probabilistic data association (MH-JPDA) algorithm with a fixed-interval smoother to

simultaneously track multiple space objects. For newly discovered objects, statistical initial orbit determination

(SIOD) is possible with a single short optical tracklet, but results in large initial uncertainties. Combining these

uncertainties with closely spaced objects can result in highly ambiguous data associations, which can lead to poor

state estimates and even filter divergence. This paper invokes MH-JPDA to probabilistically update multiple

tracks with multiple simultaneous observations in a sequential filter, while avoiding assigning one-to-one

associations. Once sufficient information has been collected, the space objects become uniquely distinguishable

among each other. Subsequently, the smoother is applied to achieve improved association of the prior

observations. MH-JPDA allows for immediate track formation (using SIOD) and sequential processing of

incoming observations, providing statistically rigorous real-time state estimates, whereas smoothing produces a

more-refined, higher-confidence overall track estimate at user-defined intervals. This paper demonstrates this

approach within the Constrained Admissible Region, Multiple Hypothesis Filter (CAR-MHF) software by

tracking a simulated break-up scenario.

I. Introduction

S PACE situational awareness (SSA) is the knowledge

required to detect, predict, avoid, operate through, recover

from, and/or attribute cause to the loss or degradation of space

activities [1]. Robust tracking capabilities are critical to forming

a solid body of knowledge and understanding in the SSA

domain. Foundational to this understanding is the ability to

detect a high percentage of all objects, to initiate realistic and

predictive trajectories (tracks) for the objects, and to maintain

custody of those objects.†† The following is a short list of the

most significant challenges faced in achieving this under-
standing, and will be addressed in this paper:
1) Observation-to-observation (in particular UCT-to-UCT, i.e.,

uncorrelated tracklets), and track-to-track correlation
2) Angles-only (e.g., optical), short-arc statistical initial orbit

determination (SIOD)
3) False associations, created by
a) Simultaneously trackingmultiple objects (some ofwhichmay

not have been previously tracked) with overlapping uncertainties
b) Fixed-gate data association, potentially combined with poor

state estimates
c) Angles-only, short-arc SIOD methods introduce necessarily

large uncertainties
d) Large uncertainties, combined with many closely spaced

objects, exacerbates the data association problem
4) Need for SIOD given a single observation, along with a

subsequent real-time tracking capability
We apply an efficient implementation of multiple hypothesis joint

probabilistic data association (PDA) to mitigate the UCT problem,
allowing immediate track formation and sequential processing to
provide real-time state estimates of many previously untracked
objects. Further, we apply a fixed-interval smoother to disambiguate
associations and refine the state estimates.
When examining optical sensors, which provide only angle

information, the problem of UCTs (i.e., a detection that cannot be
combined with one or more additional detections to recover an actual
object’s trajectory) results from a combination of factors. Detections
of new objects (i.e., measurements of objects not previously known)
are typically serendipitous detections resulting from surveys or

ancillary detections from images of tasked object tracking. As a
result, the tracklet lengths are typically minutes or less and thus
provide very limited information content with regard to space object
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states and parameters, in particular for geosynchronous Earth orbit
(GEO) objects.‡‡ Traditional initial orbit determination (IOD)
methods or a batch processor requires several time-separated
measurements to be correlated together. A large number of UCTs,
which generally originate from many different unknown objects,
create a combinatorics problem. In many cases, the inability to
reliably associate data to candidate objects results in data being
discarded [2,3].
Given a single, very short arc of optical data, traditional IOD

methods (such as Laplace’smethod [4], Gauss’smethod [4], double r
integration [4], or Gooding’s method [5], which are deterministic in
nature and do not account for stochasticity in themeasurements) tend
to break down because the curvature of the arc (i.e., trajectory
observability) is well within the measurement noise. These may
produce an orbit estimate (of questionable quality), but any
quantifiable uncertainty of the orbit is, at best, a guess. Furthermore,
most of these techniques are fraught with singularities and sensitivity
to the observation geometry, in addition to observation data quality
(noise and biases). They do not account for nongravitational forces
(e.g., solar radiation pressure) in their initial determination and
subsequent propagation in order to associate future measurements.
The challenges of very short arc optical IOD, and subsequently

UCT mitigation, have motivated development of the Constrained
Admissible Region, Multiple Hypothesis Filter (CAR-MHF) [6,7].
The CAR-MHF algorithms exploit the information found in a single
optical tracklet (set of three or more measurements within a short
time, e.g., seconds or minutes, of each other), along with
hypothesized assumptions, to produce statistical IOD (SIOD)
information, which includes data-appropriate uncertainties. Addi-
tionally, varying area-to-mass ratio (AMR) values are hypothesized,
and later refined with additional observations, to account for drag
and/or solar pressure forces. This SIOD process results in a grid of
hypothesized estimates, which are statistically refined with the
unscented Kalman filter (UKF)–based MHF.
Large initial uncertainties, whether assumed (e.g., by the SIOD

methodology) or derived (e.g., from the measurement noise), will
usually result in measurement-to-track association ambiguity in a
dense observation field, that is, multiple measurements at a given
time being statistically likely to have originated from a given object
and vice versa. This problem is amplified by closely spaced objects
and/or long propagation times due to the sparse nature of UCTs. A
nearest neighbor approach [8] makes one-to-one measurement-to-
track assignments based on the likelihood that each measurement
originates from the objects. This approach can break down for large
state uncertainties and/or measurements of clustered objects, causing
false associations that can lead to filter divergence. Alternatively,
PDA techniques, developed and well-studied by the radar and sonar
community since the 1970s [9], refine knowledge of an object’s state
based on weighted information from all candidate measurements
within the data association gate (in our case, the gate is a covariance-
based region of validity). An efficient multiple hypothesis joint
probabilistic data association algorithm (MH-JPDA) is incorporated
into CAR-MHF to address the challenges of the multitarget-
multisensor nature of space object tracking. Other multitarget
tracking approaches that could be applied to this problem include
multiple hypothesis tracking (MHT) [10,11] and random finite set
(RFS) algorithms [12–14]; however, these are not considered here.
Although JPDA enables real-time, sequential processing in the

presence of ambiguous data association, addition of a backward
smoother can help disambiguate the associations. Smoothing refines
the state at each measurement time based upon the information
content of all themeasurements obtained over an interval of time—in
this respect it is similar to a batch processor (or differential
correction). This refinement improves association performance, in
particular at the time of the large initial uncertainties described above.
The improved associations further refine the trajectory estimate.
A previously developed Rauch, Tung, Striebel (RTS, i.e., fixed-
interval) smoother for the UKF [15–17] is incorporated into

CAR-MHF to enable this association and tracking enhancement.
Moreover, “tentative” (forward-filtered only) tracks that pass a series
of convergence and smoother consistency checks (e.g., McReynolds
consistency [18]) are graduated to “established” (smoothed) tracks,
which, one can be confident, contain correct (often one-to-one)
associations and thus reliable state and uncertainty estimates.
The contribution of this work is the unique combination of the

above techniques that have been extensively implemented in the air/
maritime (and others) tracking community (i.e., MHF, JPDA, and
smoothing) and the asteroid tracking community (i.e., CAR) and the
application to the space domain within the context of CAR-MHF.
Specifically, the proposed method accomplishes initial orbit
determination and follow-on tracking, taking into account
probability of detection less than one, with embedded multi-
observation/multi-target data association, and taking into account
background object/measurement clutter statistics. These concepts
have not previously been combined in such a way, and further,
although prior application of JPDA, in particular, has enjoyed success
in other domainswith unknown dynamics and highmeasurement rate
scenarios, this presentation demonstrates enhancement of themethod
to be useful in fairly well-known dynamics environments with
relatively sparse observations. Although this work was motivated by
the UCT problem, the methods extend to other challenges in space
object tracking, for example, data association with sparse
measurements (i.e., long propagations) and/or closely spaced objects
(e.g., clusters). In Sec. II, a background of the major elements of
CAR-MHF is reviewed. Sections III and IV provide the MH-JPDA
and RTS UKF smoother algorithms. Finally, Sec. V presents the
results of processing simulated observations of a geosynchronous
satellite break-up scenario.

II. CAR-MHF Background

As an SIOD and tracking strategy, CAR-MHF combines the
statistical track initialization capability of theCAR (Sec. II.A)with an
MHF (Sec. II.B) that implements an UKF to associate future
measurements to the newly initialized track and refine the trajectory
and uncertainties.
Previouswork analyzed the ability of CAR-MHF to performSIOD

and subsequently track high AMR (HAMR) debris objects over a
2-week span using PDA for the data association [19]. For that
analysis, CAR-MHF processed all objects simultaneously; however,
the object dispersion did not dictate the need for JPDA (joint PDA
only becomes necessary when measurement(s) fall within the
uncertainty gate of multiple objects). Nevertheless, these results
demonstrate the ability of CAR-MHF to correctly estimate object
states covering a range of orbit and AMR values.
Previous work also analyzed the performance of CAR-MHF with

respect to a low Earth orbit break-up event [20]. It was found that
CAR-MHF could initialize and characterize the orbit and drag states
in an accurate, unambiguous, and autonomous fashion. Though the
data association produced favorable results for this limited data set
(only 10 fragmentswere considered; again, JPDAwas not necessary),
it was suggested that in a more cluttered data environment other
techniques would need to be applied.
The remainder of this section provides an overview of the main

components of CAR-MHF. A detailed description of JPDA and
smoothing is deferred to the subsequent sections.

A. Constrained Admissible Region (CAR)

As the name suggests, the CAR involves constraining the possible
ambiguity space of a short tracklet (set of three ormoremeasurements
within a short time, e.g., seconds or minutes, of each other) of optical
data to an admissible region, following the method presented by
Milani et al. [21]. Figure 1 illustrates how the CAR is used to form
6-D state hypotheses given a set of 2-Dmeasurements. In the upper left,
a tracklet of optical data is compressed (see Sec. II.D) to form a single
4-D angles and angle-rates measurement (α; δ; _α; _δ, blue circle at top
middle) and associated uncertainty (based on the raw measurement
noise). As shown by DeMars and Jah [7], this measurement is used
to derive semi-major axis (SMA) and eccentricity (e) constraints in

‡‡GEO is defined as the orbital region where the mean motion of a space
object is equivalent to a sidereal day, approximately 24 h.
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range/range-rate space (lower right, red parabolic and black elliptical

lines, respectively), creating a CAR (the intersection of the SMA and e
constraints, represented in green in the two lower plots). A grid is

formedwithin theCARto forma set of (ρ; _ρ) hypotheses (green circle at
topmiddle), with an assumed uncertainty of uniform distribution based

on the density of hypotheses. This yields a set of hypotheses in

observation space (α; δ; _α; _δ; ρ; _ρ) with associated covariance (the

covariance is formed from the compressed measurement noise and

range/range-rate distribution spacing). An unscented transform [22] is

used to transform themeasurement-space hypotheses mean/covariance

into Cartesian state-space (x; y; z; _x; _y; _z, top middle) that can readily

form the a priori means and covariances to initiate the MHF.

B. Multiple Hypothesis Filter (MHF)

The MHF used in CAR-MHF follows the method introduced by

DeMars et al. [6]. This should not be confused with a multiple

hypothesis tracker (MHT [8,23]), which hypothesizes all possible

data association combinations over some interval of time (i.e., it is not

a sequential, real-time tracker). Figure 2 illustrates one recursion of

theMHF. In theMHF (which is a sequential processor), the estimated

state of an object is represented by multiple Gaussian state

hypotheses (upper left). Each hypothesis is propagated (upper right)

and updated (lower left) using the UKF algorithm in Table 1.

Additionally, each hypothesis has a respective weighting term. All

hypotheses are initialized by CARwith equal weights summing to 1.

During the update step, the weight of each hypothesis is updated

based on the likelihood that the observation originated from that

hypothesis. The weights are held constant during the propagation

step (a constraint that was later relaxed by DeMars et al. with AEGIS

in a Gaussian Mixture Model filter [24]). After each update, if the

weight of a given hypothesis is below some threshold, the hypothesis

is pruned (lower right), allowing for the MHF to eventually converge

to a single hypothesis (or in some cases, a small set of statistically

similar hypotheses).
As mentioned, theMHF uses the UKF, a special case of the sigma-

point Kalman filter [25] that employs the unscented transform [22].

The full, nonlinear equations of motion and measurement-state

equations are used. Background on the UKF is found in the

references above, and additionally, van der Merwe provides an

excellent source for variations and algorithms [26]. Note that the

UKF in the MHF presented by DeMars et al. is the scaled UKF.

CAR-MHF uses an unscaled UKF.We have found that, in processing

real space object data, the lack of tuning parameters in the unscaled

UKF makes this method more attractive and has yielded improved

results and robustness. Given the ample literature on the UKF, only a

brief summary of the unscaled UKF is given in Table 1. Notes on

Table 1: x̂−k and P−
k are the a priori estimated state and covariance at

time k; x̂�k and P�
k are the a posteriori estimated state and covariance

at time k;S is defined as the square root (Cholesky decomposition) of

the covariance and si are the columns of S; nx is the number of

state elements; X i and Yi are the ith state-space sigma point (SP)

and measurement-space SP (i.e., state-space SP transformed into

measurement-space), respectively; w is the (evenly distributed) SP

weight; f�� and h�� are the dynamic model and measurement model,

respectively;Qk andR are the process noise and measurement noise,

respectively; ŷk, Pyy;k, Pxy;k, andKk are the computed measurement,

innovations covariance, state-measurement cross-covariance, and

Kalman gain at time k, respectively; and yk and νk are the

measurement and innovation at time k.

Fig. 1 Illustration of the CAR being used to produce a multiple hypothesis SIOD.

Fig. 2 Illustration of one recursion of the MHF.
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C. Covariance-Based Data Association

DeMars et al. [6] describe how a generalized Euclidian distance,

known as theMahalanobis distance, given by Eq. (1), is used to form

a covariance-based data association (CBDA) gate in order to

determine whether or not a measurement should be used to update a

given estimate.

k2 � �y − ŷ�T�Pyy�−1�y − ŷ� (1)

k2 is a random variable distributed according to a chi-square

distribution (valid for distributions that are sufficiently Gaussian)

from which the probability that the measurement in question, y,
spawned from the estimated trackwith expectedmeasurement, ŷ, and
innovations covariance, Pyy (consistent with notation in Table 1).

This is compared against a user-specified confidence interval (i.e.,

distance “gate”) for the purpose of data association determination.
Fixed-gate association, currently used in many operational

environments in the space object tracking community, does not take

into account the state estimate’s uncertainty; rather, if a measurement

iswithin some fixed distance (inmeasurement space) of the predicted

track state, it is assumed to be associatedwith that track. Provided that

the covariance is representative of the actual estimation errors, CBDA

is superior to a fixed-gate association in that initially uncertainty (and

thus error) in an estimate could be much larger than some fixed gate,

while after several updates, the uncertainty could be much smaller

than the same fixed gate. Figure 3 demonstrates how a fixed gate can

lead to missing associations in the former case (i.e., if the uncertainty

is large and the measurement falls outside of the fixed gate, meas 1)

and lead to false associations in the latter case (i.e., if the uncertainty
is small and themeasurement falls outside the covariance-based gate,
but inside the fixed gate, meas 2). It is noted that although the fixed
gate in the figure is rectangular, this need not be the case.
When an object’s state is represented by multiple hypotheses, the

authors considered applying covariance-based data association in
twoways: 1) form an overall mean and covariance based on all of the
hypotheses [see Eqs. (22) and (23)] in order to form an association
gate, or 2) form an association gate for each hypothesis, and if a
measurement falls within any association gate, all hypotheses are
updated with that measurement. The disadvantage of the former
method is that if the hypotheses represent a significantly non-
Gaussian distribution, the overall mean and covariance (which, by
definition, represent a Gaussian distribution) may yield an
association gate that is not representative of the set of hypotheses.
The disadvantage of the latter method is that if a measurement falls
within the gate of only one low-weighted hypothesis, it is still
assumed to be associated with the object. CAR-MHF uses the latter
method because given the large uncertainties of SIOD tracks, the
overall track estimate can quickly become non-Gaussian (the
individual hypotheses can also become non-Gaussian in time, but not
at nearly the rate atwhich the overall track,which is typicallymade up
of 100s or 1000s of hypotheses, does).

D. Optical Measurement Compression

In general, optical observations are collected in tracklets, a series of
three or more closely spaced angles measurements. Correct
observation-to-observation association (OTOA) is assumed at the
tracklet level given that most sensors correctly tag observations
together over these short time-scales (i.e. several seconds). Intra-
tracklet associations over longer time spans (i.e. severalminutes, hours
or longer) are addressed as described in Sec. II.B. A transformation of
variables (ToV) approach [27] is used to transform a sequence of
multiple angles-only measurement pairs (α1; δ1; α2; δ2; : : : ;αn; δn,)
into a single angles/angle-rates measurement quadruplet (α; δ; _α; _δ).
This ToV approach is shown to be equivalent to passing the angles
measurements througha batch processor to form the angles/angle-rates
measurement. It is important to note that the compressedmeasurement
must be formed at themidpoint (in time) of the tracklet in order to yield
a diagonal measurement noise covariance. Additionally, tracklets are
chosen to ensure that there is no overlap in the measurements used
between compressed measurements. The advantages to measurement
compression are threefold: 1) it is necessary for the CARmethod used
byCAR-MHF, 2) it reduces the number of observations to filter within
the MHF, and 3) angle-rate information doubles the number of
dimensions for covariance-based data association (i.e., more
information is used to make PDA decisions).

Fig. 3 Illustration of covariance-based data association, as opposed to
fixed-gate data association.

Table 1 The unscaled UKF algorithm

Propagation step (predictive) Update step (corrective)

Sk−1 � Cholesky�P�
k−1� Yi;k � h�X−

i;k; t�

X�
i;k−1 � x̂�k−1 �

�����
nx

p
si;k−1 ŷk �

X2nx
i�1

wiYi;k

where S � �s1; s2; : : : ; snx � Pyy;k �
X2nx
i�1

wi�Yi;k − ŷk��Yi;k − ŷk�T � R

w � 1

2nx

Pxy;k �
X2nx
i�1

wi�X−
i;k − x̂−k ��Yi;k − ŷk�TX−

i;k⇐
_X i � f�X�

i;k−1; t�

Kk � Pxy;kP
−1
yy;kx̂−k �

X2nx
i�1

wiX−
i;k

νk � yk − ŷk

P−
k �

X2nx
i�1

wi�X−
i;k − x̂−k ��X−

i;k − x̂−k �T �Qk x̂�k � x̂−k � Kkνk
P�
k � P−

k −KkPyy;kK
T
k
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III. Joint Probabilistic Data Association Filter (JPDAF)

The topic of multitarget-multisensor tracking has been studied by
the radar and sonar communities (among others) since the 1970s. One
of the most studied and used methods is a class of techniques called
PDA, which we have chosen to implement because it is a proven
multitarget data association technique, with advantages in tracking
closely spaced objects when compared with single-object methods.
Bar-Shalom and Li provide a text with a thorough development of
these techniques [9]. When multiple objects exist (or when returns
from a source other than the object of interest are detected, i.e.,
clutter§§), the situation in which multiple, simultaneous observations
associate with a single (or multiple) object(s) must be considered.
PDAwas developed to handle tracking a single object in a cluttered
environment [28] (see Fig. 4a). The probability that each observation
was originated by the object of interest is computed and used in a filter
(PDAF) to perform a weighted update to all of the observations
(as opposed to a nearest neighbor technique, which would perform a
full update to only the “closest,” or most likely, observation).
JPDAextends PDA to the situation inwhichmultiple objects are of

interest [29] (see Fig. 4b). The following development follows that of
Bar-Shalom [30] (note that a more detailed development is given by
Bar-Shalom and Li [9]).

A. Single Hypothesis JPDAF

First, marginal events are defined, θr;i, in which observation i
originates from object r, noting that r � 0 if measurement i
originates from clutter. The set of all possible marginal events
depicted in Fig. 4b is θ0;1 (measurement 1 originated from clutter),
θ0;2 (measurement 2 originated from clutter), θ1;1 (measurement 1
originated fromobject 1), θ1;2 (measurement 2 originated from object
1), and θ2;2 (measurement 2 originated from object 2). θ2;1 is not a
possible marginal event because measurement 1 is not associated
with object 2. Then, a joint association event,Θk, is defined for each
possible set of simultaneous marginal events given the association
gates, where k is the index of a unique set andΘ (without subscript) is
the set of all joint association events. For Fig. 4b, the set of feasible
joint association events is given inTable 2, showing the assignment of
measurement i to object r for each joint event.
There are two slightly different JPDA implementations: parametric

and nonparametric JPDA. Stauch et al. [31] previously implemented
nonparametric JPDA; however, for this application, the parametric
version of JPDA is used [9]. This assumes that the sensor performance
can be characterized through the probability of detection for each
object,PD;r, and the spatial density of false alarms (for the surveillance
volume of the sensor), λ, in addition to the measurement noise. λ is a
tuning parameter depending on the false alarm rate, which is chosen to
reflect the performance of the sensor (e.g., sensor artifacts and
detection processing technique). Under these assumptions the number
of false alarms is implicitlyPoissondistributed.This formulationoffers
several advantages over nonparametric JPDA:
1) The nonparametric algorithm relies on estimating the rate of

false alarms from the number of measurements in the association
gates. This is unreliable for sensors with very low numbers of false
alarms, such as the optical systems typically used in GEO SSA.
2) The parametric version allows the algorithm designer to encode

their knowledge of sensor performance via λ. Even with very little or
no knowledge, one canmake an educated guess by analyzing the data
(similar to deriving the measurement noise of an unknown sensor).
3) The parametric derivation decouples a joint association event

from the number of objects contributing to the event. This allows the
association probabilities to be calculated for each object, rather than
for each hypothesis of each object, resulting in dramatically reduced
computational requirements [32].

The probability of a joint association event, Θk, given all

measurements Y, is given, up to a constant of proportionality, by [9]:

PrfΘkjYg ∝
YN
r�1

ψ r;ir (2)

where N is the total number of objects, ir is the measurement

associated with object r under Θk, and ψ r;i is the likelihood of

measurement i being associated with object r:

ψ r;i �
(
PD;rλ

−1N �yi; ŷr;Pyy;r� for i > 0

1 − PD;r for i � 0
(3)

where yi, ŷr, andPyy;r are measurement i, the expectedmeasurement

of object r, and the innovations covariance of object r, respectively
(as defined in Table 1), andN �� is described below. As a clarification
of notation, for a given Θk the measurement/object pairings are

unique, and thus an index, ir, is defined to represent themeasurement

from object r within Θk (with corresponding marginal event θr;ir , as
an example, in Table 2, which represents Fig. 4b, for joint event Θ3,

i1 � 2 and i2 � 0 and for joint event Θ5, i1 � 1 and i2 � 2). The
operator N �x; x̂;P� is the Gaussian likelihood of instantiation x
given a Gaussian distribution with mean x̂ and covariance P:

N �x; x̂;P� � 1������������
2πjPjp exp

�
−
1

2
�x − x̂�TP−1�x − x̂�

�
(4)

Then, themarginal probability that measurement i originated from
object r is simply the sum of all the probabilities of the joint events in

Θ that contain that marginal event, θr;i:

βi;r �
X

Θk: θr;i∈Θk

PrfΘkjYg (5)

TheUKF update found in Table 1 is modified to form a JPDA filter

(JPDAF). Rather than computing the innovation, ν, based on a single
observation (see Table 1), a JPDA-based weighted innovation (νr) is
formed based on the innovations from all simultaneously associated

observations (νi;r � yi − ŷr):

νr �
Xm
i�1

βi;rνi;r (6)

where m is the number of observations. Then, the state and

covariance update equations for the JPDAF become

x̂�r � x̂−r �Krνr (7)

P�
r � P−

r −

 Xm
i�1

βi;r

!
KrPyy;rK

T
r � ~P (8)

where ~P is the covariance inflation parameter that accounts for the

spread of the observations:

~P � Kr

"Xm
i�1

�
βi;rνi;rνTi;r

�
−
�
νrνTr

�#
KT

r (9)

Fig. 4 Illustration of covariance-based association gate(s) for a single

(left) or two (right) object(s), shown with two measurements of uncertain
origin that associate with one or both objects.

§§Clutter detections generally originate from sensor artifacts (e.g., a hot
pixel or cosmic ray) or detection processing. In the case of optical tracking of
space objects, these types of detections are generally removed during
construction of the observations, and thus clutter is typically the result of
previously untracked objects (i.e., UCTs), even though these are not
technically clutter.
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B. Multiple Hypothesis JPDAF (MH-JPDAF)

Given that CAR-MHF represents each object with multiple
hypotheses, JPDA must be extended to account for multiple
hypotheses (see Fig. 5 for a cartoon depicting a situation in which
MH-JPDA applies). The hypothesis weighting update for theMHF is
the same as that of the Interacting Multiple Model (IMM) [9] and so
Chen andTugnait’s [33] development of the IMM-JPDAF is used as a
basis for an MH-JPDAF. The rearrangement of IMM-JPDAF
presented by Rutten et al. [32] is followed in this section.
Using the a priori weight of hypothesis j from object r, μ−r;j, the

contribution of each object to the joint association event Θk, is
given by

ψ r;i �
Xnr
j�1

ψ r;i;j (10)

where the number of hypotheses in object r is nr and ψr;i;j is the

likelihood of measurement i being associated with hypothesis j of
object r:

ψ r;i;j � μ−r;j ×

(
PD;rλ

−1N �yi; ŷr;Pyy;r� for i > 0

1 − PD;r for i � 0
(11)

By using Eq. (10) [rather than Eq. (3)] in Eq. (2), the calculation
of the joint event probabilities, Θk and the marginal probabilities,
βi;r, can proceed as above. In contrast with the formulation in Stauch

et al. [31] and Chen and Tugnait [33], these association calculations
reduce to the single hypothesis case, avoiding the expensive
evaluation of joint association events for all combinations of
objects, measurements, and hypotheses.
The updated hypothesis weights can then bewritten in terms of the

association probabilities and measurement likelihoods [32], giving

μ�r;j �
Xm
i�0

βi;r
ψ r;i

ψ r;i;j (12)

Similarly, the marginal probability that measurement i originates
from hypothesis j of object r is

βi;r;j �
βi;r
ψ r;i

ψ r;i;j

μ�r;j
(13)

Replacing Eq. (6), the MH-JPDA-based weighted innovation for
hypothesis j of object r is

νr;j �
Xm
i�1

βi;r;jνi;r;j (14)

The state and covariance updates are the same as Eqs. (7) and (8),
with hypothesis subscripts added (each hypothesis of each object is
updated individually):

x̂�r;j � x̂−r;j � Kr;jνr;j (15)

P�
r;j � P−

r;j −

 Xm
i�1

βi;r:j

!
Kr;jPyy;r;jK

T
r;j � ~P (16)

where ~P is the covariance inflation parameter that accounts for the
spread of the observations:

~P � Kr;j

"Xm
i�1

�
βi;r;jνi;r;jνTi;r;j

�
−
�
νr;jνTr;j

�#
KT

r;j (17)

Even after reducing the calculations to the single hypothesis case,
the complexity of the joint association probability calculations still
grows exponentially with the number of objects and number of
measurements. Approximations can be applied to overcome this
computational burden, including the use of belief propagation [34].
Additionally, the issues of track coalescence and switching are well-
known and recent research suggests methods for mitigating these
effects [35].

IV. Rauch-Tung-Striebel (RTS) UKF Smoother

Incorporating a smoother into a sequential filter has multiple
advantages: 1) adding a smoother to a sequential filter yields similar
results as a batch processor (but affording the benefits of the real-time
application of a sequential filter), and 2) the smoothed solution can be
used to re-initialize a forward filter, providing an initial condition
with far smaller uncertainties than the SIOD-based uncertainties,
improving data association performance, which results in fewer false
associations and thus a better estimate of the object’s state. Figure 6
illustrates how the large uncertainty associated with SIOD could
result in association ambiguity, while the smoother can resolve the
associations. In the forward pass, there is association ambiguity (both
measurements are associated with the track), whereas in the
backward smoother pass, the association ambiguity is resolved.
The RTS smoother [15], a fixed-interval smoother, was extended

to the UKF by Psiaki and Wada [16] and Sarkka [17]. Working
backward in time, starting at the final measurement of a given object,
the RTS UKF smoother recursively computes corrections to the
forward filtering result. The algorithm is summarized here. During
the forward filter pass (see Table 1), the a priori and a posteriori
means, x̂− and x̂�, and covariances, P− and P�, as well as the
propagated sigma points (without process noise applied), X−, are
saved. The smoother is initialized at the final time step of the filter,
t � T: x̂	T � x̂�T and P	

T � P�
T , where the 	 indicates the smoothed

value. The following smoothing algorithm is carried out recursively
from k � T − 1 to k � 1. First, the a posteriori sigma points at t � k,
X�

k , are computed from x̂�k and P�
k via the Cholesky decomposition

(as in Table 1). Then, the cross-covariance between t � k and
t � k� 1 is computed:

Ck�1 �
X2nx
i�1

wi�X�
i;k − x̂�k ��X−

i;k�1 − x̂−k�1�T (18)

Fig. 5 Illustration of covariance-based association gates for two objects,
each represented by multiple hypotheses (with respective association

gates), shown with two measurements of uncertain origin that associate
with one or both objects.

Table 2 Feasible joint association events for Fig. 4b

Object No. associated
with measurement

Joint event Marginal events 1 2 Event description

Θ1 θ0;1; θ0;2 0 0 Meas. 1 & 2 from clutter
Θ2 θ1;1; θ0;2 1 0 Meas. 1 from Obj. 1, Meas. 2 from clutter
Θ3 θ0;1; θ1;2 0 1 Meas. 1 from clutter, Meas. 2 from Obj. 1
Θ4 θ0;1; θ2;2 0 2 Meas. 1 from clutter, Meas. 2 from Obj. 2
Θ5 θ1;1; θ2;2 1 2 Meas. 1 from Obj. 1, Meas. 2 from Obj. 2
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where nx is the number of state elements per hypothesis (as in
Table 1). From which the smoother gain is computed:

Ak � Ck�1�P−
k�1�−1 (19)

Then, the smoothed state and covariance are found as a correction
to the a posteriori state and covariance from the filter pass:

x	k � x̂�k �Ak�x	k�1 − x̂−k�1� (20)

P	
k � P�

k �Ak�P	
k�1 − P−

k�1�AT
k (21)

We have developed a simple method to apply an RTS UKF
smoother to anMH-JPDAF. Each surviving hypothesis at the end of a
CAR-MHF (MH-JPDAF) pass is smoothed independently. Then,
given the smoothed state and covariance of each hypothesis at the
beginning of the data fit span, and assuming that the hypothesis
weights are the same as the final a posteriori hypothesis weights, a
single, merged smoothed state and covariance is computed:

x	1 �
X2n
j�1

μjx
	
j;1 (22)

P	
1 �

X2n
j�1

μj�P	
j;1 � �x	j;1 − x	1��x	j;1 − x	1�T� (23)

where n is the total number of surviving hypotheses at the end of the
filter pass, μj is the final a posteriori weight of hypothesis j, and x	j;1
andP	

j;1 are the smoothed state and covarianceof hypothesis j at t � 1.
This merged, smoothed state and covariance is used to re-initialize

a forward filter, noting that the MHF is no longer necessary because
the hypotheses have been merged into a single estimate. The filter/
smoother is then iterated until filter/smoother consistency is achieved
(see below). This iterative technique allows for a restarting of the
filter with another, more refined set of initial conditions, although a
set informed by the data, which is akin to a batch processor being run
iteratively until the initial conditions stop changing. To prevent strong
cross-correlations in the smoothed covariance from enforcing undue
constraints on the state elements during subsequent filter passes,
only the diagonal terms are kept. Further, in order to avoid data
overutilization concerns with an iterative filter/smoother approach,
the uncertainties from the smoothed covariance aremultiplied by 3 in
order to form the next filter iteration’s a priori covariance.

Within the CAR-MHF smoother construct, filter convergence and
filter/smoother consistency are defined. In CAR-MHF, a track is
deemed to be converged if the magnitude of the a posteriori position
uncertainty is less than a user-defined threshold. Themore converged
a given track is, false associations (which degrade the estimated state)
become less likely. Thus, if the estimate is converged, the smoother is
invoked; otherwise, it is not. The McReynolds’s filter/smoother
consistency check [18] is used to determine whether an object’s
smoothed solution meets the accepted criteria. McReynolds shows
that variance and correlations of the difference between the filter state
and the smoother state are equal to the difference between the filter
covariance and smoother covariance. Thus, to find the McReynolds
consistency, R, first calculate the differenced state and covariance:

Δxk � x̂�k − x	k (24)

ΔPk � P�
k − P	

k (25)

Then, the ith element ofΔxk and the square root of the ith diagonal
element of ΔPk, σ

i
k, are used to compute Ri (i.e., the McReynolds

consistency of the ith state element):

Ri
k �

Δxik
σik

(26)

If the McReynolds’s consistency is poor (e.g., Ri
k ≥ 3), it is a

strong indicator of poor modeling (e.g., falsely associated data or
dynamic mismodeling, such as AMR). Because of the large initial
ambiguity associated with the SIOD initialization, false associations
are common during the first filter pass, and furthermore, there are
typically large differences between the smoothed state and the SIOD-
initialized state. Because of this, the filter/smoother must be iterated
two or more times to achieve consistency. If consistency is achieved
within a specified number of filter/smoother iterations, the track
graduates from a “tentative” track to an “established” track and is
carried forward for further measurement processing. If convergence
or consistency is not achieved, the smoothed track is discarded, and
the original CAR-MHF (“tentative”) track (may be multiple
hypotheses) is carried forward until future measurements allow for
convergence and consistency.
An additional advantage to this smoother implementation is that

high confidence can be placed on the data associations of established
tracks. In addition to carrying these smoothed, established tracks
forward, all of the observations associated with them (one-to-one,

Fig. 6 Illustration of data association improvement enabled by smoothing.
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unambiguous associations) are removed from the pool of UCTs,
leaving a smaller pool that can be re-processed with CAR-MHF
(including JPDA) and passed through another filter/smoother
iteration. During this next iteration, the reduction in observations can
result in less confusion, which can enable graduation of additional
established tracks.
Figure 7 shows a diagramof the process described above.CAR-MHF

with MH-JPDA is used to process observations from (user-defined)
interval 1. The resulting tentative tracks undergo a filter/smoother
iteration, after which tracks that pass the convergence/consistency tests
graduate to established tracks and are passed forward. The remaining
UCTs (after the observations associated with established tracks are
removed) re-initialize CAR-MHF. This loop is continued until no more
established tracks are identified, at which point the remaining tentative
tracks from CAR-MHF are passed forward.

V. Example Application of CAR-MHF with MH-JPDA
and Smoother to a GEO Break-up Scenario

A breakup event of a geostationary (GEO) satellite is considered.
Optical observations of the breakup event are simulated using a high-
fidelity model. These observations are processed with CAR-MHF
and the results are presented here.

A. Observation Simulation

A satellite in geostationary orbit (GEO) with 2784 kg mass is
modeled as a box-wing with the satellite x axis aligned with the
velocity vector and the satellite z axis constrained to point toward
nadir. The cube-shaped bus has sides of 10.77 m2 area, with three of
the faces coated with Kapton and the other three coated with
aluminum. Two solar arrays each with an area of 34.5 m2 are
articulated about the satellite y axis to point as closely as possible to
the Sun. At 0400 hrs UTC (coordinated universal time) on February
25, 2014, the geostationary satellite vanishes and 100 fragments are
formed, eachwith a normally distributed, random separation velocity
with a standard deviation of 2 m∕s in each velocity component.
Although this velocity dispersionmay be small compared to an actual
breakup event, the low separation velocities represent a challenge for
closely-spaced object data association and thus help demonstrate the
innovative performance of CAR-MHF techniques. Larger separation
velocities would create more of a challenge for sensor tasking, but
that is outside the scope of this work. Each piece is modeled as two
perpendicular flat plates with an area between roughly 2 and 5 m2

and mass between 1 and 25 kg. The pieces are spinning with random
spin axes and rates between roughly 1 and 10,000 s per revolution.
Orbits are propagated using a 4th/5th-order variable-step Runge
Kutta integrator using a 21 × 21 Earth Gravitational Model (EGM)
2008 gravity field, solar and lunar gravity, and bidirectional
reflectance distribution function (BRDF)–consistent solar radiation

pressure [36]. Earth’s shadow is modeled using an umbra/penumbra

dual-cone. The positions of the Sun and Moon are interpolated from

the Jet Propulsion Laboratory (JPL) DE 421 ephemeris.
A generic optical sensor with a square field-of-view width of

2.84 deg was located in New Mexico. Starting at 0300 hrs UTC on

February 25, 2014, the sensor executed a search pattern 3 fields wide

and 3 fields tall centered on the expected location of the geostationary

satellite. Each collection consisted of 8 exposures 1 s apart. The

sensor waited approximately 1 min between collections so that

the 3 × 3 search takes 10 min to perform. The search pattern is

continuously updated to be centered on the predicted position of the

GEO satellite. The sensor continues collecting observations in the

search pattern for February 25, 26, and 27. The astrometric noise on

the right ascension (α) and declination (δ) angles is independent and
identically distributed from a normal distribution with zero mean and

2-arcs standard deviation. The α noise is then scaled by 1∕ cos�δ� to
account for the spherical coordinate system.
The simulated data have some noteworthy assumptions: The

probability of detection is assumed to be 1 (i.e., if the fragment is in the

sensor’s field of view, an observation is generated). In reality, the debris

pieces would be of varying size and shape and would have differing

observability. Some fragments would only be observable from time to

time (i.e., glints), if at all. Pixel blending is also not considered.

Initially, the fragments would be close enough together to be

unresolvable by the sensor (i.e., they occupy the same pixel, or

neighboring pixels, creating a “blob,” rather than unique observations).

B. CAR-MHF Processing

The dynamic model used for the UKF in CAR-MHF uses the

following: Pines representation [37] of a 12 × 12 EGM-96 spherical

harmonic Earth gravity field, Sun, and Moon gravitational forces

(using JPL Mice Ephemerides to compute the Sun and Moon

positions), and a simple spherical-object solar radiation pressure

model. Process noise is applied as an acceleration uncertainty to

account for dynamicmismodeling (5e − 7,5e − 7, and5e − 8 m∕s∕s
in the radial, intrack, and crosstrack directions, respectively).

A Gaussian measurement noise of 2 arc-s in α and δ is applied. The
smoother convergence criterion was set to 500 m and the maximum

allowable McReynolds consistency for strong candidates was set to

3. The position, velocity, andCrA∕m (coefficient of reflectivity times

AMR) are estimated.
Three scenarios were considered: 1) process observations of 25

randomly chosen fragments, starting at breakup �4 h; 2) process
observations of 50 randomly chosen fragments, starting at breakup

�4 h; and 3) process observations of all 100 fragments, starting at

breakup �1 day. To avoid the very tight cluster immediately after

breakup, the first 4 h of data after the breakup are ignored.

Theoretically, the MH-JPDA technique is capable of successfully

processing such tight clustering; however, current computational

limitations (both memory and processor) prohibit practical

demonstration in this scenario. Note that even after breakup �4 h,
considerable association ambiguity exists and the merits of the MH-

JPDA implementation are demonstrated in the results. Additionally,

as mentioned in the previous subsection, in practice, sensor

resolution would prohibit distinct object observations until the

objects drifted apart to some extent.
For brevity, only results from the 25-fragment scenario are

presented in detail. Over the time span of the run, 34,011 observations

of the 25 fragments are generated. Each tracklet is compressed,

resulting in 3954 compressed observations (composed of between 7

and 16 observations each). Each fragment generated at least 120

tracklets over the 3-day span, with most generating nearly 150.

CAR-MHF autonomously processes these observations sequentially.

Any existing tracks are propagated to the time of the next observation

(or set of simultaneous observations), if the observation(s) associates

(using CBDA, Sec. II.C) with any existing tracks, those tracks are

updated (using MH-JPDAF, if necessary, Sec. III.A). If the

observation(s) does not associate with any existing tracks, new

tentative tracks are spawned using CAR (Sec. II.A).

Fig. 7 Diagram of the iterative process including CAR-MHF, the filter/

smoother, graduation of established tracks, and pass forward to the next
data interval.
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At the end of the data span, tentative tracks that are converged are

smoothed back over the data time span. Given the large initial

ambiguities associatedwith theCARSIODprocess, theMcReynolds

consistency is not checked for the first filter/smoother iteration. The

smoothed states are used to re-initialize the a priori state of each

converged track to be processed by the MH-JPDAF (note that each

smoothed track is now represented by a single hypothesis). Again,

any converged tracks are smoothed. TheMcReynolds consistency of

each track is computed, and if R < 3 over all the data, the tentative

track is promoted to an established track, and all of the observations

that are strongly associated (i.e., β > 0.99, indicating one-to-one, or
very nearly one-to-one, assignments) with the fragment are removed

from the observations pool. The filter/smoother iteration is repeated

until 1) all tentative tracks are promoted to established, or 2) a user-

defined maximum iterations is reached.

At this point, some number of established tracks have been

generated and the associated observations have been removed from

the pool of observations. Then, CAR-MHF processes only the

remaining observations (UCTs). Given the smaller set of

observations, false associations are less likely, and thus tracks that

were tainted by false associations during the first CAR-MHF runmay

be promoted during the second run. Again, the filter/smoother

iteration is executed. If more established tracks are identified, the

associated observations are removed from the pool and CAR-MHF is

run again on the remaining observations. This process is repeated

until established tracks are no longer identified.

C. Results

As mentioned previously, only the detailed results of the

25-fragment case are presented, but a summary of the 25-, 50- and

100-fragment runs is given in Table 3. A total of 50 established tracks

were formed in the 50-fragment case and 99 established tracks were

formed in the 100-fragment case. The particular fragment missed in

the 100-fragment case was an extremely high area-to-mass ratio

(HAMR) object. These objects prove difficult to maintain custody of

as they are highly affected by solar radiation pressure, and thus

require high-fidelity modeling and accurate characterization. CAR-

MHF has the impressive ability to maintain custody of HAMR

objects [19] and demonstrated this ability in the 50-fragment scenario

(which contained this same HAMR object). However, in the

100-fragment scenario, which started on day 2 instead of day 1, there

was not sufficient temporal separation in the measurements to

adequately estimate theAMR, and thus the tentative trackwas unable

to pass convergence/consistency checks. The number of false tracks

is also noteworthy (this is derived from the number of tentative tracks

minus the number of fragments in the run), especially in the

50-fragment run. This is because when considering 50 fragments,

there is still a large amount of confusion at breakup �4 h, which
causes relatively poor MH-JPDA performance that takes some time

to overcome, and thus many false tracks are created. Even so, the

smoother process is able to track all 50 fragments. The average

RMS errors are derived from the difference between the estimated

trajectories and the truth. More discussion is found in Sec. V.C.3.

The results of the 25-fragment scenario are evaluated in

several ways:
1. Evaluation of measurement-to-track association performance
2. Analysis of filter/smoother outputs for each established track

individually (e.g., state uncertainties, a priori and a posteriori
residuals, and McReynold’s consistency)
3. Comparison of the estimated track states with the truth states

The upshot of method 2, and method 1 to some extent, is that the
evaluation is made in the absence of truth data. Each of the three
methods of evaluation is shown here.

1. Evaluation of Association Performance

CAR-MHF ignores the object ID tags in the data, but rather uses
CBDA (see Sec. II.C), and MH-JPDA (Sec. III.A), where necessary,
to assign measurement-to-track associations. These assignments by
CAR-MHF can be evaluated against the true object IDs that
generated the measurements. Given the nature of JPDA, the idea of
association is no longer definitive. A single track can associate to
several simultaneousmeasurements, and a singlemeasurementmight
associate with multiple tracks. The parameter β [i.e., the marginal
probability that an observation originated from a track; see Eqs. (5)
and (13)] identifies the “strength” of the association. If β ≈ 1, the
association is strong; if β ≈ 0, the association is weak.
It is interesting to evaluate the results of both the tentative tracks

generated during the initial pass through the data using CAR-MHF
withMH-JPDA and then compare it to the performance of established
tracks that are promoted during the filter/smoother iteration. Table 4
shows the association performance of both the initial CAR-MHF
(filtered-only) tentative tracks and the smoothed established tracks.
Columns 1 and2 are the object IDand the (true) number of compressed
observations of the fragment. Column 3 is the assigned number of the
tentative track that corresponds to the object ID from column 1 (this
number is assigned at “birth”; thus, the first track spawned by CAR is
track #1, the second is track #2, and so on, and thus the order is not
necessarily consistent with the object ID, but rather which fragment
happened to be detected first). This correspondence between tentative
track number and object ID was identified in postprocessing: if the
final five observations associated with a tentative track were tagged
with the same object ID, then that track was judged as corresponding
with the fragmentwith that object ID.The total number of observations
that CAR-MHF correctly associated with the track is presented in the
column 4. Column 5 is the number of observations CAR-MHF falsely
associated (i.e., associated the track with an observation of the wrong
fragment). Column 6 is the number of correct associations that CAR-
MHFmissed. Columns 7–10 are the same as columns 3–6, except that
they correspond to the established tracks, that is, filter/smoother
converged and consistent (note that the track number of an established
track is assigned upon passing convergence and consistency criterion,
and thus they do not necessarily correspond to the same track number
as its tentative track).
As stated, columns 3–6 ofTable 4 show the association performance

of the tentative tracks from the CAR-MHF forward-filter-only run. It
can be seen that four false tracks were created (meaning that they did
not correspond well with any of the true fragments). Track 29
associated with 1754 observations, but none of these were strong
associations (maximum β was less than 0.0001, indicating that the
uncertainty was very large and associated with observations of many
fragments). Tracks 13, 14, and 19 each associated with a few
observations, but then lost track of the fragment they were tracking,
likely due to the significant initial confusion caused by the large cluster
of fragments. When they lost track (i.e., failed to associate to
observations of the fragment being tracked), CAR SIOD spawned
additional tentative tracks 26, 27, and 28. Table 4 shows that each of
thosemissed a handful of observations, whichwere at the beginning of
the run when tracks 13, 14, and 19 were tracking those fragments (i.e.,
before tracks 26, 27, and 28 were spawned).
The tentative tracks from the CAR-MHF run were evaluated

for convergence, and if converged, they were smoothed. They were

Table 3 25-, 50-, and 100-fragment high-level run results

Case
Start
time

Total
obs

Compressed
obs

Tentative
tracks

Established
tracks

Recovery
rate, %

Average track
RMS error, m

25-Fragment �4 h 34,011 3,954 29 25 100 62
50-Fragment �4 h 68,283 7,914 99 50 100 67
100-Fragment �1 day 111,780 12,917 113 99 99 63
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filter/smoother iterated until McReynolds consistency was achieved,
at which point they were promoted to established tracks. The
established track (number 23) association results are also shown in
Table 4 (columns 7–10). The association performance here is nearly
perfect, demonstrating the power of the filter/smoother iteration and
track promotion process, which theoretically approaches a batch
processor result. CAR-MHF missed only one measurement-to-track
association (fragment 70021), and analysis showed that this
observation was an outlier. There were no false associations. Using
70012 as an example, as described above, tentative track 26 was not
spawned until after the seventh observation of 70012.However,when
the track was smoothed back and used to re-initialize the next filter
pass, the established track successfully associated with all of the
observations of 70012. Because the established tracks are initialized
with a smoothed initial condition, they have relatively small
uncertainties. During the final filter run before all the estimates were
promoted to established tracks, there were no JPDA clusters (i.e., at
no point in time did multiple measurements associate with a single
track, nor did a single measurement associate with multiple tracks;
thus it was a statistically unambiguous measurement-to-track
assignment). As seen above, this was not the case for the initial
CAR-MHF pass of the data. The CAR-initialized tentative tracks
have large initial uncertainties, and thus MH-JPDAwas exercised a
significant amount during this first pass. That said, the tentative tracks
formedwere sufficiently accurate to trigger a filter/smoother iteration
that successfully recovered all the fragments.

2. Analysis of Filter/Smoother Outputs

The second method for evaluation is to evaluate the filter
convergence and smoother consistency behavior. This section reflects
the results for fragment 70001, which was represented by tentative
track 2 and established track 1. Figure 8 shows the constrained
admissible region (and corresponding grid of hypotheses) in range/
range-rate space, as well as what the CAR-grid becomes when
transformed into orbital elements. Figures 9–15 show plots of the
tentative track (filter only) (left) and final filter/smoother iteration (i.e.,
established track) (right). Figure 9 shows the CrA/m (coefficient of
reflectivity × area/mass) estimate and uncertainty. The data do not

inform the CrA/m estimate during the first day of the CAR-MHF
forward filter pass.On day 2, the value jumps to near its final estimated

value and the uncertainty begins to converge; however, the solution is

quite noisy. On day 3, the estimate converges on the final value. In the

case of the established track (i.e., the final filter/smoother iteration), it

gets initialized near its final value and stays fairly constant while the
uncertainty converges throughout the pass. Figures 10 and 11 show the

1-sigma a posteriori position (RIC) and velocity (RIC) uncertainties,

respectively. These converge much faster than the CrA/m

uncertainties. The established track has much smaller uncertainties

(due to the re-initialization) on day 1, but the uncertainties on day 2 and

3 are similar to the tentative track.Figure 12 shows the a priori residuals
(innovations along with the 3-sigma uncertainty derived from the

innovations covariance). The innovation plots demonstrate that the

estimated trajectory predicts future observations within the estimated

uncertainty, perhaps the most compelling metric for “real-world” data

processing evaluation (i.e., how well the algorithm consistently
predicts futurebehavior is the best that canbedone in termsof expected

performance). Figure 13 shows the a posteriori residuals. The a

posteriori residuals demonstrate unbiased results, with a standard

deviation well below the modeled noise. Figures 14 and 15 show the

position and velocity McReynolds consistency, respectively. For the

tentative track, the McReynolds consistencies are quite poor on day 1
(a McReynolds consistency of less than 3 is considered acceptable).

This is due to the large uncertainties (and errors) associated with the

CAR SIOD and significant association ambiguities. However, the

established track, which has smoothed initial conditions, greatly

improved the initial McReynolds consistency on day 1. For the

established track, the McReynolds consistency is always less than 3
and almost always less than 2, which indicates excellent consistency.

3. Comparison to Truth

The final evaluation method (only valid for simulated data) is to
compare the sets of estimated states with the true states. To evaluate

multi-object tracking performance we use a metric that can compare

the sets thatmay be of different cardinality (i.e., number of tracks) and

provide an assessment of amean track precision and accuracy against

Table 4 Measurement association results

Tentative (filter only) Established (smoothed)

Obj ID Total No. of obs Track No. Obs assoc Missed assoc False assoc Track No. Obs assoc Missed assoc False assoc

70000 145 1 146 0 1 3 145 0 0
70001 147 2 152 0 5 1 147 0 0
70002 147 3 150 0 3 4 147 0 0
70003 147 4 150 0 3 2 147 0 0
70004 147 5 147 0 0 5 147 0 0
70005 147 6 147 0 0 6 147 0 0
70006 147 7 147 0 0 7 147 0 0
70007 147 8 147 0 0 8 147 0 0
70008 147 9 147 0 0 9 147 0 0
70009 205 10 205 0 0 10 205 0 0
70010 147 11 158 0 11 11 147 0 0
70011 147 12 154 0 7 12 147 0 0
70012 159 26 152 7 0 23 159 0 0
70013 147 27 139 8 0 24 147 0 0
70014 147 15 150 0 3 13 147 0 0
70015 147 16 148 0 1 14 147 0 0
70016 147 17 147 0 0 15 147 0 0
70017 147 28 140 8 1 25 147 0 0
70018 147 18 154 1 8 16 147 0 0
70019 184 20 186 0 2 17 184 0 0
70020 147 21 147 0 0 18 147 0 0
70021 205 22 210 1 6 19 204 1 0
70022 205 23 206 0 1 20 205 0 0
70023 147 24 148 0 1 21 147 0 0
70024 205 25 206 0 1 22 205 0 0
False track 13 13 — —

False track 14 13 — —

False track 19 27 — —

False track 29 1754 — —
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the truth. To achieve this, the optimal subpattern assignment (OSPA)

metric [38] was used. If we define two sets of tracks, X �
fx1; : : : ; xmg and Y � fy1; : : : ; yng, the OSPA distance between the

sets X and Y is defined as

d�c�p �X;Y��
"
1

n

 
min
π∈Πn

Xm
i�1

d�c��xi;yπ�i��p�cp�n−m�
!#

1∕p

(27)

where d�c��x; y� � min�c; d�x; y�� is the cutoff distance, with c > 0
being the cutoff parameter, d�x; y� is an arbitrary distance metric

between x and y, Πn represents the set of permutations of length m
with elements taken from f1; 2; : : : ; ng, and p ∈ �1;∞� is the OSPA
metric order parameter. For the case where m > n the metric

d�c�p �Y; X� is calculated. The cutoff parameter c determines the

relative weighting of the penalties between localization (i.e., state

difference) and cardinality errors, whereas the OSPA metric order

parameter p determines the sensitivity to outlier estimates. For the
results in this section the parameters c � 5000 m andp � 1 are used
and d�x; y� is the Euclidean distance metric. For each scenario, four
sets of estimates were compared with the true states. These sets
included tentative (forward-filtered only) tracks and established
(smoothed) tracks for both implementations of MH-JPDA
(nonparametric MH-JPDA used by Stauch [31] and the new, more
efficient parametric MH-JPDA described herein).
Figure 16 displays the results for the 25-fragment scenario. This

figure shows the difference between the sets of tentative and
established tracks, highlighting the significance of the iterative
smoother technique presented. The two implementations of MH-
JPDA produced very similar OSPA metrics as expected with only
minor differences occurring due to the differences in nonparametric
and parametric techniques. After performing the iterative smoothing
and refining the initialization, the established tracks were identical for
both implementations. For this particular scenario a total of 29 tentative
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tracks were formed, which resulted in 25 established tracks after

refinement. TheOSPAmetric penalizes false tracks and the penalty for

the extra tentative (false) tracks can be seen in the figure. This is shown

by the difference between the two sets of estimates (tentative and

established) after they converged on day 3. It is important to note that

even though the two implementations of MH-JPDA gave very similar

OSPAmetric results, the time to compute the associationweights were

drastically different. At the point where most confusion occurred

during the scenario (17 objects with 16 measurements), the previous

implementation ofMH-JPDA spent 22.5 min calculating the result for

one particular group of observations, whereas the new efficient

implementation reduced that time to 7.4 s (180× speed improvement)

(note that larger clusters were found when starting the run

immediately after breakup, i.e., 25 objects with 25 measurements,
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but these caused out-of-memory errors on our platform). Overall,
the time spent to complete the scenario was reduced from 13.5 h to
9.5 min on standard computer hardware. As described in Sec. III.A,
this speed improvement is the result of the association calculations
being reduced to the single hypothesis case, avoiding the expensive
evaluation of joint association events for all combinations of
objects, measurements, and hypotheses.

Figures 17 and 18 show the OSPA metric results from the 50- and
100-fragment scenarios, respectively. The established tracks are
again identical for both versions ofMH-JPDA; however, the tentative
tracks showconsiderable differences. These differences are a result of
memory constraints on the hardware used. At certain points in the
scenario, if the confusionwas too great, the hardware had insufficient
memory to calculate the MH-JPDAweights. When this occurred the
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Fig. 14 Position McReynolds consistency for fragment 70001.
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information from the updatewas ignored and the algorithmwaited for
future updates where less confusion was present. Because of the
different memory requirements of the MH-JPDA implementations,
this condition did not occur at the same time and as a result therewere
differences between the sets of tentative tracks produced. The new
implementation of MH-JPDAwas able to reduce the occurrence of
such a condition, which resulted in an improved result on day 3 in
both the 50- and 100-fragment scenarios. It is understood that, in
cases such as this, approximate inference methods such as loopy
belief propagation [32] can reduce the computational burden while
maintaining accuracy. The figures highlight that even though the
tentative estimates were different between the two implementations,
the established tracks remained identical. This highlights the
importance of the iterative smoothing technique, indicating that the
information gained in the forward pass can vary but the same result is
achieved after iteratively smoothing.
The average RMS errors of the established tracks when compared

with the true states for the 25-, 50-, and 100-fragment scenario
were 62, 67, and 63 m, respectively. Given the measurement noise of
2 arc-s, which is equivalent to approximately 400 m at GEO, and no
ranging information, this performance is excellent. For tentative
tracks, although initial errors are relatively large (100� km), the
uncertainties are realistic, allowing for proper data association.
Additionally, the advantage of initializing the statewith the smoothed
initial condition is demonstrated given the significantly smaller a
posteriori errors.

VI. Conclusions

The application of multiple hypothesis joint probabilistic data
association (MH-JPDA), combined with an RTS UKF smoother, for
simultaneous tracking of multiple space objects has been presented
and demonstrated within Constrained Admissible Region, Multiple
Hypothesis Filter (CAR-MHF) to track a simulated geosynchronous
Earth orbit breakup scenario. This method has the dual advantage of a
sequential, real-time functionality and a refinedcapability equivalent to a
batch processor or differential corrector. In certain situations, this
method could be preferable to a multiple hypothesis tracker (MHT) in
that statistical initial orbit determination (SIOD) combined with an
MH-JPDAF enables immediate track initiation and real-time sequential
processing (i.e., there is no need towait for “n” tracks to exist in order for
an answer to be provided;CAR-MHFprovides an answer as soon as any
data aremade available). Additionally, It is well established that JPDA is
superior to nearest neighbor, particularly applied to closely spaced
objects and/or large uncertainties (both of which apply for a breakup
scenario).
The CAR SIOD method results in large initial errors (due to the

limited information content of a short angles–only tracklet), but the
CAR-generated track uncertainties are realistic, and thus future
measurements are properly associated to the track. These large initial
uncertainties cause overlap and observation association confusion, and
thus MH-JPDA is needed. The results show that MH-JPDA is able to
converge quickly on the trajectory in spite of this initial ambiguity.
Track refinement via an UKF RTS smoother significantly reduces the
track errors and allows for an established track promotion strategy.
This approach directly supports an autonomous and robust catalog
development and subsequentmaintenance capability.Additionally, the
smoother refinement process approaches the performance of a batch
processor with unique detection-to-object assignments. CAR-MHF
with MH-JPDA and smoothing is demonstrated to converge to an
accuracy better than the measurement noise. Additionally, the method
can account for and estimate model characteristics (e.g., area-to-mass
ratio), beneficial for prediction accuracy and association performance.
The optimal subpattern assignment results demonstrate the method’s
ability to achieve accurate trajectories, as well as recover the correct
number of objects (i.e., cardinality).
The efficient parametric MH-JPDA algorithm presented here

generates the same result, in both precision and accuracy, as the
previous implementation (which implemented nonparametric JPDA)
with more than two orders of magnitude speed improvement.
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Fig. 16 OSPA metric results from the 25-fragment scenario with
tentative and established tracks from two different implementations of
the MH-JPDA algorithm.
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Fig. 17 OSPA metric results from the 50-fragment scenario with
tentative and established tracks from two different implementations of
the MH-JPDA algorithm.
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Fig. 18 OSPA metric results from the 100-fragment scenario with
tentative and established tracks from two different implementations of
the MH-JPDA algorithm.
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