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Abstract 
 

Assisted reproductive technologies within the cattle industry are used to rapidly increase genetic gains 

within a herd. Technologies range from artificial insemination (AI), where only the male genetics are 

exploited, to embryo production technologies that exploit the genetics of both the sire and dam. The aim 

of my research was to evaluate two approaches to improve efficiency of in vitro embryo production; the 

first focus was the oocyte and the second the sperm. 

 

Removal of oocytes from the follicle results in spontaneous resumption of nuclear maturation (meiosis) 

but not cytoplasmic maturation. A lack of synchronisation between the cytoplasm and nucleus has been 

related to a decreased developmental potential of oocytes used for in vitro embryo production (IVP). 

Meiotic inhibition through cAMP modulation results in improved embryo development and pregnancy 

rates. Acting through cAMP modulation, meiosis can be inhibited in the mouse with a significant 

improvement in post-fertilisation development. However, bovine oocytes resume meiosis after only 6 

hours, which led to small improvements in developmental parameters. We hypothesised that increasing 

the time of meiotic inhibition of bovine oocytes to 18 hours would lead to greater improvements to bovine 

IVP. Various meiotic inhibitors were investigated alone and in combination following 18 hours of 

incubation. The combination of IBMX and oestradiol resulted in the greatest improvements in the 

proportion of bovine oocytes that were delayed in reaching the M2 stage of meiosis. The use of a specific 

PDE8 inhibitor with IBMX did not extend the period of meiotic inhibition. Synthetic cAMP (dbcAMP) alone 

did not prevent meiotic progression. Addition of CNP did not significantly shift the proportion of oocytes 

remaining at the GV stage.  Further research as to why bovine oocytes fail to maintain meiotic arrest 

through cAMP manipulation is required.  

 

Cryopreserved semen is used widely for AI programs, as well as IVP. Cryopreservation and thawing is 

associated with more dead and damaged sperm, and increased levels of Reactive Oxygen Species 

(ROS), especially superoxide. Semen quality is normally assessed by motility and morphology; 

improvements to semen fertility predictors would benefit the industry. We aimed to determine better fertility 

markers in cryopreserved bull sperm by assessing levels of zinc, ROS, and superoxide, IVP results, non-

return to service (NRS) rates and computer assisted sperm analysis. In addition, ROS, superoxide and 

zinc levels were compared in sperm of bos taurus and bos indicus. Superoxide in the midpiece of sperm 

was positively correlated to cleavage (P = 0.025) and blastocyst (P = 0.005) development rates. The 

CASA measure of beat cross frequency (BCF) was positively correlated to cleavage rates (P = 0.027). 



xi 
 

Total ROS in the midpiece negatively correlated to motility (P = 0.02). Zinc levels in the midpiece were 

significantly higher in bos taurus compared to bos indicus spermatozoa (P < 0.05), which possibly reflects 

diet and/or environment.  These results may lead to better semen markers for AI and IVP success.  

.  
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1.1 Assisted Reproductive Technologies used in the Bovine Industry 
 

Assisted reproductive technologies (ART) are utilised by breeders of elite cattle to improve the overall 

genetic profile of their herds more rapidly than if they were solely using natural breeding methods. 

Reproductive technologies used within the beef and dairy industries include artificial insemination (AI), 

multiple ovulation and embryo transfer (MOET), somatic cell nuclear transfer (SCNT, cloning) and in vitro 

production (IVP) of embryos (Choudhary et al. 2016; Wu & Zan 2012). Artificial insemination allows elite 

male genetics to be exploited. Fresh or frozen semen is inseminated into cows or heifers that have either 

come into heat naturally or have had their oestrous cycles synchronised (fixed-time AI) (Borges-Silva et 

al. 2016). This technology has been widely adopted within dairies as a method of reproduction without 

the need to feed and maintain bulls. AI also allows for the introduction of diverse genetics into the herd. 

Cloning does not result in genetic improvement. Instead it is used to replicate an animal that is already 

considered to be of very high genetic merit (Choudhary et al. 2016). Utilising IVP and MOET enable both 

the sire and dam’s genetics to be exploited and promotes rapid genetic gain within a herd (Choudhary et 

al. 2016).  

 

For IVP, immature oocytes from donors are aspirated by a technique called “ovum pick up” (OPU) 

(Callesen, Greve & Christensen 1987; Pieterse, Vos, Kruip, Wurth, et al. 1991). These oocytes are visually 

sorted on site based on morphology, and the oocytes deemed to be good quality are transported to an 

IVP laboratory where they undergo in vitro maturation (IVM), in vitro fertilisation (IVF) and in vitro culture 

(IVC). Approximately one week after oocyte aspiration, maturation and fertilisation, blastocysts can either 

be cryopreserved or transferred in the synchronised recipient cows (Hasler 2014). For MOET, the oestrus 

of donor cows is hormonally synchronised, and a series of follicle stimulating hormone (FSH) injections 

are administered to stimulate superovulation. Around the time of ovulation, the donor cows undergo AI, 

and embryos are flushed a week later. These embryos can either be cryopreserved and stored or 

transferred into synchronised recipient cows (Callesen, Liboriussen & Greve 1996).  

 

Bovine embryo production and transfer is increasing in popularity worldwide. According to data compiled 

for the International Embryo Technology Society (IETS) in 2000, approximately 40,000 bovine IVP 

embryos were transferred into recipients worldwide. In contrast, in 2015, more than 900,000 bovine 

embryos were transferred into synchronised recipients and more than 400,000 of these embryos were 

produced in vitro (Perry 2016; Thibier 2001). Development and conception rates continue to be lower 

when embryos are cultured in vitro (IVP) compared to in vivo (MOET) (Rizos et al. 2002). Therefore further 
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investigation is required to improve IVP results, so that the technology will be more attractive to cattle stud 

breeders. 

 

1.1.1 Embryo production technologies 
 

Both IVP and MOET have advantages over the other. For MOET, embryos can be cryopreserved and 

exported as long as appropriate protocols have been followed (Ponsart & Pozzi 2013). IVP embryos tend 

not to be exported, due to the cryopreservation methods utilised, that do not meet export standards. An 

advantage to IVP is that the valuable donor animals are not subjected to hormonal stimulation, therefore, 

there is less chance of causing fertility issues due to the use of ovine or porcine derived FSH. The use of 

porcine or ovine derived FSH has been correlated with causing an immune response. Therefore the 

dosage of FSH needs to be increased regularly to continue stimulating the ovaries. Often a long term 

consequence is that the ovaries stop responding to the FSH stimulation (Drion et al. 1998; Kanitz, 

Schneider & Becker 1996). Synchronisation of the donors is also time consuming and requires donors to 

be put through the cattle yards regularly. Additionally, the quantity of semen used to fertilise oocytes in 

vitro is greatly reduced; one straw can often be utilised to fertilise the oocytes of several donor cows. Until 

recently the ability to cryopreserve embryos was a major advantage to using MOET, however,  many 

commercial bovine IVP laboratories are now successfully cryopreserving embryos (Reyes & Jaramillo 

2016). While both MOET and IVP will allow the number of calves produced per donor per year to be 

greatly increased, IVP has the advantage. OPU can be performed within as little as four day intervals, 

although many laboratories prefer to keep the intervals to approximately 2 weeks (Merton et al. 2003; 

Pieterse, Vos, Kruip, Willemse, et al. 1991). Additionally, oocytes can be collected from donors that are 

up to 4-months pregnant. Conversely, a minimum of 6 weeks is required between completing one MOET 

program and beginning another (Pontes et al. 2009). Therefore each donor cow has the ability to produce 

more embryos through IVP compared to MOET each year. 

 

 

1.1.2 Factors affecting the success of embryo technologies 
 

The environment during early embryogenesis can have lasting effects on the offspring. These conditions 

not only affect gene expression and morphology of the embryo, but also birthweight and the length of 

gestation. For example, when high concentrations of fetal calf serum are included in culture medium, 

“Large Offspring Syndrome” can occur; where in vitro derived offspring could be 20 percent larger 
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compared to in vivo derived offspring (Thompson et al. 1995; Walker, Hartwich & Seamark 1996). In 

addition, overall successful implementation of any of the assisted reproductive technologies can be 

affected by a range of conditions including: diet, climate, age, genetics and skill of the technicians. 

 

Several factors have been shown to affect fertility of cattle including: nutrition, body condition score (BCS, 

a score of 1-5), climate, photoperiod, age and breed. These various factors have been shown to affect 

oocyte quality, semen quality, embryo quality and pregnancy outcomes. It has been established that for 

maximum reproductive performance, cattle should be on a rising plain of nutrition while undergoing OPU, 

AI, MOET or ET (Adamiak et al. 2005; Parr et al. 2015). Heat stress has negative effects on fertility of 

cattle. Several studies have reported decreased oocyte maturation and embryo production rates in 

summer compared to winter (Gendelman et al. 2010; Gendelman & Roth 2012; Pavani et al. 2015; Rocha 

et al. 1998; Torres-Junior et al. 2008). The percentage of Holstein cows that became pregnant following 

their first insemination after calving was higher in winter (63.8±0.4%) compared with summer (40.2±1.5%) 

(Pavani et al. 2015). Heat stress also resulted in an increased proportion of denuded and/or degenerated 

oocytes collected during OPU. There was a delayed negative effect on in vitro blastocyst development 

rates, suggesting that long term exposure to heat stress was required to illicit an effect (Torres-Junior et 

al. 2008). Bos indicus breeds are well known for their resilience in hot and humid environments compared 

to the bos taurus breeds that thrive more in temperate environments (Rocha et al. 1998). Conversely, bos 

indicus cows have been reported to produce fewer embryos and with a lower implantation rate during the 

winter months (Bastidas & Randel 1987). However, another study found no difference in the quality of 

oocytes or blastocyst development rates from Brahmans collected in summer or winter (Rocha et al. 

1998). When comparing the results of the two studies by Bastidas and Randel (1987) and Rocha et al. 

(1998) is seems that the negative effect of summer on bos taurus cattle is much more extreme than the 

negative effect of winter on bos indicus cattle. Blastocyst development rates fell from approximately 30% 

in winter to near 0% during summer for the bos taurus cows. However, development rates of transferable 

blastocysts per Brahman donor dropped approximately 30% from a maximum of 4.2 to 2.9 in winter. 

 

 

1.1.3 Identifying gamete quality  
 

Currently, oocytes and sperm used in commercial settings are assessed visually to determine whether 

they are good quality or not (Bo & Mapletoft 2013; Cetica, Dalvit & Beconi 1999; Fitzpatrick et al. 2002). 

Many studies have shown this method to be flawed, and therefore determining a more rigorous method 

to assess gamete quality would be ideal. Some studies have assessed textures on the surface of the 
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oocyte while others have focused on the oocyte’s metabolism, for example mitochondrial copy number 

and also ATP production (El Shourbagy et al. 2006; Fragouli et al. 2015; Olexikova et al. 2017; Thompson, 

Brown & Sutton-McDowall 2016). Studies focused on identifying sperm fertility markers have focused on 

several factors including mitochondrial activity, reactive oxygen species (ROS) production, and zinc 

content (Agarwal et al. 2014; Chatterjee & Gagnon 2001; Kerns et al. 2018).  

 

 

 

1.2 Biology of bovine oocyte maturation, fertilisation and embryo development 
 

1.2.1 Oocyte maturation 
 

Female mammals develop all of their oocytes during the fetal stage. The oocyte develops the germinal 

vesicle at meiotic prophase, where their development remains arrested until they are either exposed to 

the LH surge prior to ovulation or undergo atresia. Following exposure to the LH surge, meiosis resumes 

and the oocyte progresses to metaphase 2 (M2), reducing the number of chromosomes from diploid to 

haploid. The oocyte remains at M2 until fertilisation (Lonergan & Fair 2016). 

 

It is clear that oocytes matured in vivo compared to in vitro have higher developmental competence 

(Pontes et al. 2009). The decrease in competency for in vitro matured oocytes has been attributed to a 

lack of coordination between nuclear and cytoplasmic maturation. In vivo, the surge in LH resumes 

meiosis and triggers ovulation. It is believed that this transitory arrest allows time for the cytoplasmic 

maturation to occur. When immature oocytes are aspirated from the follicles and matured in vitro, they 

spontaneously restart meiosis and develop to M2. The result is an imbalance between the maturity of the 

nucleus and the cytoplasm (Kawamura et al. 2011; Rizos et al. 2002). It has been demonstrated that the 

size of the follicles being aspirated also affects the capability of that oocyte to develop into a viable 

embryo. Bovine oocytes aspirated from follicles ˃6 mm in diameter and fertilized and cultured in vitro 

produced significantly more blastocysts compared with oocytes that were aspirated from follicles 2-6 mm 

in diameter (P˂0.01, 65.9% vs. 34.3% respectively) (Lonergan et al. 1994). 
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1.2.2 Fertilisation 
 

Fertilization takes place at the ampulla-isthmus junction of the oviduct in vivo. The sperm adhere to the 

epithelial cells lining the caudal isthmus (sperm reservoir). The role of the causal isthmus is to increase 

the lifespan of the sperm, control capacitation and to limit the number of sperm at the site of fertilisation 

to reduce the likelihood of polyspermy (Miller 2015). Final capacitation of the sperm occurs when it meets 

the cumulus cells and the acrosome reaction occurs (Chian, Okuda & Niwa 1995). 

 

Sperm are believed to trigger Ca2+ oscillations within the oocyte which play an important role in activating 

the oocyte to resume meiosis and to promote cell divisions (mitosis) to commence. It also plays a role in 

preventing polyspermy (He et al. 1997; Homa, Carroll & Swann 1993). The significance of the intracellular 

Ca2+ oscillations are not completely understood. However it is accepted that the Ca2+ ions play an 

important role in release of the cortical granules and promoting cell division. There are two hypotheses 

for how the sperm promotes Ca2+ oscillations within mammalian oocytes. The first is that there is an 

interaction between the sperm and the oocyte’s plasma membrane. The second suggests that a sperm-

bound factor is released into the oocyte (identified as phospholipase C zeta, PLCz (Homa, Carroll & 

Swann 1993)), and Ca2+ is released following the interaction of this factor with unknown cytosolic targets. 

The second hypothesis tends to have more support within the literature (White, Pate & Sessions 2010). 

 

1.2.3 Embryo development 
 

Successful development of preimplantation embryos is dependent on the environment. From the time the 

matured cumulus-oocyte complex (COC) ovulates into the infundibulum of the oviduct, it is exposed to a 

complex environment containing the appropriate levels of gases (Fischer & Bavister 1993), energy 

substrates, amino acids, hormones and minerals etc. A variety of external and internal factors have been 

found to affect development from the zygote to the blastocyst stage. The oxygen content (Thompson, 

Partridge, Houghton, Cox, et al. 1996; Thompson, Partridge, Houghton, Kennedy, et al. 1996), acidity, 

access to energy substrates (sucrose, lactate and glucose) (Thompson, Partridge, Houghton, Cox, et al. 

1996), amino acids, ions and growth factors, are some of the factors that have been found to influence 

embryonic development in vitro and in vivo. 

 

As the embryo develops in vivo, it moves down the oviduct until it develops into a morula. It enters the 

uterus around the time it undergoes its first cellular differentiation and develops into a blastocyst. During 
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this transition, the embryo encounters an environment that matches its developmental requirements.  

Energy requirements of the early preimplantation embryo, prior to compaction, are relatively low 

compared to the later stage preimplantation embryos, which would be found in the uterus (Thompson, 

Partridge, Houghton, Cox, et al. 1996). This increase in energy production relates to both cellular 

differentiation and the activity of the Na-K ATPase pump which is responsible for forming the blastocoel 

cavity (Houghton et al. 2003). Following expansion, bovine embryos undergo a period of elongation prior 

to attaching to the uterine wall.  

 

Although IVP has improved in many ways over the last few decades, embryos that have been developed 

in vitro continue to be inferior in quality compared to in vivo developed embryos (Pontes et al. 2009). 

Blastocysts that have been developed in vitro tend to have lower total cell numbers and also a smaller 

ratio of inner cell mass to trophectoderm cells compared to in vivo derived blastocysts. In addition, in vivo 

derived embryos continue to have a higher success rate of implanting and developing into viable offspring 

(Ealy, Wooldridge & McCoski 2019).  It has been well documented that energy requirements of the early 

embryo from the zygote to the compact morula are very low (Thompson, Partridge, Houghton, Cox, et al. 

1996; Trimarchi et al. 2000). The source of energy also changes to a reliance on the glycolytic pathway 

post compaction, as opposed to the oxidative phosphorylation pathway pre-compaction (Thompson, 

Partridge, Houghton, Cox, et al. 1996). The oviduct and uterus, where the in vivo embryo develops, is a 

highly complex environment compared to the semi defined culture media used for most mammalian 

embryonic culture in vitro (Ferraz et al. 2017). In vitro systems attempt to mimic the uterine environment 

as best as possible; incubators tend to be set to the species’ core body temperature. Gaseous 

environments are often mimicked with the use of special gas mixes, and acidity of media is controlled with 

the use of buffers. 

 

 

1.3 Two approaches to improve bovine embryo development in vitro 
 

1.3.1 Meiotic inhibition 
 

Developmental competence of oocytes following OPU, IVM and IVF remains low compared to oocytes 

that have been hormonally stimulated to ovulate. Some believe a lack of homogeneity among oocytes 

that have been aspirated from follicles of varying developmental stages could lead to decreased 

competence of oocytes used in IVM. Therefore, oocytes may not have completed the process of gaining 

all the essential components for their development; compromising their ability to mature, fertilise and 
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develop (Gilchrist & Thompson 2007). Evidence suggests that if meiosis is arrested during IVM for a 

limited period of time using cAMP modulators, cytoplasmic maturation can be supported, resulting in 

improved overall competency of oocytes matured in vitro (Nogueira et al. 2003).  

 

Various meiotic inhibitors have been investigated as a way of improving cytoplasmic maturation in vitro, 

and improving the overall ability of the oocyte to fertilise and develop in vitro (Barretto et al. 2007; 

Santiquet et al. 2017; Zeng et al. 2014). Some suggest that meiotic inhibition may also improve 

cryotolerance of bovine oocytes (Monteiro et al. 2017). To maintain the oocyte arrested in meiosis, it is 

generally accepted that the intracellular concentration of cAMP needs to be maintained at a high level. 

Several methods of arresting meiosis have been investigated, including the use of C-Type Natriuretic 

Peptide, Phosphodiesterase inhibitors, Adenylate Cyclase activators and phosphorylation inhibitors. 

Several meiotic inhibitors have been shown to only be effective at arresting meiosis while the oocyte is 

still at the germinal vesicle stage. Once Germinal vesicle breakdown (GVBD) has occurred, none of the 

inhibitors had any effect (Sun et al. 1999) 

 

1.3.1.1 Regulation of cAMP for meiotic inhibition 
 

Methods to prevent spontaneous resumption of meiosis involve modulation of intracellular concentrations 

of the messenger molecule, cyclic adenosine 3’, 5’ monophosphate (cAMP). Cyclic AMP is produced by 

the actions of the adenylate cyclase within the oocyte and granulosa cells. The cAMP produced by 

granulosa cells is transported into the oocyte via GJC. Ideally cAMP concentrations need to be maintained 

at a high level and gap junction communication (GJC) between the oocyte and cumulus cells needs to 

remain open; this is critical for developmental competence to be improved. This can be achieved by either 

increasing the concentration or production of cAMP or preventing its degradation. Phosphodiesterase 

(PDE) enzymes within the oocyte decrease intracellular cAMP levels by degrading cAMP (fig. 1). In vivo, 

PDE enzyme activity is inactivated by cyclic guanosine 3’, 5’ monophosphate (cGMP) that is produced by 

mural granulosa cells and transported into the oocyte through GJC (Norris et al. 2009). In vivo, the LH 

surge causes closure of the GJC, therefore preventing the inhibition of the PDE enzyme by cGMP and 

the transportation of externally produced cAMP into the oocyte (Norris et al. 2008). A decreased 

concentration of cAMP results in resumption of meiosis (Vivarelli et al. 1983). In vitro, degradation of 

cAMP can be prevented by inhibiting the phosphodiesterase enzymes either through specific or non-

specific PDE inhibitors (such as 3-isobutyl-1-methylxanthine (IBMX)) or through stimulating the production 

of cGMP. Stimulation of the Natriuretic Peptide Receptor type-2 (NPR2) with C-type Natriuretic Peptide 

(CNP) results in the production of cGMP from the cumulus cells (Azari-Dolatabad et al. 2016; Soares et 
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al. 2017; Thomas et al. 2004). Options for increasing production of cAMP include addition of activators  of  

adenylate cyclase activity, such as forskolin or addition of synthetic analogues of cAMP (dibutyryl cAMP 

(dbcAMP)) (Bagg et al. 2006; Paschoal et al. 2016; Zhang, JH et al. 2015).  

 

Figure 1: A schematic of cAMP modulation within the oocyte (adapted from Russell et al. 2016). 
Adenylate cyclase (AC) produces cAMP within the cumulus cells and oocytes. In addition, cAMP is 
synthesised from ATP within the oocyte via G-protein-coupled receptor type 3 (GPR3) activity. 
Phosphodiesterase (PDE) enzymes reduce cAMP to 5’AMP in the oocyte and cumulus cells. 
Transportation of cAMP from the cumulus cells to the oocyte occurs via gap junctions. C-type Natriuretic 
Peptide (CNP) binds to its receptor NPR2 on the guanylate cyclase (GC) to activate production of cGMP 
within the cumulus cells. Through gap junctions, cGMP is transported to the oocyte, where is binds to 
PDE enzymes, inhibiting the degradation of cAMP. 
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1.3.1.1.1 Phosphodiesterase (PDE) enzyme inhibition 
 

The majority of studies investigating meiotic inhibition have focussed on mouse COCs. It has been 

demonstrated that the major PDE within the mouse oocyte is PDE3, and specific PDE3 inhibitors alone 

are effective at preventing meiotic resumption (Nogueira et al. 2003; Tsafriri et al. 1996). Non-specific 

PDE inhibitors, such as IBMX, or specific PDE3 inhibitors are only moderately effective at preventing 

meiotic resumption of the bovine oocyte (Aktas et al. 1995; Barretto et al. 2007; Sirard & First 1988b; 

Thomas, Armstrong & Gilchrist 2002). Investigation into the types of cAMP specific PDEs present within 

the bovine oocyte found there were two main types; PDE3 (approximately 80%) and PDE8 (approximately 

20%). All other cAMP specific PDEs make up less significant proportions (Sasseville et al. 2009). Initial 

studies investigating PDE8 and its role in maintaining bovine oocytes in meiotic arrest utilised a non-

specific PDE8 inhibitor, Dipyridamole. The addition of 50 or 250 µM Dipyridamole, in conjunction with 100 

µM forskolin, to oocyte maturation medium significantly increased cAMP levels within the bovine oocyte 

after 4 hours and reduced the proportion of COCs progressing through to M2 after 16 hours of treatment. 

When Dipyridamole and IBMX were used alone or in conjunction, there was no significant difference in 

the proportion of COCs that remained at the GV stage after 9 hours of treatment, and by 18 hours, very 

few COCs remained at the GV stage. Furthermore cleavage and blastocyst development rates were 

significantly impaired when dipyridamole was used during IVM as part of an IVP protocol (Sasseville et 

al. 2009). This result implies that this particular PDE8 inhibitor is toxic and further investigation of the 

effects of alternative PDE8 inhibitors during oocyte maturation  is necessary. 

 

1.3.1.1.2 Guanylate cyclase activation 
 

An alternative method of inhibiting meiotic resumption within oocytes is through the use of CNP to 

stimulate guanylate cyclase to increase the production of cGMP. In the mouse, an increased expression 

of Natriuretic peptide precursor type-C (NPPC) in the granulosa cells of pre-ovulatory follicles has been 

demonstrated. The expression of NPPC rapidly declined following stimulation with LH or human chorionic 

gonadotropin (hCG) to promote ovulation. Culture of mouse COCs with CNP suppressed meiotic 

resumption. In humans, CNP levels decreased in the follicular fluid after treatment with hCG to stimulate 

ovulation (Kawamura et al. 2011). The use of 10 nM CNP alone is able to prevent GVBD in approximately 

80% of mouse COCs after 24 hours of treatment (Wei et al. 2017). Alternatively higher doses of 100 nM 

CNP are required to prevent meiotic resumption in cat (Zhong et al. 2016) and pig (Blaha, Nemcova & 

Prochazka 2015)  oocytes for 24 hours. In contrast, 200 nM CNP alone has been shown to maintain 

bovine COCs at the GV stage of meiosis for 6 hours, with a significant proportion of COCs undergoing 

GVBD after 8 hours of culture (Franciosi et al. 2014). Encouragingly, a 6 hour prematuration period with 
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200 nM CNP followed by 28 hours IVM resulted in a more than 50% increase in bovine blastocyst 

development rates and more than 30% increase in total blastocyst cell numbers compared to the control 

(Zhang, T et al. 2017). Follicular steroids (oestradiol, progesterone and androstenedione) with CNP 

increased the percentage of bovine COCs maintained at the GV stage for 9 hours, compared to if CNP 

was used alone, with an improved effect when bos indicus COCs were used compared to bos taurus 

(Soares et al. 2017). Expression of the receptor for CNP, NPR2, has been shown to be increased when 

10 µg/mL oestradiol is included in the media (Xi et al. 2018). The combination of 100 nM CNP and 500 

µM IBMX increased the proportion of bovine COCs arrested at the GV stage after 6 hours of treatment 

compared to when 100 nM CNP was used alone (approximately 90% compared to 75% respectively) 

(Soto-Heras, Paramio & Thompson 2019). Further investigation into the use of combinations of CNP with 

PDE inhibitors and steroids is required to increase the timeframe that bovine COCs can be maintained at 

the GV stage.  

 

1.3.1.1.3 Adenylate cyclase activation 
 

Adenylate cyclase activators regulate the concentration of cAMP within cells. They work by activating the 

enzyme responsible for producing cAMP. Forskolin, a known adenylate cyclase activator, inhibits meiotic 

resumption by activating adenylate cyclase to maintain high cAMP levels within the oocyte. Six hours of 

pre-maturation with 50µM Forskolin is effective at maintaining approximately 90% of sheep oocytes at 

the germinal vesicle stage. By 10 hours only 50% of the sheep oocytes remained arrested in meiosis, and 

by 22 hours, very few oocytes, treated with or without forskolin remained at GV (Azari-Dolatabad et al. 

2016). However, another study utilising bovine COCs, showed that similar concentrations of forskolin (25, 

50 or 100 µM) were ineffective at arresting meiotic resumption (Paschoal et al. 2016). Furthermore, 

treatment of sheep COCs with 50 µM forskolin for 6 hours prior to IVM resulted in significantly higher 

blastocyst development rates in vitro (37.7% vs. 23.5% respectively) (Azari-Dolatabad et al. 2016). The 

bovine study reported no significant difference in blastocyst production or total cell numbers when different 

concentrations of forskolin were used in the 6 hour pre-maturation period  (Paschoal et al. 2016). 

 

1.3.1.1.4 Synthetic cAMP analogues (dibutyryl cyclic adenosine monophosphate (dbcAMP)) 
 

Another method of inhibiting GVBD is by increasing the cAMP concentration within the oocyte by including 

a synthetic cAMP analogue. Recently, 1mM dbcAMP has been reported to successfully maintain porcine 

oocytes in meiotic arrest for 22 hours and this led to significant improvements in cleavage and blastocyst 

development rates in vitro (approximately 200% increases compared to the control) (Gil et al. 2017). The 
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majority of studies using dbcAMP, to date, have focused on porcine COCs (Bagg et al. 2006; Gil et al. 

2017; Park & Yu 2013). While others have reported that dbcAMP is effective at maintaining meiotic arrest 

in porcine oocytes, not all have resulted in improvements to embryonic development in vitro (Bagg et al. 

2006; Park & Yu 2013). Furthermore, an earlier study investigating the impact of exposing porcine oocytes 

to 1 mM dbcAMP during the first 20 hrs of culture found no significant difference in GVBD rate at 28 hr or 

maturation rate at 44 hrs. However, they did report an increased blastocyst development rate when 

oocytes were exposed to 1 mM dbcAMP (21.5 ± 2.5%) compared with the control (9.2 ± 1.6%). The study 

reported transferring embryos into 4 gilts, of which 3 became pregnant. Unusually, only embryos that were 

produced following exposure of the oocyte to dbcAMP were transferred. Reportedly, 19 live piglets were 

farrowed, but the total number of embryos that had been transferred was not disclosed (Funahashi, 

Cantley & Day 1997). Another study utilising porcine COCs, found that effectiveness of dbcAMP treatment 

was dependent on the size of follicles that the COCs were derived from. Medium sized antral follicles (>4–

6 mm diameter) produced COCs that responded better to the 1 mM dbcAMP treatment compared to small 

follicles (2-4 mm diameter). Improved blastocyst development rates following dbcAMP treatment were 

only obtained from COCs derived from medium sized follicles. The greatest improvement to blastocyst 

development rates was achieved when 1 mM dbcAMP was combined with 500 ng/ml amphiregulin 

(AREG), 100 ng/mL human recombinant bone morphogenetic protein 15 (BMP 15) and 100 ng/mL human 

recombinant growth differentiation factor 9 (GDF9) (Sugimura et al. 2015). To date, there have been 

limited studies published regarding the treatment of bovine COCs with dbcAMP. A recent study 

investigated the effect of a 2 hour pre-maturation period in the presence of 1 mM dbcAMP and 500 µM 

IBMX on the developmental competence of bovine oocytes (Sugimura et al. 2018). Blastocyst 

development rates were significantly improved when COCs were pre-matured with 1 mM dbcAMP and 

500 µM IBMX compared with the control group (62.4±4.9% vs 40.4±2.2% respectively). Combining 1mM 

dbcAMP and 500 µM IBMX was more effective at maintaining GJC compared with 1 mM dbcAMP alone 

(Sugimura et al. 2018). Further investigation into whether dbcAMP can be used to prevent meiotic 

resumption of bovine COCs on its own or combined with other inhibitors is required.  

 

 

1.3.1.1.5 Effects of combining multiple cAMP modulators in vitro for meiotic inhibition 
 

Previous studies have shown that delaying the resumption of meiosis, through the use of cAMP and cGMP 

modulators such as PDE inhibitors, adenylate cyclase activators, and CNP can lead to improvements in 

oocyte developmental competence; as evidenced by improved cleavage and embryo development rates, 

increased blastocyst cell numbers and improved implantation rates (Nogueira et al. 2003; Soares et al. 

2017; Zeng et al. 2014; Zhang, T et al. 2017). Oocytes from mouse (Nogueira et al. 2003), pig (Gil et al. 
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2017) and human (Shu et al. 2008) can be prevented from resuming meiosis for extended periods of up 

to 24 hours, and this delay in meiotic resumption is associated with improved developmental rates.  Mouse 

oocytes can be maintained in meiotic arrest through the use of a single inhibitor specific to PDE3, the 

major intraoocyte PDE in mouse oocytes (Tsafriri et al. 1996). Preventing meiotic resumption for 24 hours 

in mouse COCs with a specific PDE3 inhibitor (Org 9935) led to a more than 50% improvement in 

fertilisation rates, blastocyst development rates and live birth rates compared to the conventional in vitro 

control (Nogueira et al. 2003).  Delaying meiotic resumption of bovine oocytes for 2 hours with 100 µM 

forskolin (adenylate cyclase activator) and 500 µM IBMX (inhibits all cAMP specific PDEs except PDE8) 

followed by 28 hours of IVM containing 20 µM cilostamide, also resulted in improvements in embryo 

production rates and blastocyst cell numbers (Albuz et al. 2010). However, these were not of the same 

magnitude as observed following 24 hour meiotic inhibition in other species (Nogueira et al. 2003). There 

was approximately a 20% improvement in fertilisation rates following the extended maturation period to 

30 hours, followed by a more than 200% increase in blastocyst development rates from oocytes that had 

cleaved (Albuz et al. 2010). Live birth rates were not investigated, however, blastocyst cell numbers were 

increased by approximately 30% when oocytes underwent a delayed maturation in vitro (Albuz et al. 

2010). To date, combinations of PDE inhibitors and or adenylate cyclase activators have only been 

effective at maintaining bovine oocytes at GV for short periods (Albuz et al. 2010), with few studies 

demonstrating maintenance of bovine oocytes at the GV stage in vitro for more than 6 hours (Dode & 

Adona 2001; Santiquet et al. 2017).  Increasing the time that bovine oocytes can be maintained at GV 

through cAMP modulation would likely result in greater improvements to oocyte developmental 

competence in vitro.  

 

Studies that were able to maintain bovine oocytes at the GV stage for up to 24 hours involved culturing 

COCs in hemi-sections of follicles (in contact with thecal cells) (Richard & Sirard 1996a), culturing in 

follicular fluid (Ayoub & Hunter 1993), or in the presence of 2 mM 6-dimethyl aminopurine (6-DMAP, an 

inhibitor of Maturation Promoting Factor (MPF)) (Dode & Adona 2001). Although COCs progressed to M2 

when removed from culture with 2 mM 6-DMAP, subsequent blastocyst development was impaired by 

almost 50% (Dode & Adona 2001). Inhibition of germinal vesicle breakdown (GVBD) was more effective 

when the follicular fluid had been collected from small (2-4 mm) or medium (5-9 mm) follicles compared 

to large follicles (10-20 mm) during oestrus. Inhibition of GVBD was also increased if the follicular fluid 

was collected during oestrus (>50% of COCs at GV) compared to mid dioestrus (approximately 40%) or 

early proestrus (approximately 35%) when they originated from small or medium sized follicles.  In 

contrast, the ability of follicular fluid from large follicles (10-20 mm) to inhibit meiosis was lower when 

collected at oestrus (approximately 35% of oocytes at GV after 24 hours) compared to late metoestrus 

(>50%) or early dioestrus (>50%) (Ayoub & Hunter 1993). Another more recent study investigated the 
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effect of inhibiting resumption of meiosis using follicular fluid on oocyte developmental potential. Nuclear 

maturation to metaphase II (M2) at 22 and 24 hours was lower when 75% or 100% follicular fluid was 

used, compared to 0, 25% or 50%. However, subsequent cleavage rates were impaired by 10% and 

blastocyst development rates were impaired by more than 50% when a concentration of 75% or more 

follicular fluid was used during oocyte maturation. The cell numbers within the inner cell mass were also 

increased when COCs had been cultured for 24 hours with 50% follicular fluid (approximately 35 cells) 

compared to 25% (approximately 29 cells) or no follicular fluid (approximately 30 cells) prior to IVF and 

IVC (Cruz et al. 2014). A more recent study managed to maintain bovine oocytes at GV in vitro for 21 

hours with the combination of 100 µM cilostamide (PDE3 inhibitor), 100 nM CNP, 100 µM sildenafil (PDE5 

inhibitor), 100 ng/mL bone morphogenetic protein 15 (BMP15, an oocyte secreted factor), 100 µM 

hypoxanthine (a purine), 100 nM oestradiol and 1 x 10-5 IU/mL FSH. However, no improvements to in 

vitro fertilisation rates, blastocyst development rates or total cell numbers of blastocysts were reported 

(Santiquet et al. 2017). This result contrasted with the improvements made to bovine embryo development 

rates and blastocyst cell numbers following a 2 hour pre-treatment with IBMX and forskolin (Albuz et al. 

2010). However, for a commercial operation involving on-farm oocyte collection an optimal protocol would 

enable COCs to remain in the pre-maturation media from the time they are processed until they arrive in 

the laboratory, which in Australia, for example, could vary from 2 to 18 hours. Therefore further 

investigation is required to develop a protocol that enables meiosis of bovine oocytes to be inhibited for 

18 hours or longer while also improving oocyte developmental competence. 

 

1.3.1.1.6 Maturation Promoting Factor (MPF) inhibitor 
 

Maturation promoting factor (MPF) is made up of cyclin dependent kinase 1 (CDK1) and cyclin B1 (Doree 

& Hunt 2002; Gautier et al. 1988). 6-dimethylaminopurine (6-DMAP) works as an inhibitor of MPF.  It has 

been demonstrated to arrest more than 90% of bovine oocytes at the GV stage for 24 hours when used 

at 2 mM (Dode & Adona 2001). It was demonstrated that the meiotic inhibition was reversible, where more 

than 90% of COCs reached the M2 stage following 24 hours of IVM, regardless of whether they had been 

pre-incubated with 2 mM of 6-DMAP for 0, 12, 18 or 24 hours. Unfortunately, blastocyst development 

rates were significantly impaired when COCs had been pre-incubated with 2 mM 6-DMAP for 12, 18 or 

24 hours compared to the control. Time of exposure to 6-DMAP did not affect blastocyst development 

rates (Dode & Adona 2001). Another earlier study used 5 mM DMAP to arrest meiosis. The results differed 

a little; Saeki et al. (1997) maintained 72% of COCs at the GV stage of meiosis for 24 hours, while Dode 

and Adona (2001) reported that the majority of COCs had undergone GVBD by 12 hours. 
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Inhibitors of CDK1 have been used effectively to prevent meiotic resumption in buffalo COCs (Kumar et 

al. 2018). Roscovitine, an inhibitor of cyclin dependent kinase 1 (CDK1) was used in conjunction with 

cilostamide (PDE 3 inhibitor) to successfully inhibit meiotic resumption of buffalo COCs for 24 hours. 

Cleavage and blastocyst development rates in vitro were not affected when the buffalo COCs went 

through IVP following meiotic inhibition (Kumar et al. 2018). It was promising that the use of both 

roscovitine and cilostamide for a 24 hour period did not cause toxicity to the embryonic development. 

Further investigation of a combination of an MPF inhibitor and cAMP modulators might also lead to 

extended periods of meiotic inhibition and improved bovine oocyte developmental competence in vitro. 

 

Dall'Acqua et al. (2017) attempted to replicate a commercial setting when trialling the use of various 

meiotic inhibitors. They attempted to block meiosis during the time that COCs would routinely spend 

during transport to the lab (6 hrs of duration). Four treatments were tested: 100 µM Butyrolatone-l (BR 

(inhibitor of cyclin dependent kinase), modified SPOM (500 µM IBMX and 100 µM Forskolin, mSPOM), 

100 mM Milrinone (MR) and bovine follicular fluid (bFF). In addition they had 3 control groups: IVM in a 

CO2 incubator in the lab in IVM media containing either fetal calf serum, or BSA, and IVM in a portable 

incubator in IVM media containing BSA. The results were a little unusual. The GV rates after 6 hours in 

transport conditions did not differ significantly between the 4 treatments containing meiotic inhibitors. 

However, the groups blocked by BR or mSPOM for 6 hours had a higher percentage of oocytes 

maintained at GV compared to two of the control groups containing no inhibitors; the control matured in 

the CO2 incubator with FCS, and the control matured in the portable incubator with BSA. In addition after 

24 hrs (control groups 24 hrs IVM, treatments 6 hrs pre-IVM with an inhibitor plus 18 hrs in IVM), there 

was no significant difference in the M2 rates between any of the groups. Furthermore, the cleavage rates 

following in vitro fertilisation were significantly higher in the control group matured in the CO2 incubator in 

media containing FCS compared with both other controls, and all other pre-maturation treatments. 

Blastocyst development rates were significantly higher in the control group matured in the incubator with 

FCS compared to the group pre-matured with MR, and the control group matured in the portable incubator 

with BSA for the initial 6 hrs. Blastocyst development rates did not different significantly between any of 

the other groups. Total cell counts and apoptosis rates of day 7 blastocysts was also assessed. Whilst 

there were no significant differences for either assessment between any groups, overall cell counts were 

very low across the board compared to those reported for day 7 bovine blastocysts in  other studies (Albuz 

et al. 2010; Thomas et al. 2004). This suggests a low quality of the systems utilised. In addition it was 

noted that the oocytes were incubated in the portable incubator, under transport conditions for 6 hours in 

a gaseous environment containing 5%O2 5% CO2 and then moved to 5% CO2 in air for the remainder of 

IVM in the laboratory incubator. Most other studies of pre-IVM systems using meiotic inhibitors are 
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conducted with 5% CO2 in air, therefore this different environment may have had an impact on the result 

(Albuz et al. 2010; Barretto et al. 2007). 

 

1.3.1.1.7 Hypoxanthine 
 

A purine found naturally within follicles, Hypoxanthine, has been shown to successfully inhibit meiosis in 

oocytes derived from many species including mouse (Eppig, Wardbailey & Coleman 1985), rat (Tornell et 

al. 1990), pig (Miyano et al. 1995), and monkeys (Warikoo & Bavister 1989). However, it was found to 

only transiently inhibit meiosis in bovine (Sirard & First 1988a) and goat oocytes (Ma et al. 2003). 

Hypoxanthine (4 mM) maintained the majority of goat oocytes at the GV stage for 6 hours (56%), but by 

8 hours, only 33% of goat COCs remained at the GV stage (Ma et al. 2003). Renewing the hypoxanthine 

within the culture media after 4 hours did not have any effect on reducing the GVBD rate at later timepoints 

compared to when hypoxanthine was not renewed indicating that the decrease in  meiotic inhibition with 

time was not due to declining concentrations of hypoxanthine within the media (Ma et al. 2003). When the 

renewal media included 300 µM dbcAMP, the percentage of oocytes remaining at the GV stage after 18 

and 24 hours of culture was higher than groups in which hypoxanthine only was renewed, or groups that 

didn’t receive a renewal (Ma et al. 2003). Hypoxanthine levels in follicular fluid decrease as antral follicle 

size increases in the goat (Ma et al. 2003). An early investigation of using hypoxanthine as a meiotic 

inhibitor found it reduced the percentage of bovine COCs that underwent GVBD following 6 hours of 

incubation. Using 2 mM hypoxanthine alone reduced the number of bovine COCs undergoing GVBD from 

80% to 60% after 6 hours of treatment. The addition of 0.05 or 0.2 mM adenosine further reduced the 

number of bovine COCs undergoing GVBD to approximately 30% (Sirard & First 1988a). 

 

1.3.1.2 Conclusions and areas where further investigation is needed for meiotic inhibition of bovine 

COCs 

 

Further investigation is required for improved to bovine oocyte competency by extended meiotic inhibition 

for use in IVP. For pre-maturation benefits to be adapted in a commercial setting, meiotic inhibition of 

bovine oocytes needs to be extended to at least 18 hours. This would make it more practical to users and 

increase the effect of improved embryo quality should be compounded if patterns match other species, 

such as the mouse (Nogueira et al. 2003). Implantation data relating to bovine blastocysts produced in 

vitro following a pre-maturation treatment with meiotic inhibitors is needed to assess if pre-maturation is 

beneficial bovine embryonic developmental competence. Inhibition of all major cAMP modulating PDEs 

within the bovine oocyte has be suggested as a method of increasing meiotic inhibition rates. The major 
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PDEs within the bovine oocyte has previously been reported at PDE3 (80%) and PDE8 (20%) (Sasseville 

et al. 2009). Inhibiting PDE3 but not PDE8 is only transiently effective at preventing meiotic resumption 

of the bovine oocyte. Using a non-specific PDE8 inhibitor (Dipyridamole) was reported to have some effect 

at inhibiting meiosis of bovine oocytes, however it had a negative effect on embryo development 

(Sasseville et al. 2009). Investigation of an alternative PDE8 inhibitor in combination with the broad 

spectrum PDE inhibitor (IBMX) could lead to improvements to the rates of inhibition of meiotic resumption 

and improve developmental competence.  While dbcAMP is effective at inhibiting meiotic resumption of 

porcine oocytes, few studies have investigated its use with bovine oocytes. Investigation of dbcAMP alone 

and in conjunction with other meiotic inhibitors needs to be attempted with bovine oocytes. Furthermore, 

combining several meiotic inhibitors may result in extended periods of meiotic inhibition, even if each 

component is not effective on its own.  Utilising MPF inhibitors is effective at inhibiting meioisis of bovine 

COCs, however the treatments tend to be detrimental to developmental competency in vitro (Dode & 

Adona 2001). Future studies should investigate combining MPF inhibitors with cAMP modulators to 

extend the period of meiotic inhibition and improve bovine oocyte competency in vitro. 

 

 

1.3.2 Sperm 
 

1.3.2.1 Sperm use in the bovine industries 
 

Cryopreserved bull semen is normally stored in straws under liquid nitrogen for use in AI and IVF 

programs. Alternatively, semen can be maintained at ambient temperatures or chilled, although this is 

less common, and tends to be favoured in small geographical regions such as New Zealand. Long 

distances between semen collection locations and insemination locations makes chilled semen 

unattractive, as it needs to be utilised within 2 days for reliable results (reviewed by Vishwanath & 

Shannon 2000). Cooling or freezing of semen increases shelf life by reducing the metabolic rate of sperm 

(Fu et al. 2019). Not only does the percentage of motile sperm decrease over days of chilled storage, the 

ability to fertilise oocytes in vitro also decreases as storage time increases (Krzyzosiak et al. 2001). 

Cryopreservation enables storage of semen over extended periods of time, even years, however the 

process causes significant levels of sperm death. Semen extenders (diluents) for cryopreserved semen 

are generally made to contain cryoprotectants, antioxidants, energy sources (proteins and sugars) and 

antibiotics (reviewed by Vishwanath & Shannon 2000). Diluents for fresh chilled semen tend to be simpler 

and contain a buffered solution, egg yolk or milk, and antibiotics. Egg yolk is an excellent energy source 

in sperm diluents. Using egg yolk combined with a phosphate buffered solution, enables motility to be 

maintained for up to 150 hours when stored at 10˚C. Maintaining the pH of the diluent to 6.75 was reported 
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as the most optimal (Phillips & Lardy 1940). Several semen extenders exist on the market, ranging from 

simple salt solutions to more complex buffered solutions with the addition of egg yolk or milk (reviewed 

by Vishwanath & Shannon 2000).  

 

The concentration of sperm in storage has been demonstrated to affect sperm survival. Storage of fresh 

sperm at higher densities (200 million sperm per mL compared to 12.5 million sperm per mL) resulted in 

longer survival times after being warmed to 37˚C (P<0.01) (further diluted at the time of insemination). 

The presence of dead sperm and seminal plasma also negatively affected survival of sperm following 

warming to 37˚C (Shannon 1965). Furthermore, calving rates are affected by the concentration of sperm 

at the time of AI. Fresh semen stored at 3 or 4 x 106 sperm per dose for 2 days resulted in significantly 

lower calving rates than fresh semen that was stored in 5 x 106 sperm per dose for 1 day (Murphy, EM et 

al. 2018). Semen that has been stored chilled contains a higher proportion of live sperm compared to 

cryopreserved semen (Shannon & Vishwanath 1995). Furthermore, the concentration of sperm (per mL) 

that semen is stored at was shown to affect the levels of oxidative stress. Sperm stored at ambient 

temperature at 1 x 106 sperm per insemination dose had less oxidative stress than sperm stored at the 

usual 5 x 106 sperm per insemination dose, and  oxidative stress increased with each day that the sperm 

were stored in a nitrogen saturated extender (Caprogen) (Murphy, C et al. 2013). Furthermore, glucose 

concentration in the diluent was lower after 5 days when sperm were stored at 5 x 106 compared 

compared to 1 x 106 sperm per insemination dose. However, individual sperm consumed 4 times more 

glucose over the 5 days when they were stored at 1 x 106 sperm per mL compared to 5 x 106 sperm per 

insemination dose (Murphy, C et al. 2013). 

 

Sperm can be divided into 3 segments: head, midpiece and tail. The midpiece is where mitochondria are 

located. Mitochondria impact several sperm functions including motility, hyperactivation, capacitation, 

acrosome reaction, and fertilisation. Furthermore ROS production is a by-product of mitochondrial 

metabolism (reviewed by Moraes & Meyers 2018). The variety of ROS produced by sperm include nitric 

oxide, peroxide and superoxide (Aitken, De Iuliis & McLachlan 2009). It has also been suggested that 

intracellular zinc ions within sperm mitochondria may also play a role in regulation of sperm motility 

(Sorensen, Stoltenberg, et al. 1999). Mitochondrial status is important for sperm functionality. Production 

of cellular energy is related to spermatozoa motility and therefore fertility (Mazur et al. 2000). Therefore 

the midpiece could be an ideal area to focus on when looking for fertility markers of sperm. 
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1.3.2.2 Effects of Reactive Oxygen Species (ROS) to semen 
 

Concentrations of ROS accumulate over time in store semen. Furthermore, the process of thawing 

damages the plasma membrane of the spermatozoa and results in an increased production of ROS, 

especially in the form of superoxide (Chatterjee & Gagnon 2001). Consequently, a dose of frozen semen 

for AI needs to contain approximately 4 times the sperm dose of fresh chilled semen (20 x 106 compared 

to 5 x 106 sperm per mL) (Shannon & Vishwanath 1995). Therefore fewer insemination doses are obtained 

when semen is frozen. Furthermore it is not clear how long sperm can be stored in a frozen state before 

fertility begins to decline. A decrease in motility, viability and a reduced pregnancy rate following AI have 

been reported from thawed bull semen compared to fresh semen (Murphy, EM et al. 2018). One study 

comparing 32 year-old cryopreserved semen with 2 year-old frozen semen reported reduced fertilisation 

rates in vitro and a higher proportion of necrotic sperm from the 32 year old samples (Akyol, Ertem & 

Varisli 2019). The presence of dead sperm has been demonstrated to have a toxic effect on the live sperm 

(Shannon & Curson 1972). When sperm die, the enzyme L-amino acid oxidase is activated. This leads to 

the production of peroxide (H2O2), which is responsible for the toxicity of dead sperm. Egg yolk within the 

extender increases the toxicity caused by dead sperm due to the presence of aromatic amino acids, 

especially phenylalanine, which L-amino oxidase has an affinity for. However, reducing the proportion of 

yolk in the extender from 20% to 5% reduces the effect (Shannon & Curson 1972). Furthermore, the 

addition of catalase counters the negative effects of dead sperm by enzymatically reducing H2O2 to H2O 

(Shannon & Curson 1972). Saturating the extender with nitrogen prior to use increases the viability of 

fresh-chilled semen to 8 days, due to the reduced oxygen content in the extender (Shannon 1965). The 

inclusion of caproic acid within semen extenders reduces the metabolic rate of sperm resulting in reduced 

production of ROS (Vijayaraghavan, Bhattacharyya & Hoskins 1989). One of the more complex extenders 

commercially available is Caprogen, which includes both catalase and caproic acid (Shannon, Curson & 

Rhodes 1984).  

 

 

1.3.2.3 Zinc in sperm 
 

Recently, zinc ion concentration has been identified as a marker for sperm capacitation with a signature 

that has been replicated between three species (bovine, porcine and human) (fig.2). Signature 1 is 

characterised with zinc staining in the head, midpiece and tail of the sperm (uncapacitated), Signature 2 

is characterised by zinc staining in the head and midpiece (capacitating), Signature 3 is characterised by 

zinc staining in the midpiece only (capacitated) and Signature 4 is characterised by no zinc staining (after 
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capacitation with a remodelled plasma membrane). Signature 1 was most common in freshly ejaculated 

sperm, while sperm with the zinc signature 2 were hyperactivated and have the capability to bind to the 

zona pellucida of the oocyte. Adding ZnCl to the capacitation medium maintained boar sperm at Signature 

1, while the addition of a zinc chelator was able to alter the signature to 3 or 4. Boars with previously 

determined high fertility had twice the proportion of zinc signature 3 sperm after capacitation in vitro 

compared with sperm from boars of low fertility (Kerns et al. 2018). Similarly, another study found the 

concentration of zinc within human sperm to be negatively correlated with progressive motility rates 

(Henkel, RR et al. 2003). Progressive motility is often used as a measure of predictive fertilisation ability 

for sperm (Li et al. 2016). The addition of either 0.01 or 0.1 mg/mL nano zinc oxide to sheep semen 

extender improved post-thaw progressive motility and plasma membrane integrity compared with the 

control. Alternatively, motility was significantly decreased when the semen extender contained a higher 

concentration (1 mg/mL) of nano zinc oxide (Heidari et al. 2019). The nano-form of zinc oxide was used 

because its properties enable easier absorption while producing fewer free radicals and therefore this 

form was expected to have a lower toxicity effect on the sperm (Heidari et al. 2019). Therefore, zinc levels 

within sperm may be an indicator of fertilisation potential. Potentially this information could be used to 

develop a diagnostic test of sperm for use at the time of semen collection or after cryopreservation. 

Alternatively it may lead to further investigation of nutritional management prior to semen collection. 

 

 

 

 

Figure 2: Examples of the zinc signature relating to the sperm capacitation are adapted from Kerns et al. 
(2018). Signature 1 is characterised with zinc staining in the head, midpiece and tail (uncapacitated). 
Signature 2 is characterised with zinc staining in the head and midpiece (capacitating). Signature 3 is 
characterised with zinc staining in the midpiece (capacitated). Signature 4 is characterised by no zinc 
staining (after capacitation). 



21 
 

1.3.2.4 Effects of climate and genotype on semen quality 
 

Season and breed has been shown to affect semen quality. The commercial cattle breeds generally divide 

into two sub-species; bos taurus and bos indicus (Greenwood, Gardner & Ferguson 2018). These sub-

species are adapted to live in different environments. The bos taurus cattle tend to be more suited to the 

cooler drier environments whereas bos indicus cattle are adapted to thrive in warmer tropical 

environments with increased skin to body ratios, long ears and a smaller body frame (Turner 1980). The 

number of major sperm defects tends to be higher in summer than in winter. This effect tends to be more 

pronounced in sperm collected from bos taurus (Simmental) bulls compared to bos indicus (Nellore) bulls 

(Nichi et al. 2006). Oxidative damage has also been reported as higher in sperm collected in summer 

compared to winter.  The same study also reported that lipid peroxidation (ROS production) was higher 

in semen from Simmental (bos taurus) bulls compared with Nellore (bos indicus) bulls independent of 

season. Thiobarbituric acid reactive substances (TBARS) were higher in semen collected during summer 

compared to winter, while Glutathione peroxidase/reductase (GPx) activity was higher in Simmental 

semen compared to Nellore semen. A negative correlation was also reported between superoxide 

dismutase (SOD) (responsible for extinguishing superoxides) in semen and sperm defects (r=-0.51, 

P=0.041) in Simmental sperm during summer, but not during the other seasons (Nichi et al. 2006). It has 

been suggested that heat tolerance of bos indicus breeds may extend to increased resistance to heat-

induced lipid peroxidation within their semen; resulting in a lower increase in the production of ROS and 

superoxides during the summer; therefore fewer sperm defects (Nichi et al. 2006). A study in tropical 

regions of Brazil demonstrated that the ejaculate from bos indicus bulls is approximately 20 percent more 

concentrated compared to bos taurus ejaculates (approximately 1.5 x 109 sperm per mL compared to 1.2 

x 109 sperm per mL, respectively), however, the volume was not different between the sub-species. 

Furthermore they demonstrated that the number of total sperm defects (acrosome damage, coiled or bent 

tails, irregularly shaped heads, presence of vacuoles etc.) tended to be higher in sperm from bos indicus 

semen (P ˂ 0.1). The percentage of motile sperm was not affected by the genotype of the bull (Brito, LFC 

et al. 2002). An earlier study based in semi tropical Florida also reported that semen from Brahman (bos 

indicus) bulls was inferior for all tested traits (% motility, % normal and % abnormal) when compared to 

temperate breeds such as Angus and Hereford (bos taurus). Senepol bulls (a tropically adapted bos 

taurus breed) also outperformed Brahman bulls (Chenoweth et al. 1996). In contrast, another study in a 

tropical area of Nigeria found no breed effect on ejaculate volume or sperm quality. Their study 

investigated the indigenous bos indicus breeds of Bunaji and Sokoto Gundali as well as the bos taurus 

breed of Freisian and Freisian cross Bunaji. They found that the environment had a significant impact on 

ejaculate volume and semen quality parameters. During the wet season, they reported 15 percent less 

dead sperm and less than half the number of defected sperm across all bulls studied. Furthermore, the 
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volume of the ejaculate increased by more than 50 percent, the concentration of sperm almost doubled, 

and the total sperm numbers in ejaculates almost tripled in the wet season (Rekwot et al. 1987). It is most 

likely that the dry season had a negative impact on semen quality and quantity due to reduced grazing 

quality, coupled with hot ambient temperature in the study by Rekwot et al. (1987). Spermatogenesis in 

bulls occurs over 61 days (reviewed by Staub & Johnson 2018). Therefore environment at the time of and 

prior to semen collection can have a big impact on the quality and quantity of the ejaculate obtained. 

 

1.3.2.5 Conclusions and future direction of studies investigating sperm fertility markers 

 

Identification of accurate bull sperm fertility markers will improve the efficiency of assisted reproductive 

technologies for cattle. Many studies have demonstrated that high ROS levels negatively affect motility of 

sperm (Baumber et al. 2000). Few studies have investigated the effect ROS has on the ability of bull 

sperm to fertilise COCs in vivo and in vitro. This is especially true for superoxide, which has been 

demonstrated to be one of the main forms of ROS in thawed bovine sperm (Chatterjee & Gagnon 2001). 

Therefore the relationship between ROS and the ability of sperm to fertilise oocytes needs further 

investigation. Zinc content and localisation in sperm has been demonstrated to differ at various stages of 

capacitation, and also to affects sperm motility (Kerns et al. 2018; Sorensen, Stoltenberg, et al. 1999). 

Assessment of whether zinc levels affect bovine embryonic development in vitro and in vivo is required. 

Bull semen fertility has been reported to differ depending if semen originated from bos taurus or bos 

indicus bulls (Nichi et al. 2006). Whether this is due to different levels of ROS and or zinc is unclear. These 

levels could be related to environmental adaptions. The identification of accurate bull sperm fertility 

markers could lead to future studies focused on optimising bull management for collection of high quality 

semen. 
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1.4 Hypothesis and Aims 
 

Study 1: Meiotic inhibition of bovine COCs in vitro:  

 

Hypothesis 1: Pre-maturation of bovine COCs with a specific PDE8 inhibitor combined with a broad 

spectrum PDE inhibitor (IBMX) will delay meiotic progression in 80% of bovine oocytes for 

at least 18 hours. 

 

Hypothesis 2: Pre-maturation of bovine COCs with dbcAMP will delay the meiotic progression in 80% of 

bovine oocytes for at least 18 hours. 

 

Hypothesis 3: Pre-maturations of bovine COCs with a combination of IBMX and oestradiol will delay 

meiotic progression in 80% of bovine COCs for at least 18 hours. 

 

Hypothesis 4: Pre-maturation of bovine COCs with the addition of CNP to IBMX and oestradiol will further 

delay meiotic progression in 80% of bovine COCs for at least 18 hours. 

 

Aim 1:  To arrest meiosis of the bovine oocyte at the germinal vesicle stage for 18 hours 

  

Study 2: Investigation of potential fertility markers of bovine sperm: 

 

Hypothesis 1: Fertilisation potential of bull sperm (in vivo and in vitro) is impacted negatively when ROS 

and zinc levels are increased within the midpiece of sperm. 

 

Hypothesis 2: ROS and zinc levels will be significantly different between sperm or bos taurus and bos 

indicus bulls. 

 

Aim 2:  To identify more accurate fertility markers of bull sperm than is currently used within the            

bull semen collection industry.  

 



24 
 

 
 
 
 

 

 

 

 

 

Chapter 2                                            

Meiotic inhibition of bovine 

COCs in vitro 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

2.1 Introduction  

 

2.1.1 Oocyte maturation and developmental competence 
 

All oocytes develop during female fetal development, and are arrested in the fetal ovary at prophase 1 of 

meiosis, also referred to as the germinal vesicle (GV) stage. In vivo, nuclear maturation resumes following 

the LH surge that triggers ovulation of the dominant follicle, and the oocyte is ovulated at the metaphase 

II stage of meiosis (Kawamura et al. 2011; Rizos et al. 2002). For in vitro embryo production, immature 

bovine oocytes are collected from antral follicles of various sizes, and generally at random stages during 

the oestrous cycle. Nuclear maturation of the oocyte spontaneously resumes when the cumulus-oocyte 

complex (COC) is aspirated from the ovarian follicle (Pincus & Enzmann 1935). However, the cytoplasmic 

organelles, including the mitochondria and endoplasmic reticulum, may not have ‘matured’ sufficiently to 

allow for the optimal developmental potential of the oocyte following fertilisation in vitro; often referred to 

as “asynchronised maturation”. Appropriate maturation of the oocyte’s cytoplasm has been demonstrated 

as a major factor that results in higher developmental potential of oocytes that have been matured in vivo, 

compared to those matured in vitro (Gilchrist & Thompson 2007). In recent years, a concept of arresting 

meiotic progress of aspirated oocytes, while supporting the development of cytoplasmic organelles, has 

been investigated as a means to improve developmental competence of in vitro matured oocytes (Barretto 

et al. 2007; Santiquet et al. 2017; Zeng et al. 2014).   

 

 

2.1.2 Objectives 
 

Further investigations are required into the specific mechanisms required for inhibition of meiotic 

progression in bovine oocytes for extended periods of time.  The current study aimed to extend the time 

that bovine oocytes could be arrested in vitro at the GV stage of meiosis to 18 hours. Eighteen hours was 

selected as an optimal time period that could be readily incorporated into commercial bovine in vitro 

embryo production (IVP) programs. The initial experiments aimed to determine the effects of inhibiting 

PDE8 activity, using a new specific PDE8 inhibitor (PF-04957325 from MedChem Express), on meiotic 

progression of bovine COCs. Subsequent experiments aimed to examine the effects of dbcAMP, 

oestradiol and CNP, in combination with the PDE inhibitor, IBMX, on meiotic progression of bovine COCs.  
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2.2 Methods 
 

2.2.1 Ovary collection 
 

Bovine ovaries from cross bred (bos taurus and bos indicus) cattle were collected from a local abattoir 

(JBS Swift, Rockhampton, Australia). They were transported to the laboratory (Australian Reproductive 

Technologies, Rockhampton, Australia) in 500 mL of 0.9% saline at 35˚C within 3 hours of collection. 

Antral follicles with a diameter between 2 and 8 mm were manually aspirated with a 19G needle and 10 

mL syringe. Follicular fluid was searched using a dissecting microscope and COCs with an even coloured 

ooplasm and at least three complete layers of cumulus cells were collected and divided between treatment 

groups. Each group was then washed twice in 2 mL of VitroMat (Art Lab Solutions, Adelaide, Australia) 

and COCs were incubated in groups of 10 COCs per 50 µL drop of VitroMat (ART Lab Solutions). VitroMat 

medium used for washing and incubation contained 4 mg/ml BSA and the meiotic inhibitors appropriate 

for each treatment group, with no added serum or gonadotropins. COCs were incubated under mineral 

oil (M5310, Sigma-Aldrich, Merck, Germany) in 35 mm Falcon dishes (35-1008, Corning, New York, USA), 

at 38.8˚C in 5% CO2 in air for various times depending on the experimental design. 

 

2.2.2 Orcein staining for determination of stage of meiosis 
 

At 2, 4 or 6 hours COCs were denuded for staining by gently pipetting up and down with a 25 µL pipette 

in media drops of approximately 50 µL. For later observation times, COCs were placed in a 1.5 ml 

microtube containing 1 mL of 2 mg/mL hyaluronidase with 6 mg/mL BSA in VitroWash (ART Lab 

Solutions). A pipette set to 500 µL was used to gently pipette up and down until the cloud of cumulus cells 

became invisible. The microtube was then vortexed for 3 minutes. Oocytes were removed from the 

microtube and gently pipetted up and down in 50 µL drops of VitroWash (ART Lab Solutions) to remove 

any remaining cumulus cells. Oocytes were arranged in a line on a microscope slide (n=10 per slide) in 

10 µL of media. The slide was placed on the heated (38˚C) microscope stage for 30 seconds for some of 

the media to evaporate. A coverslip with Vaseline added to the top and bottom edge was placed on the 

slide, and gently tapped with a needle to flatten the oocytes. Ten microliters of 1% orcein (O7380-5g, lot# 

BCBR9195, Sigma-Merck) in 45% glacial acetic acid (ARK-2183, lot# GLAA132-34, Sigma-Merck) was 

pipetted under the coverslip from one open end with a 10 µL pipette. Oocytes were visualised on an 

inverted microscope (Olympus IX70) at 400x magnification with Hoffman Modulation Contrast. Oocytes 

were classified as being in the Germinal Vesicle (GV) stage if the nuclear envelope was still present. 

Germinal Vesicle Breakdown (GVBD) was classified when the nuclear envelope had disappeared and the 

chromatin had condensed. Metaphase 1 (M1) was classified when the condensed chromatin had met at 
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the metaphase plate, and Metaphase 2 (M2) was classified when two distinct groups of chromatin were 

visible, with one group in an extruded polar body (fig. 3). 

 

 

 

Figure 3: Examples of orcein staining of bovine oocytes for meiotic progression determination. Arrows 
point to the chromatin. The GV stage (A) is characterised by chromatin enclosed by the nuclear envelope. 
The GVBD (B) stage is characterised by the disappearance of the nuclear envelope and condensation of 
the chromatin. The M1 stage (C) is characterised by the condensed chromatin lining up on the metaphase 
plate. The M2 stage (D) is characterised by two distinct groups of chromatin with one extruded in the first 
polar body. 
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2.2.3 Inhibitor Preparations 
 

2.2.3.1 PF-04957325 (PDE8 inhibitor) 
 

PF-04957325 (MedChem Express, catalogue # HY-15426, batch # 23381, molecular weight 400.38 

g/mol) was dissolved in dimethyl sulfoxide (DMSO) prior to use. Throughout all experiments DMSO 

concentrations within the final media were maintained to be no more than 0.1%. Stock solutions of 10 mM 

PF-04957325 were prepared by diluting 5 mg of PF-04957325 in 1.25 mL of DMSO.  Aliquots were stored 

in microtubes, wrapped in aluminium foil and maintained at -20 degrees Celsius for no more than 4 weeks. 

 

2.2.3.2 3-isobutyl-1-methylxanthine (IBMX) 
 

Stock solutions of 500 mM IBMX (Sigma, catalogue # 15879, lot # 0001416650) were prepared for all 

experiments. Fifty milligrams of IBMX (molecular weight 222.24 g/mol) was dissolved in 450 µL of DMSO. 

Aliquots were stored in microtubes, wrapped in aluminium foil and maintained at -20 degrees Celsius for 

no more than 4 weeks. 

 

2.2.3.3 Dibutylryl Cyclic AMP (dbcAMP) 
 

Stock solutions of 100 mM dbcAMP (Sigma D0627-250MG, Molecular Weight 491.37 g/mol) were 

prepared by dissolving 50 mg of dbcAMP in 1018 µL of VitroWash (ART Lab Solutions). Aliquots were 

stored in microtubes at -20˚C for no more than 4 weeks. 

 

2.2.3.4 C-Type Natriuretic Peptide (CNP) 
 

A 100 µM stock solution of CNP (Sigma N8768-.5MG, Molecular Weight = 2197.60 g/mol) was prepared 

by dissolving 0.5 mg of CNP in 2280 µL VitroMat base media (ART Lab Solutions) without any 

gonadotropins included. Aliquots were stored in microtubes at -20 degrees Celsius for no more than 4 

weeks. 
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2.2.3.5 β-Oestradiol 
 

β-Oestradiol (Sigma, E2257, Molecular Weight = 272.38 g/mol) was dissolved in ethanol to produce a 10 

µM stock solution via a double dilution. Firstly 1 mg of β-oestradiol was dissolved in 3.67 mL of ethanol 

to make a 1 mM solution then 100 µL of the 1 mM solution was added to 9.9 mL ethanol to make a 10 

µM stock. The 10 µM stock solution was stored at -20 degrees Celsius for no more than 3 months. 

 

2.2.4 Experimental Designs 
 

2.2.4.1 Experiment 1 
 

2.2.4.1.1 PF-04957325 (PDE8 inhibitor) dose response (0, 1 µM, 5 µM and 10 µM) 
 

Cumulus oocyte complexes were divided into 4 groups: 1) control (no inhibitors), 2) 1 µM PF-04957325 

with 500 µM IBMX, 3) 5 µM PF-04957325 with 500 µM IBMX, 4) 10 µM PF-04957325 with 500 µM IBMX. 

COCs were incubated in their treatment group, as described above, for 2, 4, 6, 18 or 24 hours. Oocytes 

(15 to 20 COCs per treatment) were removed at each time point and meiotic stage was determined by 

orcein staining.   

 

2.2.4.1.2 PF-04957325 (PDE8 inhibitor) and IBMX  
 

Based on the results from experiment 1, the effect of IBMX and PF-04957325 were tested alone and in 

combination. A single time point of 18 hours was assessed because that was the time point that we aimed 

to arrest meiosis until. COCs were divided into 4 groups: 1) control (no PDE inhibitors), 2) 500 µM IBMX, 

3) 10 µM PF-04957325 4) 10 µM PF-04957325 with 500 µM IBMX. COCs were incubated in their 

treatment group for 18 hours, and meiotic stage was then determined by orcein staining.   

 

2.2.4.1.3 PF-04957325 (PDE8 inhibitor) dose response (0, 50 µM and 100 µM) 
 

Based on the results from the previous experiment, the effects of higher concentrations of PF-04957325 

were assessed. COCs were divided into 4 groups: 1) control (no PDE inhibitors), 2) 500 µM IBMX, 3) 50 

µM PF-04957325 with 500 µM IBMX, 4) 100 µM PF-04957325 with 500 µM IBMX. COCs were incubated 

in their treatment group for 18 hours, and meiotic stage was then determined by orcein staining.   
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2.2.4.2 Experiment 2 
 

2.2.4.2.1 Dibutyryl cyclic AMP (dbcAMP) dose response (0, 1 mM and 5 mM)  
 

Cumulus oocyte complexes were incubated in VitroMat (ART Lab Solutions), with or without the addition 

of dbcAMP (0 mM, 1 mM or 5 mM) for 18 hours and meiotic stage was then determined by orcein staining.   

 

2.2.4.3 Experiment 3 
 

2.2.4.3.1 5 mM Dibutyryl cyclic AMP (dbcAMP) with or without oestradiol (100 nM) and IBMX (500 µM)  
 

Cumulus oocyte complexes were divided into 4 groups all containing 5 mM dbcAMP: 1) control (no added 

β-oestradiol or IBMX), 2) 100 nM β-oestradiol, 3) 500 µM IBMX, 4) 100 nM β-oestradiol and 500 µM 

IBMX. Meiotic stage was determined by orcein staining after 18 hours incubation.   

 

2.2.4.4 Experiment 4 
 

2.2.4.4.1 5 mM Dibutyryl cyclic AMP (dbcAMP), 100 nM oestradiol and 500 µM IBMX with or without 

200 nM C-type Natriuretic Peptide (CNP) 
 

Cumulus oocyte complexes were divided into 3 groups: 1) control (no added inhibitors), 2) 5 mM dbcAMP, 

100 nM Oestradiol and 500 µM IBMX, and 3) 5 mM dbcAMP, 100 nM Oestradiol, 500 µM IBMX and 200 

nM CNP. The dose of CNP was selected based on results from other published studies investigating the 

use of CNP for meiotic inhibition of bovine COCs (Zhang, T et al. 2017). Meiotic stage was determined 

after 12 and 18 hours of incubation by orcein staining.  

 

2.2.5 Statistical Analysis 
 

The statistical analysis was completed by Jana Maria Bednarz, a Statistician from the Adelaide Health 

Technology Assessment (AHTA) at the University of Adelaide. All statistical analysis was performed using 

Stata (StataCorp. 2017. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC) at 
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the α = 0.05 level of statistical significance. To calculate the percentage of oocytes at each meiotic 

stage, for each treatment, the number of oocytes counted at that stage was divided by the total number 

of oocytes within the treatment, and multiplied by 100. For experiment 1, Chi Squared test was used to 

assess if the distribution of COCs at the meiotic stages varied between treatments. For experiments 2, 3 

and 4, Fisher’s Exact Test of Association was used to assess if the distributions of COCs at each meiotic 

stage differed between treatments. 95% confidence intervals for the population percentage were 

calculated using the Exact (Clopper-Pearson) method. 
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2.3 Results 
 

2.3.1 Experiment 1:  
 

2.3.1.1 Dose response of 1, 5 and 10 µM PDE8 inhibitor (PF-04957325) with 500 µM IBMX at 2, 4, 6, 

18 and 24 hours. 
 

There was no difference between treatments in the proportion of oocytes at the Germinal Vesicle (GV) 

stage after 2 or 4 hours of culture with 1, 5 or 10 µM PDE8 inhibitor and 500 µM IBMX or no meiotic 

inhibitors (control). More than 98% of oocytes were at the GV stage at 2 hours, and more than 84% of 

oocytes were at the GV stage at 4 hours (Table 1).  After 6 hours of culture more COCs were at the GV 

stage when cultured with 1, 5 or 10 µM PDE8 inhibitor and 500 µM IBMX (p<0.0001) compared to COCs 

cultured without inhibitors. The proportion of COCs at GV did not differ between groups exposed to 1, 5 

or 10 µM of PDE8 inhibitor and 500 µM IBMX (Table 1). After 18 hours of culture, very few COCs 

remained at the GV stage of meiosis within all treatment groups (1.8 - 2.9%) and the proportion of GV 

stage oocytes did not differ between treatments. A higher proportion of COCs were at the M1 stage 

following 18 hours of culture with 1, 5 or 10 µM PDE8 inhibitor and 500 µM IBMX (p≤0.001) compared to 

COCs in the control group. A higher proportion of COCs in the control group had reached the M2 stage, 

compared to oocytes matured in the presence of the meiotic inhibitors (Table 1). After 24 hours of culture, 

there was no significant difference in the distribution of COCs at the various meiotic stages whether COCs 

had been cultured with or without the meiotic inhibitors (Table 1). 

 

2.3.1.2 2x2 factorial with 10 µM PDE8 inhibitor and 500 µM IBMX at 18 hours 
 

There were no COCs remaining at the GV stage of meiosis following 18 hours of culture with 10 µM PDE8 

inhibitor, 500 µM IBMX or the combination of 10 µM PDE8 inhibitor and 500 µM IBMX. After 18 hours of 

culture, the distribution of meiotic stages did not differ between COCs cultured with 10 µM PDE8 inhibitor 

alone and the control group. More COCs remained at the M1 stage of meiosis when cultured with 500 

µM IBMX alone or with 500 µM IBMX and 10 µM PDE8 inhibitor, compared to culture with the PDE8 

inhibitor alone or the control group (p˂0.001). Meiotic distribution did not differ between groups cultured 

with IBMX with or without the 10 µM PDE8 inhibitor (Table 2). 
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Table 1: The effect of the 1 µM, 5 µM and 10 µM PF-04957325 (PD8) with 500 µM IBMX on meiotic 
progression after 2, 4, 6, 18 and 24 hours of treatment of bovine COCs. 

 

 

 

 

Table 2: The effect of 500 µM IBMX and 10 µM PF-04957325 (PD8) alone and combined on meiotic 
progression after 18 hours of treatment of bovine COCs. 

 

 

 

 

Total 

oocytes 

n n (%) 95% CI n (%) 95% CI n (%) 95% CI n (%) 95% CI

61 61 (100) (94.1, 100) 0 - 0 - 0 -

65 64 (98.46) (91.7, 100) 1 (1.54) (2.11-10.35) 0 - 0 -

66 66 (100) (94.6, 100) 0 - 0 - 0 -

67 67 (100) (94.6, 100) 0 - 0 - 0 -

65 57 (87.69) (77.18, 94.53) 8 (12.31) (6.22, 22.90) 0 - 0 -

55 46 (83.64) (71.20, 92.23) 9 (16.36) (8.66, 28.77) 0 - 0 -

55 47 (85.45) (73.33, 93.50) 8 (14.55) (7.37, 26.69) 0 - 0 -

59 53 (89.83) (79.17, 96.18) 6 (10.17) (4.59, 21.04) 0 - 0 -

145 80 (55.17)
a (46.70, 63.43) 65 (44.83)

a (36.90, 53.03) 0 - 0 -

127 103 (81.10)
b (73.20, 87.50) 24 (18.90)

b (12.97, 26.70) 0 - 0 -

135 112 (82.96)
b (75.54, 88.89) 23 (17.04)

b (11.56, 24.39) 0 - 0 -

129 113 (87.60)
b (80.64, 92.74) 16 (12.40)

b (7.72, 19.34) 0 - 0 -

102 3 (2.94) (0.94, 8.79) 8 (7.84) (3.95, 14.98) 18 (17.65)
a (11.37, 26.36) 73 (71.57)

a (62.00, 79.52)

106 3 (2.83) (0.91, 8.48) 7 (6.60) (3.16, 13.28) 42 (39.62)
b (30.72, 49.27) 54 (50.94)

b (41.44, 60.38)

105 2 (1.90) (0.47, 7.37) 7 (6.67) (3.19, 13.40) 35 (33.33)
b (24.94, 42.94) 61 (58.10)

b (48.40, 67.20)

112 2 (1.79) (0.44, 6.92) 11 (9.82) (5.50, 16.93) 45 (40.18)
b (31.46, 49.56) 54 (48.21)

b (39.06, 57.49)

90 5 (5.56) (1.83, 12.49) 4 (4.44) (1.66, 11.33) 19 (21.11) (13.89, 30.84) 62 (68.89) (58.54, 77.64)

111 2 (1.80) (0.22, 6.36) 1 (0.90) (0.12, 6.20) 15 (13.51) (8.28, 21.28) 93 (83.78) (75.65, 89.57)

116 4 (3.45) (0.95, 8.59) 0 - 16 (13.79) (8.60, 21.40) 96 (82.76) (74.71, 88.63)

127 3 (2.36) (0.49, 6.75) 1 (0.79) (0.11, 5.44) 24 (18.90) (12.97, 26.71) 99 (77.95) (69.86, 84.36)

Different superscripts indicate a significant difference exists (P<0.05) within a column for that time point.

Includes 95% confidence intervals (CI).

10 µM PD8 + 500 µM IBMX

M1

10 µM PD8 + 500 µM IBMX

1 µM PD8 + 500 µM IBMX

5 µM PD8 + 500 µM IBMX

1 µM PD8 + 500 µM IBMX

5 µM PD8 + 500 µM IBMX

10 µM PD8 + 500 µM IBMX

Control

Control

1 µM PD8 + 500 µM IBMX

GV GVBD

Control

M2

18

24

5 µM PD8 + 500 µM IBMX

10 µM PD8 + 500 µM IBMX

Time 

(hours)

Control

1 µM PD8 + 500 µM IBMX

5 µM PD8 + 500 µM IBMX

10 µM PD8 + 500 µM IBMX

Treatment

2

4

6

Control

1 µM PD8 + 500 µM IBMX

5 µM PD8 + 500 µM IBMX

Treatment

n (%) 95% CI n (%) 95% CI n (%) 95% CI n (%) 95% CI

Control 112 1 (0.89) (0.12, 6.13) 0 - 37 (33.04)
a (24.92, 42.31) 74 (66.07)

a (56.77, 74.28)

500 µM IBMX 134 0 - 2 (1.49) (0.37, 5.82) 75 (55.97)
b (47.42, 64.18) 57 (47.90)

b (39.03, 56.91)

10 µM PD8 127 0 - 0 - 33 (25.98)
a (19.06, 34.35) 94 (74.02)

a (65.65, 80.94)

500 µM IBMX + 10 µM PD8 119 0 - 0 - 62 (52.10)
b (43.09, 60.97) 57 (42.54)

b (34.40, 51.10)

Different superscripts indicate a significant difference exists (P<0.05) within a column.

Includes 95% confidence intervals (CI).

Total 

oocytes

GV GVBD M1 M2
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2.3.1.3 Dose response of 50 µM and 100 µM PDE8 inhibitor (PF-04957325) with 500 µM IBMX after 18 

hours of culture 
 

Since 5 µM or 10 µM PDE8 inhibitor did not affect meiotic resumption, the effects of higher concentrations 

were assessed.  No oocytes remained at the GV stage of meiosis after 18 hours of culture with 50 µM or 

100 µM PDE8 inhibitor with 500 µM IBMX, 500 µM IBMX alone or no meiotic inhibitors. A greater 

proportion of COCs were at the M1 stage following culture with IBMX alone or combined with either dose 

of PDE8 inhibitor, compared to control oocytes cultured without meiotic inhibitors (p˂0.0001). Meiotic 

progression did not differ between groups cultured with IBMX alone or combined with 50 µM or 100 µM 

of PDE8 inhibitor (Table 3). 

 

 

Table 3: The effect of 50 µM or 100 µM PDE8 inhibitor and 500 µM IBMX on meiotic progression of 
bovine COCs after 18 hours of treatments. 

 
 

 

 

2.3.2 Experiment 2  
 

2.3.2.1 Dose response with 0, 1 mM and 5 mM dbcAMP at 18 hours 
 

After 18 hours of culture with 0 (control), 1 mM or 5 mM dbcAMP, less than 2% of COCs remained at the 

GV stage of meiosis. Maturation in the presence of dbcAMP did not affect the meiotic distribution at 18 

hours (Table 4). 

Treatment

n (%) 95% CI n (%) 95% CI

Control 142 47 (33.10)
a (25.82, 41.28) 95 (66.90)

a (58.72, 74.18)

500 µM IBMX 165 106 (64.24)
b (56.61, 71.22) 59 (35.76)

b (28.78, 43.39)

50 µM PDE8 + 500 µM IBMX 131 80 (61.07)
b (52.42, 69.07) 51 (38.93)

b (30.93, 47.58)

100 µM PDE8 + 500 µM IBMX 153 98 (64.05)
b (56.11, 71.29) 55 (35.95)

b (28.71, 43.89)

Note: there were no oocytes recorded at the GV or GVBD stage for any of the treatment groups. 

Different superscripts indicate a significant difference exists (P<0.05) within a column.

Includes 95% confidence intervals (CI).

Total 

oocytes
M1 M2
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Table 4: Effect of 1 mM or 5 mM dbcAMP on meiotic progression of bovine COCs after 18 hours of 
treatment. 

 
 

 

 

  

2.3.3 Experiment 3 
 

2.3.3.1 2x2 factorial with 100 nM β-Oestradiol and 500 µM IBMX (5 mM dbcAMP in all treatments) at 18 

hours  
 

After 18 hours of culture with and without 100 nM β-oestradiol and 500 µM IBMX alone and combined, 

very few COCs remained at the GV stage. A greater proportion of COCs were at the M1 meiotic stage 

when cultured with β-oestradiol or IBMX alone, compared to the control group (p<0.01). When COCs 

were cultured with β-oestradiol and IBMX combined, a higher proportion remained at M1 after 18 hours, 

compared to COCs from the control group, or those cultured with β-oestradiol or IBMX (Table 5). 

 

 

 

Table 5: Effect of 5 mM dbcAMP with the addition of 100 nM β-oestradiol and or 500 µM IBMX on meiotic 
progression of bovine COCs after 18 hours of treatment. 

 
 

 

 

 

Treatment

n (%) 95% CI n (%) 95% CI n (%) 95% CI n (%) 95% CI

Control 108 2 (1.85) (0.23, 6.53) 0 - 18 (16.67) (10.19, 25.06) 88 (81.48) (72.86, 88.31)

1 mM dbcAMP 103 1 (0.97) (0.02, 5.29) 0 - 17 (16.50) (9.92, 25.11) 85 (82.52) (73.79, 89.30)

5 mM dbcAMP 99 0 - 1 (1.01) (0.03, 5.50) 16 (16.16) (9.53, 24.91) 82 (82.83) (73.94, 89.67)

Includes 95% confidence intervals (CI).

Total 

oocytes 

n

GV GVBD M1 M2

Treatment

n (%) 95% CI n (%) 95% CI n (%) 95% CI n (%) 95% CI

Control
# 145 0 - 0 - 34 (23.45)

a (16.82, 31.20) 111 (76.55)
a (68.80, 83.18)

100 nM Oestradiol
# 129 0 - 2 (1.55) (0.19, 5.49) 47 (36.43)

b (28.14, 45.36) 80 (62.02)
b (53.05, 70.41)

500 µM IBMX
# 142 2 (1.41) (0.17, 6.00) 0 - 61 (42.96)

b (34.69, 51.53) 79 (55.63)
b (47.07, 63.96)

100 nM Oestradiol + 500 µM IBMX
# 122 0 - 0 - 111 (90.98)

c (84.44, 95.41) 11 (9.02)
c (4.59, 15.56)

# Note: All groups contain 5mM dbcAMP

Different superscripts indicate a significant difference exists (P<0.05) within a column

Includes 95% confidence intervals (CI)

Total 

oocytes

GV GVBD M1 M2
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2.3.4 Experiment 4  
 

2.3.4.1 5 mM dbcAMP, 100 nM Oestradiol, 500 µM IBMX with and without 200 nM CNP at 12 and 18 

hours 
 

After 12 hours of culture with 5 mM dbcAMP, 100 nM oestradiol and 500 µM IBMX with or without 200 

nM CNP, less than 13% of all COCs remained at the GV stage of meiosis across all treatment groups. 

The proportion of COCs at the GV stage was not different between any of the treatment groups. However, 

COCs that had been cultured in the presence of dbcAMP, oestradiol and IBMX with or without CNP were 

more likely to be at the GVBD stage of meiosis compared to the control group after 12 hours (p<0.01). 

The proportion of COCs at GVBD did not differ between COCs cultured with or without CNP (Table 6).  

 

After 18 hours of culture with 5 mM dbcAMP, 100 nM oestradiol and 500 µM IBMX with or without 200 

nM CNP, no COCs remained at the GV stage of meiosis. For statistical analysis, GVBD and M1 results 

were combined due to low numbers in the GVBD group. A greater proportion of oocytes were at the M1 

stage following culture with dbcAMP, oestradiol and IBMX, with or without CNP, compared to the control 

(p<0.0001).  Oocytes cultured under control conditions, with no meiotic inhibitors, were more likely to be 

at M2 after 18 hours. However, culture with or without 200 nM CNP did not affect the distribution of meiotic 

stages at 18 hours (Table 6). 

 

 

 

Table 6: Effect of 5 mM dbcAMP, 100 nM β-oestradiol, 500 µM IBMX with and without 200 nM CNP on 
meiotic progression of bovine COCs after 12 and 18 hours of culture. 

 
 

 

Treatment

n (%) 95% CI n (%) 95% CI n (%) 95% CI n (%) 95% CI

Control 106 14 (13.21) (7.41, 21.17) 9 (8.49)
a (3.96, 15.51) 76 (71.70) (62.12, 80.02) 7 (6.60) (2.70, 13.13)

No CNP
# 127 17 (13.39) (8.00, 20.56) 32 (25.20)

b (17.92, 33.67) 78 (61.42) (52.37, 69.92) 0 -

200 nM CNP
# 122 14 (11.48) (6.42, 18.50) 28 (22.95)

b (15.82, 31.43) 80 (65.57) (56.43, 73.94) 0 -

Control 130 0 - 1 (0.77) (0.02, 4.21) 37 (28.46)
a (20.90, 37.04) 92 (70.77)

a (62.15, 78.41)

No CNP
# 

116 0 - 0 - 88 (75.86)
b (67.04, 83.32) 28 (24.14)

b (16.68, 32.96)

200 nM CNP
# 

119 0 - 6 (5.04) (1.87, 10.65) 85 (71.43)
b (62.43, 79.33) 28 (23.53)

b (16.24, 32.18)

Includes 95% confidence intervals (CI).

Total 

oocytes 

n

Time 

(hours)

Different superscripts indicate a significant difference exists (P<0.05) within a column for that time point.

# Treated with 5 mM dbcAMP, 100 nM estradiol, 500 µM IBMX.

GV GVBD M1 M2

12

18
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2.4 Discussion  
 

 

The present study aimed to inhibit meiotic resumption of bovine oocytes in vitro for at least 18 hours. A 

combination of IBMX and β-estradiol with dbcAMP led to the greatest delay in reaching the M2 stage of 

meiosis after 18 hours of culture. However, we were not able to prevent GVBD for 18 hours. Although that 

result was promising, adding an additional mediator of meiosis in the form of CNP did not lead to 

significant delays in meiotic progression. Assessment at 12 hours revealed that the majority of bovine 

COCs had progressed to M1 by that time, regardless of treatment. Inhibition of PDE8 activity, using a 

specific PDE8 inhibitor, had no effect on meiotic inhibition when used on its own or with IBMX. Therefore 

further investigation is required to achieve meiotic inhibition of bovine COCs for extended periods of up 

to 18 hours. 

 

Sasseville et al. (2009) reported that 20% of PDE activity within bovine oocytes was related to PDE8, with 

80% contributed by PDE3. In the current study, inhibition of PDE8 using a specific PDE8 inhibitor (PF -

04957325) was therefore expected to increase the time that bovine oocytes could be maintained at the 

GV stage of meiosis. Dipyridamole, a non-specific PDE8 inhibitor (also inhibits PDE7, 10 and 11), has 

previously been shown to decrease the percentage of bovine oocytes that progressed to the M2 stage 

when combined with an adenosine cyclase activator, forskolin, for 16 hours, however, dipyridamole was 

ineffective at delaying meiotic resumption on its own. Exposure of the oocyte to dipyridamole also had a 

negative effect on both cleavage and blastocyst developmental rates (Sasseville et al. 2009). For these 

studies we tested a newly developed PDE8 inhibitor that was designed by Pfizer (Groton Laboratories, 

Groton, CT, USA) to target the human PDE8 protein (Vang et al. 2010). We chose the investigated doses 

based on other inhibitor studies and also taking into consideration the IC50 values (0.7 nM for PDE8A and 

0.3 nM for PDE8B according to MedChem Express datasheets) (Sasseville et al. 2009). Another 

unpublished study from our research group also demonstrated that this specific PDE8 inhibitor with IBMX 

was ineffective at increasing the time that sheep oocytes could be maintained at the GV stage in vitro. A 

recent study investigated the ability of PDE4 (Rolipram), 7 and 8 (PF-04957325) inhibitors to modulate 

cAMP concentrations within mouse preovulatory follicles. They found cAMP levels were only increased 

significantly when all three inhibitors were used simultaneously for 4 hours. Individually, none of the 

inhibitors had a significant effect on cAMP levels within the follicle. When the PDE7 and 8 inhibitors were 

used alone, no GVBD had occurred after 24 hours within the follicle enclosed COCs, all other 

combinations using the PDE4 inhibitor elicited GVBD; meiosis resumption. This suggests that both the 

PDE7 and PDE8 play important roles in regulating meiosis in mouse follicles, and it demonstrates that 

this particular PDE8 inhibitor is effective in another species (Vigone et al. 2018). It is possible that we 
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need to further increase the concentrations of PDE8 inhibitor for bovine studies before we will see an 

effect. To my knowledge, the experiments by Sasseville et al. (2009) have not been repeated, therefore 

it is possible that the proportions of the types of PDEs within the bovine oocytes were misrepresented. 

Oocytes from other species such as the mouse, human and pig do appear to be easier to arrest at the 

GV stage of meiosis using single or multiple PDE inhibitors, dbcAMP or CNP for up to 24 hours (Gil et al. 

2017; Kawamura et al. 2011; Vigone et al. 2018). Further investigation is required to extend the time that 

bovine oocytes can be arrested in meiosis. Perhaps further investigation is necessary into combinations 

of various doses of PDE inhibitors, guanylate cyclase activators and adenylate cyclase activators.  

 

Rather than focus on inhibiting PDEs our further studies investigated the use of dbcAMP to inhibit meiotic 

resumption of bovine oocytes. Recently, dbcAMP has been shown to act as a very effective inhibitor of 

meiotic resumption of pig oocytes over an extended period of 22 hours (Gil et al. 2017). However, in the 

current study, the addition of dbcAMP during bovine COC culture had no effect on delaying the resumption 

of meiosis when comparable doses were investigated after 18 hours. A previous study has shown that 

the effectiveness of dbcAMP treatment during pig IVM to improve embryonic development is dependent 

on the size of the follicles that the COCs were derived from. COCs from small follicles (2-4 mm diameter) 

did not have improved development regardless of treatment with dbcAMP or not, while COCs from 

medium sized follicles (>4-6 mm diameter) had improved blastocyst development rates when treated with 

dbcAMP for 22 hours followed by a further 22 hours IVM without any meiotic inhibitors. However, meiotic 

progression was investigated after the cumulative 44 hour IVM period which included a final 22 hours 

without inhibitors (Sugimura et al. 2015). The current study pooled all COCs derived from follicles ranging 

from approximately 2-8 mm in diameter. Further studies could investigate the effect of dbcAMP on meiotic 

progression of bovine COCs derived from defined follicle sizes of small, medium and large follicles. An 

early study investigated a 6 hour pre-treatment of bovine COCs with 0.01 mM, 0.1 mM and 1 mM dbcAMP 

with or without cycloheximide prior to 24 hours of conventional IVM without any meiotic inhibitors. They 

found no effect of dbcAMP on cleavage rates and a small, but significant, improvement to embryo 

developmental rates to the 64 cell stage when 0.1 mM dbcAMP had been used with cycloheximide 

(Guixue et al. 2001). Further investigation of the effects of dbcAMP at lower concentrations than those 

used in the current study may therefore be warranted. Alternatively, dibutyryl cyclic guanosine 

monophosphate (dbcGMP) may be more effective at inhibiting PDEs within the oocyte, to maintain high 

intra-oocyte concentrations of cAMP. However, the dbcGMP analog seems to lack potency on its own in 

terms of preventing the resumption of meiosis from other species (starfish and rat) (Karaseva & 

Khotimchenko 1991; Tornell, Brannstrom & Hillensjo 1984). It appears that mechanisms to prevent 

meiotic resumption in bovine oocytes differs to other species, therefore it does not make sense to rule 
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dbcGMP out as a potential meiotic inhibitor due to results obtained from rat and starfish studies. 

Alternatively, a combination of dbcGMP and dbcAMP could be more effective. 

 

Individually both IBMX and oestradiol had an effect on delaying COCs reaching the M2 stage, and an 

additive effect was seen when IBMX and oestradiol were combined. IBMX prevents the breakdown of 

cAMP by inhibiting all cAMP specific PDEs except PDE8 (Sasseville et al. 2009). Oestradiol has been 

shown to increase the expression of Npr2, the receptor for CNP, in bovine oocytes and cumulus cells (Xi 

et al. 2018). This additive effect was promising for us, it suggested that we might be able to further delay 

COCs from reaching M2 by combining multiple cAMP modulators. Given the results with IBMX and β-

oestradiol, we expected an additional effect from adding CNP to the media. However, while the proportion 

of COCs that had reached M2 at 18 hours was reduced when cultured in the presence of IBMX and β-

oestradiol, this proportion did not differ with or without the addition of CNP. Another study from within our 

research group assessed the use of CNP and IBMX on meiotic progression of bovine oocytes after 6 

hours. The group treated with 500 µM IBMX alone or with 100 nM CNP were more likely to still be at the 

GV stage after 6 hours compared to the control or if 100 nM CNP had been used alone. No significant 

difference in the GV rate after 6 hours was reported between the groups treated with 100 nM CNP or 500 

µM IBMX alone (Soto-Heras, Paramio & Thompson 2019). These results and our own results suggest 

that CNP alone is not a potent meiotic inhibitor for bovine COCs 

 

Studies from the 1990’s demonstrated that bovine oocytes could be arrested at the GV stage for 24 hours 

if they were cultured in follicular hemi-sections containing thecal cells (Richard & Sirard 1996a). It was 

also demonstrated that bovine COCs could be maintained at the GV stage for 12 hours if they were 

cultured in media that had been pre-conditioned by follicular hemi-sections containing thecal cells, without 

direct contact to thecal cells (Richard & Sirard 1996b). Later, a study published in the early 2000’s partially 

identified a thecal secreted factor that may be responsible for regulating meiotic resumption of COCs. 

They concluded that the factor could not be a peptide or fatty acid, by treating media that had been pre-

conditioned with thecal cells with proteases and chloroform. They also identified that the responsible factor 

is a small molecule, at less than 5 kDa in size, and stable following 5 minute 100˚C heat treatment (Van 

Tol & Bevers 2001). A purine may fit the criteria. Purines found naturally within follicular fluid, hypoxanthine 

and adenosine, have been shown to successfully arrest meiosis in several species including the oocytes 

from mice, rats, pigs and monkeys (Eppig, Wardbailey & Coleman 1985; Miyano et al. 1995; Tornell et al. 

1990; Warikoo & Bavister 1989). However, hypoxanthine has only been able to hold bovine and goat 

COCs at the GV stage for approximately 6 hours (Ma et al. 2003; Sirard & First 1988a), and adenosine 

has been shown to be ineffective at preventing meiotic resumption in bovine COCs (Sirard 1990). 
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Furthermore Van Tol and Bevers (2001) suggested that hypoxanthine was not the thecal cell secreted 

factor inhibiting meiotic resumption of bovine oocytes, as charcoal treatment of the ˂5kDa fraction of 

thecal cell conditioned media did not have any effect on the meiotic inhibitory response suggesting the 

molecule is not hydrophobic (Dang & Lowik 2005; Van Tol & Bevers 2001). Charcoal treatment has 

previously been demonstrated to inhibit hypoxanthine (unpublished, but referred in Van Tol & Bevers 

2001). Therefore the thecal cell secreted factor modulating meiotic resumption/inhibition in bovine oocytes 

remains elusive, and requires further investigation. It would be interesting to find out if combining an 

inhibitor of MPF (such as DMAP) with cAMP modulators would help to increase the time bovine oocytes 

can be arrested at the GV stage and also improve developmental potential. We are unsure if using a 

combination of inhibitors instead of a single inhibitor, such as IBMX, to maintain the oocytes at GV for 6 

hours would be beneficial in terms of development potential. We also are unsure if using the inhibitors for 

a whole 24 hour maturation period would have any effect on development rates. Alternatively it is possible 

that embryo quality might be improved (for example higher cell numbers) even if development rates are 

not improved.  

 

In conclusion, we were unable to extend the time that bovine oocytes could be arrested at the GV stage 

of meiosis to 18 hours. We significantly decreased the proportion of COCs that had progressed to the M2 

stage of meiosis after 18 hours of treatment with the combination of IBMX and oestradiol. Future 

investigations of combinations of PDE inhibitors, adenylate cyclase activators, dbcAMP, guanylates 

cyclase activators and or dbcGMP with and without inhibitors of MPF may lead to successes in extending 

meiotic inhibition of bovine oocytes. 
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3.1 Introduction 
 

3.1.1 Semen use in the cattle industry 
 

Bull genetics are spread widely following semen collection and preservation. Semen frozen in straws can 

be maintained for long periods of time in liquid nitrogen tanks or for shorter periods stored fresh-chilled or 

fresh-ambient (reviewed by Vishwanath & Shannon 2000). Most agree that fresh chilled or ambient stored 

semen should be used within up to 4 days of collection, as the quality and motility of the samples 

decreases linearly after this time (Murphy, EM et al. 2018; Murphy, EM et al. 2017). The ability of chilled 

sperm to fertilise oocytes in vitro also decreases as storage time increases (Krzyzosiak et al. 2001). 

Semen can be used in artificial insemination or embryo technologies such as in vitro embryo production 

(IVP) (Choudhary et al. 2016; Wu & Zan 2012) and the benefits include introducing elite genetics to a 

herd without the cost of purchasing and maintaining the bull. This also allows genetics to be transferred 

nationally and internationally with ease (Harris & Newman 1994). 

 

Conventional methods of assessing sperm fertility focus on motility and morphological assessments 

(Fitzpatrick et al. 2002).These methods are not always a reliable indicator of sperm fertility potential. 

Therefore further investigation is required to develop a more accurate assessor of sperm fertility. Sperm 

fertility is affected by several factors including climate, nutrition and collection and storage methods 

(Amann & Waberski 2014). The majority of semen used in the bovine industry is cryopreserved. The 

process of cryopreserving and thawing semen has been shown to result in increased production of 

Reactive Oxygen Species (ROS), especially in the form of superoxide (Chatterjee & Gagnon 2001). 

Motility and mitochondrial membrane potential has been shown to be impacted by ROS levels in semen 

(Gibb, Lambourne & Aitken 2014; Johannisson et al. 2018). Recently a zinc signature relating to sperm 

capacitation has been reported. Zinc ion concentrations decrease as sperm undergo capacitation (Kerns 

et al. 2018). Another study reported a negative correlation between zinc ion concentrations of human 

sperm and progressive motility (Henkel, RR et al. 2003). Further assessment of whether ROS or Zinc in 

bull sperm could be used as a fertility marker are needed. 

 

3.1.2 Objectives 
 

The first objective of this study was to assess if levels of zinc, superoxide and ROS in cryopreserved bull 

semen correlates with the fertilisation potential in vitro and in vivo. Due to the environmental adaptions, 

thresholds of ROS, superoxides and zinc may differ between the bovine sub-species. Fertilisation 



43 
 

potential may also be affected at differing thresholds of ROS, superoxide and zinc in cryopreserved bull 

sperm of each sub-species. Therefore the second objective of this study was to determine whether the 

potential markers of fertility differ between bos indicus and bos taurus cryopreserved bull sperm. 
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3.2 Methods 
 

3.2.1 Sperm used in this study 
 

Cryopreserved semen of 13 bulls was donated for this study. The cryopreserved semen from 6 bos indicus 

bulls (5 Brahman and 1 Droughtmaster) was donated by Beef Breeding Services (Greg Fawcett, 

Rockhampton, Queensland, Australia). We were not informed of the fertilisation potential of these bulls 

through artificial insemination or in vitro fertilisation. In addition, semen from 6 bos taurus bulls (breeds 

unknown) were donated by Kiri Beilby and Peter Thurn from Genetics Australia, Cooperative Bacchus 

Marsh (Maddingley, Victoria). The bos taurus semen arrived with a “non-return to service (NRS) rate” 

based on results from AI under commercial conditions. The NRS rate informs us of the likely conception 

rate following insemination compared to an average bull. For example, a NRS rate of +2 can be interpreted 

as being likely to result in a 2% higher conception rate than an average bull following AI. The semen of 

the 6 bos indicus bulls and a known quality control bull (bos taurus) were assessed for in vitro embryo 

production results. All donated sperm underwent Computer Assisted Sperm Analysis (CASA) using 

Androvision software and a Zeiss Lab.1A inverted microscope at the Equine Health and Performance 

Centre, School of Animal and Veterinary Sciences (Roseworthy Campus, University of Adelaide, 

Australia) to obtain detailed sperm concentration and motility information. 

 

3.2.2 In vitro production of embryos 
 

3.2.2.1 Ovary collection and in vitro maturation of bovine oocytes 
 

Ovaries were collected from a local abattoir from bos taurus cattle (M.C. Herd, Corio, Victoria, Australia). 

They were transported to the laboratory in 0.9% saline solution at 35˚C within 3 hours of collection. At the 

laboratory, follicles (2-8 mm diameter) were manually aspirated using an 18 G needle attached to a 10 

mL syringe. Follicular fluid was searched using a dissecting microscope, and COCs with an even coloured 

ooplasm and at least 3 complete layers of cumulus cells were selected for use. All COCs were washed 

twice with 2 mL of VitroWash (ART Lab Solutions, Adelaide, Australia) and once with 2 mL of VitroMat 

(ART Lab Solutions) media. Groups of no more than 30 COCs per 300 µL of VitroMat (ART Lab Solutions) 

under paraffin oil in Nunc four-well dishes (product code 144444, Thermofisher Scientific) were matured 

at 38.8˚C in 5% CO2 in air for 22-24 hours. 
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3.2.2.2 In vitro fertilisation of bovine oocytes 
 

Matured oocytes (presumed MII) were washed in VitroFert (ART Lab Solutions) supplemented with 10 

IU/ml heparin, 25 µM penicillamine, 12.5 µM hypotaurine, and 1.25 µM epinephrine before being 

transferred into four-well dishes (product code 144444, Thermofisher Scientific, USA) containing 300 µL 

of IVF media under paraffin oil. Semen from 6 unknown bos indicus bulls and a known bos taurus bull 

(control) were thawed at 35˚C for 60 seconds, and layered over a 40%:80% gradient of Bovipure (Nidacon, 

International AB, Sweden) in a 15 mL sterile polystyrene conical tube (product code 6272, Globe Scientific 

Inc., New Jersey, USA). Semen was then centrifuged for 15 minutes at 300 x g. The supernatant was 

removed, and the pellet of sperm was resuspended in 1 mL of warmed VitroWash (ART Lab Solutions). 

The diluted sperm was centrifuged for 5 minutes at 300 x g. The supernatant was removed and 2.5 µL of 

the pellet was diluted in either 100 µL of IVF media or water. This was used to assess the percent of 

motile sperm and to obtain a sperm count. The remaining pellet was then diluted with IVF media, and 

approximately 1 million live sperm per mL were added to wells containing 300 µL of IVF media containing 

no more than 30 matured COCs. The fertilisation dishes were maintained at 38.8˚C in 5% CO2 in air for 

16-22 hours. 

 

3.2.2.3 In vitro culture of bovine embryos 
 

Sixteen to 22 hours after IVF, the presumptive zygotes were denuded by vigorously pipetting zygotes up 

and down in 50 µL microdrops of VitroFert (ART Lab Solutions) media with a micropipette set at 25 µL. 

Groups of no more than 15 presumptive zygotes were moved into 50 µL drops of VitroCleave (ART Lab 

Solutions) under paraffin oil in 35 mm Falcon dishes (product code 351008, Corning, New York, USA). 

The dishes were incubated at 38.8˚C in 5% O2 6% CO2 with a balance of N2 for approximately 96 hours. 

After 96 hours, no more than 15 cleaved embryos were moved to 50 µL drops of VitroBlast (ART Lab 

Solutions) under paraffin oil in 35 mm Falcon dishes (product code 351008, Corning). The embryos were 

further incubated at 38.8˚C in 5% O2 6% CO2 in a balance of N2 under paraffin oil for approximately 48 

hours. 

 

3.2.3 Preparation of semen for fluorescent staining 
 

Semen straws were thawed at 35˚C for 60 seconds and loaded on a 40% (1 mL) and 80% (1 ml) gradient 

of BoviPure in BoviDilute (Nidacon, Sweden) in a 15 mL sterile, polystyrene conical tube (Globe Scientific 

Inc., USA) that had been allowed to reach ambient temperature. The samples were centrifuged at 300 x 
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g for 15 minutes to separate motile sperm from non-motile sperm. The supernatant was then removed, 

and 1 mL of VitroWash, (ART Lab Solutions, warmed at 38.8˚C) was added to each sample, gently mixed 

and centrifuged for 5 minutes at 300 x g. The supernatant was removed and the sperm pellet was divided 

between media containing all the specified stains and the negative control which only contained Hoescht 

33342. Hoescht 33342 and MitoTracker staining were used as positive controls for head and midpiece 

staining respectively. Hoescht 33342 stains DNA which is located in the head of sperm and MitoTracker 

Deep Red stains mitochondria which are located in the midpiece of the sperm 

 

3.2.3.1 Triple Stain for Sperm: Zinc (Fluo-Zin-3AM) 
 

To investigate zinc levels, the pellet containing motile sperm was divided between 1) 500 µL of VitroFert 

(ART Lab Solutions) without any added sperm capacitators (heparin), but containing 100 nM MitoTracker 

Deep Red (Invitrogen, CAT# M22426, diluted in DMSO, stock solution 1 mM), 5 µM Fluo-Zin-3AM 

(Invitrogen, CAT# F24195, diluted in DMSO, stock solution 500 µM), and 90 µM bisbenzimide H33342 

trihydrochloride (Hoescht 33342, Sigma-Aldrich, CAT# B2261, diluted in Milli-Q water, stock solution 18 

mM); or 2)  500 µL of fertilisation media containing only 90 µM Hoescht 33342 as a negative control. 

Sperm were incubated with the stains for 30 minutes at 38.8˚C. The solution containing the stained sperm 

was then gently mixed, and 3 µL was placed onto a slide and covered with a coverslip without any 

mounting solution. Slides were imaged using a confocal microscope (Olympus FV10i) at 120x 

magnification with 3 channels Hoescht 33342 (Ex: 352 nm, Em: 455 nm), FluoZin3AM (Ex: 494 nm, Em: 

516 nm) and MitoTracker Deep Red (Ex: 642 nm, Em: 661 nm) at consistent settings. Hoescht 33342 

was imaged with sensitivity and laser settings of 40%. MitoTracker Deep Red was imaged with sensitivity 

settings of 50% and a laser setting of 20%. FluoZin3AM was imaged with sensitivity settings of 60% and 

laser at 40%. Phase contrast images were captured with a sensitivity setting of 20% (fig.4).  All images 

were captured with the largest (1024x1024 pixels) and highest quality (x16) settings available with the 

aperture at x2.5 and cross talk communications on.  
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Figure 4: Images obtained following confocal microscopy for triple staining of sperm with Fluo-Zin-3AM, 
MitoTracker and Hoescht 33342. Phase contrast (A), Fluo-Zin-3AM (B), MitoTracker (C) and Hoescht 
33342 (D). 

 

 

3.2.3.2 Double Stain for Sperm: ROS detection (CellRox) 
 

To investigate total ROS levels, the pellet was divided between 1) 500 µL of VitroFert (ART Lab Solutions) 

without any added sperm capacitation promoters, but containing 5 µM CellROX (Invitrogen, CAT# 

C10422, diluted in DMSO, stock solution 2.5 mM), and 90 µM bisbenzimide H33342 trihydrochloride 

(Hoescht 33342, Sigma-Aldrich, CAT# B2261, diluted in Milli-Q water, stock solution 18 mM) or 2) 500 µL 

of VitroFert containing 90 µM Hoescht 33342 (negative control) and incubated for 30 minutes at 38.8˚C. 

The stained sperm solution was then gently mixed, and 3 µL was added to a slide and covered with a 

coverslip without any mounting solution. Slides were imaged using a confocal microscope (Olympus 

FV10i) at 120x magnification with 2 channels Hoescht 33342 (Ex: 352 nm, Em: 455 nm), and CellROX 

Deep Red (Ex: 635 nm, Em: 660-760 nm) at consistent settings. Hoescht 33342 was imaged with 

sensitivity and laser settings of 40%. CellROX was imaged with a sensitivity of 49.6% and the laser at 

40%. Phase contrast images were imaged with a sensitivity of 20% (fig.5). All images were captured with 

the largest (1024 x 1024 pixels) and highest quality (x16) settings available with the aperture at x2.5 and 

cross talk communications on. 
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Figure 5: Examples of images obtained following confocal microscopy of CellROX and Hoescht 33342. 
Phase contrast (A), CellROX (B) and Hoescht 33342 (C). 

 

 

3.2.3.3 Double stain for detection of superoxide (dihydroethidium (DHE)) 
 

To investigate superoxide levels, the pellet was divided between 1) 500 µL of VitroFert (ART Lab 

Solutions) without any added sperm capacitation promoters (heparin), but containing 2 µM 

dihydroethidium (DHE)(Invitrogen, CAT# D11347, diluted in DMSO, stock solution 2 mM), and 90 µM 

bisbenzimide H33342 trihydrochloride (Hoescht 33342, Sigma-Aldrich, CAT# B2261, diluted in Milli-Q 

water, stock solution 18 mM); or 2)  500 µL of VitroFert containing 90 µM Hoescht 33342 (negative 

control), and incubated for 30 minutes at 38.8˚C. The stained sperm solution was then gently mixed, and 

3 µL was added to a slide and covered with a coverslip without any mounting solution. Slides were imaged 

using a confocal microscope (Olympus FV10i) at 120x magnification with 2 channels Hoescht 33342 (Ex: 

352 nm, Em: 455 nm (light blue / aqua)), and DHE (Ex: 549 nm, Em: 574 nm) at consistent settings. 

Hoescht 33342 was imaged with sensitivity and laser settings of 40%. DHE was imaged using the Calcium 

Orange channel with a sensitivity of 49.6% and the laser setting at 40%. Phase contrast images were 

imaged with a sensitivity of 20% (fig.6). All images were captured with the largest (1024 x 1024 pixels) 

and highest quality (x16) settings available with the aperture at x2.5 and cross talk communications on. 
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Figure 6: Examples of images obtained following confocal microscopy of sperm double stained for 
Dihydroethidium (DHE) and Hoescht 33342. Phase contrast (A), DHE (B), and Hoescht 33342 (C). 

 

 

3.2.4 Image analysis of sperm 
 

Fluorescence images were prepared and relatively quantified using ImageJ software. Approximately 520 

sperm per stain were imaged for the analysis. Phase contrast images were used to trace around the 

various segments of the sperm (head, midpiece and tail). The background was then cleared. An in-house 

macro was used to convert the image to 8 bit and measure mean fluorescence intensity of all the images 

(fig.7). To account for auto-fluorescence, fluorescence was measured from each quadrant of the 

background of 5 original images per stain, per bull and per day of stain to enable total fluorescence to be 

quantified relative to background fluorescence. The background fluorescence was averaged for each bull 

and stain per day, and subtracted from fluorescence of sperm images. 

 

Fluorescence of the head and midpiece were investigated for Fluo-Zin-3AM, while head, midpiece and 

tail were investigated for CellROX and DHE.  
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Figure 7: Images were prepared and the mean fluorescence intensity was quantified using ImageJ 
software and a macro developed in-house. The region of interest was traced in the phase contrast image 
(A) and saved. Then the region of interest was selected on the fluorescent image (B). The background 
was deleted, so that only the region of interest remained (C). The image was then converted to an 8 bit 
image and the threshold was selected (D). The mean fluorescent intensity was then measured on the 
selected area, and a report from the macro was generated (E). 

 

 

3.2.5 Statistical Analysis 
 

Results were analysed using Graph Pad Prism 8.0. Correlations of cleavage and blastocyst development 

rates with CASA results and fluorescent stain results were assessed for the 7 semen samples (1 

laboratory control (bos taurus) and 6 bos indicus bulls) that were used for in vitro embryo production. 

Semen from a further six bos taurus bulls had NRS rate scores correlated against the CASA results and 

the fluorescent stain results. For each stain; sperm segments were analysed against the bovine 

subspecies they originated from (bos taurus or bos indicus). Data for fluorescent intensities of stains were 

assessed for normal distribution. If the data were normally distributed, an unpaired parametric test was 

used to compare intensity between bos indicus and bos taurus sperm. If the data were not normally 

distributed, the Mann-Whitney test was used. Paired t-tests were used to assess differences against the 

negative control for each stain to account for autofluorescence. Again, parametric testing was used when 

the data were normally distributed, and non-parametric testing was used when the data were not normally 

distributed. Results were considered statistically significant if the P-value was less than 0.05. 

 



51 
 

3.3 .Results 
 

3.3.1 In vitro embryo production results 
 

In vitro embryo production results are displayed in Table 7. Bull 1 is a bos taurus bull with known high 

fertility regularly used for quality control for IVP in our laboratory. The other 6 semen samples were from 

bos indicus bulls that had unknown fertility (in vitro or in vivo) prior to these experiments. These results 

were used in subsequent analysis to assess if correlations exist between in vitro cleavage and blastocyst 

development rates with both CASA results and content of zinc, ROS and superoxide in the cryopreserved 

spermatozoa.  

 

  

Table 7: In vitro embryo production using semen from seven individual bulls for IVF. Bull 1 is a bos taurus 

bull routinely used as a control in the laboratory. Bulls 2-7 were bos indicus bulls with unknown fertility.  

 

 

 

3.3.2 Correlation of CASA and cleavage rates 
 

Table 8 displays the in vitro cleavage rates following IVF using semen from 7 bulls, and CASA parameters 

for the semen samples. CASA measures of total motility and progressive motility were the same for each 

bull, therefore only total motility was interrogated during statistical analysis.  The CASA program included 

circle motility with progressive and total motility percentages. Total motility (fig.6), and slow progressive 

motility tended to be positively correlated with embryo cleavage rates (r=0.691, P=0.085, n=7; and 

r=0.713, P=0.072, n=7 respectively), while beat cross frequency (Mean BCF (Hz)) was positively 

Bull Number of 

replicates

Number of 

COCs

Number Cleaved          

(% of COCs)

Number of Blastocysts  

(% of cleaved)

Number of Blastocysts  

(% of COCs)

n  (%) n  (%) n  (%)

1 4 97 76 (78) 40 (53) 40 (41)

2 3 82 40 (49) 18 (45) 18 (22)

3 3 80 45 (56) 14 (31) 14 (18)

4 3 84 34 (40) 5 (15) 5 (6)

5 3 72 66 (92) 28 (42) 28 (39)

6 3 78 41 (53) 14 (34) 14 (18)

7 3 80 76 (95) 44 (58) 44 (55)
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correlated with embryo cleavage rates (r=0.81, P=0.027, n=7, fig 8). Cleavage rates in vitro were not 

related to the concentration of sperm in the straw or fast progressive motility of the sperm sample. Other 

CASA outputs including curvilinear velocity and straight line velocity did not correlate with cleavage rates 

(data not shown). 

 

Table 8: Correlation between embryo cleavage rates following IVP and Computer Assisted Sperm 
Analysis results utilising cryopreserved semen of 7 bulls. Results were considered significant with a P < 
0.05. 

 

 

 

Figure 8: Relationship of cleavage rate in vitro with total sperm motility (r=0.691, P=0.085, A) and mean 
beat cross frequency (BCF, r=0.81, P=0.027, B) for 7 individual bulls determined by CASA analysis. 

 

 

Bull Cleavage 

Rate           

(%)

Number of 

sperm 

analysed

Concentration 

(10⁶/mL)

Total 

Motility (%)

Progressive 

Motility        

(%)

Fast Prog. 

Motility      

(%)

Slow Prog. 

Motility       

(%)

Mean BCF 

(Hz)

1 78 682 36.89 46.33 46.33 6.6 39.3 2.28

2 49 1632 88.27 19.42 19.42 0.98 18.44 1.11

3 56 2574 139.21 45.57 45.57 2.84 42.74 2.98

4 40 997 53.92 27.88 27.88 1.91 25.98 1.58

5 92 1143 61.82 66.49 66.49 5.34 60.89 2.97

6 40 1289 69.72 61.06 61.06 9.78 50.97 1.85

7 95 1492 80.69 58.45 58.45 7.04 51.41 3.75

r -0.202 0.691 0.691 0.441 0.713 0.810

P  Value 0.663 0.085 0.085 0.322 0.072 0.027
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3.3.3 Correlation of CASA with blastocyst development rates 
 

Table 3 displays the blastocyst development rates from oocytes that cleaved in vitro and the CASA 

analysis results for semen samples from each of the bulls. None of the measures of semen quality were 

related to blastocyst development rates (Table 9, fig 9).   

  

Table 9: Correlation between blastocyst development rates following IVP and Computer Assisted Sperm 
Analysis results utilising cryopreserved semen of 7 bulls. Results were considered significant with P < 
0.05. 

 

 

 

Figure 9: Relationship of blastocyst development rates from cleaved oocytes following IVP with total 
motility (r=0.335, P=0.463, NS, A) and mean Beat Cross Frequency (BCF) (Hz) (r=0.459, P=0.301, NS, 
B) of the semen sample used for IVF. 

Bull Blastocyst 

Rate         

(%)

Number of 

sperm 

analysed

Concentration 

(10⁶/mL)

Total 

Motility    

(%)

Progressive 

Motility      

(%)

Fast Prog. 

Motility    

(%)

Slow Prog. 

Motility   

(%)

Mean BCF     

(Hz)

1 53 682 36.89 46.33 46.33 6.6 39.3 2.28

2 45 1632 88.27 19.42 19.42 0.98 18.44 1.11

3 31 2574 139.21 45.57 45.57 2.84 42.74 2.98

4 15 997 53.92 27.88 27.88 1.91 25.98 1.58

5 42 1143 61.82 66.49 66.49 5.34 60.89 2.97

6 34 1289 69.72 61.06 61.06 9.78 50.97 1.85

7 58 1492 80.69 58.45 58.45 7.04 51.41 3.75

r -0.133 0.335 0.335 0.386 0.307 0.459

P  Value 0.777 0.463 0.463 0.393 0.503 0.301
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3.3.4 Correlation of sperm analysis measures and Non Return to Service (NRS) rates from 

Artificial Insemination with bos taurus semen 

 

Semen from six bos taurus bulls used in the study had NRS rates supplied by a commercial bovine 

reproduction company, Genetics Australia (Table 4). No correlation existed between the NRS rate for 

these 6 bulls and CASA scores for sperm concentration, total motility, progressive motility, fast 

progressive motility, slow progressive motility and mean BCF (Table 10). 

 

Table 10: Correlation of Non Return to Service (NRS) rates and Computer Assisted Sperm Analysis 
results of 6 bos taurus bulls. Results were considered significant with P < 0.05. 

 

 

 

3.3.5 Correlation of IVP results and Zinc, total Reactive Oxygen Species and Superoxide in 

sperm used for IVF  
 

3.3.5.1 Zinc 
 

Correlations between cleavage rates in vitro and zinc content in sperm are displayed in Table 11. Embryo 

cleavage rates during IVP were not related to the zinc content of the sperm as assessed by mean 

fluorescence intensity of FluoZin-3AM in the head or midpiece. Intensity of staining with Hoescht (control 

for the head) and MitoTracker (control for the midpiece) was not correlated with cleavage rates. Similarly, 

there was no correlation between blastocyst development rates and the intensity of Fluo-Zin-3AM, 

Hoescht or MitoTracker (Table 12). 

Bull NRS Rate 

(%)

Number of 

sperm 

analysed

Concentration 

(10⁶/mL)

Total 

Motility   

(%)

Progressive 

Motility    

(%)

Fast Prog. 

Motility   

(%)

Slow Prog. 

Motility   

(%)

Mean BCF 

(Hz)

1 3.55 611 33.05 30.44 30.44 6.87 23.57 1.47

2 2.6 561 30.34 34.58 34.58 11.76 22.46 1.21

3 2.53 842 45.54 10.21 10.21 1.54 8.43 1.03

4 -3.27 664 35.91 40.96 40.96 5.57 35.09 2.49

5 -3.17 782 42.29 4.99 4.99 0.9 4.09 0.29

6 -2.76 988 53.44 44.13 44.13 13.16 30.06 1.26

r -0.469 -0.136 -0.136 0.059 -0.191 -0.076

P  Value 0.349 0.797 0.797 0.912 0.717 0.886
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Table 11: Embryo cleavage rates and mean fluorescence intensities of Fluo-Zin-3AM, Hoescht 33342 
and Mitotracker utilising cryopreserved semen from 7 bulls. Results were considered significant with P < 
0.05. 

 

 

 

Table 12: Blastocyst development rates from cleaved oocytes and mean fluorescence intensities of Fluo-
Zin-3AM, Hoescht 33342 and MitoTracker utilising cryopreserved semen from 7 bulls. Results were 
considered significant with P < 0.05. 

 

Bull Cleavage 

Rate          

%

FluoZin   

Head          
(Mean + SEM)

FluoZin 

Midpiece 
(Mean +SEM)

Hoescht                                  
(Mean + SEM)

Mitotracker 
(Mean +SEM)

1 78 13.36 ± 1.93 24.92 ± 2.22 98.63 ± 2.57 47.94 ± 2.06

2 49 9.08 ± 1.72 11.38 ± 1.03 79.36 ± 2.33 34.67 ± 2.15

3 56 10.90 ± 2.18 11.28 ± 1.01 99.35 ± 2.29 24.76 ± 2.66

4 40 5.62 ± 0.92 7.23 ± 0.52 88.41 ± 3.00 44.73 ± 2.17

5 92 14.37 ± 2.34 11.28 ± 1.13 95.97 ± 2.75 28.50 ± 2.52

6 40 8.04 ± 0.79 13.32 ± 0.99 94.79 ± 2.93 47.65 ± 1.55

7 95 5.31 ± 1.23 5.56 ± 0.74 64.59 ± 3.83 10.63 ± 2.03

r 0.271 -0.002 -0.319 -0.608

P Value 0.557 0.997 0.486 0.148

Bull Blastocyst 

Rate          

%

FluoZin   

Head          
(Mean + SEM)

FluoZin 

Midpiece 
(Mean +SEM)

Hoescht                                  
(Mean + SEM)

Mitotracker 
(Mean +SEM)

1 53 13.36 ± 1.93 24.92 ± 2.22 98.63 ± 2.57 47.94 ± 2.06

2 45 9.08 ± 1.72 11.38 ± 1.03 79.36 ± 2.33 34.67 ± 2.15

3 31 10.90 ± 2.18 11.28 ± 1.01 99.35 ± 2.29 24.76 ± 2.66

4 15 5.62 ± 0.92 7.23 ± 0.52 88.41 ± 3.00 44.73 ± 2.17

5 42 14.37 ± 2.34 11.28 ± 1.13 95.97 ± 2.75 28.50 ± 2.52

6 34 8.04 ± 0.79 13.32 ± 0.99 94.79 ± 2.93 47.65 ± 1.55

7 58 5.31 ± 1.23 5.56 ± 0.74 64.59 ± 3.83 10.63 ± 2.03

r 0.232 0.289 -0.431 -0.437

P Value 0.617 0.530 0.334 0.327
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3.3.5.2 Reactive Oxygen Species (ROS) 

 

No correlation existed between cleavage rates and the intensity of CellROX fluorescence in the head, 

midpiece or tail of the sperm (Table 13) or the intensity of Hoescht 33342 (control) fluorescence. Likewise 

there was no correlation between blastocyst development rates and CellROX or Hoescht 33342 

fluorescence intensities (Table 14). 

 

 

 

 

 

 

Table 13: Embryo cleavage rates and mean fluorescence intensities of CellROX and Hoescht 33342 
utilising cryopreserved semen from 7 bulls. Results were considered significant with P < 0.05.  

 
 

 

 

 

 

 

Bull Cleavage 

Rate          

%

CellROX   

Head        
(Mean + SEM)

CellROX 

Midpiece         
(Mean + SEM)

CellROX        

Tail         
(Mean + SEM)

 Hoescht 
(Mean + SEM)

1 78 3.25 ± 0.42 8.21 ± 1.30 0.72 ± 0.21 128.03 ± 1.60

2 49 10.06 ± 1.82 17.89 ± 2.02 3.40 ± 0.68 116.73 ± 2.68

3 56 9.81 ± 1.23 19.85 ± 1.90 3.10 ± 0.34 130.91 ± 2.09

4 40 3.73 ± 1.08 10.38 ± 2.22 2.55 ± 0.83 116.41 ± 3.44

5 92 5.34 ± 1.75 9.88 ± 2.88 6.23 ± 3.02 121.59 ± 3.57

6 40 8.14 ± 2.26 6.77 ± 1.75 1.30 ± 0.19 130.90 ± 1.42

7 95 4.21 ± 0.81 9.82 ± 1.71 1.79 ± 0.41 140.55 ± 1.03

r -0.488 -0.355 0.215 0.539

P Value 0.267 0.435 0.644 0.212
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Table 14: Blastocyst development rates and mean fluorescence intensities of CellROX and Hoescht 

33342 utilising cryopreserved semen from 7 bulls. Results were considered significant with P < 0.05. 

 

 
 

 

 

 

3.3.5.3 Superoxide 
 

Mean fluorescence of DHE (superoxide) in the midpiece was positively correlated with both cleavage 

(r=0.817, P=0.025, Table 15) and blastocyst development rates (r=0.908, P=0.005, Table 16) (fig.10). 

DHE levels in the sperm head or tail were not correlated with cleavage or blastocyst development rates. 

Fluorescence intensity of Hoescht 33342, the control, did not correlate with cleavage or blastocyst 

development rates. 

 

 

 

 

 

Bull Blastocyst 

Rate        

(%)

CellROX   

Head        
(Mean + SEM)

CellROX 

Midpiece         
(Mean + SEM)

CellROX        

Tail         
(Mean + SEM)

 Hoescht 
(Mean + SEM)

1 53 3.25 ± 0.42 8.21 ± 1.30 0.72 ± 0.21 128.03 ± 1.60

2 45 10.06 ± 1.82 17.89 ± 2.02 3.40 ± 0.68 116.73 ± 2.68

3 31 9.81 ± 1.23 19.85 ± 1.90 3.10 ± 0.34 130.91 ± 2.09

4 15 3.73 ± 1.08 10.38 ± 2.22 2.55 ± 0.83 116.41 ± 3.44

5 42 5.34 ± 1.75 9.88 ± 2.88 6.23 ± 3.02 121.59 ± 3.57

6 34 8.14 ± 2.26 6.77 ± 1.75 1.30 ± 0.19 130.90 ± 1.42

7 58 4.21 ± 0.81 9.82 ± 1.71 1.79 ± 0.41 140.55 ± 1.03

r -0.165 -0.150 -0.144 0.532

P Value 0.7233 0.748 0.7585 0.2188
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Table 15: Cleavage rates and mean fluorescence intensities of Dihydroethidium (DHE) and Hoescht 
33342 from 7 bulls. Results were considered significant with P < 0.05. 

 

 

 

 

Bull Cleavage 

Rate          

%

 DHE       

Head            
(Mean + SEM)

DHE      

Midpiece 
(Mean + SEM)

DHE                

Tail            
(Mean + SEM)

Hoescht   
(Mean + SEM)

1 78 26.85 ± 1.08 9.65 ± 0.69 0.34 ± 0.04 64.61 ± 2.73

2 49 18.31 ± 0.91 7.55 ± 0.71 0.34 ± 0.05 72.42 ± 2.58

3 56 15.57 ± 0.95 5.61 ± 0.59 0.44 ± 0.02 87.26 ± 2.57

4 40 29.72 ± 1.23 3.59 ± 0.48 0.32 ± 0.02 114.27 ± 2.16

5 92 23.99 ± 0.84 8.40 ± 0.61 0.44 ± 0.05 87.07 ± 2.58

6 40 3.92 ± 0.34 3.50 ± 0.31  -0.02 ± 0.06 80.70 ± 2.71

7 95 30.03 ± 1.58 10.28 ± 0.75 0.48 ± 0.08 81.56 ± 2.92

r 0.454 0.817 0.514 -0.320

P Value 0.307 0.025 0.238 0.484
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Table 16: Blastocyst development rates (of cleaved COCs) and mean fluorescence intensities of 
Dihydroethidium (DHE) and Hoescht 33342. Results were considered significant with P < 0.05. 

 

 

 

 

Figure 10: Correlation between embryo cleavage rate (r = 0.817, P = 0.025, A) and blastocyst 
development rate (from cleaved) (r = 0.908, P = 0.005, B) following IVP and the mean fluorescence 
intensity of DHE in the midpiece of the sperm used for IVF. 

 

 

  

Bull Blastocyst 

Rate        

(%)

 DHE       

Head            
(Mean + SEM)

DHE      

Midpiece 
(Mean + SEM)

DHE                

Tail            
(Mean + SEM)

Hoescht   
(Mean + SEM)

1 53 26.85 ± 1.08 9.65 ± 0.69 0.34 ± 0.04 64.61 ± 2.73

2 45 18.31 ± 0.91 7.55 ± 0.71 0.34 ± 0.05 72.42 ± 2.58

3 31 15.57 ± 0.95 5.61 ± 0.59 0.44 ± 0.02 87.26 ± 2.57

4 15 29.72 ± 1.23 3.59 ± 0.48 0.32 ± 0.02 114.27 ± 2.16

5 42 23.99 ± 0.84 8.40 ± 0.61 0.44 ± 0.05 87.07 ± 2.58

6 34 3.92 ± 0.34 3.50 ± 0.31  -0.02 ± 0.06 80.70 ± 2.71

7 58 30.03 ± 1.58 10.28 ± 0.75 0.48 ± 0.08 81.56 ± 2.92

r 0.216 0.908 0.313 -0.807

P Value 0.642 0.005 0.495 0.028
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3.3.6 Correlation of Non Return to Service (NRS) rates and Zinc, total Reactive Oxygen Species 

and Superoxide in sperm 
 

 

3.3.6.1 Zinc 
 

Table 17 displays the NRS rates and mean fluorescence intensities from Fluo-Zin-3AM, Hoescht 33342 

and Mitotracker staining of sperm from six bos taurus bulls. No correlation was found between NRS and 

the fluorescence intensity of Fluo-Zin-3AM in the head or midpiece of the sperm. Therefore the zinc 

content of the sperm did not correlate to NRS. Likewise, Hoescht 33342 and MitoTracker staining intensity 

was not related to the NRS rate. 

 

 

3.3.6.2 Reactive Oxygen Species (ROS) 
 

No correlations were found between Non return to service (NRS) rates and mean fluorescence intensities 

of CellROX in the head, midpiece, and tail (Table 18). Therefore ROS levels in the sperm did not correlate 

with NRS rate. Fluorescence intensity of Hoescht 33342 (control) was also not correlated with NRS rate. 

 

Table 17: Non Return to Service (NRS) rates and mean fluorescence intensities of Fluo-Zin-3AM, 
Hoescht 33342 and MitoTracker. Results were considered to be significant with P < 0.05. 

 

 

 

Bull NRS Rate   

(%)

FluoZin 

Head       
(Mean + SEM)

FluoZin 

Midpiece 
(Mean +SEM)

Hoescht                                  
(Mean + SEM)

Mitotracker 
(Mean +SEM)

1 3.55 12.30 ± 1.48 14.42 ± 1.50 86.078 ± 2.57 27.56 ± 2.11

2 2.6 4.30 ± 0.35 7.76 ± 1.78 91.48 ± 2.86 20.85 ± 1.10

3 2.53 9.29 ± 0.43 19.99 ± 0.92 98.38 ± 2.78 31.15 ± 1.69

4 -3.27 5.32 ± 0.32 15.71 ± 0.58 103.83 ± 3.55 29.62 ± 1.61

5 -3.17 14.08 ± 2.15 17.67 ± 1.33 100.55 ± 2.73 33.47 ± 1.41

6 -2.76 5.07 ± 1.97 29.63 ±1.42 95.47 ± 2.97 29.02 ± 1.84

r 0.098 -0.489 -0.752 -0.527

P  Value 0.853 0.325 0.085 0.282
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Table 18: Non Return to Service (NRS) rates and mean fluorescence intensities of CellROX and Hoescht 
33342. Results were considered to be significant when P < 0.05. 

 

 

 

 

 

3.3.6.3 Superoxide 

 

Non Return to Service (NRS) rates were not related to mean fluorescence intensities of DHE within the 

head, midpiece, or tail of the sperm (Table 19). Therefore superoxide levels in the sperm were not 

correlated with the NRS rate. NRS rates were also not correlated to intensity of Hoescht 33342 staining.  

 

Bull NRS Rate   

(%)

CellROX 

Head      
(Mean + SEM)

CellROX 

Midpiece         
(Mean + SEM)

CellROX        

Tail         
(Mean + SEM)

 Hoescht 
(Mean + SEM)

1 3.55 7.32 ± 0.79 17.10 ± 1.75 2.45 ± 0.35 117.68 ± 2.28

2 2.6 5.02 ± 0.67 13.55 ± 1.58 2.37 ± 0.58 127.12 ± 1.59

3 2.53 5.18 ± 0.92 12.17 ± 1.93 2.47 ± 0.49 126.12 ± 2.11

4 -3.27 3.07 ± 0.61 6.84 ± 1.47 1.20 ± 0.59 126.59 ± 1.61

5 -3.17 19.80 ± 2.64 31.19 ± 2.88 3.83 ± 0.84 126.40 ± 1.51

6 -2.76 4.07 ± 0.94 4.52 ± 0.93 2.80 ± 0.95 119.91 ± 1.87

r -0.274 0.003 -0.100 -0.205

P  Value 0.600 0.996 0.851 0.696
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Table 19: Non Return to Service (NRS) rates and mean fluorescence intensities of DHE and Hoescht 
33342. Results were considered to be significant when P < 0.05. 

 

 

 

 

3.3.7 CASA analysis vs midpiece staining for Zinc, Reactive Oxygen Species and Superoxide 
 

Correlations between CASA outputs and mean fluorescence intensity of stains for zinc and reactive 

oxygen species within the sperm midpiece were also assessed. The midpiece was further assessed 

following the strong positive correlation observed between superoxide in the midpiece and cleavage and 

blastocyst development rates in vitro.   

 

 

3.3.7.1 Total Motility  

 

Mean fluorescence intensity of Fluo-Zin-3AM or DHE in the sperm mid piece were not correlated with total 

motility scores (fig.11). However the mean fluorescence intensity of CellROX in the midpiece was 

negatively correlated with total motility (r=-0.6192, P=0.02). 

 

Bull NRS Rate   

(%)

 DHE     

Head            
(Mean + SEM)

DHE      

Midpiece 
(Mean + SEM)

DHE                

Tail            
(Mean + SEM)

Hoescht   
(Mean + SEM)

1 3.55 27.14 ± 1.22 8.71 ± 0.60 0.51 ± 0.06 77.95 ± 2.93

2 2.6 11.12 ± 0.94 5.95 ± 0.46 0.11 ± 0.02 86.78 ± 3.14

3 2.53 12.10 ± 0.75 4.80 ± 0.40 0.35 ± 0.01 80.70 ± 2.21

4 -3.27 21.13 ± 0.73 6.00 ± 0.44 0.20 ± 0.04 64.72 ± 2.12 

5 -3.17 22.23 ± 1.25 6.20 ± 0.69 0.24 ± 0.05 62.65 ± 2.35

6 -2.76 28.88 ± 1.29 9.93 ± 0.68 0.39 ± 0.04 83.01 ± 3.13

r -0.432 -0.141 0.259 0.651

P Value 0.393 0.790 0.621 0.162
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Figure 11: Correlations between mean fluorescence intensity of Zinc (A), CellROX (B) and DHE (C) in 
the midpiece with total motility. A negative correlation exists between the fluorescence intensity of 
CellROX in the midpiece and total motility of the sperm (r=-0.619, P=0.02). No correlation exists between 
the mean fluorescence intensity of FluoZin-3AM (r=-0.184, P=0.55, NS)) or DHE (r=0.288, P=0.34, NS) 
and total motility. 

 

 

 

 

3.3.7.2 Beat Cross Frequency (BCF) 
 

BCF was not correlated with mean fluorescence intensity of Zinc (r=-0.455, P=0.118), CellROX (r=-0.421, 

P=0.152) or DHE (r=0.317, P=0.29) staining of the midpiece (fig.12) 

 

 

 

 

Figure 12: Correlations between mean fluorescence intensity of Zinc (r=-0.4548, P=0.1184, NS, A), 
CellROX (r=-0.4212, P=0.1518, NS, B) and DHE (r=0.3168, P=0.2917, NS, C) in the sperm midpiece and 
Beat Cross Frequency (BCF) of the sperm. 
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3.3.8 Comparison of Zinc, total Reactive Oxygen Species and Superoxide in sperm of bos 

indicus and bos taurus bulls 
 

3.3.8.1 Zinc 

 

Fluo-Zin-3AM staining intensity of the sperm head was not different between bos indicus and bos taurus 

sperm (fig.13). Zinc content was lower in the midpiece of bos indicus sperm than bos taurus sperm 

(P=0.02) (fig. 13). Hoescht 33342 and MitoTracker fluorescence intensities did not differ between bos 

indicus and bos taurus sperm (fig.14). 

 

 

 

 

Figure 13: Fluo-Zin-3AM mean fluorescence intensities (+SEM), in the head and midpiece of bos indicus 
and bos taurus bull sperm. Different letters represent a significant difference of P < 0.05. 
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Figure 14: Mean fluorescence intensity (+ SEM) of Hoescht 33342 and MitoTracker in bos indicus and 
bos taurus bull sperm, used as a control during staining. 

 

 

3.3.8.2 Reactive Oxygen Species 
 

Reactive oxygen species levels in bos indicus and bos taurus sperm were investigated through CellROX 

staining (fig.15). ROS levels in the head, midpiece, and tail did not differ bos indicus and bos taurus 

sperm. Hoescht 33342 levels were not different between bos indicus and bos taurus sperm. 

 

 

 

Figure 15: Mean fluorescence intensity (+SEM) of CellROX in the head, midpiece, tail of bos indicus and 
bos taurus bull sperm. 
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3.3.8.3 Superoxide 
 

Superoxide levels were indicated by DHE fluorescence staining. Superoxide levels in the head, midpiece 

and tail were not different between bos indicus and bos taurus sperm (fig.16). Mean fluorescence intensity 

of Hoescht 33342 did not differ between bos indicus and bos taurus sperm. 

 

 

 

Figure 16: Mean fluorescence intensity (+SEM) of dihydroethidium (DHE) in the head, midpiece and tail 
of bos indicus and bos taurus bull sperm. 

 

 

 

3.3.9 Negative Controls 
 

A comparison of the mean fluorescence intensities between the negative controls (no fluorescent marker 

used) and Fluo-Zin-3AM, CellROX and DHE staining is displayed in figure 17. The negative controls were 

subjected to the same confocal microscopy setting as the sperm that were stained with the fluorescent 

markers. The purpose of the negative control was to demonstrate that the markers were effective and that 

we were not solely obtaining autofluorescence. Fluorescence was significantly different between the 

negative control and Fluo-Zin-3AM in the head and midpiece (P<0.01). Fluorescence was significantly 

different between the negative control and CellROX in the head, midpiece and tail (P<0.01). The negative 

control was also significantly different compared to DHE fluorescence in the head, midpiece and tail 

(P<0.01). This demonstrates that the fluorescent markers used were effective, and minimal 

autofluorescence was present. 

 



67 
 

 

 

 

Figure 17: Negative controls compared to mean fluorescence intensities in the head (H), midpiece (M) 
and tail (T) for FluoZin 3AM, CellROX and Dihydroethidium (DHE). 

 

 

 

 

3.3.10 Summary Tables of Results 

 

The results of this chapter have been summarised in Table 20, 21 and 22 to clearly demonstrate where 

significant results were obtained. A summary of the analysed correlations between CASA outputs and 

mean fluorescence intensities of FluoZin 3AM, CellROX and DHE against IVP results (cleavage and 

blastocyst development rates) and NRS rates are displayed in Table 20. A summary of the analysed mean 

fluorescence intensities of FluoZin 3AM, CellROX and Superoxide in the midpiece of cryopreserved bull 

sperm against the total motility and BCF from CASA is displayed in Table 21. Table 22 displays a summary 

of the results relating to the comparison of mean fluorescence intensities of FluoZin 3AM, CellROX and 

DHE in the head, midpiece and tail of bos indicus and bos taurus bull sperm. 
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Table 20: A summary of investigated correlations between Computer Assisted Sperm Analysis (CASA) 
outputs and mean fluorescence intensities of FluoZin 3AM, CellROX and Dihydroethidium (DHE) against 
in vitro embryo production (IVP) results and Non Return to Service (NRS) rate results. Observed 
correlations are indicated by “”, trends are indicated by “+” and the presence of “x” indicated that no 
correlation was observed. 

 

 

 

 

 

IVP          

(Cleavage rate)

IVP        

(Blastocyst rate)

NRS

Concentration (10⁶/mL) x x x

Total Motility   (%) + x x

Progressive Motility    (%) + x x

Fast Prog. Motility   (%) x x x

Slow Prog. Motility   (%) + x x

Mean BCF (Hz)  x x

FluoZin 3AM Head x x x

FluoZin 3AM  Midpiece x x x

CellROX Head x x x

CellROX Midpiece x x x

CellROX Tail x x x

DHE Head x x x

DHE Midpiece   x

DHE Tail x x x
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Table 21: A summary of investigated correlations between CASA outputs of Total Motility and Beat Cross 
Frequency (BCF) against mean fluorescence intensities of FluoZin 3AM, CellROX and Dihydroethidium 
(DHE) in the midpiece of cryopreserved bull sperm. Observed correlations are indicated by a “”. The 
presence of “x” indicated that no correlation was observed. 

 

 

 

 

 

Table 22: A summary of the comparison of mean fluorescence intensities of FluoZin 3AM, CellROX and 
Dihydroethidium (DHE) in the head, midpiece and tail of sperm from bos indicus and bos taurus bulls. A 
significant difference of fluorescence intensities between the subspecies is indicated in the table by “*”. 
Where no significant difference of observed, it is indicated by “ns”. Lack of nomenclature indicates that 
the investigation did not take place. 

 

 

FluoZin 3AM CellROX DHE

Total Motility   (%) x  x

Mean BCF (Hz) x x x

Head Midpiece Tail

FluoZin 3AM ns *

CellROX ns ns ns

DHE ns ns ns
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3.4 Discussion 
 

The present study had two aims. The first was to correlate zinc, superoxide and ROS concentrations in 

bull sperm with the fertilisation potential of sperm in vitro (IVP) and in vivo (NRS). The second objective 

was to investigate if a difference in zinc, superoxide and ROS exists between the sperm of bos indicus 

and bos taurus bulls that may contribute to identify markers of fertility. Results indicate that superoxide in 

the midpiece of bull sperm (primarily bos indicus) could be a marker of fertility. A positive correlation was 

found between the superoxide marker, DHE in the midpiece for both cleavage and blastocyst 

development rates in vitro.  Zinc and total ROS in the sperm was not indicative of semen fertility and did 

not correlate with cleavage or blastocyst development rates in vitro. The current study did not identify 

markers of bull fertility for artificial insemination (NRS). No correlations existed between zinc, ROS or 

superoxide and the NRS rates. Routine methods of semen quality assessment using CASA was not 

effective at predicting fertility of semen in vitro or in vivo. Although trends existed for a relationship between 

embryo cleavage rates and sperm motility, the only parameter that was highly correlated with cleavage 

rates in vitro was beat cross frequency (BCF). None of the CASA outputs were correlated with NRS rates 

in the present study, however, total ROS in the midpiece was negatively correlated to total motility, 

suggesting high levels of ROS could be detrimental to sperm function.  

 

Bos indicus and bos taurus cattle are adapted to thrive in different environments. It has been suggested 

that their environmental adaptation may extend to sperm function. Levels of ROS and superoxide did not 

differ between sperm from bos taurus or bos indicus semen, but zinc probe fluorescence within the 

midpiece was found to be almost double in sperm from bos taurus bulls compared with bos indicus bulls. 

Further investigation is required to elucidate why. Embryo production and NRS data was not available for 

both sub-species in the present study, therefore we could not compare embryo development rates in vitro 

or NRS rates between bos indicus and bos taurus bull semen. 

  

Progressive motility has been shown to be a good indicator for fertilisation potential (Li et al. 2016; Morrell 

et al. 2016). Analysis of semen quality using CASA was developed to accurately assess many variables 

of semen (including sperm concentration, total motility, progressive motility, circular motility, and BCF). 

CASA was designed to provide an overall assessment of the quality of semen at time of collection and 

post-thaw. However, CASA analysis of sperm is not a reliable method for predicting fertility of a bull in 

isolation. This is because many factors influence pregnancy outcomes during an AI program. Some crucial 

factors outside of semen quality that influence pregnancy outcome include the skill of the AI technician, 

age, body-score index and nutrition of the recipient cattle, and season (Amann & Waberski 2014). Some 
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CASA systems are also able to assess sperm morphology; however, the system that was used in the 

current study did not have that capability. Furthermore, morphological assessment of spermatozoa has 

been shown to be a superior indicator of semen quality compared to assessment of motility (Fitzpatrick 

et al. 2002). Assessing membrane integrity of sperm using stains such as acridine orange and propidium 

iodide is effective at predicting the fertility of ram semen used in AI (Santolaria et al. 2015). We found no 

correlation between our CASA results and NRS scores. However, there was not a wide range of NRS 

scores for the semen used in this study. For the bull semen assessed in vitro, there was a positive 

correlation between the embryo cleavage rates and BCF as assessed by CASA. The BCF is defined as 

the frequency that the head crosses the forward projection line. It has been associated with hyperactivity 

and capacitation of spermatozoa (Chamberland et al. 2001). Total sperm motility and embryo cleavage 

rates also tended to be positively correlated. The semen from bulls with NRS scores were not tested in 

vitro during this study due to difficulty in accessing abattoir derived ovaries locally for IVP. Ideally these 

bulls should also be tested in vitro to enable further comparison of the semen of the bos indicus and bos 

taurus bulls. It would also increase sample size for correlation of the in vitro data with CASA outputs and 

measures of zinc, ROS and superoxide in sperm. 

 

The presence of ROS and superoxide within sperm has been related to spermatozoon fertility in several 

species. A positive correlation between superoxide in the mitochondria of stallion sperm and motility has 

been reported (Gibb, Lambourne & Aitken 2014). No correlation between the motility of bull sperm and 

superoxide was found in the present study. However, there was a positive correlation between superoxide 

in the midpiece and cleavage (fig. 10) and blastocyst (fig. 11) development rates in vitro. This may be due 

to the preparation of bull semen for IVF. Centrifugation through a non-continuous gradient of BoviPure 

was used to separate live and dead sperm. Therefore the live sperm are more concentrated at the time 

of IVF compared to when initially thawed. In contrast, the CASA analysis was performed on post-thawed 

semen that had not undergone centrifugation. An equine study also reported that an increased production 

of ROS in sperm resulted in a reduced mitochondrial membrane potential (Johannisson et al. 2018). 

Mitochondria are located within the midpiece of sperm. The organelle impacts several sperm functions 

including: hyperactivation, capacitation, acrosome reaction and fertilisation. Furthermore, ROS is a by-

product of mitochondrial metabolism (reviewed by Moraes & Meyers 2018). Therefore it is not surprising 

that the midpiece was where correlations were detected in the present study. A variety of ROS are 

naturally produced by spermatozoa, including superoxide, nitric oxide and H2O2. Small amounts of ROS 

are beneficial as they stimulate the tyrosine phosphorylation cascades that have been associated with 

sperm capacitation (reviewed by Aitken, De Iuliis & McLachlan 2009). An earlier study using hamster 

sperm demonstrated that ROS may play a role in hyperactivation of spermatozoa. This was demonstrated 

by inhibiting Nitric Oxide synthase with 0.5 or 5 mM of methyl-L-arginine or 1 or 10 µM Phenylene-bis 
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(1,2-ethanediyl)-bis-isothiourea (PBITU). This resulted in significant decreases in the percentage of motile 

sperm and also decreased the grade of progressive motility. Inducing hyperactivation of unstimulated 

hamster spermatozoa with 400 nM nitropusside was as effective as using epinephrine (Yeoman, Jones 

& Rizk 1998). This contrasted with our results of a negative correlation between ROS in the midpiece and 

total motility. Chatterjee and Gagnon (2001) reported that the production of superoxide radicals 

significantly increases at the time of thawing, however, nitric oxide levels are not affected. Furthermore, 

they demonstrated that the majority of ROS within thawed sperm were superoxides. In addition they 

reported H2O2 levels to be similar in both fresh and cooled semen. This is surprising as H2O2 production 

has been demonstrated to increase as sperm degrade over time (Murphy, C et al. 2013; Shannon & 

Curson 1972). A recent study reported an increase in DNA fragmentation and H2O2 production in thawed 

bovine semen (Gurler et al. 2016). Low levels of ROS are beneficial to the viability and functionality of 

sperm, however, high ROS levels have negative effects on sperm viability (Aitken 1995; Aitken et al. 1997; 

Baumber et al. 2000). Further investigation is needed to determine the upper threshold of ROS 

concentration that is beneficial to bovine sperm viability and functionality, and also how to manage or 

maintain these levels. Fluorescence intensity of ROS and superoxide did not differ in the sperm of bos 

taurus or bos indicus bulls in the present study. This suggests that ROS and specifically superoxide 

production within spermatozoa is not specific to the sub-species. The semen storage, as well as season, 

nutrition and age of the bull at the time of collection is likely to have more of an impact on the production 

of ROS in sperm than the sub-species of origin. These conditions were likely different for all the semen 

samples used in the present study.  

 

The existence of a zinc signature throughout different stages of sperm capacitation has recently been 

reported. Basically, zinc levels decrease as sperm undergo capacitation until depleted (Kerns et al. 2018). 

The majority of sperm imaged for this study had a zinc signature 2 (approximately 70%, data not shown). 

The distribution of sperm throughout each zinc signature did not correlate with cleavage or blastocyst 

development rates in vitro (data not shown). It was expected that zinc content within the post-thawed 

bovine sperm would correlate with some of the CASA outputs, especially total motility and BCF. However, 

that was not the case, with no correlations detected. In addition, no correlation existed between zinc 

content of bovine sperm and cleavage and blastocyst development rates in vitro or NRS rates. Earlier 

studies using human spermatozoa have reported a negative correlation between zinc in the flagella and 

seminal plasma with motility (Henkel, R et al. 1999; Henkel, RR et al. 2003; Sorensen, Bergdahl, et al. 

1999). They suggest zinc may play a role in inhibition of progressive motility, which has recently been 

supported by Kerns, Zigo and Sutovsky (2018). Semen collected from goats that had been supplemented 

with 40 mg of zinc per kg dry matter from 5 to 13 months of age resulted in improved cleavage rates in 

vitro compared with semen from goats without zinc supplementation (Hemalatha et al. 2018). However, 
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the zinc level within the spermatozoa at the time of insemination was not assessed. Furthermore, 

cleavage rates in vitro were extremely low in both the control group (approximately 18%) that did not 

receive supplementation, and the zinc supplemented group (approximately 30%). This suggests that the 

goats may have been deficient in dietary zinc, therefore zinc supplementation was beneficial to improve 

their fertility. Supplementation of ram semen extender with 0.01 or 0.1 mg/mL nano zinc oxide prior to 

semen cryopreservation increased the percentage of progressive motility, sperm survival and improved 

plasma membrane integrity post-thaw. However, supplementation of the extender with 1 mg/mL zinc oxide 

led to decreased motility post-thaw (Heidari et al. 2019). This suggests that some zinc is beneficial to 

sperm fertility, but high quantities could be detrimental. Further investigation into the optimal levels of zinc 

within the diet and/or semen extender is required to capitalise on this information. The intensity of 

fluorescence of zinc in the midpiece of sperm from bos taurus was approximately double that of sperm 

from bos indicus semen (P < 0.05). Ideally we would have had in vitro embryo production data from both 

bos indicus and bos taurus semen in the current study, as perhaps the cleavage and blastocyst 

development rates may differ between the groups studied. It is likely that the diets differed between the 

two groups (and within the groups) in the present study, and it is possible that the diet of the bos indicus 

bulls was deficient in zinc, and/or the diet of the bos taurus bulls may have significant zinc 

supplementation. It is also possible that the optimal amounts of zinc for sperm fertility differ between bos 

indicus and bos taurus bulls. 

 

Reports comparing semen quality between bos indicus and bos taurus bulls have been conflicting. Semen 

from bos indicus bulls has been reported to contain a high density of sperm and increased prevalence of 

sperm defects (Brito, LFC et al. 2002). However, other studies have demonstrated that other parameters, 

such as climate and age, have more of an effect on semen quality than breed. In tropical conditions, 

semen from temperate breeds is affected by heat stress, while bos indicus bulls suffer cold stress in 

temperate regions (Godfrey et al. 1990). This is logical, because the different sub-species are adapted to 

thrive in different environments. In addition to long ears, a hump and dewlap, bos indicus bulls have 

differing scrotal physiology than bos taurus bulls. Differences include increased ratios of testicular artery 

length and volume against testicular volumes in bos indicus bulls compared to bos taurus bulls (Brito, LF 

et al. 2004). In locations that experience dramatic differences in rainfall between seasons, rain was 

positively related to semen quality (Chacon et al. 1999; Rekwot et al. 1987). This is most likely due to 

poor quality of grazing available during the dry season. In the study by Rekwot et al. (1987), the dry 

season was also coupled with very high ambient temperatures. Age of the bull at the time of semen 

collection has been demonstrated to affect semen quality. Bos indicus bulls reach puberty 3 months later 

than bos taurus bulls (Fields, Burns & Warnick 1979; Fields, Hentges & Cornelisse 1982). Bull age has 

been reported to positively correlate with the percentage of normal spermatozoa within an ejaculate, and 



74 
 

negatively correlate with the percentage of abnormal spermatozoa within an ejaculate (Chenoweth et al. 

1996). Therefore it is likely that climate, Body Score Index, diet and age of the bull at the time of semen 

collection impact semen quality more than genotype. 

 

Information on season, nutrition and age of the bull at the time of semen collection was not available for 

the semen used in the present study. We also do not know how long the semen straws had been stored 

cryopreserved.  The bos indicus semen was from stud breeders in the Central Queensland region of 

Australia, and the bos taurus semen was from Victoria, Australia; two geographically different regions, but 

regions where these sub-species would typically be found. The semen had also been collected and 

processed by different bull semen collection centres. Therefore it is reasonable to assume collection and 

cryopreservation methods might have differed (artificial vagina or electroejaculation and different 

cryopreservation extenders) (Murphy, EM et al. 2017).  

 

Due to time constraints and the loss of the local abattoir in South Australia (Thomas Foods International, 

Murray Bridge) due to fire in January 2018, it was difficult to obtain enough oocytes to test fertilisation and 

blastocyst development rates in vitro following IVF using semen from all the bulls. Furthermore, the 

number of semen samples tested in vitro was not large enough to allow the samples to be categorised  

as either ‘good’ or ‘bad’ for IVP, therefore it was only possible to analyse the data for correlations. Future 

studies utilising a larger number of semen samples would enable the effects of zinc, ROS and superoxide 

on IVF outcomes to be assessed further. 

 

In conclusion, the present study found that superoxide levels within the midpiece of cryopreserved bos 

indicus sperm were positively correlated with in vitro cleavage and blastocyst development rates. Overall, 

ROS was negatively correlated with motility, most likely affected by H2O2 and nitric oxide. Cleavage rate 

in vitro was also positively correlated to BCF, as analysed by CASA. Zinc levels were found to be 

significantly higher in the midpiece of bos taurus sperm compared to bos indicus sperm. Although further 

investigation is required, the results are promising for the identification of potential fertility markers for 

cryopreserved bull sperm. 
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4.1 Introduction 
 

The present study aimed to investigate two approaches to improve the efficiency of bovine in vitro embryo 

production (IVP). The use of IVP globally as a tool to rapidly increase genetic gain within a herd continues 

to increase in popularity (Perry 2016; Stroud 2012; Thibier 2001). Industry standard blastocyst production 

rates remain at about 30 percent of cumulus oocyte complexes (COCs) collected (Perry 2016). 

Conception rates remain less than 50 percent of embryos transferred. Therefore improvement to the 

efficiency of bovine IVP is required to exploit the benefits that IVP technology offers to stud cattle breeders 

(rapid herd genetic gains, semen economy, exploitation of sire and dam genetics etc.). This study focused 

on each of the gametes. The first experimental chapter focused on meiotic inhibition of bovine oocytes as 

a potential means to improve in vitro embryo production, and the second investigated potential markers 

of sperm fertility. 

 

 

4.2 Meiotic inhibition of bovine oocytes 
 

4.2.1 Discussion and Conclusions 
 

Preventing meiotic resumption of COCs for a period of time prior to IVM has been associated with 

improved oocyte competency for IVP when cyclic adenosine monophosphate (cAMP) modulators are 

used (Zeng et al. 2014). Longer periods of meiotic inhibition following follicular aspiration have been 

associated with greater improvements to oocyte developmental competency in vitro (Albuz et al. 2010; 

Nogueira et al. 2003). However, few studies have managed to maintain bovine COCs arrested at the 

germinal vesicle (GV) stage of meiosis for more than 6 hours and improve developmental potential in vitro 

(Aktas et al. 1995; Albuz et al. 2010; Santiquet et al. 2017). The present study was also unable to extend 

the time bovine COCs can be maintained at the GV stage of meiosis. Combinations of cAMP modulators 

were assessed. PDE8 has previously been shown to account for 20% of all PDEs within bovine oocytes, 

with the majority (80%) being PDE3. Inhibiting PDE3 is only able to maintain bovine COCs at GV for short 

periods of time (Albuz et al. 2010; Mayes & Sirard 2002). Therefore it was hypothesised that a PDE8 

inhibitor would extend the period of meiotic arrest. A non-specific PDE8 inhibitor (dipyridamole) was 

shown to increase cAMP production and prevent bovine COCs reaching the M2 stage after 18 hours. 

However it was concluded to be toxic as embryonic development was impaired after its use (Sasseville 

et al. 2009). Initial experiments in the present study investigated a new specific PDE8 inhibitor (PF-

04957325). However, the specific PDE8 inhibitor (1, 5, 10, 50 and 100 µM) did not have any effect on 
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meiotic inhibition when used alone or with 500 µM IBMX. The synthetic analogue of cAMP (dibutyryl 

cAMP (dbcAMP)) has been reported to be effective at maintaining porcine COCs at GV for 22 hours (Gil 

et al. 2017). Therefore comparable doses of dbcAMP were investigated with bovine COCs. The use of 1 

and 5 mM dbcAMP alone did not delay meiotic progression of bovine oocytes in the present study. 

Combining 500 µM 3-Isobutyl-1-methylxanthine (IBMX, a non-specific phosophodiesterase (PDE) 

inhibitor, except for PDE8) with 100 nM oestradiol (with 5 mM dbcAMP) was the most effective at delaying 

progression to the metaphase 2 (M2) stage of meiosis. Oestradiol has previously been shown to increase 

expression of the NPR2 receptor (receptor of C-type natriuretic peptide (CNP)), and combined with CNP 

has increased the percentage of COCs maintained at the GV stage of meiosis in previous studies (Soares 

et al. 2017; Xi et al. 2018; Zhang, MJ et al. 2011). Therefore addition of 200 nM CNP to 500 µM IBMX, 

100 nM oestradiol and 5 mM dbcAMP was expected to further delay meiotic resumption in bovine COCs. 

However no further delay of meiotic progression was observed in the present study. 

 

4.2.2 Future Directions 
 

Further investigation is required to extend the time bovine COCs can be arrested at the GV stage of 

meiosis. Studies from the 1990’s demonstrated that bovine oocytes could be arrested at the GV stage for 

24 hours if they were cultured in follicular hemi-sections containing thecal cells (Richard & Sirard 1996a). 

It was also demonstrated that bovine COCs could be maintained at the GV stage for 12 hours if they were 

cultured in media that had been pre-conditioned by follicular hemi-sections containing thecal cells, without 

direct contact to thecal cells (Richard & Sirard 1996b). Later, a study published in the early 2000’s partially 

identified a thecal secreted factor that may be responsible for regulating meiotic resumption of COCs. 

They concluded that the factor could not be a peptide or fatty acid, by treating media that had been pre-

conditioned with thecal cells with proteases and chloroform. They also identified that the responsible factor 

is a small molecule, at less than 5 kDa in size, and stable following 5 minute 100˚C heat treatment (Van 

Tol & Bevers 2001). A purine may fit the criteria. Purines found naturally within follicular fluid, hypoxanthine 

and adenosine, have been shown to successfully arrest meiosis in several species including the oocytes 

from mice, rats, pigs and monkeys (Eppig, Wardbailey & Coleman 1985; Miyano et al. 1995; Tornell et al. 

1990; Warikoo & Bavister 1989). However, hypoxanthine has only been able to hold bovine and goat 

COCs at the GV stage for approximately 6 hours (Ma et al. 2003; Sirard & First 1988a), and adenosine 

has been shown to be ineffective at preventing meiotic resumption in bovine COCs (Sirard 1990). 

Furthermore Van Tol and Bevers (2001) suggested that hypoxanthine was not the thecal cell secreted 

factor inhibiting meiotic resumption of bovine oocytes, as charcoal treatment of the ˂5kDa fraction of 

thecal cell conditioned media did not have any effect on the meiotic inhibitory response suggesting the 

molecule is not hydrophobic (Dang & Lowik 2005; Van Tol & Bevers 2001). Charcoal treatment has 
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previously been demonstrated to inhibit hypoxanthine (unpublished, but referred in Van Tol & Bevers 

2001). Therefore the thecal cell secreted factor modulating meiotic resumption/inhibition in bovine oocytes 

remains elusive, and requires further investigation. Investigation of co-culture of thecal cells in addition to 

IBMX and oestradiol may aid in preventing meiotic resumption for extended periods of time and improve 

oocyte competency. It would also be interesting to find out if combining an inhibitor of maturation 

promoting factor (MPF) (such as DMAP) with cAMP modulators would help to increase the time bovine 

oocytes can be arrested at the GV stage and also improve developmental potential.  We are unsure if 

using a combination of inhibitors instead of a single inhibitor, such as IBMX, to maintain the oocytes at 

GV for 6 hours would be beneficial in terms of development potential. We also are unsure if using the 

inhibitors for a whole 24 hour maturation period would have any effect on development rates. The recent 

study by Santiquet et al. (2017) managed to inhibit meiotic resumption of bovine COCs for 24 hours using 

a combination of meiotic inhibitors (PDE3 and 5 inhibitors, CNP, bone morphometric protein 15, 

hypoxanthine, β-oestradiol and FSH). Their treatments did not affect developmental competence of 

bovine COCs in vitro or alter cell numbers of the blastocysts. However, improvements to developmental 

competence and blastocyst quality have been reported in many studies when a period of meiotic inhibition 

was utilised (Albuz et al. 2010; Nogueira et al. 2003). Therefore, it is still possible that the meiotic inhibitor 

treatments trialled in the present study might improve embryo quality (for example higher cell numbers) 

and development rates in future studies. 

 

 

4.3 Fertility markers of bovine sperm 
 

4.3.1 Discussion and Conclusions 
 

Bull genetics are distributed widely as cryopreserved semen and used either in artificial insemination (AI) 

or IVP. Cryopreservation is utilised to extend the shelf life of semen by reducing the metabolic rate of 

sperm (Fu et al. 2019). The process of cryopreservation and thawing of semen reduces the percentage 

of viable and motile sperm and increases levels of reactive oxygen species (ROS). Furthermore, 

conception rates are reduced following AI with frozen bull semen compared to fresh bull semen (Murphy, 

EM et al. 2018). Recently an identified Zinc signature relating to sperm capacitation has been reported 

(Kerns et al. 2018). Zinc levels in sperm have also been shown to relate to sperm motility (Henkel, RR et 

al. 2003). The current study investigated potential fertility markers (ROS, superoxide and Zinc) of 

cryopreserved bull sperm and their relationship to IVP rates, non-return to service (NRS) rates and 

computer assisted sperm analysis (CASA) outputs for bos indicus and bos taurus semen. Mitochondria, 
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located in the midpiece of sperm, produce ROS as a by-product (Moraes & Meyers 2018). Superoxide 

has been demonstrated to account for the majority of ROS in thawed sperm (Chatterjee & Gagnon 2001). 

Therefore it was not surprising that the significant results in the present study related to the midpiece of 

the sperm. Superoxide in the midpiece of cryopreserved bull sperm was found to be highly correlated to 

cleavage and blastocyst development rates in vitro. In contrast, total ROS and zinc levels were not 

correlated with cleavage or blastocyst development rates in vitro. In the present study, zinc, ROS and 

superoxide did not relate to NRS rates. The narrow range of NRS rates (3.55 to -3.27) associated with 

the sperm used in this study may have impacted this outcome. The routine method of using CASA to 

assess sperm fertility was not highly effective in this study. The output of beat cross frequency (BCF) was 

the only parameter that highly correlated with cleavage rates in vitro. Some motility parameters of the 

sperm tended to be related to cleavage rates in vitro. However, the majority of parameters were not 

indicative of sperm fertility for IVP. Furthermore none of the CASA outputs correlated with NRS rates. 

This was also likely impacted by the narrow range of NRS rates used in the study. Levels of ROS in the 

midpiece correlated negatively with motility in the current study. Previous reports have demonstrated that 

ROS plays a role in sperm capacitation and hyperactivity, and that some ROS is beneficial to sperm 

function (Aitken, De Iuliis & McLachlan 2009; Yeoman, Jones & Rizk 1998). Further investigation is 

required to identify the threshold where ROS levels change from beneficial to detrimental to sperm 

function and viability. The present study did not compare IVP and NRS rates between bos indicus and 

bos taurus bulls due to a lack of time and resources. However, zinc, ROS and superoxide levels were 

compared between the sub-species. We were investigating if their environmental adaptations may have 

extended to sperm function. Zinc levels were significantly higher in the midpiece of bos taurus sperm 

compared to bos indicus sperm. It is unclear why zinc levels differed between the groups, or what impact 

that has on sperm function. Diet may have played a role and further investigation is required. No difference 

existed between ROS and superoxide levels in the sperm between the sub-species. The results of the 

present study indicate that a more accurate predictor of sperm fertility than currently available with CASA 

is required.  

 

 

4.3.2 Future Directions 
 

In vitro cleavage and blastocyst development rates have been demonstrated to highly correlate to artificial 

insemination (AI) results when the same batch of cryopreserved semen is used in each procedure 

(O'Meara et al. 2005; Zhang, BR et al. 1997). However a recent study, comparing sire conception rates 

(SCR) (same definition as NRS) did not find a correlation between cleavage rates in vitro when semen 
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was used for IVP and conception rates following AI (Ortega et al. 2018). Their SCR rates (4.1 to -9.4) 

were broader than the NRS rates (3.55 to -3.27) used in the present study. Furthermore, although they 

reported a difference in conception rates between sperm from high and low fertility bulls used in AI, only 

one of the low fertility SCR bulls resulted in unacceptably low conception rates in the report: skewing the 

results (Ortega et al. 2018). It is possible that SCR or NRS rates are not always a highly accurate 

assessment for bull fertility; it is probably dependant on the scale of data available to calculate these 

scores. Investigation of correlations between superoxide levels in the midpiece of sperm and conception 

rates following AI should be conducted. The present study was based on small sample sizes of bulls in 

each category, and the range of NRS rates was very narrow. Therefore the highly positive correlation 

between superoxide within the midpiece of cryopreserved sperm and cleavage and blastocyst 

development rates in vitro requires further validation. Additional experiments could also investigate if 

semen of poor fertility in vitro can be “rescued” by treatment with superoxide prior to or during IVF. 

 

The midpiece is where sperm mitochondria reside. Mitochondrial metabolism produces ROS as a by-

product in several forms, including superoxide (reviewed by Moraes & Meyers 2018). Therefore 

mitochondrial activity may be indicative of sperm fertility. The negative control for Fluo-Zin-3AM had some 

autofluorescence that was particularly present in the midpiece. Detection of autofluorescence of flavin 

adenine dinucleotide (FAD) uses similar laser settings to what was used for Fluo-Zin-3AM. Along with 

nicotinamide adenine dinucleotide (NADH), FAD is an electron transporter in the mitochondrial electron 

transport chain (Bartolome & Abramov 2015). Therefore some autofluorescence during Fluo-Zin-3AM 

imaging may have been due to mitochondrial activity. Future studies should analyse FAD 

autofluorescence of the sperm to investigate if mitochondrial activity differs between the sub-species and 

fertility potential. This would also enable stain-free analysis of sperm. If FAD levels were found to be a 

reliable predictor of sperm fertility, a simple sperm analyser could be developed for the field without a 

need for preparing and maintaining fluorescent stains. 

 

Bull fertility has been shown to have an impact on both cleavage rates and embryo quality (higher cell 

numbers) (Ortega et al. 2018). Therefore, identification of semen fertility markers can have significant 

economic outcomes for breeders, and accurate diagnosis of semen fertility is preferred. Currently used 

methods of assessing semen fertility lack accuracy. This was demonstrated by very few correlations with 

CASA outcomes and IVP or NRS rates in the present study. Superoxide in the midpiece was highly 

correlated with cleavage and blastocyst development rates in vitro, and therefore should be further 

investigated on a broader scale. Future studies on superoxide and sperm could lead to the development 

of a more accurate diagnostic test for sperm fertility that could extend across species. Improving the 
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accuracy of bull semen fertility assessment will result in improvements to the efficiency of ART including 

IVP for livestock breeders. 
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