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Abstract 21 

The process of cutting dimension stones by gang saw machines plays a vital role in the productivity 22 

and efficiency of quarries and stone cutting factories. The maximum electrical current (MEC) is a 23 

key variable for assessing this process. This paper proposes two new models based on multiple 24 

linear regression (MLP) and a robust non-linear algorithm of gene expression programming (GEP) 25 

to predict MEC. To do so, the parameters of Mohs hardness (Mh), uniaxial compressive strength 26 

(UCS), Schimazek’s F-abrasiveness factor (SF-a), Young’s modulus (YM) and production rate 27 

(Pr) were measured as input parameters using laboratory tests. A statistical comparison was made 28 

between the developed models and a previous study. The GEP-based model was found to be a 29 

reliable and robust modelling approach for predicting MEC. Finally, according to the conducted 30 

parametric analysis, Mh was identified as the most influential parameter on MEC prediction.   31 

 32 

Keywords: Gang saw machine; Carbonate rocks; Cutting dimension stones; Maximum electrical 33 

current; Gene expression programming; Multiple linear regression. 34 
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1. Introduction 44 

The process of cutting dimension stones using the gang saw is one of the most significant topics 45 

of study in relation to the production process in quarries and stone cutting factories. The gang saw 46 

is one of the principal machines used for slab production in dimension-stone processing plants. 47 

Sawing performance evaluations, contribute to increases in the product quality, productivity and 48 

efficiency in quarries and stone cutting factories, which is why they are so important. Developing 49 

a high-performance predictive model will guarantee accurate cost estimations and planning in 50 

plants, assure a longer tool lifetime, reduce diamond tools’ abrasion, and reduce electricity 51 

consumption. Some variables are involved in the cutting process, which affect the final cost and 52 

quality of the product [1-4]. Of all variables, the most important is the maximum electrical current 53 

(MEC). The maximum electrical current of the gang saw influences a relationship with production 54 

rate, machine and tools characteristics, operational properties and rock properties. Many 55 

researchers have attempted to study the relationships between sawability and rock properties. They 56 

have examined properties of rock, type and form of instruments, force or load being imposed, and 57 

other environmental parameters. These are shown in Table 1 [5-59]. Figure 1 indicates the 58 

frequency of the physical and mechanical characteristics of the rock used in sawability studies. 59 

With regard to Fig. 1, uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), 60 

Hardness (H), Abrasivity (A), and quartz content (Qc) have been used widely in research works.  61 

 62 

Table 1 Summary of sawability studies.  63 

Researchers Year 
Saw type  Physical and mechanical properties 

W C G  UCS BTS YM IS SS BS H A D Gs Qc N 

Burgess and Birle [5] 1978  ●            ● ●  

Wright and Cassapi [6] 1985  ●   ● ●     ● ●   ●  

Birle and Ratterman [7] 1986  ●         ●      



Jennings and Wright [8] 1989  ●   ● ●     ●    ●  

Clausen et al. [9] 1996  ●            ● ●  

Wei et al. [10] 2003  ●   ●      ● ●   ●  

Eyuboglu et al. [11] 2003  ●   ● ● ●    ●      

Zhang & Lu [12] 2003  ●              ● 

Ersoy and Atici [13]  2004  ●   ● ● ● ● ● ● ● ● ● ● ●  

Kahraman et al. [14] 2004  ●   ● ●  ●   ● ●     

Gunaydin et al. [15] 2004  ●   ● ●  ●         

Ozcelik et al. [16] 2004 ●    ● ● ●    ●  ●  ●  

Buyuksagis and Goktan [17] 2005  ●   ● ●     ● ●   ●  

Ersoy et al. [18] 2005  ●   ● ● ● ● ● ●  ● ●  ●  

Delgado et al. [19] 2005  ●         ●    ●  

Kahraman et al. [20] 2005  ●       ●      ●  

Fener et al. [21] 2007  ●   ● ●  ●   ● ●     

Kahraman et al. [22]  2007  ●   ● ●       ●  ●  

Ozcelik [23] 2007 ●    ● ●     ●    ●  

Tutmez et al. [24] 2007  ●   ● ●  ●   ● ●     

Buyuksagis [25] 2007  ●   ● ●    ● ● ● ●  ●  

Mikaeil et al. [26] 2008 ●    ●          ●  

Kahraman and Gunaydin [27] 2008  ●         ●  ●    

Mikaeil et al. [28] 2011  ●   ● ● ●    ● ●  ● ●  

Mikaeil et al. [29] 2011  ●   ● ●     ● ●     

Ataei et al. [30] 2011  ●   ● ●     ● ●     

Mikaeil et al. [31] 2011  ●   ● ●           

Mikaeil et al. [32] 2011  ●   ● ● ●    ● ●  ● ●  

Mikaeil et al. [33] 2011  ●   ● ● ●    ● ●  ● ●  

Mikaeil et al. [34] 2011  ●   ● ●           

Ataei et al. [35] 2012 ●    ● ●     ● ●  ● ●  

Yurdakul and Akdas [36] 2012  ●   ● ●    ● ● ● ●    

Ghaysari et al. [37] 2012 ●             ●   

Mikaeil et al. [38] 2013  ●   ● ● ●    ● ●  ● ●  

Sadegheslam et al. [39] 2013 ●    ●  ●     ●   ●  

Mikaeil et al. [40] 2014  ●   ● ●           

Tumac [41] 2015  ●         ● ●     

Mikaeil et al. [42] 2015  ●   ● ● ●    ● ●  ● ●  

Mikaeil et al. [43] 2016 ●    ● ● ●    ● ●  ● ●  

Aryafar & Mikaeil [44] 2016  ●   ● ● ●    ● ●  ● ●  

Tumac [45] 2016  ●   ● ●      ● ●    

Almasi et al. [46] 2017 ●    ● ● ●    ● ●  ● ●  

Almasi et al. [47] 2017 ●    ● ● ●    ● ●  ● ●  

Almasi et al. [48] 2017 ●    ● ● ●    ● ●  ● ●  



Kamran et al. [49] 2017 ●    ● ● ●    ● ●  ● ●  

Akhyani et al. [50] 2017  ●   ● ● ●    ● ●  ● ●  

Akhyani et al. [51] 2017  ●   ● ● ●    ● ●  ● ●  

Mikaeil et al. [52] 2017 ●    ● ● ●    ● ●  ● ●  

Mohammadi et al. [53] 2018   ●  ●      ● ●   ●  

Dormishi et al. [54] 2018   ●  ● ●     ● ●   ●  

Mikaeil et al. [55] 2018 ●    ● ●     ● ●   ●  

Mohammadi et al. [56] 2018   ●  ●      ● ●     

Aryafar et al. [57] 2018  ●   ● ● ●    ● ●  ● ●  

Dormishi et al. [58] 2018   ●  ● ● ●    ● ●  ● ●  

Mikaeil et al. [59] 2018   ●  ● ●     ● ●   ●  

Aryafar et al. [60] 2018  ●   ● ● ●    ● ●  ● ●  

Tumac & Shaterpour [61] 2018  ●   ● ●     ● ● ● ●   

  W Wire saw; C Circular saw; G Gang and Chain saw, UCS Uniaxial compressive strength; YM Young’s modulus;   64 
  BTS Indirect Brazilian tensile strength; IS Impact strength; SS Shear strength; BS Bending strength; H Hardness;    65 
  A Abrasivity; D, Density; Gs Grain size; Qc Quartz content; N other parameters.  66 
 67 

 68 

 69 

Fig. 1. Frequency of parameters studied in sawability research. 70 

 71 

Dormishi et al. [54] investigated the relationship between texture coefficient and the energy 72 

consumption of gang saws in carbonate rock cutting processes. They studied 14 carbonate rock 73 

samples. Their results indicated that, in the three groups of carbonate rocks, there was a striking 74 



relationship between the texture coefficient and the energy consumption rate. Mikaeil et al. [55] 75 

investigated the effects of mechanical rock properties on cutting efficiency and wearing rate, and 76 

developed three intelligent models to estimate the wearing rate of diamond wire saws. Their results 77 

showed that ANFIS-SCM performed better than other predictive methods. Mohammadi et al. [56] 78 

developed a group method of data handling (GMDH) model to predict the production rate of the 79 

dimension stone cutting process. They conducted 98 laboratory tests on 7 carbonate rocks. In their 80 

study, some operational characteristics of the machines, and three important physical and 81 

mechanical characteristics of the rocks, were considered as inputs of the model, and the production 82 

rate as the output. Finally, they could predict the production rate with high accuracy. Aryafar et al. 83 

[57] assessed the performance of sawing machines using particle swarm optimisation (PSO) and 84 

artificial bee colony (ABC) algorithms as soft computing techniques. They evaluated physical and 85 

mechanical properties. The results showed that the applied soft computing techniques can be used 86 

to classify dimension stone in various complex conditions and uncertain systems. Dormishi et al. 87 

[58] carried out optimisation investigations of the process of cutting dimension rocks using two 88 

hybrid algorithms. For this purpose, 120 samples were tested on 12 carbonate rocks. They 89 

compiled a database containing the maximum electrical current of the gang saw machine during 90 

the process of cutting, the mechanical properties of the rock samples, and the production rate of 91 

the cutting machine. They proposed some models in their study based on ANFIS-DE and ANFIS-92 

PSO algorithms for predicting the performance of gang saw machine. The results indicated the 93 

superiority of the proposed ANFIS–PSO model compared to ANFIS–DE model. Mikaeil et al. 94 

[59] investigated 12 quarries and provided a good correlation between the hourly production rate 95 

and the rock characteristics. Those characteristics included the Schmiazek abrasivity factor, the 96 

Mohs hardness, the uniaxial compressive strength and Young’s modulus using the imperialist 97 



competitive algorithm and fuzzy C-means. As a result, the imperialist competitive algorithm was 98 

able to provide more precise results than the fuzzy clustering technique. Aryafar et al. [60] 99 

evaluated and predicted sawing performance using two data mining techniques (a genetic 100 

algorithm (GA) and a differential evolution algorithm) based on the sawing machine’s vibration. 101 

In their study, 12 types of rocks, including granite, marble and travertine were selected and studied, 102 

and laboratory tests were conducted based on four physical and mechanical rock properties. The 103 

obtained results indicated the superiority of the GA to the differential algorithm in evaluating 104 

sawing performance. Tumac and Shaterpour-Mamaghani [61] used regression analyses for 105 

evaluating the sawability of large diameter circular saws. They considered some of the most 106 

essential physico-mechanical parameters of rock samples to predict the areal slab production rate 107 

of large-diameter circular saws. The proposed model provided reliable results for evaluating the 108 

sawability of large diameter circular saws. In another study, Taheri et al. [62] used multiple 109 

regression method to predict drilling rate based on rock properties. 110 

Considering the all above-mentioned studies, most of the used techniques for evaluating the 111 

sawing performance are known as black-box techniques i.e. they suffer from the complex and 112 

vague internal structure and cannot provide an equation or visual pattern for the users. Hence, there 113 

is still a need to develop a multi-parameter, easy to use, and practical models to predict gang saw 114 

machines’ performance precisely. This paper proposes new mathematical predictive models based 115 

on gene expression programming (GEP), as an evolutionary algorithm, and the multiple linear 116 

regression-based (MLR) analysis. For this purpose, 120 laboratory tests were conducted on three 117 

types of carbonate rocks, and the influential parameters on MEC were measured for further 118 

analysis. The results of the proposed models were compared, and a parametric sensitivity analysis 119 

was carried out on the selected model.  120 



2. Experimental study and data collection  121 

The field investigation was carried out in one of the dimension stone processing factories in 122 

Mahalat city, in Markazi Province, Iran. In this study, the blocks were extracted from 12 nearby 123 

quarries, and then were sent to the laboratory, where 120 samples were tested based on ISRM 124 

standards [63]. The laboratory tests were conducted on three groups of carbonate rocks, including 125 

travertine, marble and crystal marble. The crystal marble has fully crystalline texture, coarse 126 

grains, and less color variation, which distinguishes it from others. All these three types of 127 

carbonate rocks have suitable resistance to frost, heat, and humidity. According to Table 1 and 128 

Fig.1, the parameters of UCS, BTS, H, A, Qc, Gs, and YM, respectively, are the most commonly 129 

used parameters for assessing the performance of gang saw machines. Abrasiveness, the wearing 130 

of material at a solid surface, affects the performance of sawing tools and is influenced by several 131 

components such as mineral composition, the hardness of minerals, grain shape, grain size, and 132 

grain angularity [59]. The Schimazek’s F-abrasiveness (SF-a) is an important factor for measuring 133 

the rock abrasivity, which can be calculated by the following equation [59]: 134 

𝑆𝐹 − 𝑎 =
𝑄𝑐×𝐺𝑠×𝐵𝑇𝑆

100
          (1)   135 

As can be seen from Eq. 1, SF-a considers the influence of the parameters of quartz content (Qc), 136 

grain size (Gs), and Brazilian tensile strength (BTS) directly. Hence, in this study, to decrease the 137 

complexity of the developed model using fewer independent variables, the SF-a was introduced as 138 

a representative parameter for abrasivity (A), Qc, Gs, and BTS parameters. Finally, during the 139 

conducted tests in the laboratory, the parameters of Mohs hardness (Mh), uniaxial compressive 140 

strength (UCS), Schimazek’s F-abrasiveness factor (SF-a), Young’s modulus (YM), and 141 

production rate (Pr) (cutting rate per a meter length of rock) were measured as the representatives 142 



of the hardness, strength, wear, and machine operation, respectively. These five parameters also 143 

were considered as the inputs during modelling. As mentioned in Section 1, the maximum 144 

electrical current (MEC) is an important parameter evaluating the performance of gang saw 145 

machines. Therefore, this parameter was assigned as the output parameter. The compiled database 146 

can be found in Appendix A. Table 2 shows the descriptive statistics of the data used in this study. 147 

Figure 2 and Table 3 display the locations of the quarries that samples were collected from them 148 

and their characteristics, respectively. 149 

 150 

Table 2 Descriptive statistics of the parameters used in the model development.  151 

Parameters Abbreviation Min. Max. Mean Std. deviation Variance 

Uniaxial compressive strength (MPa) UCS 50.5 72 62.025 6.467 41.824 

Mohs hardness Mh 2.2 4.3 3.138 0.647 0.419 

Young’s modulus (GPa) YM 14.5 32 22.225 4.968 24.679 

SF-a (N/mm) SF-a 0.020 0.167 0.064 0.044 0.002 

Production rate (Cm/hr) Pr 8 37 22 9.198 84.600 

Maximum electrical current (A) MEC 81 118 97.908 8.388 70.367 

 152 

 153 

Fig. 2. The location of quarries.  154 



 155 

Table 3 Information related to the quarries and average MEC. 156 

Quarry ID Commercial name Name of quarry Average MEC (A) 

A1 
Hajiabad Travertine 

 
Hajiabad 98.3 

A2 
Darebokhari Travertine 

 
Kohbar 96.1 

A3 
Atashkoh Travertine 

 
Atashkoh 104 

A4 
Chocolate Travertine 

 
Kashan 86.9 

A5 
Abbas Abad Travertine 

 
Abbas Abad 97 

A6 
Takab Travertine 

 
Takab 93.7 

A7 
Azarshahr Travertine 

 
Azarshahr 88.1 

A8 
Khalkhal Travertine 

 
Khalkhal 85.5 

A9 
Harsin Marble 

 
Harsin 110.3 

A10 
Kerman Marble 

 
Mirzaei 105.5 

A11 
Ghorveh Crystal 

 
Ghorveh 104 

A12 
Laybid Crystal 

 
Laybid 105.5 

 157 

In this study, the gang saw machine was used to cut the dimension stones. Figure 3 and Table 4 158 

show the gang saw machine used in this study, and its machine operating properties, respectively. 159 

We created Q-Q (quantile-quantile) plots of all parameters to gain insights into the collected 160 

datasets (see Fig. 4). A Q-Q plot is a graphical method that allows us to compare two cumulative 161 

distribution functions (CDF), e.g. CDF of the datasets and CDF of the normal distribution. Where 162 

the datasets have a normal distribution, the points in the Q-Q plot will lie approximately on the 163 

line  𝑦 = 𝑥.  Otherwise, the plots will deviate from the line. Except for 𝑃𝑟 and 𝑀𝐸𝐶 which slightly 164 

show a normal distribution, other parameters do not follow a normal distribution.  165 

 166 



 167 

Fig. 3. Gang saw machine used in this study. 168 

 169 

Table 4 Machine operating characteristics.  170 
 171 

Characteristic   Unit Value 

Blade run  mm 750 

Cutting width  mm 1440 

Cutting length  mm 3300 

Cutting height  mm 1950 

Blade length  mm 4400 

Max. no. blades  - 50 

Main engine power  kW 55 

Total weight of machine  t 47 

 172 



 173 

Fig. 4. Q-Q plot of the parameters. 174 

 175 

3. Overview of gene expression programming  176 



Gene expression programming (GEP) is a subset of meta-heuristic algorithms first invented by 177 

Ferreira [64]. It is a renowned technique for complex, non-linear modelling. Gene expression 178 

programming deals with a population of individuals, evaluate them based on fitness values and 179 

applies some genetic operators to achieve a desirable solution [65, 66]. Each individual in GEP 180 

exhibits characteristics of its siblings (i.e. GA and genetic programming (GP)). Contrary to the 181 

parse tree representation in GP, GEP employs linear strings [65-67]. These solutions are then 182 

expressed as non-linear entities of different sizes and shapes, or as expression trees (ETs). In GEP, 183 

a combination of terminals (i.e. input parameters and constant values) and functions (e.g. +, −,×184 

,÷, 𝐿𝑜𝑔, √, etc.) forms the structure of chromosomes (possible solutions). Each chromosome in 185 

GEP consists of one or more genes, and each gene consists of two main components: A head and 186 

a tail. The former contains both the terminals and functions, while the latter only contains the 187 

functions [68, 69]. An example of a single-gene chromosome can be presented as follows: 188 

+./. 𝑆𝑞𝑟𝑡.×. 𝑐. −. 𝑎. 𝑏. 𝑑. 5         (2) 189 

 where 𝑎, 𝑏, 𝑐 and 𝑑 are input parameters; and 5 is a constant value.   190 

This kind of expression in GEP is referred to as Karva notation or a K-expression, which can be 191 

transformed into the ET according to the defined rules by Ferreira [64] (Fig. 5).  192 

 193 



 194 

Fig. 5. Expression tree (Q is the second root). 195 

 196 

Finally, the innate mathematical relationship of the above-mentioned ET can be extracted as 197 

follows: 198 

𝑎×𝑏

𝑐
+ √𝑑 − 5            (3) 199 

In summary, the GEP algorithm starts with stochastically generated, a predefined number of 200 

chromosomes. These chromosomes are then expressed as ETs, and their fitness is checked based 201 

on a fitness function. If the desired solution is not obtained, the algorithm continues. The best of 202 

initial population is selected by a selection operator such as roulette-wheel sampling method to 203 

copy into the next generation, and the remainder is subjected to the specific genetic operators (i.e. 204 

mutation, inversion, transposition, and recombination). The newborn (modified) chromosomes are 205 

assessed again according to the preceding procedure. The algorithm will stop when it reaches the 206 

stopping criterion (maximum number of generations, or a specific fitness value). The process of 207 

GEP modelling is displayed schematically in Fig. 6. Further information regarding the GEP 208 

mechanism and related genetic operators can be found in many studies [64, 70, 71].  209 



 210 

 211 

Fig. 6. GEP flowchart [70]. 212 

 213 

4. Prediction of MEC 214 

4.1. Function development for MEC based on GEP 215 

We used a GEP-based model to obtain a meaningful relationship between the maximum electrical 216 

current (MEC) and six other input parameters. Unlike the common non-linear multiple regressions 217 

(NLMRs), for which the operator needs to define a predefined structure (i.e. logarithmic, power, 218 

exponential, and polynomial structures), the GEP algorithm can search all of the possible 219 

combinations of input parameters and functions intelligently. So, there is no need to develop 220 

NLMRs separately. A GEP-based model will also automatically check the influence of various 221 

ratios of input parameters on the generated solutions. Therefore, there is no need to consider the 222 

ratios of parameters as separate inputs. We used GeneXproTools 4.0 software for function finding 223 



in this study. At first, we divided all 120 primary datasets into two groups: Training (96 cases) and 224 

testing (24 cases). The root mean squared error (RMSE) with parsimony pressure was used to 225 

evaluate the fitness of randomly generated chromosomes. The parsimony pressure is an option in 226 

GeneXproTools that puts a little pressure on the size of the evolving solutions, allowing it to 227 

discover more compact models. The next stage in GEP modelling is to allocate optimum values to 228 

the controlling parameters (i.e. the head size, the number of genes, the number of chromosomes, 229 

and genetic operators). In this study, we adjusted these parameters based on previously suggested 230 

values, after using a trial-and-error approach [67]. Ferreira [64] proved that the number of genes 231 

plays a significant role in the success rate of the GEP as it increases from 1 to 3. Therefore, we 232 

fixed the number of genes at 3.  233 

The trial-and-error procedure showed that the GEP’s performance does not meaningfully improve 234 

in either training or testing stages when the number of genes and head size was greater than 3 and 235 

9, respectively. It was attempted to enhance the quality of solutions by taking advantage of a 236 

combination of genetic operators comprising mutation, inversion, transposition, and 237 

recombination, with specific rates as modifiers. Applying multi-genic chromosomes in GEP 238 

modelling requires the operator to assign a linking function to link the genes and provide complete 239 

solutions. The addition operator (+) was used in this study as the linking function, since it provided 240 

more appropriate results than others (i.e. −,×,÷, etc.). The software was allowed to consider 241 

random, numerical constants (i.e. 2 constants per gene) in the range of [-10, 10] to extend the 242 

search space of the algorithm and its capability if needed. Table 5 gives the summary of obtained 243 

optimum values for GEP parameters. Eventually, the software was executed for 5000 generations 244 

with a population size of 80, and the results were recorded.  245 

 246 



Table 5 Parameters of the GEP model. 247 

Type of setting Parameter Value/quality 

General setting Terminal set UCS, Mh, YM, SF-a, Pr 

Function set +, −,×,÷, √, 𝐸𝑥𝑝, ^2, ^3, ∛, 𝑆𝑖𝑛, 𝐶𝑜𝑠, 𝑇𝑎𝑛, 𝐴𝑡𝑎𝑛 

Fitness function RMSE 

Population size 80 

Generation number 5000 

Linking function + 

Genetic operators Mutation 0.06 

Inversion 0.13 

IS transposition 0.11 

RIS transposition 0.12 

Gene transposition 0.13 

One-point recombination 0.3 

Two-point recombination 0.3 

Gene recombination 0.1 

                  Sin sine, Cos cosine, Tan tangent, Atan arctangent 248 

 249 

 250 

Fig. 7. Variation of CoD with generation number in training and testing stages.  251 

 252 



The values of the coefficient of determination (CoD), an accuracy index, were measured during 253 

the training and testing stages to check the progress of the GEP modelling process. As shown in 254 

Fig. 7, an up-trend of CoDs can be seen until generation No. 3643. This happened in both training 255 

and testing stages simultaneously. At this generation, the CoDs converge to a value of 0.96, and 256 

no change is observed in CoDs after this. The GEP modelling was stopped at this generation, and 257 

the corresponding chromosome (individual) was identified as the best solution. The K-expression 258 

of the selected chromosome was listed in Table 6. Subsequently, this chromosome was 259 

transformed to ETs so that it could be formulated readily. Figure 8 shows the sub-ETs 260 

corresponding to each gene of the preceding K-expression. As mentioned before, these genes are 261 

connected by the multiplication (×) function and create a large tree. Finally, the GEP-based 262 

predictor can be formulated as follows: 263 

𝑀𝐸𝐶 = 𝐴𝑡𝑎𝑛(𝑀ℎ) × (2.92389 +
𝑡𝑎𝑛(𝑌𝑀2−𝑆𝐹𝑎)

√𝑌𝑀+𝑌𝑀
) × 𝐿𝑛(((−2.41333 + 𝑃𝑟 + 𝑈𝐶𝑆)3 + (𝑈𝐶𝑆3 ×264 

6.602112 × 𝑆𝐹 − 𝑎))
2

)         (4) 265 

 266 

Table 6 K-expression of the best chromosome. 267 

Gene No. K-expression (without non-coding region) 
Constants 

C0 C1 

1 
Atan.d1 - - 

2 
+.c0./.tan.+.-.Sqrt.d2.^2.d3.d2.d2 

2.92389 
- 

3 
Ln.^2.+.^3.*.+.^3.*.+.d0.d0.c0.d3.c1.d4 

6.602112 -2.41333 

                         d0 UCS, d1 Mh, d2 YM, d3 SF-a, d4 Pr, 3Rt ∛, Sqrt √. 268 

 269 



 270 

Fig. 8. ET of the GEP model. 271 

 272 

4.2. Function development for MEC based on regression analysis 273 

Multiple linear regression (MLR) analysis has been widely used in geoscience, especially in rock 274 

mechanics problems [72, 73] to establish a relationship between several independent parameters 275 

and a dependent one, by fitting a linear equation to the measured datasets as follows: 276 

𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛        (5) 277 

where 𝑎0 and 𝑎1, 𝑎2, … , 𝑎𝑛 are the intercept and regression coefficients, respectively, which are 278 

calculated using the least squares technique;  𝑥1, 𝑥2, … , 𝑥𝑛 are the independent parameters and 𝑦 279 

is the dependent one.  280 



In this study, SPSS V.21 software was used to develop an MLR model considering five input 281 

parameters—UCS, Mh, YM, and Pr and MEC—as the output. Similar to GEP, training datasets 282 

were fed to the software and the respective MLR model was obtained as follows: 283 

𝑀𝐸𝐶 = 19.943 + 1.134𝑈𝐶𝑆 + 3.355𝑀ℎ − 0.471𝑌𝑀 + 24.360𝑆𝐹 − 𝑎 + 0.281𝑃𝑅 (6) 284 

The developed MLR model was used to predict the MEC for the testing datasets as well.  285 

5. The MEC prediction models’ goodness-of-fit 286 

To assess the models’ goodness-of-fit, several performance indices were used, including the 287 

coefficient of determination (CoD), the root-mean-square error (RMSE), and the variance 288 

accounted for (VAF). The CoD represents the proportion of total output variations explained by 289 

the model and prepares a judging index of how well the model predicts the real outputs. The higher 290 

the value of CoD, the greater the model’s accuracy. The RMSE is a measure of standard deviation 291 

of the prediction errors (residuals). The ideal value for RMSE is 0. The VAF shows the 292 

contribution of the datasets that have been used in the model’s construction, and range from 0 % 293 

to 100 %, with the ideal value of 100 %.  The following equations can calculate these three indices: 294 

 𝐶𝑜𝐷 = 1 −
∑ (𝑥𝑖𝑚𝑒𝑎𝑠−𝑥𝑖𝑝𝑟𝑒𝑑)

2𝑛
𝑖=1

∑ (𝑥𝑖𝑚𝑒𝑎𝑠−�̅�)2𝑛
𝑖=1

        (7) 295 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥𝑖𝑚𝑒𝑎𝑠 − 𝑥𝑖𝑝𝑟𝑒𝑑)2𝑛

𝑖=1         (8) 296 

𝑉𝐴𝐹 = [1 −
𝑣𝑎𝑟(𝑥𝑖𝑚𝑒𝑎𝑠−𝑥𝑖𝑝𝑟𝑒𝑑)

𝑣𝑎𝑟(𝑥𝑖𝑚𝑒𝑎𝑠)
] × 100       (9) 297 

where 𝑥𝑖𝑚𝑒𝑎𝑠, 𝑥𝑖𝑝𝑟𝑒𝑑, �̅�, and 𝑛 are the measured value, predicted value, mean value of the 𝑥𝑖, and 298 

the number of datasets, respectively.  299 



Table 7 shows the obtained values of the indices above for both GEP and MLR models in both 300 

training and testing stages. The high values of CoD and VAF, and the low value of RMSE show 301 

the superiority of a predictor. As seen in Table 7, both models of GEP and MLR can predict MEC 302 

with high accuracy and low estimation errors. However, GEP performs better, and its results are 303 

more reliable when compared with MLR in both training and testing stages. The predicted values 304 

of the maximum electrical current by GEP is plotted against the measured values in Fig. 9. The 305 

errors in estimation can be defined as the distance between the data points and the 1:1 diagonal 306 

line (𝑦 = 𝑥). Locating the points on this line gives the exact prediction. According to Fig. 9, the 307 

datasets are uniformly scattered around the diagonal line in both training and testing stages. This 308 

demonstrates that the GEP model is good enough in predicting MEC value precisely.  309 

 310 

Table 7 Statistical performance of the models in training and testing stages.  311 

Index  
Training  Testing 

GEP MLR  GEP MLR 

CoD 0.964 0.871  0.961 0.937 

RMSE 1.586 2.942  1.938 2.396 

VAF (%) 96.264 87.130  95.408 93.682 

 312 



 313 

Fig. 9. Measured versus predicted MEC values using GEP model in training and testing stages.  314 

 315 

6. Comparison of the developed models with a previous study  316 

The prediction performance of the proposed models (i.e. GEP and MLR) were compared with the 317 

results obtained from a study conducted by Dormishi et al. [59] using the same database and input 318 

parameters. In that study, two hybrid algorithms of ANFIS-based particle swarm optimisation 319 

(ANFIS-PSO) and ANFIS-based differential evolution (ANFIS-DE) were used to predict the 320 

maximum electrical current (MEC). Three performance indices of CoD, RMSE, and VAF based 321 

on all datasets were calculated in their study to assess the accuracy of the models (see Table 8). To 322 

provide similar comparison conditions for that study and the current study, we calculated the 323 

performance indices of the proposed model based on the whole of the training and testing datasets. 324 

The results are given in Table 8. It is evident in this table that, all f models exhibit high performance 325 

in predicting MEC. However, ANFIS-PSO and GEP provide more striking results compared to 326 

others. Although ANFIS-PSO shows relatively better values for performance indices, it is a black-327 

box method, and cannot provide a practical output for users. That is, it fails to provide any 328 



mathematical equations or graphical outputs. This means it will not be convenient for engineers to 329 

use in the field, and researchers cannot use the results of this algorithm in further studies. Gene 330 

expression programming, by following an apparent structure and providing a mathematical 331 

equation to predict the goal parameters, overcomes the aforementioned problem.  332 

 333 

Table 8 Performance indices for different models based on whole datasets. 334 

Model 
Index 

CoD RMSE VAF (%) 

ANFIS-PSO 0.997 0.500 99.650 

ANFIS-DE 0.940 2.310 93.290 

GEP 0.963 1.662 96.073 

MLR 0.886 2.814 88.564 

 335 

7. Parametric analysis  336 

To further validate the developed GEP-based model, we performed a parametric analysis to 337 

investigate the influence of each input parameter on the maximum electrical current (MEC). To 338 

do this, we considered the datasets of the first quarry (i.e. A1: Hajiabad Travertine). It should be 339 

noted that although 𝑌𝑀 is one of the most important mechanical properties, in this study, UCS 340 

was considered to be representative of the rock mechanical characteristic [74, 75]. To conduct a 341 

parametric analysis, we selected the laboratory test results of the A1 quarry, and determined the 342 

maximum electrical current (MEC) consumed based upon the proposed model. Then, by changing 343 

the range of values of one of the inputs, and fixing others in their average values, the corresponding 344 

changes of the MEC were recorded. Figure 10 displays the results of the parametric analysis. 345 

According to this figure, the parameters of Mh and then UCS are the most influential parameters. 346 



On the other hand, SF-a and then Pr have less influence on MEC. By increasing and decreasing 347 

the Mh value by 20 %, the 𝑀𝐸𝐶 of the developed model experienced an almost 4 % and 6 % 348 

increase and decrease, respectively. However, this amount of change for the UCS parameter can 349 

increase and decrease the amount MEC by about 3.37 % and 3.95 %, respectively. By increasing 350 

and decreasing the 𝑃𝑟 value by 20 %, the values of MEC have an equal and inverse changes (i.e. 351 

±1.01%). It is worth mentioning that SF-a has a direct relationship with quartz content and grain 352 

size; hence, the changes of SF-a influence wearing rate. As shown in Fig. 10, this parameter, 353 

however, has a negligible influence on MEC, as MEC is related to the energy required for rock 354 

cutting. As a matter of fact, a parameter may do not show a meaningful relationship solely with 355 

the output parameter, while it can be an influential component in a combination of other parameters 356 

in a non-linear form. In the end, it is necessary to mention that the developed models in this study 357 

are based on the collected datasets and a specific range of values for different parameters. So, for 358 

future applications, if the input parameters are out of these ranges, the proposed models should be 359 

adjusted again.  360 

 361 

 362 



 363 

Fig. 10. Parametric analysis of MEC based on the GEP model.  364 

 365 

8. Summary and conclusions  366 

Evaluating the maximum electrical current (MEC) of gang saw machine is crucial in quarries and 367 

stone cutting factories. This study employed gene expression programming (GEP) as an 368 

evolutionary algorithm and a multiple linear regression-based model (MLR) to predict the 369 

maximum electrical current of gang saw machines. The 120 carbonate rock samples were collected 370 

from 12 quarries and prepared for experimental study. Laboratory tests were conducted to measure 371 

different properties of the rocks, including Mohs hardness, the uniaxial compressive strength, 372 

Schimazek’s F-abrasiveness factor, and Young’s modulus. Moreover, the production rate is also 373 

used as an input parameter.  The following conclusions can be drawn from this study: 374 



1. The prediction performances of the developed equations, using MLR and GEP methods, were 375 

compared with each other. The GEP model with statistical indices values of CoD =0.964, RMSE= 376 

1.586, and VAF= 96.264 in the training stage, and CoD =0.961, RMSE= 1.938, and VAF= 95.408 377 

in the testing stage demonstrated higher performance in predicting MEC when compared to MLR 378 

results, i.e. CoD=0.871, RMSE=2.942, VAF=87.130 in the training stage, and CoD=0.937, 379 

RMSE=2.396, and VAF=93.682 in the testing stage.  380 

2. The GEP model was found to be superior to two hybrid algorithms of ANFIS-based particle 381 

swarm optimisation and ANFIS-based differential evolution models in terms of prediction 382 

accuracy. Besides, compared with other soft computing techniques, GEP could provide a clear 383 

mathematical equation to predict MEC which proves that GEP can deal with uncertain conditions 384 

in rock mechanic issues, and such models can be used easily in practice.  385 

3. According to the results of the parametric analysis, Mh showed the most influence on the MEC 386 

prediction according to the developed GEP-based model. The parameters of UCS, Pr and SF-a are 387 

the next influential factors, respectively. 388 

 389 
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 393 

Appendix A 394 

Table A.1 Datasets measured in this study. 395 

No. Sample Type UCS (MPa) Mh YM (GPa) SF-a (N/mm) Pr (Cm/hr) MEC (A) 

1 A2 63 2.95 23.5 
0.0831 

37 99 

2 A5 67 2.7 27 
0.0364 

37 100 



3 A5 67 2.7 27 
0.0364 

27 99 

4 A11 65 3.8 25 
0.1674 

37 107 

5 A12 63.5 3.9 23.5 
0.1458 

11 102 

6 A11 65 3.8 25 
0.1674 

33 107 

7 A7 53 2.9 15 
0.0385 

33 91 

8 A6 60 2.6 20 
0.0196 

20 92 

9 A11 65 3.8 25 
0.1674 

17 103 

10 A9 71.5 4.3 26 
0.0605 

11 104 

11 A1 61.5 2.9 21 
0.0361 

37 102 

12 A6 60 2.6 20 
0.0196 

37 98 

13 A4 54.5 2.2 14.5 
0.0479 

8 85 

14 A4 54.5 2.2 14.5 
0.0479 

20 86 

15 A2 63 2.95 23.5 
0.0831 

23 96 

16 A3 62.8 2.8 22.8 
0.0407 

27 105 

17 A6 60 2.6 20 
0.0196 

14 91 

18 A6 60 2.6 20 
0.0196 

30 96 

19 A11 65 3.8 25 
0.1674 

23 105 

20 A12 63.5 3.9 23.5 
0.1458 

14 103 

21 A12 63.5 3.9 23.5 
0.1458 

27 106 

22 A12 63.5 3.9 23.5 
0.1458 

23 106 

23 A10 72 4 32 
0.0550 

11 101 

24 A4 54.5 2.2 14.5 
0.0479 

37 90 

25 A4 54.5 2.2 14.5 
0.0479 

11 85 

26 A9 71.5 4.3 26 
0.0605 

30 115 

27 A7 53 2.9 15 
0.0385 

8 85 

28 A10 72 4 32 
0.0550 

30 108 

29 A2 63 2.95 23.5 
0.0831 

30 97 

30 A6 60 2.6 20 
0.0196 

23 95 

31 A1 61.5 2.9 21 
0.0361 

14 96 

32 A8 50.5 2.6 16.4 
0.0334 

11 81 

33 A3 62.8 2.8 22.8 
0.0407 

14 103 

34 A4 54.5 2.2 14.5 
0.0479 

23 87 

35 A8 50.5 2.6 16.4 
0.0334 

17 83 



36 A2 63 2.95 23.5 
0.0831 

8 94 

37 A6 60 2.6 20 
0.0196 

11 90 

38 A8 50.5 2.6 16.4 
0.0334 

33 89 

39 A8 50.5 2.6 16.4 
0.0334 

23 87 

40 A3 62.8 2.8 22.8 
0.0407 

17 103 

41 A1 61.5 2.9 21 
0.0361 

27 100 

42 A4 54.5 2.2 14.5 
0.0479 

14 85 

43 A10 72 4 32 
0.0550 

33 110 

44 A10 72 4 32 
0.0550 

23 106 

45 A1 61.5 2.9 21 
0.0361 

23 100 

46 A7 53 2.9 15 
0.0385 

27 90 

47 A12 63.5 3.9 23.5 
0.1458 

8 101 

48 A7 53 2.9 15 
0.0385 

14 86 

49 A8 50.5 2.6 16.4 
0.0334 

27 87 

50 A4 54.5 2.2 14.5 
0.0479 

30 89 

51 A3 62.8 2.8 22.8 
0.0407 

20 103 

52 A4 54.5 2.2 14.5 
0.0479 

33 89 

53 A11 65 3.8 25 
0.1674 

11 101 

54 A1 61.5 2.9 21 
0.0361 

20 99 

55 A9 71.5 4.3 26 
0.0605 

33 116 

56 A4 54.5 2.2 14.5 
0.0479 

27 87 

57 A5 67 2.7 27 
0.0364 

33 100 

58 A12 63.5 3.9 23.5 
0.1458 

20 105 

59 A9 71.5 4.3 26 
0.0605 

8 103 

60 A7 53 2.9 15 
0.0385 

30 90 

61 A7 53 2.9 15 
0.0385 

37 92 

62 A5 67 2.7 27 
0.0364 

14 95 

63 A5 67 2.7 27 
0.0364 

17 96 

64 A11 65 3.8 25 
0.1674 

27 106 

65 A3 62.8 2.8 22.8 
0.0407 

33 109 

66 A3 62.8 2.8 22.8 
0.0407 

23 103 

67 A3 62.8 2.8 22.8 
0.0407 

11 100 

68 A6 60 2.6 20 
0.0196 

27 95 



69 A1 61.5 2.9 21 
0.0361 

30 100 

70 A12 63.5 3.9 23.5 
0.1458 

33 109 

71 A5 67 2.7 27 
0.0364 

23 97 

72 A12 63.5 3.9 23.5 
0.1458 

30 108 

73 A3 62.8 2.8 22.8 
0.0407 

37 110 

74 A1 61.5 2.9 21 
0.0361 

11 95 

75 A10 72 4 32 
0.0550 

17 103 

76 A10 72 4 32 
0.0550 

20 105 

77 A11 65 3.8 25 
0.1674 

8 100 

78 A10 72 4 32 
0.0550 

14 103 

79 A12 63.5 3.9 23.5 
0.1458 

17 105 

80 A5 67 2.7 27 
0.0364 

30 99 

81 A6 60 2.6 20 
0.0196 

33 98 

82 A10 72 4 32 
0.0550 

37 112 

83 A7 53 2.9 15 
0.0385 

11 86 

84 A9 71.5 4.3 26 
0.0605 

17 106 

85 A5 67 2.7 27 
0.0364 

11 94 

86 A9 71.5 4.3 26 
0.0605 

23 112 

87 A8 50.5 2.6 16.4 
0.0334 

30 89 

88 A1 61.5 2.9 21 
0.0361 

33 101 

89 A3 62.8 2.8 22.8 
0.0407 

8 98 

90 A8 50.5 2.6 16.4 
0.0334 

14 83 

91 A1 61.5 2.9 21 
0.0361 

17 97 

92 A5 67 2.7 27 
0.0364 

8 94 

93 A9 71.5 4.3 26 
0.0605 

27 114 

94 A10 72 4 32 
0.0550 

27 106 

95 A11 65 3.8 25 
0.1674 

20 104 

96 A7 53 2.9 15 
0.0385 

23 88 

97 A8 50.5 2.6 16.4 
0.0334 

8 81 

98 A2 63 2.95 23.5 
0.0831 

20 96 

99 A2 63 2.95 23.5 
0.0831 

33 98 

100 A6 60 2.6 20 
0.0196 

17 92 

101 A6 60 2.6 20 
0.0196 

8 90 



102 A2 63 2.95 23.5 
0.0831 

17 95 

103 A3 62.8 2.8 22.8 
0.0407 

30 106 

104 A1 61.5 2.9 21 
0.0361 

8 93 

105 A2 63 2.95 23.5 
0.0831 

27 97 

106 A9 71.5 4.3 26 
0.0605 

14 105 

107 A10 72 4 32 
0.0550 

8 101 

108 A11 65 3.8 25 
0.1674 

30 106 

109 A5 67 2.7 27 
0.0364 

20 96 

110 A4 54.5 2.2 14.5 
0.0479 

17 86 

111 A2 63 2.95 23.5 
0.0831 

11 94 

112 A8 50.5 2.6 16.4 
0.0334 

37 90 

113 A7 53 2.9 15 
0.0385 

17 86 

114 A12 63.5 3.9 23.5 
0.1458 

37 110 

115 A2 63 2.95 23.5 
0.0831 

14 95 

116 A7 53 2.9 15 
0.0385 

20 87 

117 A11 65 3.8 25 
0.1674 

14 101 

118 A9 71.5 4.3 26 
0.0605 

20 110 

119 A9 71.5 4.3 26 
0.0605 

37 118 

120 A8 50.5 2.6 16.4 
0.0334 

20 85 

 396 
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