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Abstract 

 
Epigenetic Profiling of Human Placenta Throughout Early Gestation 

 
Qianhui Wan 

 
 

The differentiation of the placenta, especially during early gestation is important for 

pregnancy success. Whilst emerging evidence has shown that DNA methylation 

(DNAm) in placenta varies over gestation, to date, most studies have compared DNAm 

in a relatively short gestational age range. Little is known about the dynamics of DNAm 

patterns across early pregnancy from as early as 6 weeks’, and as late as 23 weeks’ 

gestation. This comprehensive analysis of the placental methylome will help to 

elucidate the previously poorly understood relationship between DNA methylation, 

placental development, and complications of pregnancy. The overall aim of this thesis 

is to characterise and interpret this relationship through the analysis of DNA 

methylation profiles from strictly phenotyped samples of human placenta, and 

matched maternal leukocytes, across early to mid-gestation, through bioinformatics 

analyses. All data herein were obtained using the Illumina Infinium® MethylationEPIC 

BeadChips (EPIC arrays). 

 

In this study, we first compared three different bioinformatics methods implemented 

with different algorithms for detecting differentially methylated regions (DMRs) 

between sample groups. Subsequent to these analyses we aimed to establish an in-

house pipeline for the quality control and analysis of EPIC array methylation data 

obtained from both GEO database, and from this study. The three methods used for 

the discovery of DMRs were bumphunter, Probe Lasso and DMRcate. After 

comparison of these three methods we were able to demonstrate unique advantages 
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and disadvantages of each. Overall, DMRcate was considered the most appropriate 

method for the identification of DMRs in EPIC array methylation data from our placenta 

samples, with a better sensitivity than Probe Lasso and bumphunter methods and less 

false positive regions than the Probe Lasso method. 

 

Next, the established in-house pipeline was used for array data analyses. Initial 

unsupervised clustering using a PCA analysis of methylation data revealed several 

outliers within our data. These 6 samples did not cluster as expected with other 

placenta samples of the same gestational age. To investigate whether these outliers 

were caused by complicated pregnancy or technical issues, we compared the data 

from samples in our study with publicly available data from samples of placenta and 

placenta-associated tissues. Given the otherwise strong gestational age clustering 

observed in the PCA analysis, and the unknown pregnancy outcomes of the tissue in 

question, we hypothesized that the samples which failed to cluster within their 

gestational age group would cluster with other like samples. After preprocessing we 

included the public data in a new PCA analysis with results indicating that the outliers 

we identified were not pure placenta villous tissue, but rather these samples were a 

mix of both placental and maternal tissue. 

 

After assessing the quality of all placenta samples, and removing samples identified 

as containing maternal tissue, an epigenome wide DNAm study of placenta (n = 125) 

across 6-23 weeks’ gestation was performed. Placental DNA methylation changed 

throughout gestation, with methylation differences also found between groups up to 

and after 10 weeks’ gestation. Since maternal blood starts to flow into placenta at 

approximately 10 weeks’ gestation, these DNA methylation changes could be 
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associated with a change in oxygen tension in the placenta. Further to the DNA 

methylation changes identified across early gestation, DNA methylation levels at 

partially methylated domains and imprinting control regions were stable in placenta 

across early gestation, suggesting an association with these regions and the basic 

function and development of the human placenta. 

 

Finally, DNA methylation changes of maternal leukocytes from matched maternal 

blood were investigated. We identified DNA methylation changes in maternal 

leukocytes associated with maternal smoking and with maternal age, and to a lesser 

degree we were able to identify changes in DNA methylation of maternal leukocytes 

that were associated with gestational age. Changes of cell proportion for maternal 

leukocytes were identified and a potential accelerated aging was found in pregnant 

women compared with non-pregnant women. These findings provide more information 

for real time assessment of pregnancy health using DNA methylation in maternal 

circulating leukocytes. 

 

In summary, the research reported here provides an insight into performing 

bioinformatics analyses and quality control of placental DNA methylation data 

obtained from EPIC array analyses. Further, this thesis adds to our understanding of 

placental development, health and disease through the characterisation of the DNA 

methylome of placenta and matched maternal leukocytes across early gestation.  
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1 Introduction 
 

The placenta plays a vital role in fetal development and maternal health since it 

influences not only the health of a woman and her fetus during pregnancy, but also 

the lifelong health of both mother and child [1]. Hormones and cytokines released from 

the placenta have key effects on both maternal and fetal physiology and the 

development of the fetus depends on the maternal circulation for exchanging nutrients 

and waste products through the vasculosyncytial membrane of placenta [2]. Due to 

close association with the fetus, the health status of the placenta can also predict the 

long-term health status of the child, such as the risk of chronic diseases including 

hypertension and heart diseases in their later life [3]. 

 

The placenta can also protect the fetus from adverse factors in maternal blood. The 

vasculosyncytial membrane is a selective barrier including the syncytiotrophoblast and 

the endothelial cells of the capillaries, which can prevent some macromolecules from 

reaching the fetus [4]. As a natural state of maternal insulin resistance, pregnancy 

induces a high glucose concentration gradient from maternal to fetal blood which 

facilitates placental, hence fetal, glucose uptake across gestation [5]. This could be 

associated with the increased number of insulin receptors on the placental villous 

membrane during early gestation compared to late gestation [6]. In addition, immune 

tolerance in pregnancy is important to prevent maternal immunological rejection of the 

fetus and placenta. Disrupted immune function may be associated with placental 

oxidative stress or excessive inflammation in pregnancy complications [7]. 
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The DNA methylation profile of human placenta is unique as it is globally 

hypomethylated compared to other non-cancerous, healthy tissues [8]. Apart from 

global hypomethylation, placenta is hypermethylated at CpG dense regions and 

placental DNA also contains large (megabase-scale) low methylated regions, known 

as partially methylated domains (PMDs) that cover about 37% of the placental genome 

[9]. These PMDs do not exist in other normal tissues but are commonplace in epithelial 

cancers such as colon and breast cancer [10]. Studies have shown that placental DNA 

methylation increases across gestation and anomalous variations are associated with 

poor pregnancy outcomes [11]. For instance, abnormally methylated promoters of 

genes such as LRAT, SLC19A1, EFS and SR140 are associated with intrauterine 

growth restriction (IUGR) which is a condition related with poor fetal growth during 

gestation [12]. Fully characterising the dynamic and changing DNA methylation of 

human placenta across gestation is important for our understanding of placental 

development, and of how DNA methylation affects pregnancy outcomes. 

 

DNA methylation can dramatically impact the way that genes are expressed, most 

notably through the accumulation of methylated cytosines at the promoters of genes. 

Currently the most efficient way to identify these DNA methylation sites, as well as 

their effect on gene expression, is through the application of genomic approaches such 

as high-throughput sequencing and array technologies. RNA sequencing (RNA-seq) 

can identify novel variations in gene expression, non-coding RNA species and splicing 

variants, which may be important for understanding the regulatory mechanisms of 

normal or pathological tissue development [13-15]. Combined with RNA sequencing 

data, the analysis of DNA methylation array data can reveal the sites of DNA 
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methylation that may be differentially modified in different conditions and associated 

with gene expression.  

 

Sequencing, both for RNA and DNA, and microarrays generate a large amount of data 

[16]. Analysis of this massive amount of data through bioinformatics methods is 

essential to interpret the association between biological phenotypes and molecular 

changes. It may provide very useful clues to guide future experiments. In this chapter, 

we review the mechanisms and functions of DNA methylation in placenta and maternal 

blood during human pregnancy, highlight the importance of characterising DNA 

methylation profiles during pregnancy and introduce and compare methods for 

analysing DNA methylation data.  

 

1.1 Development and function of human placenta 

 

The placenta is essential for fetal development in eutherian mammals and abnormal 

placental development is associated with pregnancy complications such as 

preeclampsia (PE), a maternal hypertensive disorder,  and IUGR [17]. There is great 

variation of the types of placenta between different mammals, which indicates that the 

function of animal models in understanding the development of human placenta is 

limited. Here, we reviewed the development and function of human placenta with a 

main focus on the placenta chorionic villus which is the functional unit of human 

placenta [18]. 
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1.1.1 The development of the placenta 

 

Successful human pregnancy and fetal health are closely related to the development 

of the placenta, the temporary exchange organ between the mother and her fetus. The 

placenta is an organ that develops from the fetal trophectoderm (diverse trophoblast 

cell types) and inner cell mass (blood vessels, mesenchyme, chorion, and amniotic 

membranes) [19, 20]. The development of the placenta begins from as early as the 

end of the first week after fertilisation when the blastocyst starts to implant into the 

uterus [21]. The implantation of the embryo is a kind of erosion process, which begins 

with the differentiation of trophoblasts at the embryonic pole [22]. The trophoblasts 

differentiate into syncytiotrophoblast (STB) and cytotrophoblast (CTB). CTBs fuse to 

form STB, a multinuclear and terminally differentiated cell type [23, 24]. With the 

development of the blastocyst, the multinuclear STB expands rapidly, continuing its 

invasion of the endometrium and consequently embeds the conceptus completely into 

the endometrium, termed decidua in pregnancy, at the end of the second week post 

conception. Concurrently, the lacunae containing maternal venous fluid, form between 

folds in the STB and later fuse to form the lacunar network which lays the foundation 

for the development of the intervillous space [25].  

 

Chorionic villi are very important for placental function because they are the interface 

between the maternal and fetal circulations where the exchange of gases, nutrients, 

wastes and hormones occurs [26]. Importantly, abnormal villous development has 

been associated with pregnancy complications such as preeclampsia and IUGR [27]. 

Primary chorionic villi first become recognisable between the second week and early 

third week of gestation as CTB cells penetrate into the cords of the STB. Shortly after 
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this, mesenchymal cells (extra-embryonic mesoblast) migrate into the primary villi to 

form mesenchymal tissue cores, now known as secondary chorionic villi, expand into 

the lacunae that, as we mentioned earlier, are filled with maternal venous fluid [28]. 

Mesenchymal cells may also differentiate into the blood cells and capillaries. Villi that 

contain these differentiated blood vessels are known as tertiary villi and are seen prior 

to week 6 of gestation when the blood vessels are visible. Arteriocapillary networks 

are formed through the fusion of capillaries in the villi and later these capillaries will be 

connected to the embryonic heart [29]. 

 

In early development, the outer layer of the blastocyst (the trophectoderm) is 

comprised of trophoblasts that can develop into the chorionic membrane. At 

approximately eight weeks’ gestation, villi opposed to the decidua begin to regress, 

undergoing almost complete degeneration, and form the chorion laeve. Villi in contact 

with the decidua basalis however, proliferate and form the fetal component of the 

placenta [2] known as the chorion frondosum, by the end of the first trimester [18, 19, 

30]. When these villi disappear, the villi associated with the decidua basalis (villous 

chorion) increase rapidly in number [2]. Along with the growth of the fetus, the size 

and thickness of the placenta increases until approximately 24 weeks’ gestation. 

Placental growth decreases in the last trimester however, it has been shown that 

approximately 15 percent of placentas show a continuous increase in weight 

throughout pregnancy [31]. 

 

Terminal villi provide a large surface area for the exchange of various substances 

between the maternal and fetal circulation. These terminal villi are bathed in maternal 

blood which fills the intervillous space [32]. The fully developed placenta covers 15% 
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to 30% of the decidua and weighs about one sixth of the weight of the fetus. After a 

successful pregnancy, the placenta is delivered after delivery of the fetus, between 

37-41 weeks after fertilization [2]. The developmental processes of the placenta and 

the fetus are shown in Figure 1.1. 

 

Figure 1.1 The timeline shows the development of the placenta and fetus across 40 

weeks of gestation and the corresponding relative oxygen concentrations [33]. 

 

During placental development the oxygen environment changes (Figure 1.1).  This 

change in oxygen tension plays an important role in a number of mechanisms that 

associate with normal placental function. Placental cells have a sensing system for 

hypoxia, nutrient supply and energy supply through HIF, mTOR and AMPK pathways, 

respectively, which are critical for maintaining maternal and fetal metabolism during 

pregnancy [34]. During early gestation, there is no maternal blood flow into the 

intervillous space, so early placentation occurs in a relatively hypoxic environment 

which has been shown to be important for early placenta development [35]. The 

hypoxic environment of less than 20 mmHg until 10-12 weeks’ gestation in placental 
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tissue is due to the cytotrophoblast occlusion of the spiral arterioles [36]. Oxygenated 

maternal blood starts to flow into the intervillous space of the placenta around 10-12 

weeks’ gestation, resulting in an increase in oxygen tension (PO2) (Figure 1.2) [37]. 

Studies show that this changing PO2 is related to trophoblast invasion and vascular 

remodelling. Hypoxia induces the invasion and migration of trophoblasts which is 

associated with the pathogenesis of PE [38]. If the invasion of trophoblast is reduced, 

placental blood flow and oxygen availability will also be reduced [39], which may cause 

a release of soluble factors into the maternal blood which can lead to PE [40]. 

 

Though the placenta is of great importance for reproductive success, the 

understanding of human placenta is still very limited. The great diversity of placenta 

between species and the ethical obstacles for studying human placenta during early 

gestation has made the investigation of human placenta development difficult [18, 41]. 
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Figure 1.2 PO2 in placenta and uterine increased across early gestational age [37].  

 

1.1.2 The function of the placenta 

 

During fetal development, the placenta functions not only to provide oxygen and 

nutrients to the fetus but also in place of important fetal systems such as the fetal 

respiratory, endocrine and immune system [42]. The placenta anchors the conceptus 

to maternal tissues and contributes to the immunological tolerance to paternally 

derived antigens of the growing fetus [43]. Some maternal antibodies (mainly IgG) are 
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transported through the placenta by transcytosis and consequently passive immunity 

is obtained by fetus [21, 44]. The placenta produces glycogen, cholesterol and fatty 

acids that are important for fetal metabolism. Water and gas (e.g. oxygen and carbon 

dioxide) are transported through the vasculo-syncytial membrane by simple diffusion. 

Specific transporters are involved in the transportation of glucose, amino acids, and 

fatty acids. In addition, the placenta produces important proteins and steroid hormones 

for maintaining pregnancy including human chorionic gonadotrophin (hCG), 

progesterone, and estrogens [45]. Important placental functions involved in maternal 

and fetal resource allocation are shown in Figure 1.3. 

 

Disruption of placental development and placental dysfunction are associated with 

maternal and fetal diseases [46, 47]. Impaired remodelling of the uterine spiral 

arterioles increases the probability of developing PE which can lead to eclampsia, one 

of the leading causes of maternal death [48]. A reduction in the circulating maternal 

blood in placenta has been shown to result in hypoxia and has been associated with 

IUGR of the fetus [49]. In addition, poor placental development and function during 

pregnancy is a predictor of disease susceptibility for later life. For example, fetuses 

with abnormal placental histology tend to have an elevated risk for autism [9]. As the 

least studied organ compared with other human organs [50], more studies of human 

placental development at a molecular level are needed. 
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Figure 1.3 The exchanging function of placenta, modified from [45]. 

 

1.2 Pregnancy 
 

Many factors such as environmental factors, fetal sex, maternal smoking and BMI are 

related to the health of pregnant women and their fetuses [51]. Up to ten percent of 

the pregnancies worldwide are affected by PE which has great impact on maternal 

and fetal health [52]. Approximately 76,000 maternal and 500,000 infant deaths 

worldwide were caused by PE each year, which makes PE one of the leading causes 

of pregnancy related deaths in the world [53]. Currently there are very few effective 
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treatments for PE except for delivery of the placenta, resulting in babies born too soon 

and these babies are more likely to have hypertension, cardiovascular disease and 

diabetes later in their life [54]. Finding biomarkers in maternal blood that can detect 

preeclampsia or other complications early in pregnancy will be a good way to intervene 

and monitor the women and the babies early. 

 

1.2.1 Pregnancy complications  

 

Some women can experience pregnancy complications which can affect the health of 

these women and their fetus. Even though the women are healthy before pregnancy, 

they may develop complications during their pregnancies [55]. PE, IUGR, small for 

gestational age (SGA), preterm birth (PTB) and gestational diabetes (GDM) are some 

commonly diagnosed complications during pregnancies.  

 

Preeclampsia is a serious pregnancy complication characterised by various symptoms 

including hypertension, proteinuria, kidney injury, liver dysfunction and fetal growth 

restriction [56]. PE is still one of the main causes of maternal death and morbidity. The 

pathology of PE has not yet been fully understood, but there is evidence that shows 

that the pathology of PE is associated with abnormal placentation, remodelling of 

maternal spiral arteries (Figure 1.4) and maternal immune response [57].  
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Figure 1.4 The difference of normal placentation and abnormal placentation 

associated with preeclampsia [58]. 

 

Small for gestational age birth is defined as birthweight < 10th centile for gestational 

age [59] and it can cause fetal and neonatal death. In many cases, the aetiology of 
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SGA is unknown, however, there are some reported factors that may cause SGA, 

including pregnancy-induced hypertension, fetal chromosomal abnormality and 

placental structural abnormality [60]. IUGR means that the fetus cannot achieve the 

potential size that was genetically predetermined, which is easy to be confused with 

SGA. Different from SGA, IUGR identifies fetus with risk of poor outcomes without 

including SGA fetuses that are not pathologically small [61]. IUGR is caused by various 

reasons including maternal smoking, genetic disorders and infections and severe 

IUGR cases are associated with impaired placentation [62]. 

 

Preterm birth is birth that occurs after 20 weeks’ and before 37 weeks’ gestation and 

intensive care is needed for the neonates. Since the lung and brain of a fetus are still 

developing in the last several weeks of gestation, PTB infants are at great risk of many 

health issues such as respiratory disorders [63]. Different causes of spontaneous PTB 

include intrauterine inflammation and placental abnormalities [64].  Different from PTB, 

miscarriage means a pregnancy loss before 20 weeks’ due to natural causes. Main 

genetic causes of miscarriage are abnormal chromosomes [65].  

 

Gestational diabetes mellitus is defined as glucose intolerance which is diagnosed at 

24 to 28 weeks’ of pregnancy [66, 67]. As a metabolic disorder, GDM is mainly caused 

by insulin resistance which increases with gestation and glucose production [68]. GDM 

increases risk for hypertension, preeclampsia and large infant that increases the 

probability of caesarean delivery. Although the pathology of GDM is not fully 

understood, there are some contributing factors identified such as genetic 

predisposition and elevated placental growth hormone and progesterone levels [69, 

70]. 
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1.2.2 Differences of male and female bearing pregnancies 

 

Fetal sex can influence the pregnancy outcomes and may have long term impact on 

maternal and fetal health [71]. Sex differences exist during fetal development and 

influence neonatal morbidity and mortality. Still birth and neonatal deaths have proved 

to cause greater mortality for males than females [72]. Theoretically, the ratio of the 

sex of the born fetuses is 1:1, however, studies have shown that actually more male 

fetuses were delivered than female fetuses [73]. Moreover, the sex-specific placenta 

functions tend to mediate the sex differences during fetal development [74].  

 

Sex chromosomes are the main contributor to sex differences in the placenta. X 

chromosome inactivation (XCI) exists in the female human placenta [75] and some X-

linked genes were partially expressed in chorionic villi but not other tissues, which is 

associated with the hypomethylation of the related CpG islands [76]. XCI is reversible 

in placenta and many reprogramming settings, which is named X chromosome 

reactivation (XCR) [77]. Global XCR can be induced in cells from placental villi in vitro 

with demethylating agents, which is associated with DNA hypomethylation and 

instable status of XCR of placenta [78]. 

 

1.2.3 Maternal blood 

 

Maternal blood during pregnancy can reflect both maternal and fetal health. 

Biomarkers identified from blood can be diagnostic tools to assess pregnancy health. 

Serum protein expression can be used as biomarkers for PE [79]. DNA sequencing of 

fetal cell free DNA in maternal serum can help understand the status of the fetus, 
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especially for the identification of trisomies 21, 18 and 13 with a high level of accuracy, 

aiding in disease management and counselling [80]. Recent large-scale analyses 

(“omics”) allow researchers to identify novel biomarkers (as shown in Figure 1.5) for 

cancers and other diseases [81]. Integration of omics profiles from the placenta and 

matched maternal blood across gestation may provide insights into ways to identify 

women and fetuses at risk early during pregnancy [82]. Indeed, maternal blood may 

reflect the developmental stage of placenta and fetus and may contain placental 

derived biomarkers. However, few studies to date have matched placental and 

maternal blood samples that cover continuous gestational stages [3, 83]. Studies that 

focus on a comprehensive DNA methylation profile of maternal blood that may reflect 

the developmental stage of placenta and fetus are necessary. 

 

Figure 1.5 Biomarkers in maternal blood that can be used for analysing a fetal disease 

[81]. 



Chapter 1 Introduction 

 

16 

1.3 Epigenetic modifications 
 

The term “epigenetics” was first created to describe the processes that are not fully 

understood during the development of the embryo into a complex organism [84]. While 

the definition of epigenetics changed with the increased understanding of mechanisms 

of gene expression and that the same DNA was found in all cells in a specific organism. 

At present, epigenetics means change of phenotypes caused by chemical 

modifications of DNA, structural or regulatory factors bound to it without any changes 

to the underlying DNA sequence [85, 86].  

 

The importance of epigenetic control has long been recognized, but the epigenetic 

features of some tissue types such as the placenta are still not thoroughly 

characterised. Most of the known epigenetic modifications such as DNA methylation 

are reversible which shows the adaptive nature of epigenetic control [87]. Epigenetic 

modifications stabilise gene expression programmes and may regulate patterns of 

gene expression [88]. The epigenome can be different between individuals, which 

highlights its potential in diagnosing disease and evaluating clinical interventions. Here, 

we describe the major type of epigenetic modifications, DNA methylation, and 

summarise what is known about their profile within the placenta. 

 

1.3.1 DNA methylation 

 

DNA methylation, the adding of a methyl group, predominantly at the 5th atom of the 

6-atom cytosine ring in mammals, is the most widely studied epigenetic modification 

[89]. An increase in DNA methylation is generally associated with the repression of 
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gene expression [90]. Methylation can occur at any cytosine base, but it is 

predominantly found in mammals in the sequence context CpG (mCG) [91]. Recent 

studies have demonstrated that non-CG methylation (mCH) is correlated with tissue-

specific functions [92], but the true biological function of mCH in humans is still unclear 

and remains to be determined. 

 

In human tissue, DNA methylation is a dynamic process including DNA methylation 

and demethylation [93]. During DNA methylation, cytosine is transformed to 

5’methylcytosine (5mC) by DNA methyltransferases (DNMTs) with the methyl donor 

S-adenosyl-L-methionine (SAM) [94]. DNA methylation modes fall into either 

maintenance methylation or de novo methylation (Figure 1.6A). While major 

maintenance methyltransferase DNMT1 maintains the pre-existing methylation 

patterns, DNMT3A and DNMT3B are de novo methyltransferases [95]. 

 

Passive demethylation and active demethylation are two DNA demethylation 

mechanisms, (Figure 1.6B). In passive demethylation, DNA is amplified in an 

environment without DNMT1, so the DNA is passively demethylated [96]. Enzymes 

are needed for catalysing or transforming methyl groups during active demethylation. 

Proteins from the ten-eleven translocation (TET) family have enzymatic activity and 

conduct active demethylation in mammals [97]. TET hydroxylated 5mC to 5-

hydroxymethylcytosine (5hmC) which later can be oxidised by TET again to form 5-

formylcytosine (5fC) and 5-carboxylcytosine (5caC) and finally lead to the replacement 

of 5mC with C [98].  
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Figure 1.6 The DNA methylation and demethylation processes. (A) DNA methylation 

process. (B) DNA demethylation process [99]. 

 

1.3.2 Epigenetic gene regulation  

 

Many of the studies on gene regulation in chorionic villi focus on gene and transcription 

level such as epigenetic modifications and transcription factor networks. DNA 

methylation affect gene expression by influencing the accessibility of regulatory 

elements [100]. The states of chromatin (“open” or “closed”) were flagged by these 

epigenetic marks, so they may be maintained during cell replication [101].   

 

DNA methylation can function in single site or CpG clusters in the genome. The CpG 

clusters are also known as CpG islands with high CG content [102]. Majority of DNA 

methylation sites that are not in CpG islands such as exons of genes and transposons 
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are methylated in mammalian cells. DNA methylation sites in CpG islands are usually 

unmethylated which could be associated with gene promoters, tissue-specific 

enhancers [103] and some histone modifications that inhibit the binding of de novo 

methylation complex [104]. 

 

Canonically, decreased DNA methylation is associated with activation of gene 

expression and increase of DNA methylation is associated with the repression of gene 

expression (Figure 1.7). The unmethylated CpG islands are usually associated with 

activation of genes. Although there is research showing that unmethylated CpG 

islands are evolutionarily conserved [105], the mechanism of how CpG islands remain 

unmethylated is not fully understood at present. Increased DNA methylation can cause 

the condensed state of chromosomes that repress transcription through two 

mechanisms including recruiting transcriptional repressors that bind to the methylated 

regions or stop the binding of transcriptional factors to their motifs [100].  

  



Chapter 1 Introduction 

 

20 

 

Figure 1.7 The canonical functions of DNA methylation in gene regulation (modified 

from [106]).  

 

1.3.3 DNA methylation in placenta 

 

The methylome of human placenta is different from most other healthy human tissue 

types mainly because of the large amount of hypomethylated DNA [9]. However, the 

origins and roles of hypomethylation in the placenta remain unclear. Since there are 
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different cell populations that have different methylomes in the placenta, the 

hypomethylation is likely to reflect the heterogeneity of placental tissue [107, 108]. 

Another possible reason for DNA hypomethylation is the origin of the placenta. During 

the preimplantation period of embryo development, the placenta is developed from 

trophectoderm which is still in a demethylated and pluripotent state [109]. Placental 

hypomethylation may also be explained by the existence of partially methylated 

domains (PMDs). Genes in PMDs tend to have function unrelated to the tissue of origin 

and are repressed [9]. The term placenta is characterised by (PMDs) that cover about 

37% of the placental genome and are only found in tissues such as placenta, cancer 

tissues and immortalised cell lines [108] [9]. In addition, studies showed that DNMT1 

was down regulated in trophoblasts which may potentially reduce the global 

methylation level of placenta [110]. 

 

There are many factors including fetal sex, gestational age, and diseases that 

influence DNA methylation in placenta [111, 112]. Based on DNA methylation 

microarray data of placenta samples from different trimesters across gestation, 

Novakovic et al. showed that the overall DNA methylation of placenta increased across 

gestation [11], which was confirmed by subsequent research [15, 113]. Diseases such 

as PE and GDM are associated with placental epigenetic changes including DNA 

methylation. Mainly term placental tissue from PE, IUGR and GDM patients were 

studied and profiled and differentially methylated loci associated with PE, IUGR and 

GDM were identified using microarray and sequencing technologies [114-120].  
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1.3.4 Imprinting in placenta 

 

Placenta has a unique epigenetic profile compared with other human somatic tissues. 

Placenta imprinted genes are also very important and known to regulate placental 

development and placentation [121]. Gene imprinting is a kind of epigenetic 

modification that enables the gene to express in a maternal or paternal specific 

manner which is a potential mechanism of evolution to balance the parental resource 

allocation to the child in mammals [122]. In general, the paternally expressed genes 

and maternally expressed genes are associated with accelerated and reduced growth 

of fetuses and placentas respectively. This phenomenon is consistent with the 

assumption that the function of imprinting is to deal with the conflict of parental 

resource allocation to the growth of offspring [123].  

 

Currently, conflicting evidence about placenta imprinted genes exists. Studies have 

shown that there are 75 human imprinted genes in placenta and 27 of them are 

placenta-specific [124]. Conversely, in a very recent study using RNA sequencing data 

of 54 human placenta samples, 50% of the candidate imprinted genes were not 

expressed or lowly expressed in placenta and only 11 genes were paternally or 

maternally expressed, including H19, MEG3, PHLDA2, RTL1, AIM1, DLK1, IGF2, 

MEST, PEG10, PLAGL1 and ZFAT, which indicates an overestimation of the number 

of imprinted genes in placenta [125]. Besides, new imprinted genes in the placenta 

are continuously identified, such as DSCAM gene [126]. Further studies focused on 

confirming placental imprinted genes and their functions are still needed. 
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1.4 High-throughput methods to detect DNA methylation 
 

Genome-wide profiling by microarray- and sequencing-based methods, with their 

increasingly wide availability, decreasing cost, and continuously improving technology, 

are powerful tools to map DNA methylation. The gold standard for studying DNA 

methylation is whole-genome bisulfite sequencing (WGBS). In most human tissue 

types, except for the regulatory regions that have low methylated sites, the majority 

(70-80%) of the DNA methylation sites were methylated [127]. Currently, WGBS is still 

expensive and computationally intensive when there are lots of samples in a study 

[127].  

 

The Illumina Infinium® Methylation450K BeadChips (450K arrays) and Illumina 

Infinium® MethylationEPIC BeadChips (EPIC arrays) are widely used platforms for 

detecting DNA methylation for a large number of samples [128]. The 

HumanMethylationEPIC (EPIC) array was released in 2015 [129], with almost twice 

the number of DNA methylation sites of 450K arrays. The increased resolution and 

expanded coverage of regulatory regions of the human genome, as well as its 

reasonable pricing, make the EPIC array a suitable and attractive platform for 

performing profiling of DNA methylation in a large number of samples [129]. 

 

Two types of assays exist for detecting DNA methylation on the Infinium methylation 

array, they are type I and type II assays (Figure 1.8). The type I assay mainly detects 

DNA methylation sites located in regions of high CpG density and the type II assay 

mainly focuses on the DNA methylation sites located at low CpG density and mCH 

[130]. For type I assay, two different query probes, one “unmethylated” and one 

“methylated”, are used for detecting methylation and unmethylation of one locus 
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respectively. While for the type II assay, only one query probe is designed for each 

locus, the methylation status of one site is determined by the single base extension 

(SBE) result. The complementary nucleotide to the ‘methylated’ C reflects the 

methylation of one site, and the complementary nucleotide to the ‘unmethylated’ T 

showed contrary result [131]. 

 

The major considerations when choosing between microarray and bisulfite 

sequencing approaches are cost-effectiveness and data analysis. Commercially 

available microarrays enable the analysis of CpG methylation status in thousands of 

gene promoters with lower expenses. WGBS provides a diverse toolbox for DNA 

methylation analysis with different throughput levels and sequencing depths (i.e. 

number of times a nucleotide is read).  
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Figure 1.8 Detection of DNA methylation. (A) Infinium I methylation assay scheme. (B) 

Infinium II methylation assay scheme [132].  

 

1.5 Bioinformatics methods for DNA methylation array data 
 

The analytic pipeline is the foundation for ensuring the reliability and reproducibility of 

results [133]. There are several published pipelines for DNA methylation array data, 

and they include minfi [134], RnBeads [135] and ChAMP [136] can process data from 

EPIC array. Maksimovic et al. also published a cross-package pipeline to analyse DNA 

methylation array data [137]. However, there is not any established pipeline focusing 
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on analysing the DNA methylation profile of samples across different time points 

comprehensively. In order to establish proper pipeline focusing on analysing the DNA 

methylation profile we reviewed methods for detecting differentially methylated 

positions (DMPs) and differentially methylated regions (DMRs) as identifying DMPs 

and DMRs are important steps for DNA methylation analytic pipelines. 

 

1.5.1 Differential methylation 

 

Differential methylation analysis is the process of comparing methylation profiles from 

two conditions and identifying positions or regions that contain significant changes. 

Identification of DMP is central in most epigenetic studies [138]. Beta values or M 

values are commonly used to analyse differential methylation with Beta values being 

the proportion of methylation intensity over the total intensity (adding intensities from 

green and red channels). M values on the other hand are logit transformed beta values 

(M = log2 ' !
"#$() that better represent variance within the data than beta values and 

previous research has shown that M values performed better than beta values 

(proportions of methylation intensity) in fitting the Gaussian model [139, 140]. Non-

linear methods do exist, such as using beta regression models (gamlss package) [141], 

however linear model methods contained in packages limma [142], missMethyl [143] 

and ruv [144] are far more popular.  

 

There are advantages and disadvantages for both linear and non-linear models. The 

main advantage of the non-linear beta regression is that it directly uses beta values 

that are biologically meaningful. Non-linear models allow dependent observations 

while linear models assume that observations are independent from each other. 



Chapter 1 Introduction 

 

27 

However, linear models are more widely used for analysing microarray data and 

implemented in different pipeline and packages. The outcomes from analysing M 

values are also generally visualised with Beta values [145]. In Chapter 2, we compared 

different models for identifying significantly changed probes between groups and 

found that multivariant linear model using M values is the method for identifying 

changes of DNA methylation between groups, since it is also used in methods of 

identifying differently methylated regions and the results can be interpreted properly. 

Linear regression is considered as a valid statistical method for analysing DNA 

methylation array data, although M values do not always meet the assumption of 

regression tests [146].  

 

DMR are genomic regions in which DNA methylation is consistently positively or 

negatively associated with a phenotype or exposure and the identification of DMRs is 

very important for understating the etiology of diseases [147]. Compared to methods 

for identifying DMP, there are fewer methods for identifying DMR because for 

identifying DMP the methods for identifying differentially expressed genes can be used 

for reference. The package bumphunter separates probes into clusters based on their 

positions in the genome, with beta values of one probe in a specific position are fitted 

in a linear model to estimate the loess smooth function with each point weighted. 

Statistical uncertainty of each estimated DMR are tested using bootstrap or 

permutation tests [148]. Family wise error rate (FWER) [149] for each DMR represents 

the significance of the DMR by comparing permutated DMR to the observed DMR. 

However, by using the loess method, bumphunter filters out regions with sparse site 

density, so the result form bumphunter is affected by false negatives [150]. 
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Conversely to the Probe Lasso method implemented in ChAMP package [136], M 

values are first fitted into a linear model using limma package for differentially 

methylation analysis at the probe level. Flexible windows for identifying DMR are then 

generated according to genetic and epigenetic annotations of each probe of the 

methylation array. Differentially methylated probes fall into 28 genetic/epigenetic 

categories including 7 gene features: 1500bp of a transcription start site (TSS1500), 

200bp of a transcription start site (TSS200), 5 prime untranslated regions (5’UTR), first 

exons of genes (1stExon), gene body (Body), 3 prime untranslated regions (3’UTR) 

and intergenic regions (IGR), and 4 CGI relations (Island, Shore, Shelf and Open sea). 

Dynamic window/lasso sizes (28 windows) are assigned to each genetic/epigenetic 

category based on the difference of probe spacing features between these categories 

[151]. For example, within 200bp of a transcription start site (TSS200), the probe 

density is higher than probe density in 3’UTR regions, so smaller windows (7~24bp) 

are used for TSS200, whereas probes on 3’UTR regions are combined in a bigger 

window (69~1949bp) [151]. If the gap between two DMR is less than a specific use 

defined threshold (normally 1000bp, since DNA methylation sites within 1000 bp have 

been shown to be significantly correlated [152]), the two DMR were merged. Stouffer’s 

method is then used to combine and estimate the final p-values for DMR which are 

then adjusted for multiple tests. 

 

For DMRcate method, standard linear models (use limma) are first applied to M values 

to analyse differential methylation at the probe level [150]. The signed )  statistics 

between two groups from limma for each CpG cite are transferred to unsigned F 

statistics which is used in the following steps. Gaussian smoothing instead of loess in 

bumphunter is used for weighing and smoothing the per-CpG-site test statistics. The 



Chapter 1 Introduction 

 

29 

Gaussian smoothed test statistics are then modelled by a scaled chi-squared random 

variable. For each chromosome, two smoothed estimates are computed: one 

weighted and one not, for a null comparison. The two estimates are compared via a 

Satterthwaite approximation [153] and a significance test is calculated at all hg19 

coordinates where the probes map to. Finally, nearby significant CpG sites that are at 

most l bp (usually l=1000) between each other and had FDR-corrected p-values 

smaller than 0.05 (cutoff of p-values was automatically determined by the number of 

significant CpGs returned by limma; a small p-value means the probe is in a location 

surrounded by many other probes) are agglomerated as DMR [150]. For an overall 

significance metric per DMR, Stouffer’s method is used to combine FDRs derived from 

limma to estimate p-values for each DMR. 

 

There are advantages and disadvantages of these methods for detecting DMR. 

Bumphunter normally has less overlapping results with other methods [150, 154]. 

Bumphunter mainly detects DMR with methylation changes in the same direction 

(either hyper- or hypo-methylated) and the DMR should be long enough to be identified 

by loess smoother, which lead to false negative results [155]. Probe Lasso method 

considers the biological features of DNA which is the advantage of this method [151], 

while the drawback is that the true DMR that have multiple annotations can be split 

and consequently reducing the sensitivity of the method [150]. Compared to 

Bumphunter and Probe Lasso, DMRcate is more sensitive to DMR, while the 

limitations of DMRcate are: DMRcate could only compare 2 categorical variables (e.g. 

case & control). In Chapter 2, we recommend that using different methods with the 

same data set to detect DMR because they can be complementary to one another, 

which is also proved in previous study [147]. 
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1.5.2 Partially methylated domains and imprinted genes 

 

As previously mentioned above, the placenta is unique in that it contains partially 

methylated domains, which are characterised as large hypomethylated regions in the 

genome. At present, there is no method developed for identifying PMDs using EPIC 

or 450K array data since array data has low coverage compared to data from WGBS 

[156]. There are several methods to identify PMDs with whole genome bisulfite 

sequencing (WGBS) including using a sliding window approach to identify PMDs [157, 

158], using two states Hidden Markov Model (HMM) to identify PMDs [159, 160] and 

recently, the random forest classifier is also used to identify PMDs [161].  

 

Imprinted genes are very important for the function and normal development of 

placenta [162]. Imprinted genes and imprinting control regions are identified using 

different methods by different research groups. Using 450K array data from diandric 

(homologous) and digynic triploid (containing more than two paired sets of 

chromosomes) placenta samples, imprinted DMRs were identified [163]. Imprinting 

control regions are also identified by DMRs between samples from imprinting 

disorders and healthy controls [164]. All the imprinted genes identified using single-

cell sequencing data and imprinting control regions (ICRs) identified using WGBS data 

[165, 166] are listed at the website: http://www.geneimprint.com/site/genes-by-

species.  

  



Chapter 1 Introduction 

 

31 

1.5.3 Quality control of array data and placenta tissue samples  

 

There are methods to detecting the failed samples and probes caused by the variation 

during library preparation and array processing. For example, the sample-dependent 

control probes in array were used to check the quality of bisulfite conversion for type I 

and II assays, non-polymorphic performance, specificity of matching type I and II 

probes and the system background [134]. Undetected probes and failed samples can 

be filtered out using the cut-offs for detection p values [167].  

 

Comparing to quality control of array processing steps, there are less methods for 

quality control of samples. The samples that mixed with other tissue types can 

influence the accuracy of DNA methylation analyses. Previous studies take advantage 

of the DNA methylation of SNP sites to estimate the purity of samples and highlighted 

the importance of assessing sample purity as a quality control step [168]. Whether this 

method is suitable to identify mixed placenta samples was investigated in Chapter 3, 

which is published in Placenta [169]. 

 

1.6 Application of DNA methylation analyses 
 

1.6.1 Biomarkers 

 

Biomarkers are measurements of the association and interaction between biological 

system and potential adverse factors such as poisons. These measurements can 

reflect the changes of tissue functions or physiology or changes at cell and molecular 

level [170]. A lot of features can be used as biomarkers including blood pressure, blood 
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and saliva, these biomarkers were used to predict clinical outcomes, environmental 

exposure and future health. The most important issue for now is confirming the 

association between the biomarker and the clinical outcome. 

 

Biomarkers from placenta include RNA-based, DNA-based and protein-based 

biomarkers, could be used for diagnosing and predicting some pregnancy 

complications such as PE and PTB [171, 172]. The profiling of transcriptome enables 

the improvement of clinical diagnoses. For example, by profiling the gene expression 

of placenta from normal and complicated pregnancies, Leavey et al. identified different 

placenta phenotypes and 3 of them are related to PE [173]. However, the limitation of 

using RNA as biomarkers for pregnancy outcomes is that the placenta is difficult to 

sample in an ongoing pregnancy, hence the need to find biomarkers in maternal blood 

that reflect placental function [174]. Since it is hard to sample placenta, the non-

invasive tests using blood samples or other bodily fluids are more popular. The 

proteins in maternal serum including pregnancy associated plasma protein-A (PAPPA), 

placental growth factor (PIGF), human chorionic gonadotropin (hCG), inhibin Subunit 

Alpha (INHA) and soluble fms-like tyrosine kinase-1 (sFLT1) are widely used to predict 

poor pregnancy outcomes [175]. Fetal cell-free DNA in maternal blood is derived from 

the placental syncytiotrophoblast, and it is a DNA based biomarker that is very 

accurate in screening trisomies [176]. 

 

DNA methylation of placenta, maternal blood (including plasma or buffy coat) can be 

used for predicting future child health or the intrauterine environment for early 

intervention. Studies have shown that the adverse influence on epigenome from early 

fetal environment can be prevented or reversed [177]. Through the epigenetic 
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biomarkers from early pregnancy, it is possible to not only identify pregnancy 

complications that potentially develop into severe disease in early gestation but also 

develop Intervention strategies that can target and reverse the epigenetic changes 

[177]. 

 

1.6.2 Prediction of gestational age, sex, ethnicity, environmental exposure, 

disease and gene expression 

 

Studies so far indicate that DNA methylation profile could be used to predict age, 

gestational age (GA), sex, ethnicity, environmental exposure, disease and gene 

expression [112, 178]. Using DNA methylation array datasets data sets of 8000 

samples from 51 healthy tissues and cell types, Horvath et al. identified 353 DNA 

methylation sites (probes selected from common probes between 450k and 27k array 

platform) to form the epigenetic clock using elastic net regression model. This 

epigenetic clock can be used to predict age and also estimated the potential altered 

aging process in disease [179]. It is important to notice that Horvath epigenetic clock 

is established using probes in common between 450K and 27K array, it may not be 

the fully optimised epigenetic clock for EPIC arrays [180]. 

 

Gestational age (GA) is used as a sign for fetal development by researchers and 

clinicians. Previous study showed that DNA methylation of neonatal cord blood and 

placenta can be used for predicting GA [181]. DNA methylation profile at birth were 

predictors of GA [182]. However, epigenetic clocks derived from cord blood or other 

tissues do not accurately estimate GA in placental samples. Studies also showed that 
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DNA methylation of placenta across gestation can be used to predict GA accurately 

[15, 183]. 

 

DNA methylation pattern of sex chromosomes of women is special because of the X 

chromosome inactivation [184]. Since DNA methylation in sex chromosomes is 

dramatically different between female and male, it can accurately predict the sex of 

samples [185]. Methods that estimate sex are based on the intensity measures of DNA 

methylation sites on the X and Y chromosomes respectively [134]. Although the 

differences of DNA methylation between female and male samples mainly exist on the 

X chromosome, it has also been shown that sex also influences the methylation of 

autosomal genes [186].  

 

Recently, the DNA methylation profile is used to predict ethnicity for placenta samples. 

Yuan et al. developed the ethnicity classifier based on elastic net model which can be 

used for predicting ethnicity when the meta data of the public data is not complete. 

The ethnicity predictor is developed based on DNA methylation sites on 450K arrays 

and about 50% of the sites consist of the predictor are associated with genetic 

polymorphisms [187]. 

 

DNA methylation is also can be used to predict environmental exposures [112]. For 

example, air pollution is correlated with increased DNA methylation of placenta [188]. 

Maternal smoking also may alter DNA methylation of placenta and maternal blood 

[189]. As the burden of environmental exposures such as air and water pollution 

increased, altered DNA methylation caused by pollutants can be good indicators. 
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Moreover, DNA methylation profile is also used to predict gene expression. As DNA 

methylation especially the change of DNA methylation at gene promoters were usually 

negatively correlated with gene expression. Instead of elastic net regression that is 

usually used for predicting age and ethnicity, the predictor of gene expression is 

established using least absolute shrinkage and selection operator (LASSO) regression, 

however, the power of this predictor may change with the changing of tissue or cell 

types [190].  

 

1.7 Summary 
 

The overall aim of this thesis is to use bioinformatic methods to establish an analytic 

pipeline and profiling DNA methylation in placenta from terminated pregnancies of 

early gestation and the corresponding maternal leukocytes. Adopting suitable 

methods in the profiling pipeline will allow us to have results that can be interpreted 

properly. The quality control method of detecting placenta tissue purity was 

established and improved in this study. The analyses focusing on DNA methylation 

data from EPIC arrays and the corresponding RNA sequencing data to understand 

the regulatory functions of DNA methylation changes in placenta. The DNA 

methylation profile of matched maternal leukocytes were also investigated aiming at 

finding relevant biomarkers associated with the changing of phenotypes of placenta 

and maternal status. 
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2 Comparison of methods for region-based differential 
methylation analysis for Illumina EPIC arrays 

 

Abstract 

 

DNA methylation arrays, such as the Illumina Infinium® MethylationEPIC BeadChip, 

are a cost-effective way to assess DNA methylation across large populations because 

they cover all the important regulatory elements. A number of Bioinformatics methods 

have been developed to analyse these arrays. However, there are few studies that 

comprehensively benchmark the performance of common statistical methods that are 

used for EPIC arrays. To help researchers choose optimal methods when doing 

differential methylation analysis, we conducted an evaluation of three methods for 

identifying differentially methylated regions (DMRs) with particular attention to the 

investigation of suitable cutoff parameters for defining DMRs and the performance of 

identification methods. Results showed that DMRcate detected more DMRs than 

bumphunter and Probe Lasso and the identified DMRs overlapped with DMRs 

identified by the other two methods. The output results of these methods varied when 

parameters were changed, especially for Probe Lasso because it uses flexible 

windows to identify DMRs instead of loess or kernel smoothing methods. Overall, the 

DMRcate method consistently detected more true DMRs than the other two methods 

making it a good choice of DMR finder in scenarios where the DNA methylation 

changes between groups are relatively small. 

 

Keywords: DNA methylation, EPIC array, DMR identification, Comparison 
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2.1 Introduction 

 

DNA methylation is one of the most studied epigenetic modifications that are heritable 

traits without the changing of underlying DNA sequences. The most widely 

characterised DNA methylation process is the addition of a methyl group at the 5th 

carbon of the cytosine resulting in the 5-methylcytosine (5-mC). When located at gene 

promoters and enhancers, DNA methylation potentially represses gene expression [1]. 

DNA methylation also plays important roles in determining tissue-specific gene 

expression, chromosomal stability, gene imprinting, as well as X chromosome 

inactivation in females [2]. In human disease, the DNA methylation patterns are altered, 

especially for cancer cells [3]. Robust and reliable techniques are critical for obtaining 

the DNA methylation profiles of different cells and tissue types and to make sure these 

profiles are compatible and allow data mining and result comparison for researchers 

all around the world  [4]. 

 

While whole-genome bisulfite sequencing (WGBS) is the gold standard for measuring 

DNA methylation, the high cost of WGBS limits its use in studies with large sample 

size. Array-based technologies provide an economical solution to assessing large 

numbers of samples, being high-throughput and widely adopted [5]. For example, 

platforms such as the Illumina Infinium® HumanMethylation450 BeadChip (450K array) 

and the Illumina Infinium® MethylationEPIC BeadChip (EPIC array) are commonly 

used in DNA methylation experiments. EPIC arrays include more than ninety percent 

of the 450K array probes [4] and have almost twice the number of cytosine positions 

(865859 sites) with these additional probes targeting sites in regulatory regions 

identified by ENCODE [6] and FANTOM5 [7] projects. 
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In a case-control experiment, differences between conditions can be assessed by 

identifying Differentially Methylated Position (DMP) and Differentially Methylated 

Regions (DMRs) defining a single CpG site or entire region displaying differences. The 

identification of DMPs and DMRs may be associated with a change in phenotype and 

can be either directly or indirectly linked to the variance in gene expression [8]. DMPs 

were widely used as biomarkers for disease, non-invasive testing or for predicting age 

[9-11]. Except for DMPs at SNPs, DMPs are not always as biologically meaningful as 

DMRs because DNA methylation changes at gene promoter regions or imprinting 

control regions may canonically influence gene expression [12]. Many DMRs have 

been found in the developmental stages involved in cell proliferation and differentiation 

[13] and in the cell reprogramming process [14]. Some DMRs are related to tissue-

specific gene expression [8]. Therefore, it is critical and fundamental to detect DMRs, 

especially those in functional regions such as promoters and enhancers that may be 

associated with transcriptional regulation. 

 

Methods for identifying DMRs include aggregating the information of DNA methylation 

sites within a predefined region (such as Probe Lasso) or directly defining DMRs with 

regression models (such as DMRcate and bumphunter) [15]. In this study, we 

investigated the performance of methods for detecting DMRs, and identified important 

advantages and shortcomings of each method. These will provide insights into how to 

choose an appropriate method for differential methylation analysis using EPIC array 

data.  
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2.2 Materials and Methods 

 

2.2.1 Ethics statement 

 

Prior to collection of placental tissue samples, written, informed consent was obtained 

from all subjects involved in this study. Collection of placental tissue from elective 

termination of first and second trimester pregnancies was approved by the Queen 

Elizabeth Hospital and Lyell McEwin Hospital Human Research Ethics Committee 

(TQEH/LMH/MH and HREC/16/TQEH/33).  

 

2.2.2 Sample collection  

 

Placenta samples were obtained from elective terminations from the Pregnancy 

Advisory Centre at Woodville, South Australia. The gestational age was determined 

using transabdominal ultrasonography. Females with infection, endocrine 

abnormalities, antiphospholipid syndrome or other known complications were 

excluded from the study. Placenta samples were collected and dissected within 15 

minutes of termination of the pregnancies and the regions of villous tissue were 

isolated [16]. The same type of tissue (placental chorionic villous tissue) was collected 

from all women bearing in mind the tissue specificity of DNA methylation [17]. Villous 

tissue for DNA extraction was isolated and then being stored at -80°C until DNA was 

extracted. 
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2.2.3 Array processing 

 

DNA was extracted from placental tissue samples using a modified version of the TES 

protocol [18]. For each sample, 1 µg of DNA was sent to PathWest Laboratory 

Medicine (QEII Medical Centre, Perth, Western Australia) for bisulfite-conversion and 

hybridisation to the Illumina Infinium® MethylationEPIC BeadChip according to the 

manufacturer’s instructions.  

 

2.2.4 Algorithms for identifying differentially methylated regions (DMRs) 

 

Three methods were tested for identifying DMRs (Table 2.1). Bumphunter, Probe 

Lasso and DMRcate methods are all based on linear models, so M values (logit 

transformed percentage of DNA methylation) instead of beta values (percentage of 

DNA methylation) are chosen as input values. The difference of these three methods 

is focusing on how the aggregate significant probes into regions. In Bumphunter 

method, probes were separated into clusters based on their positions on genome, then 

the M values of each probe in their specific position was fitted in a linear model (	,%& =

	-.)&/ + 	1.)&/2% + 3.)&/4% + 5&6% +	7%! ) 1  to estimate 1.)&/ . 1.)&/  was then used to 

estimate the loess smooth function	1()) with each point weighted. Candidate regions 

were generated using contiguous runs of measurements for which 1()) > ; or 1()) <

; where K could be a user defined threshold. Statistical uncertainty of each estimated 

 
1 The variable !" denotes the location on the genome of the "-th locus, # denotes each individual 
probe, 	%#" is the M value of one probe at "-th location.	&'!"( is the average DNA methylation of control 
group, ) is the variable of interest, * is the known confounder, + is the unmeasured confounder 
estimated by sva package, and the residuals are assumed to be normally distributed with 
,#" 	~	.(0, 2$'!"(). 
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DMR were tested using bootstrap or permutation tests as the last step [19]. Family 

wise error rate (FWER) [20] of each DMR represented the significance of DMR (by 

comparing permutated DMRs to the observed DMRs).  

 

Probe Lasso method first uses M values to fit into a linear model for differentially 

methylated sites. As the second step, flexible windows for identifying DMRs were 

generated according to genetic and epigenetic annotations of each probe on the EPIC 

array. Dynamic window/lasso sizes were assigned to each category based on the 

difference of probe spacing features between these categories [21]. Overlapping and 

neighbouring of lassos (or windows) were merged if they were separated by less than 

the user specified threshold. A DMR was identified when merging ceased. Stouffer’s 

method was used to estimate p-values for DMRs.  

 

In DMRcate method, standard linear models were first applied to M values to analyse 

differential methylation at probe level. The signed ) statistics between two groups from 

limma for each site were transferred to unsigned F statistics ()' ). The Gaussian 

smoothed test statistics were then modelled by a scaled chi-squared random variable 

=%>(%'  (=% and ?% were constants chose to match the mean and variance of smoothed 

test statistics). For each site, two smoothed estimates were computed: one weighted 

and one not, for a null comparison. The two estimates were compared via a 

Satterthwaite approximation [22]. Finally, nearby significant sites that were at most l 

bp (l is a use defined value) from each other and had FDR-corrected p-values smaller 

than 0.05 were agglomerated as DMRs [23]. Stouffer’s method was used to estimate 

p-value of each DMR. 
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Table 2.1 Methods for identifying DMRs. 
Name Package Package URL Program language Ref 
Bumphunter minfi https://bioconductor.org/packages/r

elease/bioc/html/minfi.html 
R [19] 

Probe Lasso ChAMP https://bioconductor.org/packages/r
elease/bioc/html/ChAMP.html 

R [21] 

DMRcate DMRcate https://bioconductor.org/packages/r
elease/bioc/html/DMRcate.html 

R [23] 

 

2.2.5 Visualisation of results 

 

The visualisation of the results in this study was accomplished using R packages 

VennDiagram [24] and ggplot2 [25].  

 

2.2.6 Analyses code available: 

 

Data was analysed on a 2016 MacBook Pro running a 2.9 GHz Intel Core i5 processor 

with 8 GB 2133 MHz LPDDR3. Data were processed using programming language R 

with R version 3.6.0 (2019-04-26) [26]. The codes related with this study are available 

in GitHub: https://github.com/QianhuiWan/Methods_DNAm. 

 

2.3 Results 

 

2.3.1 Selection of samples and parameters used in each method 

 

The public data sets including control and NNMT overexpressed samples of WI-38 

fibroblast cell line were obtained from GEO database (GSE126672) [27] because the 

samples from a cell line were considered to have more similarities between replicates 
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than placenta samples from different individuals. The performance of DMR methods 

were first tested based on this dataset because there is a large DNA methylation 

change between the control and overexpressed groups. All data were from the Illumina 

Infinium® MethylationEPIC platform (Table 2.2). EPIC array data of twelve placenta 

samples from first and second trimester (Table 2.3) were selected and used to verify 

the result obtained from public data sets. 

 

We tested a variety of functions and parameters listed in Table 2.4 for identifying 

DMRs. First, DMRs were detected using default parameters of each method. Second, 

according to a previous study [28], additional optimised parameters (underlined in 

Table 2.4) of each method were used for DMR analyses. Comparable parameters with 

the setting of 500 bp as the minimum distance (bp) between neighbouring DMRs were 

also compared using these data. Third, the comparable parameters with the setting of 

500 bp as the minimum distance (bp) between neighbouring DMRs were also tested 

to compare these methods more closely.  

 

Table 2.2 Public data sets used in this study. 
GEO accession Cell line 
GSM3611046 WI-38 fibroblasts control 
GSM3611047 WI-38 fibroblasts control 
GSM3611048 WI-38 fibroblasts overexpressing NNMT 
GSM3611049 WI-38 fibroblasts overexpressing NNMT 

 

Table 2.3 Placenta samples used for this study. 
Tissue Batch Trimester Fetal sex Gestation 

(weeks’) 
Placenta 1 First F 8 
Placenta 1 Second F 14 
Placenta 1 Second M 16 
Placenta 1 Second M 16 
Placenta 1 Second M 13 
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Placenta 1 First F 6 
Placenta 1 First F 7 
Placenta 2 Second F 15 
Placenta 2 Second F 14 
Placenta 2 First M 8 
Placenta 2 First F 6 
Placenta 2 First M 7 

 

Table 2.4 Functions and parameters used for comparing methods. 
Name Function Default parameters Optimised parameters Comparable parameters 
Bumphunter bumphunter() nullMethod="bootstrap", 

smooth=FALSE, 
useWeights=FALSE,  
maxGap=500, 
pickCutoffQ=0.99, 
B=5, 
minNum=7 

nullMethod="bootstrap",  
smooth= TRUE,  
useWeights= TRUE,  
maxGap=250, 
pickCutoffQ=0.95, 
B=5, 
minNum=2 

nullMethod="bootstrap", 
smooth=TRUE, 
useWeights=TRUE, 
maxGap=500, 
pickCutoffQ=0.99, 
B=5, 
minNum=2 

Probe 
Lasso 

Champ.DMR() minDmrSep=1000, 
meanLassoRadius=375, 
minProbes=7 

minDmrSep=1000, 
meanLassoRadius=1000, 
minProbes=2 

minDmrSep=500, 
meanLassoRadius=1000, 
minProbes=2 

DMRcate dmrcate() lambda = 1000,  
C = 2,  
min.cpgs = 2 

lambda = 500, 
 C = 5,  
min.cpgs = 2 

lambda = 500,  
C = 5,  
min.cpgs = 2 

 

2.3.2 EPIC array data analysis 

 

2.3.2.1 Quality control 

 

The quality of the EPIC array data was assessed using minfi package. Scatterplots of 

median unmethylation (Unmeth) signal versus median methylation (Meth) signal 

values were generated for assessing quality for each sample. Good samples clustered 

together, while failed samples tend to separate and had lower median intensities [29]. 

In addition, the sample-dependent control probes in the EPIC array were used to 

check the quality of bisulfite conversion for type I and II assays, non-polymorphic 

performance, specificity of matching type I and II probes and the system background. 
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2.3.2.2 Probe filtering and normalisation 
 

Failed and unwanted probes were filtered for data from the WI-38 cell line. The 

removed failed probes included 1466 probes with detection P > 0.01, 2806 probes 

with probes < 3 beads in 5% of the 4 samples, 167592 probes with SNPs at CpG/SBE 

sites on probes [29], and 42999 cross-reactive probes [30]. Probes on sex 

chromosomes were kept for samples from WI-38 cell line because they are all female. 

In total, 214863 probes were removed, and 651973 probes remained for subsequent 

processing.  

 

For 12 placenta samples the failed probes removed included 4877 probes with 

detection P > 0.01, 40128 probes with probes < 3 beads in 5% of the 12 samples, 

157805 probes with SNPs at CpG/SBE/SNP sites on probes [29], and 41365 cross-

reactive probes [30]. 15181 probes on X/Y chromosomes were also removed to 

decrease the disturbance variables. In total, 259356 probes were removed, and 

606530 probes remained for subsequent processing.  

 

Filtered data were pre-processed with ENmix package to remove background noise 

and correct dye bias [31]. Regression on logarithm of internal control probes (RELIC) 

from Enmix package was used for dye bias correction to improve accuracy of 

methylation beta value estimates [32]. The corrected data were normalised with Beta-

mixture quantile (BMIQ) normalisation method implemented in ChAMP package [33]. 

The normalised data were used for downstream analysis. 
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2.3.2.3 Method comparison workflow 

 

Pre-processing and DMR analyses of EPIC array data were accomplished and Figure 

2.1 shows the overall workflow of the analyses in this study. After data pre-processing 

and normalisation, the three methods were used for identifying DMRs. Different 

aspects of these methods were compared, including number of true DMRs identified, 

number of DMRs overlapped with promoters and enhancers, length of the detected 

DMRs, common DMRs identified across different methods and time used for 

identifying DMRs. 
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Figure 2.1 Overall workflow of the analyses. 
 

2.3.3 Accuracy and annotation of identified DMRs 

 

Since change of mean beta values (percentage of DNA methylation) higher than 0.2 

(|mean∆β| > 0.2) between groups were considered as biologically meaningful DNA 

Quality control 

Background and dye-bias correction 

Probe filtering 

DMR identification 

DNA methylation data of 4 samples from GEO database and 12 
placenta samples from our laboratory 

Probe Lasso  
(linear regression + flexible 

boundaries + Stouffer’s 
method)  

DMRcate 
(linear regression + Gaussian 
smoother + Stouffer’s method)  

Bumphunter 
(linear regression + loess 
smother + bootstrapping)  

Normalisation 

Comparisons of methods including:  
• Number of DMRs identified with delta beta > 0.2 
• Number of DMRs overlapped with promoters and enhancers 
• Benchmarking of different methods with different parameters 

o Length of DMRs 
o DMRs identified in common 
o Time used for detecting DMRs 
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methylation changes detected by EPIC arrays [34, 35], the number of DMRs (FWER 

or Stouffer’s p values < 0.05) identified with mean beta value differences greater than 

0.2 were considered as true DMRs in this study. From the detailed workflow using data 

from WI-38 cells, bumphunter with default parameters had 99 DMRs called, which 

decreased to 5 and 3 respectively when optimised and comparable parameters were 

used (Table 2.4). Probe Lasso method called 3 DMRs when using default parameters, 

which increased to 3180 and 3211 when optimised and comparable parameters were 

used (Table 2.4). DMRcate detected 3529 DMRs with default parameters and the 

number increased to 4516 when using optimised and comparable parameters (Table 

2.4).  

 

All DMRs (100%) called by bumphunter with default and comparable parameters have 

mean beta values changes higher than 0.2, which decreased to 40% when using 

optimised parameters. Probe Lasso method has 2 out of 3 DMRs (67%) with mean 

beta values changes higher than 0.2 when using default parameters. This decreased 

to 4.2% and 4.1% when optimised and comparable parameters were used. DMRcate 

detected 395 out of 3529 DMRs (11%) with mean beta values changes higher than 

0.2 when using default parameters and the percentage increased to 15% when using 

optimised and comparable parameters. 

 

In order to know whether these true DMRs (|mean∆β| > 0.2) overlapped with regulatory 

regions such as promoters and enhancers, the number of DMRs overlapped with 

human promoters and enhancers was calculated. Bumphunter with default 

parameters had 9 DMRs overlapped with promoters, which decreased to 2 when 

optimised and comparable parameters were used. There was no DMR identified by 
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Bumphunter that overlapped with enhancers. Probe Lasso method has 1 DMR that 

overlapped with promoters when using default parameters, which increased to 35 

when optimised and comparable parameters were used. There are 7 DMRs identified 

by Probe Lasso that overlapped with enhancers. DMRcate detected 34 DMRs that 

overlapped with promoters and 4 DMRs overlapped with enhancers with default 

parameters. The number of DMRs that overlapped with promoters increased to 41 and 

the number of DMRs overlapped with enhancers decreased to 1 when using optimised 

and comparable parameters (Table 2.5). 

 

The results show that Probe Lasso detected less percentage of DMRs with mean beta 

value difference greater than 0.2 than DMRcate and bumphunter. Bumphunter 

identified fewer DMRs but the percentage of true DMRs is higher than for the other 

two methods. The results show that there were no DMRs that overlapped with 

enhancers when using bumphunter method. More DMRs on promoters rather than 

enhancers were detected by these methods. 

 

Table 2.5 Comparison of accuracy and annotation of identified DMRs. 

 

  

Name Statistic 
used for 
calculating p 
values for 
DMRs 

Parameters Number 
of DMRs  

Number of 
DMRs  
(|mean∆β | 
> 0.2)  

Number of 
DMRs 
overlapped 
with 
promoters 

Number of 
DMRs 
overlapped 
with 
enhancers 

bumphunter Familywise 
error rate 
(FWER) 

Default 99 99 (100%) 9 0 
Optimised 5 2 (40%) 2 0 
Comparable 3 3 (100%) 2 0 

Probe Lasso Stouffer’s 
method 

Default 3 2 (67%) 1 0 
Optimised 3180 133 (4.2%) 35 7 
Comparable 3211 133 (4.1%) 35 7 

DMRcate Stouffer’s 
method 

Default 3529 395 (11%) 34 4 
Optimised 4516 691 (15%) 41 1 
Comparable 4516 691 (15%) 41 1 
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2.3.4 Length of DMRs identified by different methods 

 

The variation of the length of identified DMRs using different methods was compared 

as one aspect reflecting the accuracy of methods. DMR length identified by 

bumphunter is shorter when using the default parameter than using optimised and 

comparable parameters. DMR length identified by Probe Lasso is more variable with 

optimised and comparable parameters than default parameters. DMR length identified 

by DMRcate is stable between three different parameter settings. DMRs identified by 

Probe Lasso are always longer than DMRs identified by the other two methods and 

the changing of parameters influenced Probe Lasso more than Bumphunter and 

DMRcate (Figure 2.2). 

 

Figure 2.2 Length of DMRs identified by the three methods under default, optimised 
and comparable parameters. 
 

2.3.5 Overlapped regions identified by the three methods 

 

DMRs identified by different methods were not entirely the same but had overlapping 

regions. The overlapping of DMRs detected by three methods with P value smaller 

than 0.05 and mean beta value changes greater than 0.2 were investigated. When 
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using default parameters, there were 39 overlapped regions between DMRs identified 

by Bumphunter and DMRcate, 2 DMRs identified by Probe Lasso all overlapped with 

DMRs identified by DMRcate and there were no DMRs identified in common by all 

three methods (Figure 2.3A). The proportion of overlapped DMRs increased when 

using the optimised and comparable parameters, 74 DMRs were identified by both 

Probe Lasso and DMRcate, but only 1 DMR was identified by all three methods (Figure 

2.3B-C).  

 

Figure 2.3 Overlap in identified DMRs using the three methods with default (A), 
optimised (B) and comparable (C) parameters. 
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2.3.6 Benchmarking of each method for DMR identification 

 

To investigate which method for identifying DMRs is more computationally efficient, 

we tested the time used for each method using the public data sets of the cell line 

(Table 2.5 and Figure 2.4). All 651,973 EPIC array sites after the filtering of failed 

probes were used for benchmarking and the R package microbenchmark [36] 

calculated the mean time used for each method by repeating each method 5 times. 

Under default parameters, the mean time used to detect DMRs is 0.05, 0.0043 and 

0.012 hours, respectively for bumphunter, Probe Lasso and DMRcate. The time 

increased to 0.64, 0.0079 and 0.013 hours when using optimised parameters, and 

slightly increased to 0.70, 0.0080 hours for bumphunter and Probe Lasso when 

comparable parameters were used (Table 2.6). Bumphunter took more time for 

processing than Probe Lasso and DMRcate which could be because of the 

bootstrapping step for estimating significance of each DMR [19]; the time for analysis 

using bumphunter varies the most with the changing of parameters (Figure 2.4). 

 

Table 2.6 Time used for identifying DMRs with different methods. 
Name Parameters Mean time (hours) Size of the output value 
bumphunter Default 0.05 68.7 MB 

Optimised 0.64 63 MB 
Comparable 0.70 63.2 MB 

Probe Lasso Default 0.0043 6.7 KB 
Optimised 0.0079 951 KB 
Comparable 0.0080 959 KB 

DMRcate Default 0.012 845 KB 
Optimised 0.013 951 KB 
Comparable 0.013 951 KB 
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Figure 2.4 Benchmarking of each method for detecting DMRs. The time of using 
default (A) parameters for each method is shorter than optimised (B) parameters and 
comparable parameters (C). 
 

2.3.7 Verify the performance of DMR methods using data from placenta 

samples 

 

By applying the same three sets of parameters to detect DMRs between placenta 

samples from first and second trimester, we can verify the DMR method comparison 

results obtained from the public data. When using default parameters, there are 21 

overlapped regions between DMRs identified by Bumphunter and DMRcate, no DMRs 

identified by Probe Lasso and there is no DMR identified in common by all three 

methods (Figure 2.5A). The proportion of overlapped DMRs increased when using the 

optimised parameters, 67 DMRs were identified by both Probe Lasso and DMRcate, 
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no DMRs were identified by Bumphunter and there was no DMR identified in common 

by all three methods (Figure 2.5B). With comparable parameters, 67 DMRs were 

identified by Probe Lasso and DMRcate, 2 DMRs identified by Bumphunter were not 

identified by the other two methods and there was no DMR identified in common by 

all three methods (Figure 2.5C). DMRcate still identified the highest number of DMRs 

compared to the other two methods. There are overlapped regions between DMRs 

identified by different methods and the overlapping pattern is similar to the public data 

sets. That is, very few DMRs were identified in common by these 3 methods. When 

using default parameters, Probe Lasso did not identify any DMRs which could be due 

to the default setting that defines a DMR with at least 7 probes while the optimised 

and comparable parameters use a minimum of 2 probes cutoff. The number of DMRs 

identified by bumphunter decreased when changing from default parameters to 

optimised and comparable parameters because a smoother is used to combine 

nearby regions when using optimised and comparable parameters. 
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Figure 2.5 Overlapping of DMRs of placenta samples (first trimester vs second 
trimester) identified by the three methods using default (A), optimised (B) and 
comparable (C) parameters. 
 

2.4 Discussion 

 

As genetic variation can only explain part of the disease mechanisms, DNA 

methylation, as one type of epigenetic variation, is promising in detecting regulatory 

mechanisms associated with environmental exposures and disease risks. So far, the 

development of genome wide DNA methylation profiling techniques enabled the study 



Chapter 2 Comparison of methods detecting DMR 

 

79 

of DNA methylation changes across many samples and tissue types. These DNA 

methylation data need to be properly analysed and carefully interpreted, because 

tissue types, tissue purity, batch effects, control factors and disease group need to be 

considered before and during data processing, and functional relevance needs to be 

demonstrated by further experiments. Region-based differential methylation analysis 

between different cell and tissue types can be an important step during data 

processing. To this end, it is necessary to evaluate the different methods for detecting 

DMRs. Real DNA methylation EPIC data sets were used instead of using the 

simulated data sets because these data can represent the methylome of cell lines and 

tissue types better and avoid some of the bias introduced by simulated data [37].  

 

The different methods with different parameters were first tested by using the public 

data sets from WI-38 fibroblast cell lines and the two groups in this data sets were 

control wild-type cells and NNMT overexpressed cells [27]. Different from cell lines, 

placenta samples were bulk tissue and from different individuals with different weeks 

of gestation. Therefore, it is expected that DNA methylation changes between 

placenta from first and second trimester were not as predictable as that between 

control cell line and genetically modified cell line. 

 

Three methods including bumphunter, Probe Lasso and DMRcate for detecting DMRs 

were compared in this study. These three methods rarely identify precisely the same 

DMRs that have the same start and end bases, since these methods differ in the 

assumptions made and statistical approaches taken [38]. DMRcate was considered 

more sensitive to DMRs because it uses unsigned F statistics and Gaussian 

smoothing [39]. This is more suitable for placenta samples than the other two methods 
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because the DNA methylation changes in placenta are not as dramatic as changes 

between control and overexpressed cell lines. Bumphunter can take known 

confounders and unmeasured confounders as covariates in linear regression, and 

along with a bootstrap analysis on DMR uncertainty, the program can have a longer 

processing time. The Probe Lasso method tends to be more biologically meaningful 

because it has the advantage of using sliding windows based on the biological features 

such as promoters, UTRs and gene bodies, and uses varying size of the lasso 

encompassing them [21]. However, Probe Lasso is not able to adjust batch effects 

and other confounders in the models and it can split some DMRs that straddle multiple 

annotations which could decrease the sensitivity of the method [23]. All three methods 

above were all powerful enough to detect changes in methylation patterns in small 

regions (DMR<2Kb) but they had limited ability to detect large DMRs [39], since large 

DMRs can have lower mean beta value differences between groups that are hard to 

detect. 

 

Identification of DMRs is more data dependent and complex than identifying DMPs, 

as previous studies have detailed, and all three methods are designed for identifying 

DMRs between categorical variables, but they are not suitable for detecting small and 

consistent DNA methylation changes across samples (Mallik et al., 2019). There are 

potential ways that DMR finding may be improved. First, the researchers can filter the 

sites according to the regions that they are focusing on. For example, they can use 

the sites in gene promoters, which can reduce false positive DMRs detected in the 

regions that are not of interest. Second, if the purpose of the study is to identify DNA 

methylation changes in large regions, blockFinder for identifying differentially 

methylated genomic blocks (DMB) is recommended. Third, using EPIC array with data 



Chapter 2 Comparison of methods detecting DMR 

 

81 

from more DNA methylation sites will potentially reduce the false positive DMRs since 

the estimate of mean beta difference in a region with more sites is more accurate than 

a region with few sites detected. In addition, there are more changing parameters that 

need to be considered when identifying DMRs than identifying DMPs, so it is better for 

researchers to test different parameters and choose the suitable parameters to use in 

their study. 

 

In summary, more data sets and simulated datasets could be needed for refining the 

parameters for EPIC array data. The optimised DMR parameters perform best for 

450K array probably not all suitable for EPIC arrays since EPIC array has more probes 

located in the open sea regions. This study will help researchers to select the 

appropriate methods for detecting DMRs in their studies. 

 

2.5 Conclusion 

 

This study compared methods for detecting DMRs using EPIC array and 

recommended using DMRcate for DMR analyses. For detecting large differentially 

methylated blocks and small and consistent changes, other methods need to be 

considered. 
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A B S T R A C T

The purity of tissue samples can affect the accuracy and utility of DNA methylation array analyses. This is
particularly important for the placenta which is globally hypomethylated compared to other tissues. Placental
villous tissue from early pregnancy terminations can be difficult to separate from non-villous tissue, resulting in
potentially inaccurate results. We used several methods to identify mixed placenta samples using DNA methy-
lation array datasets from our laboratory and those contained in the NCBI GEO database, highlighting the im-
portance of determining sample purity during quality control processes.

1. Introduction

The number of studies investigating genome-scale DNA methylation
is growing rapidly. The most popular platforms are DNA methylation
arrays [1]. The placenta is a transient organ that primarily acts to
support fetal differentiation and growth and orchestrates maternal
adaptations to pregnancy [2,3]. Placental DNA is uniquely and globally
hypomethylated, reflecting this organ's early developmental origin and
distinct functions [4,5]. Analysing the placental methylome could
provide information relevant to understanding pregnancy health and
disease [6]. Existing pipelines for processing DNA methylation array
data do not include a quality control step for detecting tissue impurities
[7,8]. We demonstrate that mixed placenta samples, that is placenta
samples that contain a significant amount of surrounding con-
taminating tissue, can be identified from DNA methylation array data,
allowing for sample removal or incorporation of other analytic changes
as appropriate.

2. Methods

2.1. Array data

Thirteen human tissue datasets containing raw IDAT files from
Illumina Infinium HumanMethylation450 (450 K) or
HumanMethylationEPIC (EPIC) array platforms (GPL13534 or
GPL21145) were acquired from NCBI GEO database and our laboratory.
Ten datasets used the 450 K platform (GSE66210, GSE74738,
GSE69502, GSE75196, GSE75248, GSE120250, GSE100197,
GSE98224, GSE71678, GSE66459) [9–18] and 3 the EPIC platform
(GSE115508, GSE113600 [19,20] plus 10 samples from our study,
GSE131945). 410 samples (394 from 450 K platform and 16 from EPIC
platform) were selected: 380 placentas [22 from first trimester, 16 from
second trimester (pregnancy terminations) and 342 from term (un-
complicated pregnancies)], 12 maternal whole blood samples, 11 um-
bilical cord blood, 3 decidua, 2 amnion and 2 chorion (Supplementary
Table 1). For the term samples, only samples from uncomplicated
pregnancies were used in the downstream analyses.
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2.2. Array quality control

Two samples were removed due to low array intensities defined
as< 10.5, one first trimester placenta sample (GSM1617002) and one
maternal whole blood sample (GSM1616993). Probes filtered out in-
cluded: failed probes with detection P > 0.01, probes with fewer than
3 beads in> 5% of all samples [8]; cross-reactive probes [21]; probes
on sex chromosomes and probes with biased DNA methylation signal
due to SNPs at CpG sites, single base extension (SBE) sites and probe
body [22,23]. In all, 408 samples and 301,496 probes common to both
450 K and EPIC arrays were used for downstream analyses. See
Supplementary Methods for additional information.

2.3. Principal component analysis (PCA) and sample clustering

The dye bias correction for filtered data was performed using the
method regression on logarithm of internal control probes (RELIC) from
ENmix package and background subtraction according to tissue types
were performed with the method from ENmix package which models
methylation signal intensities with a flexible exponential-normal mix-
ture distribution, and use out-of-band Infinium I intensities (“OOB”) to
estimate normal distribution parameters to model background noise.
Datasets were normalised using the beta-mixture quantile normal-
ization method [24] to correct for type I and type II probe bias. Control
probes were used to check batch effects between studies. All 408
samples were used to generate the PCA plot which gave an overview of
similarities and differences between samples from different tissue types.

Interquartile range (IQR) of values for samples at PC1 was calculated to
estimate outliers. Using PC1, placenta samples with less than
Q3+1.5IQR were considered pure placenta samples and those samples
with greater than Q3+3IQR were mixed placenta samples. The area in
between Q3+1.5IQR and Q3+3IQR was designated a ‘grey’ zone.
Multivariate unsupervised clustering with mixtures of Gaussian dis-
tributions [25] was performed to estimate the probability of each
sample being a pure placenta sample. The top 2% of probes that were
different between pure and mixed samples (PC1) were selected to in-
vestigate DNA methylation differences between them. M values were
used for the statistical tests based on linear models.

2.4. DNA methylation analyses at partially methylated domains (PMDs)
and placenta-specific imprinting control regions (ICRs)

The genome was tailed by 10 kb non-overlapping bins and mean
Beta values (methylation percentage) of each bin were calculated [5].
Mean Beta values of bins that overlapped with PMDs for pure and
mixed placenta samples were plotted to show the difference between
these samples. Beta values at ICRs [26] for pure and mixed samples
were also plotted. Mann–Whitney U test was used to test the sig-
nificance of change of DNA methylation at PMDs and ICRs between
potentially mixed and pure placenta sample groups. The codes for all
analyses can be found here: https://github.com/QianhuiWan/
MethylationArray_Placenta.

Fig. 1. Analysis of 408 samples from different tissue types. (A) PCA plot using M values for all 408 samples. Trimester: ◻ ︎first, ○second, △term. Tissue types:
placenta (orange), amnion (black), chorion (red), maternal whole blood (grey), decidua (purple), umbilical cord blood (pink). Dashed vertical line marked
Q3+1.5IQR (153.88) and Q3+3IQR (316.01) of PC1. Outliers are at the right side of dashed vertical line (Q3+1.5IQR). (B) PCA plot of samples from first trimester,
second trimester and term were shown respectively. Mixed placenta samples tend to be similar to non-placenta tissues. Samples in dashed green ellipses were
Outlier_T2_1 and Outlier_Term_1. (C) DNA methylation difference between outlier and pure placenta from first trimester, second trimester and term. T1: first
trimester; T2: second trimester.
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3. Results

The PCA plot of 408 samples identified 11 placenta samples as
outliers (Fig. 1A). Clustering of a subset of placental samples to non-
placental samples suggests that these samples may be mixed with DNA
from non-placenta tissue. These samples will be called “mixed placenta
samples” in this report (Supplementary Fig. 1). Five were from first
trimester, one from second trimester and the remaining five were from
term samples (Fig. 1B). Four of the term outliers were previously
identified [14]. Nine placenta sample outliers clustered with decidua,
amnion and chorion and are likely to contain more non-placenta tissue
than the other two samples (Outlier_T2_1 and Outlier_Term_1, dashed
green circle; Fig. 1B). The estimated probability of each placenta
sample being a pure sample is listed in Supplementary Table 2. The top
2% of most variable probes according to PC1, showed that all had
higher DNA methylation in the putative mixed placenta samples com-
pared to the remaining placenta samples (Fig. 1C).

Mixed placenta samples from first trimester, second trimester and
term, showed greater DNA methylation than pure placenta samples at
PMDs (P < 2.2e-16) (Fig. 2A and C). Mixed placenta samples showed
altered DNA methylation compared to pure placenta samples at pla-
centa-specific ICRs (P < 0.05) (Fig. 2B and D and Supplementary
Fig. 2).

4. Discussion

Using publicly available DNA methylation array datasets, as well as
10 samples of our own, we identified outlier placenta villous tissue
samples which clustered with other tissue types and were likely to
contain other tissues, most likely decidua. These outliers had different

DNA methylation profiles at both PMDs and ICRs, indicating they may
contain non-villous tissue, such as hypermethylated maternal decidua
[27]. Placenta samples from early gestation are at particular risk of
being mixed with other tissue types, possibly because the termination
procedures inevitably macerate the tissue. Since these outliers had quite
distinct methylation profiles compared to other placenta samples, they
could potentially influence results, necessitating their removal or down
weighting before further analysis.

Before processing high dimension data from placenta villous tissues,
we recommend checking sample purity in three steps. First, download
the DNA methylation array data listed in Supplementary Table 1 from
NCBI GEO database. Second, apply PCA and unsupervised clustering
using pure placenta samples from GEO database as positive controls and
samples from other tissue types from GEO database as negative con-
trols. Third, if any samples cluster with other tissue types, and the es-
timated probability of the sample being pure placenta is low, the DNA
methylation of placenta PMDs and ICRs needs to be checked to verify
whether these samples should be removed or down weighted.
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3.2 Supplementary information 

3.2.1 Supplementary methods  

3.2.1.1 Sample and probe filtering 

 

Unwanted samples and probes were first filtered out from datasets including samples 

from complicated pregnancies, samples with low quality and unwanted probes. 

Samples with median DNA methylation or unmethylation intensities <10.5 were 

excluded [1]. We also filtered failed probes with detection P>0.01, probes with fewer 

than 3 beads in >5% of all samples [2]; cross-reactive probes [3]; probes on sex 

chromosomes and probes with biased DNA methylation signal due to SNPs at CpG 

sites and single base extension (SBE) sites [4]. In favour of downstream analyses, the 

probes on X/Y chromosomes were removed to reduce sex bias and probes with SNPs 

within probe body (not located at CpG/SBE sites) were also removed [5]. In all, 408 

samples and 310,882 probes common across all samples from both 450K and EPIC 

arrays were used for downstream analyses.  

 

3.2.1.2 Principal component analysis 

 

Since detection sensitivity is delta beta greater than 0.2 (95% confidence level) across 

greater than 90% of the loci for any given pair of samples [6], the top probes which 

were significantly correlated with PC1 and have absolute beta value differences > 0.2 

[6, 7] between pure and mixed placenta samples were selected to investigate whether 

DNA methylation is increased or decreased in mixed samples. There were 6217 

probes in the top 2% probes correlated with PC1, 6071 of these probes have absolute 
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beta value differences > 0.2. In these 6217 probes, 1971 probes were located in PMDs 

(in total 45311 probes in PMDs) and 3 probes located in placenta specific ICRs (in 

total 630 probes in ICRs). 

 

3.2.1.3 Sample quality control with ewastools R package 

 

Methods from ewastools package were used to check the homogeneity of genotypes 

(using SNP probes) for each sample [8]. The theory of genotype checking is one 

sample (or one person/individual) could only have 3 status of DNA methylation (MM 

or MU or UU) for a particular SNP, so the density plot of SNP methylation should be a 

plot with 3 peaks. If there are many SNP probes with methylation between 0%-50% or 

50%-100% for one sample, this sample is likely to have more technical variance (or 

potential contamination from other individuals or other tissue types) than other 

samples that have 3 peaks as expected. (MM: both alleles were methylated (peak at 

100% methylation), often referred to as AA or BB genotype; MU: one allele methylated, 

one allele unmethylated (peak at 50% methylation), often referred to as A/B genotype; 

UU: both alleles were unmethylated (peak at 0% methylation), often referred to as AA 

or BB genotype.) 

 

3.2.1.4 Other statistical analyses 

 

ANOVA F-statistic was used to test the contribution of tissue type, trimester, sex and 

batch groups to PC1/PC2 [9]. Mann–Whitney U test was used to test the significance 

of DNA methylation changes at PMDs and ICRs between potentially mixed and pure 

placenta sample groups [10]. 
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3.2.2 Supplementary figures and tables 

 

 

Figure S3.1 Identification of mixed placenta samples. Clusters identified by 
multivariate unsupervised clustering showed 11 mixed placenta samples were 
clustered with other tissue types instead of placenta. The probability that a sample in 
the data belongs to Cluster 2 was used to estimate the probability of each sample 
being a pure placenta sample. Percentage of placenta for each sample were labelled 
by transparency of the colour. 
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Figure S3.2 DNA methylation of all the placenta specific imprinting control regions 
(ICRs) for placenta samples. Genes that were controlled by corresponding ICRs were 
labelled on x axis. Beta values represent the average percentage of DNA methylation 
for ICRs. Mixed placenta samples were not imprinted like pure placenta samples. 
Mann-Whitney U test were used to test the significance between groups. *P<0.05, 
**P<0.01, ***P<0.001, ****P<2.2e-16. 
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Table S3.1 DNA methylation datasets containing placental tissue samples (n=410) used in this study. 
NO. GEO 

accession 
Platform Number 

of 
samples 

Tissue types Gestational age 
range 
(weeks/trimester) 

Ref. in main 
text 

1 GSE66210 450K 24 Maternal blood cell samples from uncomplicated singleton 
pregnancies (n=12); 
CVS samples from uncomplicated pregnancies (n=12). 

First trimester Lotte et al. [9]   

2 GSE74738 450K 27 Term placental chorionic villous samples from uncomplicated 
pregnancies (n=22); 
Extra-embryonic cell types from uncomplicated pregnancies, 
including amnion (n=2), chorion (n=2), and maternal decidua 
(n=1). 

37.1-41.7  
 

Courtney et 
al. [10] 

3 GSE69502 450K 16 Placental chorionic villous samples from terminated pregnancies.  
Exclusion criteria for control cases included chromosomal 
abnormality, congenital or brain abnormality, or grossly abnormal 
placenta. 

14.5-23.9 Price et al. 
[11] 

4 GSE75196 450K 16 Term placenta samples from uncomplicated pregnancies.  
Placental biopsies were collected from five sites from the fetal side 
of the placenta. 

38-40 Yeung et al. 
[12] 

5 GSE75248 450K 174 Placenta samples from uncomplicated pregnancies. 
All samples were taken from the maternal side of the placenta, 2 
cm from the umbilical cord insertion site, free of maternal decidua 
(Rhode Island Child Health Study (RICHS)). 

Term Paquette et 
al. [13] 

6 GSE120250 450K 44 Term placenta samples from uncomplicated singleton 
pregnancies. Biopsies taken 1 cm below the chorionic plate were 
used for this study. 

38.7±1.5 Choufani et 
al. [14] 

7 GSE100197 450K 19 Term placental chorionic villous samples from uncomplicated 
pregnancies. 

37-40 Wilson et al. 
[15] 

8 GSE98224 450K 9 Term placenta samples from uncomplicated pregnancies (n=9).  
Placental tissue biopsies (1.5 x 1.5 cm cores through the full 
thickness of the placenta, excluding chorionic plate) are collected 
from a site within each quadrant, avoiding areas with obvious 
evidence of thrombosis or other abnormalities when possible 
(RCWIH BioBank). 

38-40 Leavey et al. 
[16]; Wilson 
et al. [15] 

9 GSE71678 450K 54 Term placenta samples from uncomplicated pregnancies. Placenta 
was biopsied adjacent to the cord insertion, removing any 
maternal decidua. 

37.3-42.1 Green et al. 
[17] 
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† CVS: chorionic villus sampling; 450K: Illumina Infinium HumanMethylation450 BeadChip; EPIC: Illumina Infinium HumanMethylationEPIC BeadChip. 
 
Table S3.2 DNA methylation datasets containing placental tissue samples (n=410) used in this study. 

Sample name Tissue types PC1 PC2 Trimester Fetal sex Study Outlier 

Pure placenta 
probability 
(Mclust) 

GSM1622785_Term_8 Umbilical cord blood 1099.64256 -380.41329 Term Female GSE66459 NotPlacenta 3.74E-60 

GSM1622782_Term_5 Umbilical cord blood 1111.07156 -283.16744 Term Male GSE66459 NotPlacenta 1.27E-58 

GSM1622786_Term_9 Umbilical cord blood 1086.55004 -335.16342 Term Female GSE66459 NotPlacenta 1.01E-57 

GSM1622779_Term_1 Umbilical cord blood 1068.90426 -370.14242 Term Male GSE66459 NotPlacenta 5.21E-57 

GSM1622788_Term_11 Umbilical cord blood 1074.80093 -328.82147 Term Female GSE66459 NotPlacenta 1.79E-56 

GSM1622787_Term_10 Umbilical cord blood 1074.05606 -287.81829 Term Female GSE66459 NotPlacenta 2.40E-55 

GSM1622783_Term_6 Umbilical cord blood 1051.31277 -348.53342 Term Male GSE66459 NotPlacenta 7.65E-55 

GSM1622784_Term_7 Umbilical cord blood 1078.32086 -236.66873 Term Male GSE66459 NotPlacenta 2.00E-54 

GSM1622789_Term_12 Umbilical cord blood 1052.78322 -312.43556 Term Male GSE66459 NotPlacenta 4.69E-54 

GSM1622780_Term_2 Umbilical cord blood 1048.27929 -257.20596 Term Female GSE66459 NotPlacenta 2.87E-52 

GSM1622781_Term_3 Umbilical cord blood 1038.89688 -270.49842 Term Male GSE66459 NotPlacenta 8.99E-52 

GSM1616987_8795207029_R06C01 Maternal whole blood 981.397796 -115.60884 First Female GSE66210 NotPlacenta 2.58E-43 

GSM1616986_8795207029_R04C01 Maternal whole blood 1004.19263 -25.204566 First Female GSE66210 NotPlacenta 3.83E-43 

GSM1616992_7668610068_R05C02 Maternal whole blood 981.534471 11.0970071 First Female GSE66210 NotPlacenta 1.39E-40 

GSM1616989_8795207029_R04C02 Maternal whole blood 976.880022 1.47491118 First Female GSE66210 NotPlacenta 1.99E-40 

GSM1616991_7668610068_R04C02 Maternal whole blood 957.884367 11.2502587 First Female GSE66210 NotPlacenta 8.97E-39 

GSM1616997_8795194156_R04C02 Maternal whole blood 963.088232 90.070672 First Female GSE66210 NotPlacenta 1.47E-37 

10 GSE66459 450K 11 Term umbilical cord blood samples from uncomplicated 
pregnancies. 

38-41.6 Fernando et 
al. [18] 

11 GSE115508 EPIC 4 Term placental chorionic villous samples from uncomplicated 
pregnancies. 

37 Konwar et al. 
[19] 

12 GSE113600 EPIC 2 Maternal decidual samples from terminated pregnancies.  Mean gestational age 
= 7.083  

Yu et al. [20] 

13 GSE131945 EPIC 10 Placental chorionic villous samples from terminated pregnancies. 6-9 Our study 
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GSM1616995_8795194156_R01C02 Maternal whole blood 940.088401 87.4688221 First Female GSE66210 NotPlacenta 6.34E-36 

GSM1616996_8795194156_R04C01 Maternal whole blood 924.125899 60.6413811 First Female GSE66210 NotPlacenta 2.71E-35 

GSM1616990_7668610068_R03C02 Maternal whole blood 937.818964 149.643496 First Female GSE66210 NotPlacenta 1.46E-34 

GSM1616988_8795207029_R01C02 Maternal whole blood 924.003717 172.396044 First Female GSE66210 NotPlacenta 3.65E-33 

GSM1616994_8795194156_R01C01 Maternal whole blood 913.902087 197.882087 First Female GSE66210 NotPlacenta 5.29E-32 

GSM1931537_6042308147_R06C01 Decidua 586.283027 -177.42053 Term Female GSE74738 NotPlacenta 7.54E-18 

201414140060_R01C01 Placenta 560.356836 -241.65999 First Female GSE131945 Outlier_T1_5 2.66E-17 

GSM3109408_decidua1 Decidua 511.952529 -128.19929 First Female GSE113600 NotPlacenta 1.92E-13 

201414140063_R06C01 Placenta 554.915234 269.167585 First Female GSE131945 Outlier_T1_4 2.56E-11 

GSM1931538_6042324125_R05C02 Amnion 500.091144 88.8520621 Term Male GSE74738 NotPlacenta 1.11E-10 

201332340153_R03C01 Placenta 516.996928 199.630123 First Female GSE131945 Outlier_T1_3 2.22E-10 

GSM3396872_9992576207_R02C02 Placenta 502.789755 138.806773 Term Male GSE120250 Outlier_Term_5 2.44E-10 

GSM1931540_6042324158_R06C02 Amnion 476.224014 167.660338 Term Male GSE74738 NotPlacenta 4.92E-09 

201414140063_R05C01 Placenta 485.161443 308.41095 First Female GSE131945 Outlier_T1_2 2.71E-08 

201332340153_R01C01 Placenta 430.385117 145.203014 First Female GSE131945 Outlier_T1_1 1.69E-07 

GSM1931542_6042324125_R06C02 Chorion 378.916294 -4.1580731 Term Male GSE74738 NotPlacenta 1.01E-06 

GSM1931544_6042324158_R05C02 Chorion 398.206016 336.481448 Term Male GSE74738 NotPlacenta 2.73E-05 

GSM3396859_9992571127_R03C02 Placenta 317.183037 297.000661 Term Male GSE120250 Outlier_Term_4 0.00281721 

GSM3396835_9992571127_R06C02 Placenta 304.56366 268.62116 Term Female GSE120250 Outlier_Term_3 0.00460935 

GSM1947213_6008581028_R01C01 Placenta 225.950963 -189.88882 Term Female GSE75248 Outlier_Term_1 0.00750981 

GSM3396829_9992571130_R06C01 Placenta 255.362643 248.421983 Term Female GSE120250 Outlier_Term_2 0.05151119 

GSM3109409_decidua2 Decidua 216.547463 -10.72306 First Female GSE113600 NotPlacenta 0.0725266 

GSM1702177_7970368142_R05C02 Placenta 180.219273 -230.88243 Second Female GSE69502 Outlier_T2_1 0.08930114 

GSM3179720_200889820023_R01C01 Placenta -131.39561 564.481443 Term Male GSE115508 Pure 0.16679157 

GSM3396869_9992576160_R03C02 Placenta 122.677331 287.542376 Term Male GSE120250 Pure 0.8942521 

GSM3396839_9992576160_R05C01 Placenta 123.13862 219.282509 Term Male GSE120250 Pure 0.90526337 

GSM3179755_200925700033_R04C01 Placenta -146.56423 342.618981 Term Male GSE115508 Pure 0.91639743 
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GSM3396831_9992576159_R02C01 Placenta 106.031102 238.321292 Term Male GSE120250 Pure 0.93683523 

GSM3396862_9992576022_R03C01 Placenta 111.404075 100.0095 Term Female GSE120250 Pure 0.93716079 

GSM1617003_7668610068_R03C01 Placenta -177.23783 290.267293 First Male GSE66210 Pure 0.93821973 

GSM3179728_200889820024_R01C01 Placenta -153.47057 313.206649 Term Female GSE115508 Pure 0.94210137 

GSM1843078_3999984101_R01C02 Placenta -280.44125 150.553103 Term Male GSE71678 Pure 0.94466312 

GSM1702174_7970368142_R04C01 Placenta 98.9992954 174.870232 Second Male GSE69502 Pure 0.95387285 

GSM3396864_9992576119_R04C01 Placenta 70.7398204 280.340661 Term Male GSE120250 Pure 0.96477681 

GSM2589579_10005833024_R03C02 Placenta -86.127585 339.414493 Term Male GSE98224 Pure 0.96613769 

GSM3396854_9992576159_R04C02 Placenta 74.9294382 239.695504 Term Male GSE120250 Pure 0.9684213 

GSM1947201_5806636027_R03C01 Placenta 20.149125 338.674255 Term Female GSE75248 Pure 0.97141428 

GSM1947208_5806636027_R02C01 Placenta 46.093778 305.724964 Term Male GSE75248 Pure 0.97167267 

GSM2589569_9977525015_R01C02 Placenta -76.381831 332.484067 Term Male GSE98224 Pure 0.97180272 

GSM3396843_9992571114_R01C01 Placenta 81.3121576 154.961098 Term Female GSE120250 Pure 0.97227072 

GSM3396865_9992576022_R01C02 Placenta 74.0747637 138.549627 Term Female GSE120250 Pure 0.97788548 

GSM3396871_9992576119_R05C01 Placenta 46.107981 267.489451 Term Male GSE120250 Pure 0.97794571 

GSM1617005_7668610068_R01C02 Placenta -37.55302 327.482794 First Female GSE66210 Pure 0.97801924 

GSM1702240_9406922026_R04C01 Placenta 21.2287205 298.301688 Second Male GSE69502 Pure 0.97950928 

GSM1702246_9406922117_R04C01 Placenta 12.5871547 306.356693 Second Female GSE69502 Pure 0.97957396 

GSM3396837_9992576119_R01C02 Placenta 26.5543427 289.860139 Term Female GSE120250 Pure 0.97981029 

GSM2589550_10005833037_R05C01 Placenta 35.7860513 271.280439 Term Male GSE98224 Pure 0.98037005 

GSM3396846_9992576033_R02C01 Placenta 22.5704909 287.682639 Term Female GSE120250 Pure 0.98093305 

GSM3396838_9992576119_R03C01 Placenta 30.7843734 262.24553 Term Male GSE120250 Pure 0.98269115 

GSM1947101_6008581008_R06C01 Placenta 47.8952508 -372.99103 Term Female GSE75248 Pure 0.983 

GSM3396836_9992576119_R05C02 Placenta 7.54822156 288.835395 Term Male GSE120250 Pure 0.98310232 

GSM1947112_5806636034_R06C01 Placenta 48.4999943 184.921506 Term Female GSE75248 Pure 0.98536241 

GSM3396860_9992576119_R04C02 Placenta -23.74892 288.705687 Term Female GSE120250 Pure 0.98558333 

GSM1931583_9296930103_R03C01 Placenta -81.505228 275.211623 Term Male GSE74738 Pure 0.98651763 



Chapter 3. Quality control for placenta samples 

 

103 

GSM2589571_10005833037_R03C02 Placenta -17.903047 279.720663 Term Female GSE98224 Pure 0.98658354 

GSM1617007_8795194156_R02C02 Placenta 6.97758692 257.512646 First Female GSE66210 Pure 0.98708958 

GSM1842815_3999984081_R01C01 Placenta 61.0402927 19.1976045 Term Male GSE71678 Pure 0.98755547 

GSM1947237_5859720011_R04C02 Placenta 60.2417358 16.8911165 Term Male GSE75248 Pure 0.98788198 

GSM3396858_9992571114_R06C01 Placenta 43.2856375 160.646687 Term Male GSE120250 Pure 0.98818781 

GSM1702222_9296930154_R03C02 Placenta -4.7591189 257.368205 Second Female GSE69502 Pure 0.98828424 

GSM1947152_5806636035_R06C01 Placenta 48.6754557 122.917215 Term Male GSE75248 Pure 0.98862079 

GSM3396852_9992576159_R05C01 Placenta 8.65387748 239.587924 Term Female GSE120250 Pure 0.98862958 

GSM2674510_9977525015_R03C02 Placenta -185.80865 184.163163 Term Female GSE100197 Pure 0.98868435 

GSM2589544_10005833110_R04C01 Placenta -67.632767 265.587167 Term Female GSE98224 Pure 0.98878833 

GSM2674511_10005833024_R02C01 Placenta -53.472494 266.479923 Term Male GSE100197 Pure 0.98898435 

GSM1843011_3999984005_R05C02 Placenta -409.89184 -114.29458 Term Male GSE71678 Pure 0.98904094 

GSM3396850_9992571127_R05C01 Placenta 22.9096248 207.475153 Term Female GSE120250 Pure 0.98922266 

GSM3396855_9992576119_R03C02 Placenta -21.854436 258.554475 Term Female GSE120250 Pure 0.98928672 

GSM1931587_9285451020_R03C02 Placenta -80.642264 251.303053 Term Female GSE74738 Pure 0.9901617 

GSM1931590_9266441156_R03C01 Placenta -92.171679 245.394109 Term Female GSE74738 Pure 0.99033498 

GSM1947081_5806636079_R03C02 Placenta -69.964035 250.88314 Term Female GSE75248 Pure 0.99057563 

GSM1931588_9296930123_R04C02 Placenta -72.108732 248.966376 Term Female GSE74738 Pure 0.9907389 

201414140063_R08C01 Placenta -92.455336 240.370377 First Female GSE131945 Pure 0.9909429 

GSM2674512_10005833024_R05C01 Placenta -108.39993 230.349804 Term Female GSE100197 Pure 0.99120719 

GSM3396868_9992571127_R02C01 Placenta -57.189294 243.695653 Term Female GSE120250 Pure 0.99150473 

GSM3396857_9992576033_R04C02 Placenta -25.800654 234.390365 Term Male GSE120250 Pure 0.99167877 

GSM1931597_9296930103_R01C01 Placenta -68.578288 240.779813 Term Male GSE74738 Pure 0.99168563 

GSM1617000_8795207029_R02C02 Placenta -23.3982 232.411924 First Male GSE66210 Pure 0.99172636 

GSM1947110_5806636086_R02C01 Placenta 17.2868032 174.726041 Term Male GSE75248 Pure 0.99193574 

GSM3396845_9992576033_R03C01 Placenta -15.818507 223.973453 Term Female GSE120250 Pure 0.99195319 

GSM2674509_9977525013_R03C02 Placenta -45.877543 233.984717 Term Male GSE100197 Pure 0.99229128 
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GSM1931599_9285451020_R01C01 Placenta -77.197788 231.421399 Term Female GSE74738 Pure 0.99242458 

GSM3396830_9992571114_R05C02 Placenta -10.038681 209.738536 Term Female GSE120250 Pure 0.99253315 

GSM1702195_9296930114_R02C01 Placenta -117.33048 212.423786 Second Female GSE69502 Pure 0.99265744 

GSM3396867_9992571114_R06C02 Placenta 9.30201735 175.425394 Term Female GSE120250 Pure 0.99278733 

GSM1931601_9266441046_R04C01 Placenta -50.945113 226.44507 Term Male GSE74738 Pure 0.99295481 

GSM3396861_9992576207_R01C02 Placenta 10.0004896 169.390698 Term Female GSE120250 Pure 0.99299868 

GSM1947287_5806417045_R04C02 Placenta -88.526495 221.758206 Term Male GSE75248 Pure 0.99301975 

GSM3396866_9992576159_R04C01 Placenta -7.6527454 196.061088 Term Male GSE120250 Pure 0.99316222 

GSM3396832_9992576033_R03C02 Placenta -15.343076 198.750998 Term Female GSE120250 Pure 0.99349971 

GSM3396842_9992576160_R01C02 Placenta 8.06936571 161.406762 Term Female GSE120250 Pure 0.99353349 

GSM2674507_9977525015_R05C01 Placenta -115.89682 202.804202 Term Female GSE100197 Pure 0.99365086 

GSM1843084_3999984151_R01C01 Placenta 32.5705765 -307.09618 Term Male GSE71678 Pure 0.99369313 

GSM1947043_5806636061_R04C01 Placenta -26.40977 205.000177 Term Female GSE75248 Pure 0.99369654 

GSM3179718_200889820007_R07C01 Placenta -158.33975 169.094777 Term Male GSE115508 Pure 0.99411828 

GSM1616998_8795207029_R02C01 Placenta 18.2364521 115.779295 First Male GSE66210 Pure 0.99412303 

GSM1842925_3999997014_R05C01 Placenta 20.5073473 100.532229 Term Female GSE71678 Pure 0.9943032 

GSM3396833_9992571130_R03C02 Placenta -19.26013 185.289664 Term Male GSE120250 Pure 0.99438902 

GSM1947073_5806636039_R05C01 Placenta 35.1738069 -14.05639 Term Male GSE75248 Pure 0.99443174 

GSM1947160_5806636035_R01C01 Placenta -13.81815 175.895971 Term Female GSE75248 Pure 0.9945241 

GSM1702185_7973201026_R05C02 Placenta 36.3389104 -169.00867 Second Female GSE69502 Pure 0.99456785 

GSM1931585_9296930098_R03C01 Placenta -105.60111 196.074299 Term Male GSE74738 Pure 0.99457213 

GSM3396853_9992576033_R01C01 Placenta -34.549547 192.796574 Term Male GSE120250 Pure 0.99464977 

GSM1947269_5806636051_R02C02 Placenta -15.025549 169.840542 Term Male GSE75248 Pure 0.99484351 

GSM1931591_9266441046_R01C01 Placenta -132.21094 178.592324 Term Female GSE74738 Pure 0.99485022 

GSM1947223_5806636042_R06C01 Placenta 17.6593805 89.3929792 Term Female GSE75248 Pure 0.99488811 

GSM3396848_9992571130_R05C02 Placenta -24.258306 178.209278 Term Male GSE120250 Pure 0.9949378 

GSM1702149_7970368050_R06C02 Placenta 33.6268885 -187.73662 Second Male GSE69502 Pure 0.99498129 
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GSM1947118_5806636090_R03C01 Placenta -10.994389 159.664223 Term Female GSE75248 Pure 0.99501435 

GSM1702147_7970368050_R05C01 Placenta 32.0788728 -218.12213 Second Male GSE69502 Pure 0.99505367 

GSM1947102_5806636039_R05C02 Placenta 21.1226677 65.1033429 Term Male GSE75248 Pure 0.99505527 

GSM2674514_7970368023_R05C02 Placenta 31.6874602 -217.22472 Term Female GSE100197 Pure 0.99513511 

GSM2674505_9296930098_R03C01 Placenta -99.177119 189.441557 Term Male GSE100197 Pure 0.99516756 

GSM3396844_9992571127_R04C01 Placenta -63.846059 190.961573 Term Male GSE120250 Pure 0.99529627 

GSM2674508_9266441156_R03C01 Placenta -108.10529 184.143692 Term Female GSE100197 Pure 0.99529792 

GSM1947261_5806636063_R03C01 Placenta -18.300688 161.702874 Term Female GSE75248 Pure 0.99532411 

GSM1947265_5806636083_R02C02 Placenta -13.241971 153.921073 Term Male GSE75248 Pure 0.99534567 

GSM3396851_9992576207_R06C02 Placenta 20.6070265 52.0404348 Term Male GSE120250 Pure 0.99535498 

GSM1947195_6008581005_R01C01 Placenta 28.5257254 -25.016547 Term Female GSE75248 Pure 0.99547206 

GSM1947158_5806636036_R05C02 Placenta -26.117781 163.539752 Term Female GSE75248 Pure 0.99559767 

GSM1947209_5806417009_R06C02 Placenta 13.8051006 70.6084644 Term Male GSE75248 Pure 0.99565862 

GSM1947215_5806636034_R03C01 Placenta -42.715999 173.315869 Term Male GSE75248 Pure 0.99575168 

GSM1947034_5806636041_R05C01 Placenta 20.004645 23.2797129 Term Female GSE75248 Pure 0.99586612 

GSM1947080_5859594028_R06C01 Placenta 15.2820354 51.243238 Term Male GSE75248 Pure 0.99588027 

GSM1931570_9296930123_R06C01 Placenta -46.4387 171.860279 Term Male GSE74738 Pure 0.99589545 

GSM3396847_9992571127_R01C02 Placenta -13.828246 130.636023 Term Male GSE120250 Pure 0.99609909 

GSM2674501_9285451020_R05C01 Placenta -77.657014 174.136893 Term Female GSE100197 Pure 0.99614147 

GSM1947142_5806636063_R06C02 Placenta -19.863368 137.652445 Term Male GSE75248 Pure 0.99618069 

GSM3396841_9992576207_R04C02 Placenta 13.2894545 42.3932937 Term Male GSE120250 Pure 0.99619336 

GSM2674502_9285451020_R01C02 Placenta -87.092094 172.394111 Term Male GSE100197 Pure 0.99620039 

GSM1617006_8795194156_R02C01 Placenta -75.946408 172.080004 First Female GSE66210 Pure 0.99622709 

GSM2674497_9296930123_R06C01 Placenta -53.887458 165.800327 Term Male GSE100197 Pure 0.9962678 

GSM1931596_9266441046_R02C01 Placenta -84.951697 170.306766 Term Male GSE74738 Pure 0.99629981 

GSM2674513_9266441046_R02C01 Placenta -77.937738 168.983663 Term Male GSE100197 Pure 0.99635937 

GSM1931576_9285451020_R05C01 Placenta -83.682402 166.789795 Term Female GSE74738 Pure 0.99644972 
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GSM1931571_9266441156_R05C02 Placenta -65.781436 164.622978 Term Female GSE74738 Pure 0.99646314 

GSM1617004_7668610068_R05C01 Placenta -48.363772 156.991184 First Female GSE66210 Pure 0.99647395 

GSM1947194_5806636034_R01C01 Placenta -54.219651 156.737481 Term Male GSE75248 Pure 0.99659035 

GSM2674498_9266441156_R05C02 Placenta -64.898025 159.792148 Term Female GSE100197 Pure 0.99662857 

GSM1947093_5806636038_R03C02 Placenta 12.0277985 16.7590738 Term Male GSE75248 Pure 0.99664573 

GSM1616999_8795207029_R05C01 Placenta 1.77291787 61.0924739 First Male GSE66210 Pure 0.99672172 

GSM1947141_5806636090_R03C02 Placenta -26.950095 124.570256 Term Male GSE75248 Pure 0.99680494 

GSM1947271_5806636061_R05C02 Placenta -37.656694 136.826626 Term Female GSE75248 Pure 0.99682151 

GSM1842930_3999997014_R04C02 Placenta -114.75207 150.660958 Term Female GSE71678 Pure 0.99685778 

GSM1947246_5806636062_R05C01 Placenta -44.001725 140.662611 Term Male GSE75248 Pure 0.99687554 

GSM1931569_9296930098_R01C02 Placenta -53.745624 147.399057 Term Female GSE74738 Pure 0.99687616 

GSM2674504_9285451059_R04C01 Placenta -108.76218 151.159304 Term Female GSE100197 Pure 0.9969121 

GSM1931577_9285451020_R01C02 Placenta -86.374659 154.114654 Term Male GSE74738 Pure 0.99692758 

GSM1842895_3999997150_R04C02 Placenta 5.15561854 26.8482101 Term Male GSE71678 Pure 0.99700198 

GSM1617008_8795194156_R05C01 Placenta -119.17898 144.520642 First Female GSE66210 Pure 0.99703784 

GSM1947163_5806636026_R03C02 Placenta -64.48262 144.580432 Term Female GSE75248 Pure 0.99710963 

GSM1947126_5859594028_R02C02 Placenta 12.4464651 -39.336048 Term Female GSE75248 Pure 0.99715554 

GSM1931573_9296930098_R01C01 Placenta -101.77108 146.081592 Term Male GSE74738 Pure 0.99715605 

GSM1947044_5806636042_R04C01 Placenta -6.7988223 61.4840798 Term Female GSE75248 Pure 0.99718964 

GSM2674496_9296930098_R01C02 Placenta -74.57077 142.867771 Term Female GSE100197 Pure 0.99724852 

GSM1947146_5806417045_R06C02 Placenta -89.514452 140.929154 Term Male GSE75248 Pure 0.99735573 

GSM1947092_6008581008_R03C01 Placenta 9.8038296 -41.92739 Term Female GSE75248 Pure 0.99736159 

GSM1947117_6008581008_R03C02 Placenta 14.1332216 -105.51937 Term Male GSE75248 Pure 0.99738082 

GSM1947039_5806636086_R02C02 Placenta -8.1276235 35.215001 Term Male GSE75248 Pure 0.99761074 

GSM1842879_3999984102_R06C01 Placenta -8.8094318 31.7659205 Term Female GSE71678 Pure 0.99768183 

GSM2674506_9285451059_R02C01 Placenta -116.80055 125.272994 Term Male GSE100197 Pure 0.99770586 

GSM1947089_5806636039_R06C02 Placenta 1.86838591 -27.758848 Term Male GSE75248 Pure 0.99773593 
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GSM1947029_5806417045_R01C02 Placenta -26.612002 75.7912803 Term Male GSE75248 Pure 0.9977462 

GSM2674503_9266441156_R06C02 Placenta -97.526781 126.627436 Term Male GSE100197 Pure 0.99775203 

GSM1947233_5859594025_R01C01 Placenta -74.380357 123.227058 Term Female GSE75248 Pure 0.99775562 

GSM1947078_6008581005_R03C02 Placenta 10.846538 -206.86703 Term Male GSE75248 Pure 0.99775709 

GSM1702135_7970368112_R06C01 Placenta 2.92646641 -383.80465 Second Female GSE69502 Pure 0.99775789 

GSM1702082_7970368015_R03C01 Placenta -9.3717623 26.4981248 Second Female GSE69502 Pure 0.99776601 

GSM2674500_9296930103_R06C02 Placenta -96.965599 124.815919 Term Female GSE100197 Pure 0.99779874 

GSM1947210_5859594028_R02C01 Placenta -1.7131177 -14.218855 Term Male GSE75248 Pure 0.99781119 

GSM3396863_9992576022_R06C01 Placenta -26.550657 70.2672435 Term Male GSE120250 Pure 0.99782674 

GSM1931581_9285451059_R04C01 Placenta -120.4583 118.190124 Term Female GSE74738 Pure 0.99787429 

GSM3396849_9992576207_R02C01 Placenta -26.641367 58.8178097 Term Female GSE120250 Pure 0.99798723 

GSM1842851_3999984095_R02C01 Placenta -91.602156 114.678014 Term Male GSE71678 Pure 0.99803049 

GSM1947040_5859594006_R01C02 Placenta -56.299989 98.4561661 Term Female GSE75248 Pure 0.99803899 

GSM1947151_5859720025_R05C02 Placenta -9.8599175 -1.2115703 Term Female GSE75248 Pure 0.99805939 

GSM1947238_5806636062_R01C02 Placenta -39.426855 75.6761856 Term Female GSE75248 Pure 0.99808368 

GSM1947278_6190781088_R04C02 Placenta 5.84602702 -176.06525 Term Male GSE75248 Pure 0.99809954 

GSM1947216_5806636042_R01C02 Placenta -35.705275 63.348291 Term Male GSE75248 Pure 0.99816651 

GSM1931575_9296930103_R06C02 Placenta -100.3875 108.75218 Term Female GSE74738 Pure 0.99816707 

GSM3396870_9992571114_R05C01 Placenta -24.700273 38.2144406 Term Female GSE120250 Pure 0.99817727 

GSM3396856_9992576160_R02C01 Placenta -44.406906 75.8908001 Term Male GSE120250 Pure 0.99818448 

201332340153_R05C01 Placenta -89.910558 104.631384 First Female GSE131945 Pure 0.99822929 

GSM1843130_3999997049_R01C01 Placenta -10.056756 -32.15008 Term Male GSE71678 Pure 0.99830409 

GSM1617001_8795207029_R05C02 Placenta -62.912017 85.732287 First Male GSE66210 Pure 0.99833277 

GSM1947149_5806636085_R04C02 Placenta -33.782738 44.2209413 Term Male GSE75248 Pure 0.99834883 

GSM1947200_6008581008_R05C01 Placenta 0.67247973 -152.49253 Term Male GSE75248 Pure 0.99835143 

GSM1947024_5806417009_R01C01 Placenta -4.5408893 -81.573361 Term Female GSE75248 Pure 0.99836103 

GSM1947123_5806417076_R05C01 Placenta -57.178177 74.8536525 Term Male GSE75248 Pure 0.99841124 
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GSM1947267_5806417081_R02C02 Placenta -63.528877 80.5950259 Term Female GSE75248 Pure 0.99841452 

GSM1947075_5859594028_R06C02 Placenta -12.353375 -39.044162 Term Female GSE75248 Pure 0.99843113 

GSM1947047_5859594009_R02C02 Placenta -27.198384 14.7643154 Term Female GSE75248 Pure 0.99847516 

GSM1944962_9376561070_R02C02 Placenta -129.02721 88.6660091 Term Male GSE75196 Pure 0.99848902 

GSM1947086_5806636042_R03C01 Placenta -59.2048 70.3949598 Term Male GSE75248 Pure 0.99849682 

GSM1947082_5806417045_R03C02 Placenta -45.900884 48.7820316 Term Male GSE75248 Pure 0.99854542 

GSM1947229_5806417076_R03C02 Placenta -47.939434 49.3513985 Term Male GSE75248 Pure 0.99857407 

GSM2589567_10005833024_R06C02 Placenta -34.206227 22.1265027 Term Male GSE98224 Pure 0.99857611 

GSM1702102_7970368054_R05C01 Placenta -9.2416168 -389.39369 Second Male GSE69502 Pure 0.99863699 

GSM1947354_3999997077_R02C01 Placenta -18.628999 -51.010298 Term Male GSE75248 Pure 0.99869651 

GSM2589570_10005833038_R06C01 Placenta -34.740357 2.5614065 Term Male GSE98224 Pure 0.99874615 

GSM1947247_5806417077_R03C02 Placenta -28.749368 -16.126462 Term Male GSE75248 Pure 0.99874724 

GSM1947036_5806636029_R01C02 Placenta -21.820937 -44.358597 Term Female GSE75248 Pure 0.9987475 

GSM1947111_6190781088_R04C01 Placenta -28.73004 -21.155584 Term Male GSE75248 Pure 0.99877913 

GSM1947132_5806636019_R03C01 Placenta -36.500394 2.66301313 Term Female GSE75248 Pure 0.99878049 

201332340172_R03C01 Placenta -91.220234 67.7108951 First Male GSE131945 Pure 0.99879957 

GSM1842835_3999984083_R03C02 Placenta -282.13588 -45.502269 Term Male GSE71678 Pure 0.99881362 

GSM1947097_5806417077_R02C01 Placenta -76.842318 57.4148496 Term Male GSE75248 Pure 0.99882885 

GSM1947016_3999997080_R04C02 Placenta -15.219953 -106.97322 Term Male GSE75248 Pure 0.99883692 

GSM1947091_5859594009_R05C01 Placenta -48.965351 21.9195512 Term Female GSE75248 Pure 0.99884572 

GSM1842945_3999997033_R01C01 Placenta -296.02227 -67.668351 Term Male GSE71678 Pure 0.99894601 

GSM1944953_9376561054_R05C02 Placenta -49.344781 8.08602307 Term Male GSE75196 Pure 0.99895622 

GSM1947259_5806417009_R02C02 Placenta -27.962931 -60.457224 Term Male GSE75248 Pure 0.99897272 

GSM2589572_10005833110_R05C02 Placenta -40.930569 -20.584768 Term Female GSE98224 Pure 0.99901096 

GSM1702209_9296930117_R06C02 Placenta -30.09601 -64.657988 Second Female GSE69502 Pure 0.99903514 

GSM1617009_8795194156_R05C02 Placenta -74.945059 33.8599813 First Female GSE66210 Pure 0.99903702 

GSM1947245_5859594006_R05C01 Placenta -26.967834 -86.1214 Term Male GSE75248 Pure 0.99905627 
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GSM1842908_3999997011_R06C02 Placenta -64.98652 19.4851351 Term Female GSE71678 Pure 0.999061 

GSM1947095_6008581003_R04C01 Placenta -21.299221 -129.4302 Term Male GSE75248 Pure 0.99906465 

GSM1947022_5806417081_R02C01 Placenta -44.463923 -21.794502 Term Female GSE75248 Pure 0.99907291 

GSM1947293_3999997076_R06C01 Placenta -18.828776 -159.95826 Term Male GSE75248 Pure 0.9990731 

GSM1947026_5806636019_R06C02 Placenta -42.503578 -40.072955 Term Female GSE75248 Pure 0.99913799 

GSM1947154_5806636020_R02C01 Placenta -79.799247 25.3996293 Term Male GSE75248 Pure 0.9991395 

GSM1947370_3999997077_R01C01 Placenta -34.308284 -71.406961 Term Male GSE75248 Pure 0.9991413 

GSM1947032_5806417077_R05C02 Placenta -45.272739 -35.457604 Term Female GSE75248 Pure 0.9991558 

GSM1947114_5806636030_R03C02 Placenta -74.201446 16.8086264 Term Female GSE75248 Pure 0.99916105 

GSM1947279_5806417023_R04C02 Placenta -101.1402 35.9704361 Term Male GSE75248 Pure 0.99916159 

GSM1947262_5806417064_R03C02 Placenta -72.169674 13.9411612 Term Male GSE75248 Pure 0.99916467 

GSM1947218_5806417045_R03C01 Placenta -63.135332 -2.5034044 Term Female GSE75248 Pure 0.99918864 

GSM1947148_5806636030_R04C01 Placenta -89.373524 24.7542297 Term Female GSE75248 Pure 0.99920089 

GSM1947256_5859720011_R04C01 Placenta -35.429368 -87.483117 Term Male GSE75248 Pure 0.99921861 

GSM1842845_3999984084_R01C02 Placenta -332.32956 -128.24221 Term Male GSE71678 Pure 0.99924228 

GSM1944960_9376561070_R06C01 Placenta -116.96869 29.4727678 Term Female GSE75196 Pure 0.9992508 

GSM1842924_3999997014_R04C01 Placenta -273.85477 -62.164838 Term Female GSE71678 Pure 0.99925141 

GSM1842914_3999997013_R06C01 Placenta -174.82024 17.126789 Term Male GSE71678 Pure 0.99925395 

GSM1947404_3999997076_R04C01 Placenta -61.246086 -19.660486 Term Male GSE75248 Pure 0.99926484 

GSM1947361_3999997074_R05C02 Placenta -34.804607 -111.39564 Term Male GSE75248 Pure 0.99928152 

GSM1944959_9376561070_R05C01 Placenta -65.207853 -16.38998 Term Female GSE75196 Pure 0.99928498 

GSM1947225_5859720012_R01C01 Placenta -50.175771 -54.261254 Term Female GSE75248 Pure 0.99930205 

GSM1947145_5806636030_R05C01 Placenta -71.559913 -10.332306 Term Female GSE75248 Pure 0.99930595 

GSM1947014_3999997072_R03C02 Placenta -60.313392 -31.721011 Term Female GSE75248 Pure 0.99931403 

GSM1947234_6008581009_R02C01 Placenta -35.997284 -128.12906 Term Female GSE75248 Pure 0.999343 

GSM1842970_3999997039_R04C01 Placenta -152.8403 15.1728411 Term Male GSE71678 Pure 0.99934876 

GSM1947124_6008581008_R01C01 Placenta -39.366537 -111.6885 Term Female GSE75248 Pure 0.99935102 
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GSM1947133_6008581008_R04C01 Placenta -34.09295 -149.4033 Term Female GSE75248 Pure 0.99935992 

GSM1947115_5806636030_R02C02 Placenta -96.906419 5.05903642 Term Female GSE75248 Pure 0.99936525 

GSM1931582_7973201026_R03C02 Placenta -82.075453 -8.5399709 Term Female GSE74738 Pure 0.99936772 

GSM1947369_3999997072_R02C02 Placenta -72.111626 -23.891521 Term Female GSE75248 Pure 0.99937742 

GSM1947272_5806417023_R01C01 Placenta -99.622433 4.38975768 Term Female GSE75248 Pure 0.99937948 

GSM1947224_5806417064_R02C01 Placenta -48.510069 -85.189305 Term Male GSE75248 Pure 0.99939128 

GSM1944963_9376561070_R03C02 Placenta -49.581545 -85.914069 Term Male GSE75196 Pure 0.99940557 

GSM1947401_3999997093_R02C02 Placenta -79.256169 -21.336158 Term Male GSE75248 Pure 0.99941357 

GSM1947352_3999997091_R02C02 Placenta -113.95434 2.86316343 Term Male GSE75248 Pure 0.99942888 

GSM1947317_3999997100_R04C01 Placenta -52.745297 -83.16376 Term Female GSE75248 Pure 0.99943101 

GSM1947113_3999997076_R01C01 Placenta -162.68419 -2.2204406 Term Female GSE75248 Pure 0.99945848 

GSM1947231_5806417023_R02C02 Placenta -58.856002 -78.048223 Term Male GSE75248 Pure 0.99947372 

GSM1947284_5806417064_R01C02 Placenta -66.501271 -58.600108 Term Female GSE75248 Pure 0.99947395 

GSM1702208_9296930117_R06C01 Placenta -134.90368 -1.5819437 Second Female GSE69502 Pure 0.99947879 

GSM1842843_3999984084_R05C01 Placenta -263.1771 -73.41027 Term Male GSE71678 Pure 0.99948656 

GSM3396840_9992576022_R04C01 Placenta -82.213296 -34.618663 Term Male GSE120250 Pure 0.99948782 

GSM1947311_3999997076_R01C02 Placenta -74.400367 -48.60846 Term Male GSE75248 Pure 0.9994943 

GSM1947143_5806636030_R01C02 Placenta -82.171678 -36.532071 Term Female GSE75248 Pure 0.99949516 

GSM1947038_6008581014_R04C02 Placenta -38.870638 -191.41373 Term Female GSE75248 Pure 0.99949711 

GSM1947409_3999997093_R01C02 Placenta -102.95424 -16.173854 Term Female GSE75248 Pure 0.99949828 

GSM1947030_5806417076_R02C01 Placenta -145.29701 -5.3138704 Term Male GSE75248 Pure 0.99949969 

GSM1947384_3999997072_R04C01 Placenta -107.43008 -15.708689 Term Male GSE75248 Pure 0.99950955 

GSM1947324_3999997074_R05C01 Placenta -62.908024 -79.994117 Term Female GSE75248 Pure 0.99951333 

GSM1947286_5806417009_R02C01 Placenta -79.30989 -46.401229 Term Female GSE75248 Pure 0.99951616 

GSM1947257_5806636019_R04C01 Placenta -78.167299 -48.386525 Term Male GSE75248 Pure 0.99951663 

GSM1842932_3999997014_R06C02 Placenta -106.90201 -17.650582 Term Male GSE71678 Pure 0.99951701 

GSM1947211_5859594006_R06C02 Placenta -80.099824 -46.41856 Term Female GSE75248 Pure 0.99952069 
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GSM2589576_9977525013_R06C01 Placenta -49.089155 -142.34539 Term Male GSE98224 Pure 0.99953629 

GSM1702206_9296930117_R05C01 Placenta -66.092901 -79.636656 Second Female GSE69502 Pure 0.99953647 

GSM1947134_5859720025_R04C02 Placenta -101.50132 -26.176666 Term Male GSE75248 Pure 0.99953744 

GSM3396834_9992576207_R03C01 Placenta -113.0926 -18.809363 Term Female GSE120250 Pure 0.99953808 

GSM1947270_5806417077_R05C01 Placenta -94.357032 -33.235421 Term Male GSE75248 Pure 0.99953966 

GSM1944955_9376561070_R01C01 Placenta -83.391566 -50.538303 Term Female GSE75196 Pure 0.99955263 

GSM1947408_3999997077_R06C01 Placenta -54.449945 -126.12199 Term Female GSE75248 Pure 0.99955525 

GSM1842892_3999997150_R01C02 Placenta -72.256129 -72.687059 Term Female GSE71678 Pure 0.99955847 

GSM1947398_3999997076_R03C01 Placenta -127.03793 -21.623739 Term Male GSE75248 Pure 0.99957485 

GSM1947327_3999997091_R04C01 Placenta -84.371256 -56.991716 Term Female GSE75248 Pure 0.99957863 

GSM1702121_7970368097_R03C01 Placenta -98.703499 -39.846769 Second Female GSE69502 Pure 0.99958076 

GSM1947345_3999997051_R06C02 Placenta -94.702102 -44.503752 Term Female GSE75248 Pure 0.99958243 

GSM1842844_3999984084_R06C01 Placenta -173.72978 -26.154287 Term Male GSE71678 Pure 0.99958293 

GSM1944956_9376561070_R02C01 Placenta -105.43789 -37.914284 Term Female GSE75196 Pure 0.99959536 

GSM1944958_9376561070_R04C01 Placenta -86.96105 -60.141163 Term Female GSE75196 Pure 0.99960055 

GSM1947383_3999997074_R02C01 Placenta -67.897183 -100.96153 Term Male GSE75248 Pure 0.99960353 

GSM1947334_3999997076_R05C02 Placenta -72.528059 -91.552041 Term Female GSE75248 Pure 0.99961027 

GSM1944954_9376561054_R06C02 Placenta -84.165782 -73.097774 Term Female GSE75196 Pure 0.99962475 

GSM1947393_3999997077_R05C02 Placenta -73.455231 -95.676159 Term Male GSE75248 Pure 0.99962552 

GSM1842962_3999997037_R01C02 Placenta -309.7527 -139.48248 Term Female GSE71678 Pure 0.99962683 

GSM1947331_3999997074_R06C02 Placenta -77.459391 -90.130235 Term Male GSE75248 Pure 0.99963458 

GSM1947291_3999997074_R01C02 Placenta -105.1884 -51.614187 Term Male GSE75248 Pure 0.9996409 

GSM1842868_3999984096_R01C02 Placenta -269.73391 -102.35988 Term Female GSE71678 Pure 0.99964938 

GSM1944961_9376561070_R01C02 Placenta -152.09784 -38.186664 Term Male GSE75196 Pure 0.99965707 

GSM1947335_3999997072_R01C01 Placenta -79.437902 -100.34612 Term Female GSE75248 Pure 0.99966775 

GSM1947395_3999997077_R04C01 Placenta -95.018265 -72.968436 Term Male GSE75248 Pure 0.99966886 

GSM1947077_6008581005_R06C01 Placenta -85.762168 -88.514966 Term Male GSE75248 Pure 0.99967045 
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GSM1931574_7970368100_R02C02 Placenta -74.42224 -114.23888 Term Male GSE74738 Pure 0.99967051 

GSM1947350_3999997110_R01C02 Placenta -63.180411 -153.53209 Term Female GSE75248 Pure 0.99967128 

GSM1931578_9296930098_R06C01 Placenta -125.27224 -48.036866 Term Female GSE74738 Pure 0.99967274 

GSM1947388_3999997074_R04C02 Placenta -121.78786 -54.5327 Term Male GSE75248 Pure 0.99968732 

GSM1947330_3999997074_R01C01 Placenta -102.15669 -72.140281 Term Male GSE75248 Pure 0.99968997 

GSM1944951_9376561054_R03C02 Placenta -112.58497 -62.297829 Term Female GSE75196 Pure 0.99969124 

GSM1947326_3999997100_R04C02 Placenta -139.11964 -50.173325 Term Male GSE75248 Pure 0.99969511 

GSM1947230_6008581026_R02C02 Placenta -127.42987 -59.258839 Term Male GSE75248 Pure 0.99970987 

GSM1944964_9376561070_R04C02 Placenta -111.78816 -72.292164 Term Male GSE75196 Pure 0.99971553 

GSM1944952_9376561054_R04C02 Placenta -103.65656 -81.267086 Term Male GSE75196 Pure 0.99971633 

GSM1947290_3999997091_R03C01 Placenta -86.674977 -115.18968 Term Male GSE75248 Pure 0.99972845 

GSM1947254_5806417077_R01C01 Placenta -71.082986 -163.03759 Term Female GSE75248 Pure 0.99973123 

GSM1947296_3999997076_R02C02 Placenta -82.577787 -133.46753 Term Female GSE75248 Pure 0.99974244 

GSM1947349_3999997110_R06C02 Placenta -99.224178 -101.06713 Term Male GSE75248 Pure 0.99974513 

GSM1944957_9376561070_R03C01 Placenta -112.5934 -86.343083 Term Female GSE75196 Pure 0.99974959 

GSM1947139_5806417081_R06C02 Placenta -96.757887 -107.81318 Term Female GSE75248 Pure 0.99975024 

GSM1947379_3999997072_R01C02 Placenta -95.329398 -114.11072 Term Male GSE75248 Pure 0.99975689 

GSM1842850_3999984095_R01C01 Placenta -293.31952 -148.65064 Term Female GSE71678 Pure 0.99976509 

GSM1947312_3999997091_R05C02 Placenta -97.430298 -116.0511 Term Female GSE75248 Pure 0.99976658 

GSM1947159_6008581014_R05C01 Placenta -69.835721 -208.81945 Term Female GSE75248 Pure 0.99977463 

GSM1944965_9376561070_R05C02 Placenta -111.83586 -102.66069 Term Male GSE75196 Pure 0.99977986 

GSM1947292_3999997100_R01C01 Placenta -109.41577 -109.6872 Term Male GSE75248 Pure 0.99978681 

GSM1947329_3999997076_R03C02 Placenta -135.01452 -89.014039 Term Male GSE75248 Pure 0.99979086 

GSM1947366_3999997072_R03C01 Placenta -138.27675 -89.119089 Term Female GSE75248 Pure 0.99979444 

GSM1842979_3999997059_R01C01 Placenta -116.12246 -107.29582 Term Male GSE71678 Pure 0.99979651 

GSM1947364_3999997074_R02C02 Placenta -144.97081 -90.174302 Term Female GSE75248 Pure 0.99980226 

GSM1842904_3999997011_R02C02 Placenta -195.58017 -97.062985 Term Male GSE71678 Pure 0.99981603 
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GSM1947193_6008581026_R05C02 Placenta -128.77199 -110.30101 Term Male GSE75248 Pure 0.99982149 

GSM1843115_3999997017_R03C02 Placenta -115.64265 -124.18075 Term Female GSE71678 Pure 0.9998218 

GSM1947356_3999997074_R03C02 Placenta -132.09248 -112.25027 Term Female GSE75248 Pure 0.99982872 

GSM1843017_3999984029_R05C01 Placenta -94.710512 -169.29305 Term Male GSE71678 Pure 0.99982901 

GSM1843123_3999997018_R05C01 Placenta -145.10532 -105.56421 Term Male GSE71678 Pure 0.99983064 

GSM1947239_5806636037_R03C02 Placenta -89.0198 -188.23147 Term Male GSE75248 Pure 0.99983095 

GSM1947392_3999997114_R03C02 Placenta -100.30464 -163.35993 Term Male GSE75248 Pure 0.9998372 

GSM1947355_3999997091_R06C02 Placenta -145.41331 -112.1494 Term Female GSE75248 Pure 0.99984149 

GSM1843139_3999997049_R05C02 Placenta -228.33327 -122.64068 Term Male GSE71678 Pure 0.99984162 

GSM1947333_3999997077_R04C02 Placenta -125.60632 -127.05557 Term Female GSE75248 Pure 0.99984168 

GSM1947397_3999997093_R05C02 Placenta -174.19575 -105.89375 Term Male GSE75248 Pure 0.99984174 

GSM1842995_3999984004_R06C01 Placenta -94.233083 -183.80345 Term Female GSE71678 Pure 0.99984175 

GSM1947328_3999997080_R05C01 Placenta -113.06974 -143.98935 Term Male GSE75248 Pure 0.99984269 

GSM1947381_3999997110_R01C01 Placenta -121.29757 -132.86681 Term Female GSE75248 Pure 0.99984296 

GSM1947342_3999997110_R05C01 Placenta -97.254195 -177.26142 Term Male GSE75248 Pure 0.99984351 

GSM1947128_6008581028_R02C02 Placenta -92.046518 -197.32914 Term Female GSE75248 Pure 0.9998475 

GSM1947353_3999997080_R04C01 Placenta -106.95866 -165.96407 Term Female GSE75248 Pure 0.99985451 

GSM1947405_3999997093_R02C01 Placenta -116.45998 -150.54854 Term Male GSE75248 Pure 0.99985602 

GSM1947338_3999997072_R06C01 Placenta -96.865741 -196.30743 Term Female GSE75248 Pure 0.99985905 

GSM1944966_9376561070_R06C02 Placenta -177.98252 -116.61168 Term Female GSE75196 Pure 0.99985998 

GSM1947357_3999997091_R06C01 Placenta -147.26154 -133.6099 Term Female GSE75248 Pure 0.99987238 

GSM1947358_3999997100_R06C02 Placenta -138.04764 -145.91473 Term Male GSE75248 Pure 0.99987863 

GSM1947304_3999997072_R05C02 Placenta -150.08926 -140.78248 Term Female GSE75248 Pure 0.99988268 

GSM1947348_3999997110_R04C01 Placenta -120.22039 -173.4286 Term Male GSE75248 Pure 0.9998838 

GSM1931568_9285451059_R06C02 Placenta -131.16089 -167.93345 Term Male GSE74738 Pure 0.99989269 

GSM1843136_3999997049_R02C02 Placenta -251.73496 -166.48352 Term Male GSE71678 Pure 0.99989675 

GSM1842985_3999997059_R01C02 Placenta -328.87432 -232.04558 Term Female GSE71678 Pure 0.99989704 
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GSM1947303_3999997093_R06C01 Placenta -108.8205 -217.30496 Term Female GSE75248 Pure 0.99989776 

GSM1947332_3999997114_R01C02 Placenta -116.5351 -199.1614 Term Female GSE75248 Pure 0.99989811 

GSM2674499_7970368050_R03C02 Placenta -122.61268 -191.02666 Term Male GSE100197 Pure 0.99990068 

GSM1843041_3999984049_R05C01 Placenta -126.28687 -185.98879 Term Female GSE71678 Pure 0.99990151 

GSM1842853_3999984095_R04C01 Placenta -294.02187 -204.1751 Term Female GSE71678 Pure 0.99990558 

GSM1842951_3999997033_R01C02 Placenta -229.78189 -164.13145 Term Male GSE71678 Pure 0.99990951 

GSM1947347_3999997074_R03C01 Placenta -175.48734 -156.44241 Term Female GSE75248 Pure 0.99990952 

GSM1947313_3999997093_R05C01 Placenta -108.34218 -246.45808 Term Male GSE75248 Pure 0.99991253 

GSM1843049_3999984068_R01C01 Placenta -134.67386 -189.94664 Term Male GSE71678 Pure 0.99991307 

GSM1947399_3999997080_R02C01 Placenta -169.78747 -166.27872 Term Male GSE75248 Pure 0.99991682 

GSM1947322_3999997110_R06C01 Placenta -145.12795 -184.61836 Term Male GSE75248 Pure 0.99991802 

201414140063_R07C01 Placenta -309.89773 -229.37247 First Female GSE131945 Pure 0.99992124 

GSM1843117_3999997017_R05C02 Placenta -215.58855 -176.39417 Term Male GSE71678 Pure 0.99992739 

GSM1947406_3999997080_R03C01 Placenta -190.14136 -177.9324 Term Female GSE75248 Pure 0.99993017 

GSM1842980_3999997059_R02C01 Placenta -189.48282 -179.37457 Term Male GSE71678 Pure 0.99993121 

GSM1947387_3999997114_R06C02 Placenta -123.79423 -253.36029 Term Male GSE75248 Pure 0.99993526 

GSM1947314_3999997114_R02C02 Placenta -124.66817 -251.60676 Term Male GSE75248 Pure 0.99993546 

GSM1947396_3999997110_R05C02 Placenta -145.74215 -225.79535 Term Female GSE75248 Pure 0.99994163 

GSM1842861_3999984095_R06C02 Placenta -259.74664 -213.3353 Term Male GSE71678 Pure 0.99994347 

GSM1843053_3999984068_R05C01 Placenta -259.01841 -212.97162 Term Female GSE71678 Pure 0.9999435 

GSM1947403_3999997114_R02C01 Placenta -124.33151 -283.29597 Term Female GSE75248 Pure 0.99994607 

GSM1947365_3999997093_R01C01 Placenta -184.18255 -213.72899 Term Female GSE75248 Pure 0.99995131 

GSM1842984_3999997059_R06C01 Placenta -191.69503 -211.84195 Term Female GSE71678 Pure 0.99995164 

GSM1843127_3999997018_R04C02 Placenta -188.96801 -213.79907 Term Female GSE71678 Pure 0.99995221 

GSM1843125_3999997018_R01C02 Placenta -244.35487 -224.22142 Term Female GSE71678 Pure 0.99995584 

GSM1947337_3999997114_R01C01 Placenta -133.53687 -306.27406 Term Male GSE75248 Pure 0.99995954 

GSM1843043_3999984049_R01C02 Placenta -380.54335 -339.62987 Term Female GSE71678 Pure 0.99995962 
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GSM1843066_3999984082_R06C01 Placenta -305.89748 -272.34939 Term Male GSE71678 Pure 0.99996254 

GSM1843006_3999984005_R06C01 Placenta -268.64325 -260.51418 Term Male GSE71678 Pure 0.9999687 

GSM1843088_3999984151_R06C01 Placenta -274.25497 -267.80432 Term Male GSE71678 Pure 0.99997056 

201414140060_R04C01 Placenta -231.86492 -255.09602 First Male GSE131945 Pure 0.99997108 

GSM1843052_3999984068_R04C01 Placenta -337.6373 -325.02733 Term Male GSE71678 Pure 0.99997533 

GSM1947343_3999997114_R03C01 Placenta -189.91188 -287.09074 Term Male GSE75248 Pure 0.99997656 

GSM1843030_3999984038_R06C01 Placenta -211.13832 -292.02348 Term Female GSE71678 Pure 0.99998014 

GSM1843007_3999984005_R01C02 Placenta -320.5112 -325.05636 Term Male GSE71678 Pure 0.99998026 

GSM1843087_3999984151_R05C01 Placenta -227.26932 -296.31909 Term Female GSE71678 Pure 0.99998187 

GSM1843038_3999984049_R02C01 Placenta -254.25909 -298.78789 Term Male GSE71678 Pure 0.9999822 

GSM1947386_3999997114_R05C01 Placenta -187.5648 -366.72282 Term Female GSE75248 Pure 0.99998755 

GSM1843032_3999984038_R02C02 Placenta -286.08022 -398.25845 Term Male GSE71678 Pure 0.99999432 

GSM1947351_3999997114_R04C01 Placenta -283.72784 -504.97028 Term Female GSE75248 Pure 0.99999827 
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4 DNA methylation profiling of human placenta samples across 
early gestation 

 

Abstract 

 

DNA methylation is involved in developmental processes such as X chromosome 

inactivation and imprinting, as well as tissue-specific gene expression. However, the 

function of DNA methylation in the human placenta during early development, 

including trophoblast proliferation and differentiation, is not well understood. We do 

know the placenta is hypomethylated compared to other human tissues and contains 

partially methylated domains [1]. We profiled the methylome of 125 placental chorionic 

villous samples (excluding outliers) across 6 to 23 weeks’ gestation using Illumina 

HumanMethylationEPIC arrays. At approximately 10 weeks' gestation, maternal blood 

starts to flow into the placenta after which placental oxygen tension rises. Samples up 

to and after 10 weeks’ gestation were compared and 295 differentially methylated 

regions (DMRs) were identified between these two groups. Partially methylated 

domains (PMDs) and placenta specific imprinting control regions (ICRs) were 

established from 6 weeks’ gestation and were stable across early gestation. Placental 

promoters and enhancers were overall hypomethylated across early gestation 

compared to non-placental tissues. In addition, we identified 91 DNA methylation sites 

that could be used for predicting gestational age. This study represents a 

characterisation of placental DNA methylation profile which has important implications 

for the aetiology of pregnancy complications related to placental dysfunction. 

 

Keywords: Human placenta, DNA methylation, early gestation 
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4.1 Introduction 

 

It is well known that the human placenta plays crucial roles in fetal development and 

in maintaining a healthy pregnancy for both mother and child. The development of the 

fetus depends on the exchange of gases, nutrients and wastes with the maternal 

circulation through the vasculo-syncytial membrane of the placenta [2]. Moreover, it is 

well-known that peptide and steroid hormones and cytokines released by the placenta 

have vital effects on both maternal and fetal physiology. Importantly, placenta secreted 

factors orchestrate maternal physiological adaptations to pregnancy without which 

pregnancy cannot proceed. The placenta dynamically differentiates across gestation 

to enable its expanding functional capacity while also responding to maternal 

environmental exposures that modulate its function [2]. 

 

DNA methylation is an epigenetic modification that characterised by DNA 

methyltransferase addition of a methyl group predominantly at the 5th position of 

cytosines in mammals [3]. DNA methylation has important functions during fetal and 

placental development. Methylation of cytosines predominantly occurs at CpG 

dinucleotides but they are also found at non-CpG sites (i.e. CHH, including CpA, CpT, 

and CpC). Interestingly, only some specific cell types such as pluripotent stem cells 

and oocytes have non-CpG methylation [4]. Canonically, DNA methylation at 

regulatory regions such as promoters is associated with repression of gene expression 

[5]. DNA methylation plays an important role in imprinting of genes and the inactivation 

of one X chromosome in females [6]. 
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Although DNA methylation in term placenta and that from complicated pregnancies 

have already been studied [7], the pattern of DNA methylation across early gestation 

is not as well characterised. It is known that the human term placenta has a unique 

DNA methylation profile and is hypomethylated compared to other healthy tissues [8]. 

It has also been shown that DNA methylation levels increase from first, to second and 

again to third trimesters [9]. Comparison of first trimester (8-10 weeks’ gestation) with 

late first trimester villous cytotrophoblasts (12-14 weeks’ gestation) identified large 

regions of partially methylated DNA called partially methylated domains (PMDs) [1] 

and more methylation in late vs early first trimester cytotrophoblasts [10]. This 

coincides with the transition from a state of relative hypoxia in the placenta to an 

oxygen tension that equates with that in arterioles following commencement of 

maternal blood flow into the intervillous space that starts to occur at approximately 10 

weeks’ gestation [11]. Currently, there are no studies that have used EPIC arrays to 

comprehensively characterise human placenta tissue across 6-23 weeks’ gestation, 

so the aim of this study was to profile placental DNA methylation changes across the 

first half of gestation. 

 

4.2 Methods 

 

4.2.1 Ethics statement 

 

Prior to collection of placental tissue samples, written, informed consent was obtained 

from all subjects involved in this study. Collection of placental tissue from elective 

termination of first and second trimester pregnancies was approved by the Queen 
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Elizabeth Hospital and Lyell McEwin Hospital Human Research Ethics Committee 

(TQEH/LMH/MH and HREC/16/TQEH/33). 

 

4.2.2 Sample Description 

 

Sixty-three first trimester and sixty-eight second trimester placentas were obtained 

from elective pregnancy terminations from the Pregnancy Advisory Centre at 

Woodville, South Australia. Gestational age was determined using transabdominal 

ultrasonography. Women with infection, endocrine abnormalities, antiphospholipid 

syndrome or other known complications were excluded from the study. Placentas 

were collected and dissected within 15 minutes of termination and placental villous 

tissues were isolated and immersed in RNA Later solution (Invitrogen) and frozen at -

80°C for subsequent DNA and RNA extraction. The meta data for all samples is listed 

in Supplementary Table S4.1.  

 

4.2.3 Array processing 

 

DNA was extracted from 131 placental chorionic villous tissue samples using a 

modified version of the TES protocol (10mM Tris(T), 2mM Na2EDTA(E), 10% SDS(S)) 

[12]. For each sample, 1µg of DNA was sent to PathWest Laboratory Medicine (QEII 

Medical Centre, Perth, Western Australia) for bisulfite-conversion and hybridisation to 

the Illumina Infinium Methylation EPIC BeadChips according to the manufacturer’s 

instructions. 
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4.2.4 RNA sequencing 

 

RNA was extracted from samples using Trizol according to the manufacturer’s 

instruction. Illumina® TruSeq® Stranded Total RNA Sample Preparation kits were 

used for preparing sequencing libraries. Adapters were added to the end of each 

sequence and the sequencing by synthesis process will be accomplished using 

Illumina HiSeq 2000 system at the Australian Cancer Genomics Facility in Adelaide. 

The result of the sequencing will be aligned to the human genome and the counts of 

the transcripts will be calculated for later bioinformatic analysis. 

 

4.2.5 EPIC array data analysis 

 

4.2.5.1 Quality control 

 

The quality of the EPIC array data was assessed using minfi package [13]. 

Scatterplots of median unmethylation (Unmeth) signal versus median methylation 

(Meth) signal values were generated for assessing quality for each sample. Good 

samples clustered together, while failed samples tended to separate and had lower 

median intensities (log median intensity < 11 were considered as poor quality samples) 

[13]. In addition, the sample-dependent control probes in EPIC array were used to 

check the quality of bisulfite conversion for type I and II assays, non-polymorphic 

performance, specificity of matching type I and II probes and the system background. 

 

Principle component analysis (PCA) was used for checking sample outliers. PCA was 

used to summarise matrix data into fewer dimensions by fitting the matrix to orthogonal 
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axes [14]. Except for outliers, we also checked the intensity of probes on X and Y 

chromosomes using minfi and ewastools package, to check fetal sex for placental 

samples. Six samples that were not pure placenta samples were excluded after a 

quality control step documented in Chapter 3 [15]. 

 

4.2.5.2 Probes on microarray and filtering of failed probes 

 

Illumina Infinium Human MethylationEPIC array contains 866238 probes. When 

related to CpG islands, locations of these probes are categorised as in CpG island, N-

shelf, N-shore, S-shelf, S-shore and open sea. When related to genes, these probes 

are located in gene body, intergenic region, 5’UTR, 3’UTR and regions around 

transcription start sites (TSS) (including TSS1500, TSS200 and 1st Exon). There are 

also probes detecting non-CpG methylation sites (CHH sites). These CHH sites are 

based on CHH methylation identified in human stem cells. Comparing with Illumina 

450K array, Illumina EPIC array has increased probe numbers especially in open sea 

regions (probe positions relative to CpG islands) and gene body (probe positions 

relative to genes). 

 

Failed and unwanted probes were filtered. The failed probes removed including 19431 

probes with detection P > 0.01, 13490 probes with probes < 3 beads in 5% of the 96 

samples, 25836 probes with SNPs at CpG/SBE sites on probes [13], and 42249 cross-

reactive probes [16]. In favour of downstream analysis, the 15321 probes on X/Y 

chromosomes and 133603 probes with SNPs at probe body (not located at CpG/SBE 

sites) were also removed to decrease the disturbance variables. In total, 249472 

probes were removed, and 616766 probes remained for following processing. 
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4.2.5.3 Background and dye bias correction 

 

Filtered data were pre-processed with ENmix package to remove background noise 

and correct dye bias [17]. ENmix method modelled methylation signal intensities with 

a exponential-normal mixture distribution, and the background noise is modelled with 

a truncated normal distribution. The background normal distribution parameters were 

estimated using out-of-band (OOB) intensities which were proved to be better than 

internal negative controls [17, 18]. Regression on logarithm of internal control probes 

(RELIC) from Enmix package was used for dye bias correction to improve accuracy of 

methylation beta value estimates [19], which was also implemented in ewastools 

package as a dye bias correction tool. 

 

4.2.5.4 Data normalisation 

 

Similar to the Illumina 450K platform, Infinium I (type I probes) and Infinium II (type II 

probes) assays were used in the Illumina EPIC platform to assess the status of DNA 

methylation for more than 850,000 cytosines distributed over the human genome. 

Normalisation is needed since the data generated by the two chemical assays are not 

entirely compatible, which could cause potential bias in the DNA methylation analyses 

[16, 20]. The corrected data were normalised with Beta-mixture quantile (BMIQ) 

normalisation method implemented in ChAMP package, which adjusted beta-values 

of type II probes based on the statistical distribution of type I probes to correct probe 

design bias [21]. The normalised data was used for downstream analyses. 
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4.2.5.5 Identification of differentially methylated probes (DMPs) 

 

Beta values (β) and M values are used to analyse differential methylation. Beta values 

( " = !"#$
!"#$%&'("#$%)**) are the proportion of methylation intensity (Meth) over the total 

intensity of methylation and unmethylation (Unmeth). M values are logit transformed 

beta values (M = log2 ) +
),-*) and were used for analysing differentially methylated 

probes across early gestation [22, 23]. Batch effects were adjusted in the linear models 

and relative quality weights for samples were estimate based on sample variances in 

groups with highly variable samples [24] downweighted in the models [25]. 

Differentially methylated probes were identified with false discovery rate (FDR) less 

than 0.05 and the change of Beta values (|∆β | > 0.2) higher than 0.2 between groups. 

 

4.2.5.6 Identification of differentially methylated regions (DMRs) 

 

DMRcate package in R was used to identify of DMRs [26]. Briefly, results from linear 

modelling adjusted for technical variance were analysed using a Gaussian kernel 

smoother (bandwidth of 1000 bp and scaling factor of 2) to regions with differential 

DNA methylation. Through clustering significant DNA methylation sites located within 

1000 bp windows that contains three or more DNA methylation sites, DMRs were 

assigned. Significance of each DMR was measured by Stouffer’s p-value that is the 

combined p-value for all sites in a region calculated using Stouffer's method. Changes 

of mean Beta values higher than 0.2 (|mean∆β | > 0.2) between groups were 

considered as biologically meaningful DNA methylation changes [27, 28]. The gene 
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ontology (GO), KEGG pathway analysis and gene set analysis (GSA) were conducted 

using the missMethyl R package [29]. 

 

4.2.5.7 Analyses of RNA sequencing data 

 

Quality control of the raw RNA sequencing data were applied with FastQC [30]. 

Samples that passed the quality control were used for trimming sequence adapters by 

AdapterRemoval [31]. Then trimmed sequences were aligned to human genome hg19 

to keep consistent with EPIC array data using RNA mapping program STAR [32] and 

duplicates removed by picard [33]. Counts of each gene were quantified using 

featureCounts [34]. Differential expression analysis was performed using limma with 

normalised counts generated using TMM (trimmed mean of M-values) [35] method in 

EdgeR [36] package. Gene expression levels are presented by log transformed counts 

per million (lcpm). 

 

4.2.5.8 Gestational age analysis 

 

Normalised beta values of 125 samples (6 outliers excluded) were transformed to M 

values for gestational age (GA) analysis. We filtered out 133588 non-variant probes 

that are detected by caret R package with beta values of 95% of the samples with zero 

variance. Six placenta samples were excluded from this analysis due to apparent 

contamination with other tissues [15]. Importance of correlations between probes and 

GA were determined for 482720 probes using recursive feature elimination (RFE) 

method which is a feature selection method from caret package [37]. The top 50% of 

the 482720 probes that most correlated with GA according to the RFE methods were 
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selected for downstream analysis for predicting GA. Using the R package glmnet, 

elastic net regression was performed to select probes predictive of GA. According to 

Horvath’s study [24], the parameter alpha of the elastic net model was set to 0.5 

allowing the equal contribution of the ridge and lasso methods. The lambda parameter 

of the model was chosen according to 10-fold cross-validation of the training data (80% 

of 125 samples). The predicted values of GA were generated using the training 

coefficient values and probes selected from this regression and the accuracy of 

predicted GA was assessed by correlation coefficients between DNA methylation age 

and chronological age. 

 

4.2.5.9 Analysis of partially methylated domains 

 

In order to identify partially methylated domains, we filtered out probes on promoter 

regions and CpG islands that were known as low methylated regions according to a 

previous study [1]. Partially methylated domains from Schroeder et al. were used to 

verify and identify changes within these domains. To investigate the DNA methylation 

level of regions such as promoters and enhancers within and out of PMDs, regions 

were separated into two groups (i.e. in PMDs and not in PMDs) and the DNA 

methylation between groups is compared. Annotations of promoters and enhancers 

were acquired from Fantom5 database (http://slidebase.binf.ku.dk/). 

 

4.2.5.10 Analysis of DNA methylation at imprinting control regions 
 

In order to identify the change of DNA methylation at imprinted genes, probes in 

imprinting control regions (ICRs) were used according to the annotation of EPIC array 
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(http://zwdzwd.github.io/InfiniumAnnotation#current). ICRs with mean beta values 

less than 0.25 or more than 0.75 across all the 125 placenta samples were filtered out. 

Placenta specific ICRs (13 in total) used in this paper were identified by Court et al. 

[38]. Using linear models in limma package, differentially methylated ICRs were 

identified with false discovery rate (FDR) less than 0.01 and the change of Beta values 

higher than 0.2 (|∆β | > 0.2) between groups. 

 

4.2.5.11 Annotation 

 

EPIC microarray manifest and annotation of all CpG sites within these analyses was 

performed using Bioconductor packages IlluminaHumanMethylationEPICmanifest, 

IlluminaHumanMethylationEPICanno.ilm10b4.hg19. Bioconductor/R package 

BSgenome.Hsapiens.UCSC.hg19 and biomaRt were used for annotation of DMR 

overlapped genes. Annotations of promoters and enhancers were acquired from 

Fantom5 database (http://slidebase.binf.ku.dk/). 

 

4.3 Results 

 

4.3.1 The placenta is hypomethylated and DNA methylation increased from 

early to mid-gestation 

 

In order to gain more insight into the placental DNA methylation profile in early to mid-

gestation, we used 125 human placenta samples from 6-23 weeks’ gestation 

(Supplementary Figure S4.1). We excluded 6 placenta samples that were previously 
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shown to be placental villous tissue mixed with decidua [39]. PCA using transformed 

percentage of DNA methylation (M values) showed that the placenta samples 

clustered based on gestational age (Figure 4.1A). Of 616477 probes after filtering, 

there were more hypomethylated probes than hypermethylated probes with 

methylation percentage (Beta values) ranging from 0 to 1, respectively (Figure 4.1B). 

DNA methylation increased across gestation (GSE74738, Supplementary Figure 

S4.2). The top 1% of significantly changing probes contributing to PC1 showed gradual 

increases of DNA methylation with increasing gestation (Figure 4.1C). Promoters and 

enhancers, especially placental promoters and enhancers as identified by the 

FANTOM5 project, had overall low levels of methylation (Figure 4.1D). 
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Figure 4.1 DNA methylation patterns in human placental chorionic villous samples 
across 6-23 weeks’ gestation. (A) PCA using M values shows a cline across early 
gestation. (B) Density plots for all 125 samples based on all probes shows greater 
hypomethylation than hypermethylation peaks. (C) Heatmap of the top 1% of 
differentially methylated probes contributing to PC1, DNA methylation (Beta values) 
increased across early gestation. (D) DNA methylation at promoters and enhancers 
annotated in non-placental tissues (orange, FANTOM5 data) compared to that at 
placental (green) promoters and enhancers. 
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4.3.2 DNA methylation increased at the promoter region of solute carrier 

family 2 member 3 (SLC2A3) 

 

SLC2A3 was chosen as an example of negatively correlated DNA methylation and 

gene expression. We used both RNA sequencing data and DNA methylation data to 

investigate correlations between DNA methylation and gene expression 

(Supplementary Figure S4.3). Our results showed that DNA methylation of SLC2A3 

promoter increased across gestation (Figure 4.2A) and gene expression decreased 

across gestation (Figure 4.2B). The DMR that overlapped with the promoter of 

SLC2A3 gene also overlapped with transcription factor binding motifs including motifs 

of KLF3, SP2, ETS1, RUNX1 and PRDM15 that annotated according to FATOM 5 

data [40, 41] (Figure 4.2C).  
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Figure 4.2 DNA methylation of SLC2A3 gene promoter on Chromosome 12. (A) DNA 
methylation of the DMR overlapped with SLC2A3 gene promoters (yellow->red: 6-23 
weeks’ gestation). The DMR contains 5 DNA methylation sites detected by EPIC 
probes. (B) Mean beta values (% DNA methylation) of DMR increased and then 
plateaued across early gestation while the RNA expression of SLC2A3 decreased and 
plateaued across early gestation. The error bar represents the standard deviation for 
each gestational week. (C) The expression of genes that encode transcription factors 
(ETS1, KLF3, PRDM15, RUNX1 and SP2) with their motifs identified within the DMR. 
 

4.3.3 Partially methylated domains (PMDs) are stable from 6-23 weeks’ 

gestation 

 

Previous studies have shown that the placenta DNA methylome is characterised by 

PMDs [1]. We assessed DNA methylation at published human placenta PMDs across 

B C 

A 



Chapter 4. DNA methylation profile of placenta across early gestation 

 

136 

our 125 first and second trimester samples. We have confirmed that PMDs exist in the 

human placenta and show that PMDs are stable from 6-23 weeks’ gestation (Figure 

4.3A). Probes in CpG islands and promoters were removed before analysing DNA 

methylation in PMDs because the DNA was unmethylated in those regions [42]. As 

expected, the expression of genes in PMDs was repressed compared to genes located 

in non-PMDs (Figure 4.3B). To investigate the distribution of DNA methylation within 

PMDs in placenta, DNA methylation level at promoters, enhancers and gene body 

regions were analysed. DNA methylation of promoters in PMDs were more variable 

than promoters that were not in PMDs. DNA methylation at placenta specific 

enhancers did not differ between those located in PMDs or non-PMDs. However, DNA 

methylation in the gene bodies was decreased dramatically in PMDs compared to non-

PMDs (Figure 4.3C). Numbers of probes in PMDs and non-PMDs are listed in 

Supplementary Table S4.2. These placenta PMDs were established early from 6 

weeks’ gestation and remain consistently partially methylated across early to mid-

gestation (Supplementary Figure S4.4). The GO for genes in PMDs showed that these 

genes were related to sensory perception of smell and humoral immune response 

(Supplementary Table S4.3). Though the DNA methylation is overall stably partially 

methylated in PMDs, there are 10 DMRs (when comparing placenta up to and after 

10 weeks’ gestation) in PMDs. GO analysis of the genes overlapped with these DMRs 

showed that the related genes were enriched in mitochondria genome maintenance, 

ion channel and reproduction. There are six DMRs in the promoter regions of genes 

including LOC105376599, CALCR, KCNK2, KCNQ5-IT1, LINC01845 and RPTN. 

Interestingly, DMR related genes including LOC105376599 (ANO3-AS1), KCNQ5-IT1, 

ZBTB20-AS1, MIR548 and LINC01845 were non-coding genes that could be 
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associated with ion and glucose homeostasis in placenta tissue across early to mid-

gestation (Supplementary Table S4.4). 

 

Figure 4.3 DNA methylation and gene expression of PMDs are stable from 6-23 weeks’ 
gestation. (A) DNA methylation and (B) gene expression of genes in PMDs. 
Expression of genes in PMDs was consistently repressed compared to genes that are 
not in PMDs. (C) DNA methylation of gene body, enhancer and promoter regions in 
PMDs. 
 

4.3.4 Gene imprinting across early gestation 

 

In order to study placental DNA methylation of imprinted genes from 6-23 weeks’ 

gestation, the imprinting control regions (ICRs) were investigated. Placenta-specific 

ICRs (11 in total) were consistently 50% methylated across early to mid-gestation 

(Figure 4.4A). Within 727 ICRs (mainly overlapping CpG islands), more than 50% of 

C 
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these ICRs were consistently partially methylated across early gestation (Figure 4.4B). 

61 ICRs associated with 22 genes were located in PMDs. Details of these ICRs are 

listed in Supplementary Table S4.5. 

 

 

Figure 4.4 DNA methylation of imprinted genes. (A) The placenta-specific imprinting 
control regions were partially methylated across early to mid-gestation. (B) DNA 
methylation of all ICRs annotated in the EPIC array. 
 

4.3.5 DNA methylation changes in the placenta up to and after 10 weeks’ 

gestation 

 

Maternal blood flow into the intervillous space commences at approximately 10 weeks 

of gestation, so we assessed differential DNA methylation between groups £ 10 weeks’ 
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(n= 42) and > 10 weeks’ (n=83) gestation. Cohort clinical information of these sample 

groups is listed in Supplementary Table S4.6. Probes in ±2000bp from transcription 

start sites (TSS2000), promoter and enhancer regions were used for identifying 

differentially methylated regions (DMRs), respectively. Gene ontology of 295 DMRs 

(identified using all sites) showed that the genes associated with these DMRs are 

involved in biological processes such as angiogenesis and cell migration 

(Supplementary Figure S4.5). Using probes in TSS2000, and after adding a threshold 

of P-values <0.05 and beta > 0.2, we identified 42 DMRs that showed significant 

increases of DNA methylation in the >10 weeks’ gestation group and 1 DMR showed 

a significant decrease of DNA methylation in this group (Figure 4.5 A-B). RNA 

sequencing data showed that there was not always a correlation between DNA 

methylation and gene expression (Figure 4.5 C). Increased DNA methylation in DMRs 

that overlapped with TSS2000 of CCR7, IL17D and EPB42 were correlated with 

decreased gene expression. Details of all DMRs are listed in Supplementary Table 

S4.7. 

 

Besides analysing differentially methylated regions between groups £ 10 weeks’ (n= 

48) and > 10 weeks’ (n=83) gestation, we also compared the large differentially 

methylated blocks (DMBs) between these two groups. DMBs are large genomic 

regions varying from 10kb to megabases that contain hundreds of DNA methylation 

sites [43]. We identified 25 statistically significant DMBs and these were often located 

in non-PMDs or in regions of the genome where there are sparse PMDs. This could 

be due to the fact that PMDs are stably partially methylated across early to mid-

gestation (Supplementary Figure S4.6). 
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Figure 4.5 Placental DNA methylation changed across early gestation when 
comparing ≤ 10 vs > 10 weeks’ gestation. (A) Volcano plot of all regions identified 
using probes in TSS2000. Thresholds of differentially methylated regions (DMRs) 
were applied with p-value < 0.05 and absolute ∆Beta >0.2. (B) Heatmap shows the 
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change of DNA methylation of DMRs identified using probes in TSS2000. Gene names 
labelled represent the nearest gene located next to the DMR. (C) RNA sequencing 
data shows gene expression of genes overlapped with DMRs identified using probes 
in TSS2000, Genes with low expression were filtered out. 
 

4.3.6 DNA methylation of C-C motif chemokine receptor 7 (CCR7) 

 

CC-chemokine receptor 7 (CCR7) is related to both immunity and immune tolerance. 

We studied this gene because CCR7 has only 1 main isoform which was differentially 

expressed in placenta and the DMR located at the promoter of this gene. Our study 

showed that DNA methylation of the promoter of CCR7 increases after 10 weeks’ 

gestation and expression of CCR7 decreased (Figure 4.6A-B). ETS1 and RUNX1 are 

2 transcription factors that bind to the DMR overlapped sequence (Figure 4.6C). The 

increase of DNA methylation at this DMR may affect binding of these transcription 

factors. 
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Figure 4.6 DNA methylation of the DMR overlapping CCR7 gene promoter on 
Chromosome 17. (A) DNA methylation of CCR7 gene promoter. This DMR contains 3 
DNA methylation sites detected by EPIC probes. Mean beta values (proportion of DNA 
methylation) of DMR increased across early gestation (yellow->red: 6-23 weeks’ 
gestation) while CCR7 gene expression decreased over this time (B). (C) The 
expression of genes that encode transcription factors (ETS1 and RUNX1) with their 
motifs overlapped with the DMR. 
 

4.3.7 DNA methyltransferase 3 alpha (DNMT3A) 

 

As a DNA methyltransferase involved in de novo methylation, DNMT3A was 

differentially methylated, which could be associated with DNA methylation involved in 

developmental processes. Differential methylation analyses between groups £ 10 

A 

B C 

(weeks’) (weeks’) 
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weeks’ (n= 48) and > 10 weeks’ (n=83) gestation showed that the DMR is in the gene 

body of DNMT3A gene but overlapped with the regulatory region of MIR1301 (Figure 

4.7A). DNA methylation of this DMR increased across gestation but was not correlated 

with gene expression because gene expression of DNMT3A is not changing over early 

gestation (Figure 4.7B). The expression of MIR13101 could be affected by DNA 

methylation changes at this DMR which is not included in this study and deserve 

further investigation. TAL1, ZNF143, STAT6 and ZNF165 are 4 transcription factors 

that binding to the DMR overlapped sequence (Figure 4.7C). The increase of DNA 

methylation at DMR may affect the binding of these transcription factors. 
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Figure 4.7 DNA methylation of DNMT3A on Chromosome 2. (A) DNA methylation of 
the DMR in the first intron of DNMT3A. Mean beta values (proportion of DNA 
methylation) of DMR increased across early gestation (yellow->red: 6-23 weeks’ 
gestation) while DNMT3A gene expression didn’t change over this time (B). (C) The 
expression of genes that encode transcription factors (TAL1, ZNF143, STAT6 and 
ZNF165) with their motifs overlapped with the DMR. 
 

4.3.8 DNA methylation sites predict gestational age 

 

Since the age of many human tissues and cell types can be accurately predicted using 

their DNA methylation profiles [24] we used EPIC array data of 125 samples to 

establish a gestational age (GA) clock. GA of all 125 samples were accurately 

A 
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predicted (Figure 4.8A-B). There were 91 probes selected for calculating GA. 

Methylation levels at 41 probes were negatively correlated with GA, while methylation 

levels at 50 probes were positively correlated with GA (Figure 4.8C). Details of these 

91 clock probes are listed in Supplementary Table S4.8. 

 

Figure 4.8 Epigenetic clock based on 91 probes. (A) DNA methylation age of training 
data (n=100, 80% of all samples) and test data (n=25, 20% of all samples). (B) DNA 
methylation of 41 probes was negatively correlated with GA and that of 50 probes was 
positively correlated with GA. 
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4.4 Discussion 

 

In this study, we profiled placenta DNA methylation using 125 placental chorionic 

villous samples from 6-23 weeks’ gestation. We have shown, with much greater 

temporal detail than previous studies, that the placenta in early gestation is 

hypomethylated compared to other normal human tissues (FANTOM5 data) [1]. It is 

known that placental DNA methylation increases across gestation [9] and our results 

verified this increase in DNA methylation from early to mid-gestation. DNA methylation 

was more variable in samples of earlier gestational ages compared with later 

gestational ages. This indicates that the DNA methylation changes across 6-23 weeks’ 

gestation may be associated with the control of placental developmental at the 

epigenetic level. DNA methylation of DMRs at SLC2A3, CCR7 and DNMT3A 

significantly changes across early to mid-gestation and RNA sequencing confirmed 

the negative correlation of gene expression of SLC2A3 and CCR7 at this time. This 

study adds to current published studies looking at DNA methylation changes during 

placental development [10, 44, 45]. 

 

Promoter and enhancer regions of placental chorionic villous tissue DNA tend to be 

consistently hypomethylated across early to mid-gestation. Many promoters are 

normally hypomethylated in tissues as they usually contain unmethylated CpG islands 

permitting transcription [46]. It is interesting to note the hypomethylation of enhancers 

in placental DNA. Although not completely understood, the functions of these 

enhancers could be associated with the gene regulation in placenta. A study on mouse 

and rat trophoblasts showed that unlike promoters, enhancers are more species-
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specific and less conserved [47]. Whether these enhancers play an important role 

during the regulation of early placental development will be an interesting area to 

investigate. 

 

Partially methylated domains (PMDs) are characteristic of a subset of hypomethylated 

cells such as colon and breast cancer cells and are also found covering 37% of the 

placental genome [1]. The PMDs of placental DNA, along with the invasive behaviour 

of extravillous trophoblasts both resemble attributes of cancer [48]. Schroeder et al. 

has also shown that similar to cancer cells, PMDs are constantly partially methylated 

in first trimester and term placenta samples [1, 10, 49]. Using 367159 probes after 

filtering out probes on CpG islands, CpG island shores and promoters, we confirm the 

existence of PMDs and show they are stable in the placental genome from 6 to 23 

weeks’ gestation. Also, DNA methylation and gene expression at these PMDs were 

low compared with other regions. Our data showed that ICRs were stably 50% 

methylated, especially for placenta specific ICRs, across early to mid-gestation. 

Though the DNA methylation was approximately 50% in PMDs, more than 95% of 

ICRs were not in PMDs indicating the function of PMDs is likely not related to genomic 

imprinting. The biological functions of these PMDs still need to be further investigated. 

 

The most novel analyses in this study revealed DNA methylation changes between 

samples collected up to and after initiation of maternal blood flow to the placenta (≤ 

10 vs > 10 weeks’ gestation). The observed DMRs in promoter regions could be 

related to the immune response during early pregnancy as the DMRs overlapped with 

immune related genes (CCR7, CD27, THEMIS) [50]. Genes related to ion channels 

and transporters such as ANO2, SLC30A4 and SLC41A2, placenta-specific imprinted 
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gene GLIS3 [51] and DNA methyltransferase DNMT3A, were differentially methylated 

with increased DNA methylation in the > 10 weeks’ gestation group. However, these 

DNA methylation changes were not correlated with any decreased expression of the 

corresponding genes. Except for DMRs, the large DMBs between were the two groups 

were also detected, and DMBs were overlapped with non-PMD or PMD sparse regions 

on chromosomes which again proved the stability of PMDs through early gestation. 

The functions of these DMBs still need to be further investigated. 

 

It is important to note that not all DNA methylation changes at promoters and TSS 

regions were negatively correlated with gene expression. In this particular study, DNA 

methylation of DMRs mainly increased across gestation which is consistent with the 

literature that shows overall increases of placental DNA methylation during 

development after implantation [52-54]. In the present study, only increased DNA 

methylation in DMRs that overlapped with promoters of CCR7, SLC2A3, IL17D and 

EPB42 was correlated with decreased gene expression. CCR7 is found in both 

syncytiotrophoblasts and villous cytotrophoblasts [55]. It is the receptor for CCL21 

chemokine that has been shown to increase the migration of extravillous 

cytotrophoblasts [56]. The regulation of CCR7 we see could associate with the 

migration of trophoblasts into the decidua.  

 

It has been suggested that the DMR at SLC2A3 promoter regions could be important 

for placental development, since SLC2A3 is a glucose transporter that play a role in 

glucose supply during early fetal development and reduced expression of SLC2A3 

may related with Intrauterine growth retardation [57, 58]. EPB42 is an erythrocyte-

specific gene and it is involved in iron metabolism. EPB42 was reported to be 
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upregulated in peripheral blood mononuclear cells in cancer patients with immune 

responses to cancer vaccines [59]. However, the function of EPB42 in placenta is not 

clear. IL17D is a cytokine that can regulate cytokine production in endothelial cells [60]. 

Expression of IL17D is decreased in metastatic human tumours [61]. Using samples 

from first trimester, a previous study has shown that DNA methylation of IL17D is 

significantly lower in placenta than in the corresponding maternal blood [62]. The 

increase of placental DNA methylation in IL17D across early gestation is novel and 

deserves further investigation.  

 

It has been shown that DNA methylation sites can be used to predict age for numerous 

human tissues [24]. In most of the studies, DNA methylation sites shared between 

450k and EPIC arrays were used for predicting placental gestational age [63, 64] and 

DNA methylation age is altered in placenta from complicated pregnancies. In this study, 

we established an epigenetic clock for placenta samples from terminations at 6-23 

weeks’ gestation using sites from EPIC arrays since a previous study has shown that 

the accuracy of age estimation does not change between array platforms [65]. To limit 

the overfitting of the models, we reduced the correlated sites using recursive feature 

elimination (RFE) method in random forest [66]. We also increased the numbers for 

the training data set, used 10-fold cross validation to penalize the parameters and 

validated predictors in a separate test data set compared to a previously published 

study [67]. More placenta samples will be used in the future to test the gestational age 

clock and use it to predict DNA methylation age in placentas from healthy and 

complicated pregnancies. 
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This study provides the first profiling of DNA methylation of human placenta chorionic 

villous tissue across early to mid-gestation using Illumina EPIC BeadChip, which 

interrogates a much larger number of methylation sites. Moreover, RNA-seq 

assessment of gene expression in the same samples enabled analysis of correlations 

between differentially methylated genes and gene expression. The limitation of this 

study is that the cell composition of each placenta sample is not considered in the 

linear models when detecting differential methylation. An additional method may need 

to be considered for both DNA methylation and gene expression data to account for 

changes in chorionic villous tissue composition over time. However, we have 

considered variation between samples by weighting each sample in the model for 

differential methylation analyses. A major strength of this study is the large number of 

placentas sampled and the inclusion of samples up to 23 weeks’ gestation. 

 

4.5 Conclusion 

 

This study identified DNA methylation changes during early placental development 

and improved our understanding of the DNA methylation profile and how it associated 

with gene expression of placenta. Placental DNA methylation changed throughout 6-

23 weeks’ gestation and was also apparent from before and after 10 weeks’ gestation. 

Presumably these changes coincide with initiation of maternal blood flow into the 

intervillous space and rising oxygen tension. Identification and further analyses of 

associated coding and non-coding gene expression will provide novel insights into 

early placental development in health and disease. 
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4.6 Supplementary figures and tables  

 

Figure S4.1 Overview of placenta samples and probes used for this study. (A) 
Positions (relative to CpG islands) of 616766 probes after filtering of failed probes, 
probes with SNPs and probes on sex chromosomes. (B) Positions of filtered probes 
relative to gene. (C) Overview of 125 human placental tissue samples (68 males, 63 
females) spanning 6 to 23 weeks’ gestation profiled in this study. (D) Quality control 
of all samples showing all samples are of good quality. 
 

 

Figure S4.2 Probe density of 319201 common probes between array platforms for all 
147 placenta samples. First trimester (n=57), second trimester (n=68), term (n=22). 
 

B A 

D C 
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Figure S4.3 Increases of DNA methylation at enhancers and promoter of genes were 
not significantly correlated with repression of genes in placenta. (A) Gene expression 
and DNA methylation changes at promoters of each gene in placenta. (B) Gene 
expression and DNA methylation changes at enhancers of each gene in placenta. (C) 
DNA methylation and expression of genes with absolute delta beta >0.2 in promoter 
regions. 
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Figure S4.4 The DNA methylation of PMDs is stable across gestation. Representative 
example on long arm of chromosome 21 of PMDs for all samples from 6 to 23 weeks’ 
gestation.  
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Figure S4.5 DNA methylation changed across gestation (≤ 10 and > 10 weeks’ 
gestation). DMRs identified using all 616766 probes. (A) Volcano plot of all regions 
identified, threshold of differentially methylated regions (DMRs) were P-value < 0.05 
and absolute ∆Beta >0.2. (B) Gene otology of DMRs overlapped genes. (C) DNA 
methylation of 295 DMRs with P-value < 0.05 and absolute ∆Beta >0.2. (D) Gene 
expression of DMR overlapped genes, genes with low expression were filtered out. 
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Figure S4.6 DNA methylation changed at DMBs (≤ 10 and > 10 weeks’ gestation). For 
example, there were 2 DMBs identified on chromosome 12, and they are located in 
non-PMDs or PMD sparse regions. 
 

Table S4.1 Meta data of 131 placenta samples. 
Sample ID Array Date Received Gestation (weeks) Trimester Fetal sex Outliers 
PAC0006 23/3/2017 9 First F Outlier 
PAC0007 23/3/2017 10 First M Standard 
PAC0008 23/3/2017 9 First F Outlier 
PAC0009 23/3/2017 8 First F Standard 
PAC0010 23/3/2017 8 First F Standard 
PAC0011 23/3/2017 11 First M Standard 
PAC0012 23/3/2017 7 First F Standard 
PAC0013 23/3/2017 10 First F Standard 
PAC0014 23/3/2017 9 First M Standard 
PAC0015 23/3/2017 11 First F Standard 
PAC0016 23/3/2017 9 First M Standard 
PAC0017 23/3/2017 14 Second F Standard 
PAC0018 23/3/2017 21 Second M Standard 
PAC0020 23/3/2017 20 Second M Standard 
PAC0021 23/3/2017 23 Second M Standard 
PAC0022 23/3/2017 19 Second M Standard 
PAC0023 23/3/2017 22 Second M Standard 
PAC0024 23/3/2017 6 First F Standard 
PAC0025 23/3/2017 7 First M Standard 
PAC0026 23/3/2017 16 Second M Standard 
PAC0027 23/3/2017 16 Second F Standard 
PAC0029 23/3/2017 17 Second M Standard 
PAC0030 23/3/2017 13 Second M Standard 
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PAC0031 23/3/2017 16 Second M Standard 
PAC0032 23/3/2017 13 Second M Standard 
PAC0033 23/3/2017 22 Second F Standard 
PAC0034 23/3/2017 8 First F Standard 
PAC0035 23/3/2017 6 First F Outlier 
PAC0036 23/3/2017 6 First F Outlier 
PAC0037 23/3/2017 7 First F Standard 
PAC0038 23/3/2017 9 First F Standard 
PAC0039 23/3/2017 6 First F Outlier 
PAC0040 23/3/2017 13 Second M Standard 
PAC0041 23/3/2017 6 First F Standard 
PAC0042 23/3/2017 8 First M Standard 
PAC0043 23/3/2017 12 First M Standard 
PAC0044 23/3/2017 9 First M Standard 
PAC0045 23/3/2017 7 First M Standard 
PAC0046 23/3/2017 8 First F Standard 
PAC0047 23/3/2017 10 First M Standard 
PAC0048 23/3/2017 6 First M Standard 
PAC0049 23/3/2017 11 First M Standard 
PAC0050 23/3/2017 9 First M Standard 
PAC0051 23/3/2017 7 First F Standard 
PAC0052 23/3/2017 9 First M Standard 
PAC0053 23/3/2017 16 Second F Standard 
PAC0054 23/3/2017 14 Second M Standard 
PAC0055 23/3/2017 6 First F Standard 
PAC0056 23/3/2017 6 First F Standard 
PAC0057 1/8/2017 17 Second M Standard 
PAC0058 23/3/2017 16 Second F Standard 
PAC0059 23/3/2017 10 First F Standard 
PAC0060 23/3/2017 9 First M Standard 
PAC0062 23/3/2017 10 First M Standard 
PAC0063 23/3/2017 9 First M Standard 
PAC0064 23/3/2017 7 First F Standard 
PAC0065 1/8/2017 12 First M Standard 
PAC0069 1/8/2017 15 Second M Standard 
PAC0070 1/8/2017 13 Second M Standard 
PAC0071 1/8/2017 12 First F Standard 
PAC0072 1/8/2017 12 First M Standard 
PAC0074 1/8/2017 13 Second F Standard 
PAC0075 1/8/2017 23 Second M Standard 
PAC0076 1/8/2017 18 Second M Standard 
PAC0077 1/8/2017 19 Second M Standard 
PAC0078 1/8/2017 14 Second F Standard 
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PAC0083 1/8/2017 8 First M Standard 
PAC0084 1/8/2017 19 Second F Standard 
PAC0086 1/8/2017 11 First M Standard 
PAC0087 1/8/2017 14 Second M Standard 
PAC0088 1/8/2017 11 First F Standard 
PAC0091 1/8/2017 11 First M Standard 
PAC0093 1/8/2017 15 Second M Standard 
PAC0097 1/8/2017 16 Second F Standard 
PAC0098 1/8/2017 14 Second M Standard 
PAC0099 1/8/2017 14 Second F Standard 
PAC0100 1/8/2017 15 Second F Standard 
PAC0102 1/8/2017 15 Second F Standard 
PAC0103 1/8/2017 15 Second M Standard 
PAC0105 1/8/2017 12 First F Standard 
PAC0107 1/8/2017 10 First F Standard 
PAC0108 1/8/2017 18 Second M Standard 
PAC0109 1/8/2017 14 Second F Standard 
PAC0111 1/8/2017 16 Second F Standard 
PAC0114 1/8/2017 21 Second M Standard 
PAC0117 1/8/2017 21 Second M Standard 
PAC0118 1/8/2017 23 Second F Standard 
PAC0120 1/8/2017 14 Second M Standard 
PAC0122 1/8/2017 10 First F Standard 
PAC0124 1/8/2017 17 Second M Standard 
PAC0127 1/8/2017 18 Second F Standard 
PAC0129 1/8/2017 14 Second F Standard 
PAC0131 1/8/2017 18 Second M Standard 
PAC0134 1/8/2017 16 Second F Standard 
PAC0139 1/8/2017 22 Second M Standard 
PAC0140 1/8/2017 21 Second M Standard 
PAC_0019 1/2/19 17 Second M Standard 
PAC_0068 1/2/19 13 Second M Standard 
PAC_0092 1/2/19 13 Second M Standard 
PAC_0094 1/2/19 11 First M Standard 
PAC_0101 1/2/19 14 Second F Standard 
PAC_0106 1/2/19 11 First F Standard 
PAC_0110 1/2/19 15 Second F Standard 
PAC_0113 1/2/19 12 First F Standard 
PAC_0121 1/2/19 14 Second F Standard 
PAC_0125 1/2/19 15 Second F Standard 
PAC_0126 1/2/19 12 First F Standard 
PAC_0128 1/2/19 14 Second F Standard 
PAC_0130 1/2/19 17 Second M Standard 
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PAC_0135 1/2/19 16 Second M Standard 
PAC_0137 1/2/19 17 Second M Standard 
PAC_0141 1/2/19 8 First M Standard 
PAC_0148 1/2/19 8 First M Standard 
PAC_0183 1/2/19 15 Second F Standard 
PAC_0186 1/2/19 7 First M Standard 
PAC_0191 1/2/19 19 Second F Standard 
PAC_0192 1/2/19 21 Second M Standard 
PAC_0193 1/2/19 6 First F Standard 
PAC_0196 1/2/19 21 Second F Standard 
PAC_0198 1/2/19 7 First M Standard 
PAC_0200 1/2/19 7 First F Standard 
PAC_0202 1/2/19 6 First M Outlier 
PAC_0203 1/2/19 19 Second F Standard 
PAC_0204 1/2/19 7 First M Standard 
PAC_0208 1/2/19 7 First F Standard 
PAC_0211 1/2/19 17 Second F Standard 
PAC_0214 1/2/19 9 First F Standard 
PAC_0215 1/2/19 23 Second M Standard 
PAC_0219 1/2/19 6 First F Standard 
PAC_0221 1/2/19 19 Second M Standard 
PAC_0222 1/2/19 23 Second F Standard 

 
Table S4.2 Number of regions and probes in PMDs. 
Regions Number of regions in 

PMDs 
Number of regions not in 
PMDs 

Gene 9684 13372 
Gene body 3472 (44395 probes) 16590 (230669 probes) 
Promoter 1118 (1253 probes) 13795 (17587 probes) 
Promoter in placenta 460 (547 probes) 10140 (13526 probes) 
Placenta-specific promoter 2 (2 probes) 4 (4 probes) 
CpG island 31 (52 probes) 23483 (112229 probes) 
CpG island in gene body  10 (20 probes) 12358 (41270 probes) 
CpG island in promoter 1 (1 probes) 6273 (11852 probes) 
Enhancer 2742 (2977 probes) 15596 (17756 probes) 
Enhancer in placenta 275 (304 probes) 3392 (4209 probes) 
Placenta-specific enhancer 1 (1 probes) 3 (4 probes) 
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Table S4.3 Gene ontology for genes in PMDs. 

ID Gene Ratio Background Ratio P value Adjust P value Count Cat Terms 

GO:0050911 298/1367 427/17653 2.92E-237 1.25E-233 298 BP detection of chemical stimulus involved in sensory perception of smell 

GO:0007608 301/1367 453/17653 1.24E-229 2.66E-226 301 BP sensory perception of smell 

GO:0031424 97/1367 226/17653 2.67E-48 2.85E-45 97 BP keratinization 

GO:0008544 115/1367 462/17653 2.03E-30 1.09E-27 115 BP epidermis development 

GO:0018149 37/1367 59/17653 8.26E-27 3.92E-24 37 BP peptide cross-linking 

GO:0042742 51/1367 293/17653 3.53E-08 1.26E-05 51 BP defence response to bacterium 

GO:0019730 27/1367 108/17653 3.54E-08 1.26E-05 27 BP antimicrobial humoral response 

GO:0061844 17/1367 59/17653 1.42E-06 4.35E-04 17 BP antimicrobial humoral immune response mediated by antimicrobial peptide 

GO:0006959 51/1367 329/17653 1.43E-06 4.35E-04 51 BP humoral immune response 

GO:1900003 8/1367 15/17653 4.98E-06 0.00127478 8 BP regulation of serine-type endopeptidase activity 

GO:1902571 8/1367 15/17653 4.98E-06 0.00127478 8 BP regulation of serine-type peptidase activity 

GO:0007210 10/1367 24/17653 5.37E-06 0.00127478 10 BP serotonin receptor signalling pathway 

GO:0098664 10/1367 24/17653 5.37E-06 0.00127478 10 BP G-protein coupled serotonin receptor signalling pathway 

GO:0072677 11/1367 30/17653 7.94E-06 0.00178553 11 BP eosinophil migration 

GO:0048245 10/1367 26/17653 1.26E-05 0.00269157 10 BP eosinophil chemotaxis 

GO:0004984 298/1305 427/17548 4.38E-243 3.34E-240 298 MF olfactory receptor activity 

GO:0005549 72/1305 95/17548 1.07E-61 4.08E-59 72 MF odorant binding 

GO:0004867 25/1305 95/17548 1.69E-08 3.22E-06 25 MF serine-type endopeptidase inhibitor activity 

GO:1903231 35/1305 196/17548 1.05E-06 9.98E-05 35 MF mRNA binding involved in posttranscriptional gene silencing 

GO:0019865 10/1305 22/17548 1.41E-06 1.19E-04 10 MF immunoglobulin binding 

GO:0022824 16/1305 57/17548 2.49E-06 1.73E-04 16 MF transmitter-gated ion channel activity 

GO:0022835 16/1305 57/17548 2.49E-06 1.73E-04 16 MF transmitter-gated channel activity 

GO:0004497 22/1305 101/17548 3.90E-06 2.12E-04 22 MF monooxygenase activity 

GO:0030280 8/1305 17/17548 1.21E-05 4.63E-04 8 MF structural constituent of epidermis 

GO:0098960 12/1305 40/17548 2.14E-05 7.77E-04 12 MF postsynaptic neurotransmitter receptor activity 

GO:0015347 10/1305 33/17548 9.48E-05 0.00288675 10 MF sodium-independent organic anion transmembrane transporter activity 
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GO:0004252 35/1305 248/17548 1.85E-04 0.0052254 35 MF serine-type endopeptidase activity 

GO:0099095 7/1305 19/17548 2.81E-04 0.0072781 7 MF ligand-gated anion channel activity 

GO:0019825 11/1305 45/17548 3.55E-04 0.00817538 11 MF oxygen binding 

GO:0004806 8/1305 26/17548 4.25E-04 0.00952196 8 MF triglyceride lipase activity 

GO:0001533 37/1457 65/18698 1.46E-24 6.58E-22 37 CC cornified envelope 

GO:0005882 62/1457 198/18698 2.90E-22 6.53E-20 62 CC intermediate filament 

GO:0045111 62/1457 237/18698 7.07E-18 1.06E-15 62 CC intermediate filament cytoskeleton 

GO:0034702 44/1457 296/18698 2.53E-05 0.00228637 44 CC ion channel complex 

GO:1990351 46/1457 329/18698 7.81E-05 0.0044024 46 CC transporter complex 

 
Table S4.4 DMRs identified using different subsets of DNA methylation sites. 

Sites used for 
DMR analyses Chr start end width 

Number 
of sites 
in DMR 

Overlapping genes Stouffer Mean 
difference 

use all sites chr17 56606016 56607967 1952 8 SNORA69, RP11-112H10.4, SEPT4 3.19E-113 0.19394788 

use all sites chr1 84628924 84630556 1633 11 
snoU13, Y_RNA, SCARNA16, U1, SNORD112, SNORA63, SNORD46, PRKACB, SNORA2, SNORD81, U3, SNORA51, SNORA25, SNORA58, 
CKS1B, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, SNORA42, SNORA40, SNORD64, ACA64, 
SNORD78, snoU109, SNORD60, SNORD116 

2.26E-97 0.2332764 

use all sites chr22 24914326 24916084 1759 6 UPB1, AP000355.2 1.88E-94 0.23008898 

use all sites chr5 149555647 149558804 3158 7 CDX1, SNORA68, SNORA57, SNORD45, SNORD95 3.50E-89 0.19471433 

use all sites chr1 202171585 202172912 1328 8 snoU13, Y_RNA, SNORD112, U3, SNORA51, SNORA25, SCARNA20, U6, SNORA70, LGR6, SNORA77, SNORA26, SNORA72, U8, SNORD60, 
SNORD116 5.66E-84 0.19725395 

use all sites chr8 127516332 127516878 547 4 NA 7.49E-79 0.29377881 

use all sites chr5 132589269 132592155 2887 8 SNORA27, SNORA68, SNORA57, 7SK, FSTL4, SNORD45, SNORD95 6.03E-74 0.18290804 

use all sites chr5 75903397 75903700 304 6 IQGAP2, snoZ6, SNORA27, SNORA68, RPS23P5, SNORA57, 7SK, CTD-2236F14.1, SNORD45 5.22E-74 0.26674486 

use all sites chr1 10719619 10720993 1375 9 snoU13, Y_RNA, SCARNA16, SCARNA21, SNORD112, SNORA62, SNORA2, U3, SNORA51, SCARNA20, SNORA67, SNORA70, SNORA77, 
SNORA26, U8, CASZ1, SCARNA11, SNORA31, SNORA42, SNORA40, snoU109, SNORD60 1.28E-71 0.18655665 

use all sites chr1 236004282 236005962 1681 5 snoU13, Y_RNA, SNORD112, SNORA25, LYST 2.69E-70 0.21678288 

use all sites chr15 75039788 75041386 1599 7 CYP1A2 2.75E-63 0.20616141 

use all sites chr16 75096111 75097612 1502 6 ZNRF1, SNORD33 8.02E-68 0.21122186 

use all sites chr1 215178601 215179216 616 8 snoU13, Y_RNA, SNORD112, U3, SNORA51, SNORA25, SNORA70, KCNK2, SNORA72, U8, SNORD116 4.25E-67 0.21997604 

use all sites chr3 46785957 46787073 1117 6 U7, SNORD77, SNORA33, SNORA81, SNORD5, PRSS50, PRSS45, SNORD38, SNORD63, Metazoa_SRP, SNORA18 1.37E-67 0.20030576 

use all sites chr2 25551575 25552751 1177 6 SNORA73, SNORA64, SNORA74, snR65, SCARNA6, SNORD39, SNORD18, DNMT3A, MIR1301, SNORA75, SNORA48, SNORD56, SNORA43, 
SNORA1 1.37E-60 0.19986964 
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use all sites chr3 108180778 108181837 1060 5 U7, SNORA33, SNORA81, SNORD66, SNORD2, SNORD5, SNORD63, SNORD61, MYH15, SNORA24, Metazoa_SRP, SNORA18 3.14E-65 0.24076955 

use all sites chr8 130695235 130696901 1667 7 RP11-419K12.1 7.54E-65 0.23573812 

use all sites chr8 130691264 130693960 2697 7 CCDC26, RP11-419K12.1 3.63E-59 0.19679063 

use all sites chr13 46757395 46757637 243 4 SNORD36, LCP1, SNORD37 1.33E-61 0.2232919 

use all sites chr15 69605276 69606334 1059 5 PAQR5 4.06E-60 0.23292118 

use all sites chr1 84863547 84864880 1334 7 
snoU13, Y_RNA, SCARNA16, U1, SNORD112, SNORA63, SNORD46, SNORA2, DNASE2B, SNORD81, U3, SNORA51, SNORA25, SNORA58, 
CKS1B, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, SNORA42, SNORA40, SNORD64, ACA64, 
SNORD78, snoU109, SNORD60, SNORD116 

5.26E-58 0.19742397 

use all sites chr2 71787501 71787827 327 5 SNORA73, SNORA64, SNORD75, SNORA12, SNORA74, DYSF, SNORA19, snR65, 5S_rRNA, SNORA4, SNORD11, SNORA41, SCARNA6, 
SNORD39, SNORD18, SNORA36, SNORA75, ACA59, SNORA48, SNORD56, SNORA43, SNORA1, Vault 2.59E-58 0.23699672 

use all sites chr6 2750213 2752360 2148 6 MYLK4 1.78E-54 0.22368009 

use all sites chr2 60618524 60619220 697 6 SNORA73, SNORA64, SNORD75, SNORA12, SNORA74, snR65, 5S_rRNA, SNORA4, SNORD11, SNORA41, SCARNA6, SNORD39, SNORD18, 
SNORA36, SNORA75, SNORA48, SNORD56, SNORA43, SNORA1, Vault 4.47E-46 0.19439776 

use all sites chr10 116417809 116419517 1709 5 ABLIM1 3.11E-57 0.26260368 

use all sites chr12 105322376 105323744 1369 5 SNORA9, SLC41A2 8.33E-53 0.19969042 

use all sites chr12 79811775 79813192 1418 5 SYT1, MIR1252, SNORA9, RP1-78O14.1, snoMe28S-Am2634 7.53E-55 0.24575267 

use all sites chr2 110883862 110885303 1442 5 SNORA64, SNORA12, SNORA74, SNORA19, LIMS3, snR65, 5S_rRNA, SNORA4, SNORD11, SNORD51, SNORA41, SCARNA6, SNORD39, 
SNORA75, ACA59, NPHP1, AC013268.1, SNORA48, SNORD56, SNORA43, SNORA1, Vault 5.30E-49 0.25078368 

use all sites chr16 67421302 67422624 1323 4 SNORD111, SNORD33 1.17E-55 0.2276662 

use all sites chr7 107331385 107332802 1418 5 SLC26A4 3.07E-54 0.23108318 

use all sites chr5 143301646 143303264 1619 4 SNORA68, SNORA57, 7SK, SNORD45, SNORD95 1.76E-52 0.21077111 

use all sites chr12 5673852 5675505 1654 6 ANO2 3.96E-52 0.21990575 

use all sites chr5 95321963 95323104 1142 5 CTD-2337A12.1, snoZ6, SNORA27, SNORA68, SNORA57, 7SK, AC008592.7, SNORD45, SNORD95 9.42E-48 0.25835775 

use all sites chr20 23011983 23012907 925 4 RP4-753D10.3 6.74E-54 0.22611532 

use all sites chr4 147032361 147033202 842 4 LINC01095, SNORD65 7.67E-53 0.24572518 

use all sites chr2 111951702 111953038 1337 4 SNORA64, SNORA12, SNORA74, SNORA19, snR65, 5S_rRNA, SNORA4, SNORD11, SNORD51, SNORA41, SCARNA6, SNORD39, SNORA75, 
ACA59, SNORA48, SNORD56, SNORA43, SNORA1, Vault 1.63E-53 0.28777125 

use all sites chr22 20923127 20923814 688 3 MED15 9.55E-53 -0.2224359 

use all sites chr6 6622864 6624448 1585 5 LY86, LY86-AS1, SNORA20 1.11E-50 0.20007951 

use all sites chr11 27602211 27603216 1006 6 BDNF-AS 3.27E-52 0.23137716 

use all sites chr6 76108836 76109818 983 4 SNORA38, SNORA8, SCARNA15, SNORD28, FILIP1, SNORA20 1.06E-50 0.26031588 

use all sites chr7 93706476 93707637 1162 5 NA 1.30E-49 0.22284779 

use all sites chr15 45802899 45803341 443 4 RP11-519G16.3, HMGN2P46, SLC30A4 2.68E-50 0.33344958 
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use all sites chr6 76073316 76074059 744 3 SNORA38, SNORA8, SCARNA15, RP11-415D17.3, SNORD28, FILIP1, SNORA20 6.64E-49 0.31724684 

use all sites chr11 105010284 105011637 1354 6 CARD18 3.87E-40 0.18894314 

use all sites chr11 74424489 74424521 33 3 CHRDL2, SNORD43 7.44E-49 0.19845987 

use all sites chr10 126826304 126827067 764 5 CTBP2 2.29E-49 0.2089085 

use all sites chr1 120453393 120454387 995 4 
snoU13, Y_RNA, SCARNA16, U1, SNORD112, SNORA63, SNORD46, SNORA2, SNORD81, U3, SNORA51, SNORA25, SNORA58, CKS1B, 
SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, SNORA72, U8, SNORA31, SNORA42, SNORA40, NOTCH2, SNORD64, ACA64, 
SNORD78, snoU109, SNORD60, SNORD116 

1.13E-47 0.28163339 

use all sites chr3 36902435 36903038 604 5 U7, SNORD77, SNORA33, SNORA81, SNORD5, TRANK1, SNORD38, SNORD63, Metazoa_SRP, SNORA18 1.99E-45 0.25504301 

use all sites chr12 6553092 6554051 960 5 CD27, CD27-AS1 7.68E-48 0.19256734 

use all sites chr1 84257836 84259317 1482 3 
snoU13, Y_RNA, SCARNA16, U1, SNORD112, SNORA63, SNORD46, RP5-836J3.1, SNORA2, SNORD81, U3, SNORA51, SNORA25, SNORA58, 
CKS1B, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, RP11-475O6.1, SNORA42, SNORA40, 
SNORD64, ACA64, SNORD78, snoU109, SNORD60, SNORD116 

2.88E-46 0.22738067 

use all sites chr17 3791228 3792074 847 4 CAMKK1 1.58E-47 0.22873749 

use all sites chr18 56266818 56268032 1215 4 ALPK2 1.86E-47 0.24816158 

use all sites chr4 15230035 15230432 398 3 SNORA3, RP11-665G4.1 4.93E-47 0.29887876 

use all sites chr3 37795590 37796300 711 3 U7, ITGA9, SNORD77, SNORA33, SNORA81, SNORD5, AC093415.2, SNORD38, SNORD63, Metazoa_SRP, SNORA18 3.83E-46 0.33459445 

use all sites chr5 146298512 146300238 1727 4 SNORA68, SNORA57, SNORD45, PPP2R2B, PPP2R2B-IT1, SNORD95 4.65E-47 0.19859608 

use all sites chr11 76744970 76745431 462 3 B3GNT6 9.11E-47 0.22831784 

use all sites chr3 157213371 157213897 527 4 SNORA81, SNORD66, SNORD2, VEPH1, SNORA18, U4 4.79E-47 0.269309 

use all sites chr2 208037561 208037968 408 3 SCARNA6, SNORD39, SNORA75, SNORA48 1.41E-46 0.29297356 

use all sites chr12 7241449 7242709 1261 4 C1R, C1RL 1.25E-44 0.20024575 

use all sites chr10 89365807 89367384 1578 4 SNORA17 7.65E-45 0.20921993 

use all sites chr1 174668743 174670136 1394 5 snoU13, Y_RNA, SCARNA16, SNORD112, SNORA63, U3, SNORA51, SNORA25, SNORD59, SCARNA20, RABGAP1L, SNORA67, U6, SNORA70, 
SNORA77, SNORA26, SNORA72, U8, SNORA31, snoU109, SNORD60, SNORD116 4.41E-36 0.21781028 

use all sites chr1 55951958 55952111 154 3 
snoU13, Y_RNA, SCARNA16, U1, SCARNA18, SCARNA24, SNORD112, SNORA62, SNORA63, SNORD46, SNORA2, SNORD81, U3, SNORA51, 
SNORA25, SNORA58, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, SNORA42, SNORA40, 
SNORD64, ACA64, snoU109, SNORD60, SNORD116 

4.65E-45 0.21468964 

use all sites chr7 107796618 107798547 1930 5 NRCAM 4.30E-44 0.19746075 

use all sites chr7 93189633 93190462 830 5 CALCR 1.81E-40 0.21181492 

use all sites chr10 60577367 60579479 2113 4 BICC1, SNORA71 1.49E-45 0.25042561 

use all sites chr1 110761524 110763078 1555 3 
snoU13, Y_RNA, SCARNA16, U1, SNORD112, SNORA63, SNORD46, SNORA2, SNORD81, U3, SNORA51, KCNC4, SNORA25, SNORA58, 
CKS1B, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, SNORA72, U8, SCARNA11, SNORA31, SNORA42, SNORA40, SNORD64, 
ACA64, SNORD78, snoU109, SNORD60, SNORD116 

7.37E-45 0.1970481 

use all sites chr1 206226009 206227162 1154 3 snoU13, Y_RNA, SNORD112, U3, SNORA51, SNORA25, SNORA70, AVPR1B, SNORA26, SNORA72, U8, SNORD60, SNORD116 9.16E-45 0.2436713 

use all sites chr10 74652084 74653449 1366 4 OIT3, SNORA71, SNORA17 3.96E-43 0.20192562 
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use all sites chr15 39541977 39543043 1067 4 C15orf54, RP11-624L4.1 2.29E-42 0.24079396 

use all sites chr5 60932581 60933135 555 3 SNORA50, snoZ6, SNORA27, SNORA68, RPS23P5, SNORA57, SNORA76, 7SK, SNORD45 6.22E-44 0.22263006 

use all sites chr4 147029689 147030199 511 3 SNORD65 5.13E-44 0.26601824 

use all sites chr1 160342957 160344469 1513 4 snoU13, Y_RNA, SCARNA16, SNORD112, SNORA63, U3, SNORA51, SNORA25, SNORD59, SCARNA20, SNORA67, U6, SNORA70, SNORA77, 
SNORA26, SNORA72, U8, SNORA31, SNORA40, ACA64, SNORD78, snoU109, SNORD60, SNORD116 2.16E-44 0.21276169 

use all sites chr5 75671504 75672341 838 3 snoZ6, SNORA27, SNORA68, RPS23P5, SNORA57, 7SK, SNORD45 1.75E-43 0.25131944 

use all sites chr17 38716802 38718229 1428 4 SNORA69, CCR7 8.38E-33 0.2388912 

use all sites chr3 185438794 185439589 796 3 SNORA81, C3orf65, SNORD2, IGF2BP2, U4 1.45E-42 0.19828005 

use all sites chr2 48950153 48951719 1567 4 SNORA73, SNORA64, SNORD75, STON1-GTF2A1L, GTF2A1L, SNORA74, snR65, 5S_rRNA, SNORD11, SNORA41, SCARNA6, SNORD39, 
SNORD18, SNORA36, LHCGR, SNORA75, SNORA48, SNORD56, SNORA43, SNORA1, Vault 3.04E-33 0.22659371 

use all sites chr3 175493926 175495361 1436 4 NAALADL2, SNORA81, SNORD66, SNORD2, NAALADL2-AS1, SNORA18, U4 1.28E-43 0.22384743 

use all sites chr2 27199491 27201619 2129 4 SNORA73, MAPRE3, SNORA64, SNORA74, snR65, SCARNA6, SNORD39, SNORD18, AC013472.4, SNORA75, SNORA48, SNORD56, SNORA43, 
SNORA1, Vault 2.05E-35 0.21034855 

use all sites chr5 43044573 43045001 429 5 AC025171.1, SNORA27, SNORA68, RPS23P5, SNORA57, CTD-2201E18.3, SNORA76, 7SK, SNORD45 1.74E-43 0.17869904 

use all sites chr6 143192478 143193920 1443 4 SNORD28, HIVEP2, SNORA20 2.69E-40 0.19530545 

use all sites chr18 10475860 10477185 1326 3 APCDD1 2.41E-42 0.18573901 

use all sites chr18 60862198 60863116 919 3 BCL2 6.99E-42 0.21445041 

use all sites chr12 57405251 57406900 1650 3 TAC3, snoMe28S-Am2634 1.51E-42 0.21675969 

use all sites chr2 111871839 111873850 2012 6 SNORA64, SNORA12, SNORA74, SNORA19, ACOXL, snR65, 5S_rRNA, SNORA4, SNORD11, SNORD51, SNORA41, SCARNA6, SNORD39, 
SNORA75, ACA59, AC096670.3, SNORA48, SNORD56, SNORA43, SNORA1, Vault 2.07E-38 0.22397651 

use all sites chr7 139433877 139434142 266 3 HIPK2 3.08E-42 0.27671406 

use all sites chr10 87364316 87365005 690 5 SNORA17, GRID1 1.64E-41 0.25385484 

use all sites chr7 139408541 139409421 881 3 HIPK2 1.94E-41 0.2446231 

use all sites chr16 57033268 57034444 1177 3 NLRC5, SNORD111, SNORD33 1.38E-41 0.1946079 

use all sites chr6 36804444 36805384 941 3 SNORA38, CPNE5, SNORA20 1.60E-41 0.21524224 

use all sites chr5 179494929 179495386 458 3 RNF130, SNORD95 1.07E-41 0.25771953 

use all sites chr6 128239611 128241185 1575 5 SNORA8, SNORD28, THEMIS, SNORA20 3.20E-39 0.22171412 

use all sites chr5 111333193 111333693 501 4 NREP-AS1, snoZ6, SNORA27, SNORA68, SNORA57, 7SK, SNORD45, SNORD95 7.02E-42 0.21732233 

use all sites chr2 218879105 218881298 2194 4 SCARNA6, SNORD39, SNORA75, SNORA48 2.33E-35 0.19589115 

use all sites chr12 76413973 76414729 757 3 SNORA9, snoMe28S-Am2634 1.40E-40 0.19959356 

use all sites chr7 115608503 115608801 299 3 TFEC 7.59E-41 0.33238299 
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use all sites chr2 69042739 69043808 1070 3 SNORA73, SNORA64, SNORD75, SNORA12, SNORA74, ARHGAP25, SNORA19, snR65, 5S_rRNA, SNORA4, SNORD11, SNORA41, SCARNA6, 
SNORD39, SNORD18, SNORA36, SNORA75, ACA59, SNORA48, SNORD56, SNORA43, SNORA1, Vault 5.74E-40 0.26944867 

use all sites chr7 158673837 158673979 143 3 WDR60 4.76E-41 0.2477287 

use all sites chr11 115111606 115111974 369 3 CADM1 1.64E-39 0.24192893 

use all sites chr5 90353937 90355362 1426 4 GPR98, snoZ6, SNORA27, SNORA68, SNORA57, 7SK, SNORD45, SNORD95 5.42E-40 0.21999739 

use all sites chr3 171494766 171496417 1652 3 SNORA81, SNORD66, SNORD2, PLD1, SNORA18, U4 1.31E-39 0.20910561 

use all sites chr15 43513306 43513563 258 3 EPB42 2.11E-38 0.19142707 

use all sites chr4 25880545 25882914 2370 5 SMIM20, SNORD74, SNORA3, snoR442, snoU2_19, SNORD65 8.11E-40 0.19672011 

use all sites chr12 48257191 48258214 1024 3 VDR, snoMe28S-Am2634 1.15E-39 0.18869123 

use all sites chr12 50321909 50323001 1093 4 RP11-70F11.8, snoMe28S-Am2634 3.50E-39 0.23679571 

use all sites chr2 9504738 9505705 968 3 SNORA73, ASAP2, SNORA64, snR65, SNORA75, SNORA48, SNORD56, SNORA43 5.94E-39 0.21718589 

use all sites chr18 60848167 60848973 807 3 BCL2 3.12E-40 0.2098908 

use all sites chr7 16308656 16308850 195 4 ISPD-AS1, ISPD 6.80E-40 0.17558463 

use all sites chr10 23363700 23363820 121 3 NA 3.10E-39 0.26329941 

use all sites chr4 170901597 170902837 1241 4 SNORD65 1.68E-39 0.20764897 

use all sites chr22 22383893 22385134 1242 3 PRAMENP 4.73E-39 0.21254684 

use all sites chr4 88719777 88720640 864 6 SNORD74, SNORD50, SNORA11, snoU2_19, SNORD65 1.74E-32 0.17960843 

use all sites chr7 83270795 83271654 860 3 SEMA3E 7.07E-38 0.22981519 

use all sites chr2 152739855 152740431 577 4 5S_rRNA, SNORA4, SNORD11, SNORD51, SNORA41, SCARNA6, SNORD39, SNORA75, ACA59, SNORA48, CACNB4, SNORD56, SNORA43, 
SNORA1, Vault 2.26E-39 0.28018407 

use all sites chr3 137851111 137852643 1533 3 SNORA81, SNORD66, SNORD2, SNORD5, SNORD63, A4GNT, Metazoa_SRP, SNORA18, U4 1.16E-38 0.25631895 

use all sites chr2 171459244 171459744 501 3 MYO3B, SNORA4, SNORD11, SNORD51, SNORA41, SCARNA6, SNORD39, SNORA75, ACA59, SNORA48, SNORA43, SNORA1, Vault 1.62E-38 0.21994238 

use all sites chr10 91136405 91137460 1056 4 SNORA17, LIPA 1.46E-34 0.21744576 

use all sites chr9 128604965 128605974 1010 3 PBX3 1.13E-38 0.20404308 

use all sites chr20 47923658 47924116 459 3 NA 1.38E-37 0.19675059 

use all sites chr2 201262081 201262839 759 3 SPATS2L, SNORD11, SNORD51, SNORA41, SCARNA6, SNORD39, SNORA75, SNORA48, SNORA1, Vault 3.35E-38 0.31216197 

use all sites chr6 143159647 143159766 120 3 SNORD28, HIVEP2, SNORA20 7.52E-38 0.2799306 

use all sites chr14 96127564 96128403 840 3 TCL6 1.03E-35 0.32303142 

use all sites chr7 43134845 43135798 954 3 SNORA22, SNORA15 9.85E-38 0.21631167 
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use all sites chr12 94228925 94229919 995 4 CRADD, SNORA9, snoMe28S-Am2634 7.77E-34 0.20551334 

use all sites chr1 113047945 113049100 1156 3 
snoU13, Y_RNA, SCARNA16, U1, SNORD112, SNORA63, SNORD46, SNORA2, SNORD81, U3, SNORA51, SNORA25, WNT2B, SNORA58, 
CKS1B, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, SNORA72, U8, SCARNA11, SNORA31, SNORA42, SNORA40, SNORD64, 
ACA64, SNORD78, snoU109, SNORD60, SNORD116 

6.27E-38 0.18825254 

use all sites chr9 131002641 131003043 403 3 DNM1 9.65E-38 0.19236516 

use all sites chr9 16624281 16624542 262 3 SNORD27, BNC2 7.89E-38 0.2459992 

use all sites chr11 78458944 78460645 1702 4 RP11-673F18.1, TENM4 2.19E-36 0.26026115 

use all sites chr1 90253388 90254168 781 3 
snoU13, Y_RNA, SCARNA16, U1, SNORD112, SNORA63, SNORD46, SNORA2, SNORD81, RP11-302M6.4, U3, SNORA51, SNORA25, SNORA58, 
CKS1B, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, SNORA42, SNORA40, SNORD64, ACA64, 
SNORD78, snoU109, SNORD60, SNORD116 

9.04E-38 0.23402128 

use all sites chr11 31789429 31790511 1083 5 ELP4, Z83001.1 6.62E-34 0.1945806 

use all sites chr6 143178039 143179316 1278 3 SNORD28, HIVEP2, SNORA20 2.03E-36 0.18534705 

use all sites chr17 38721675 38721942 268 3 SNORA69, CCR7 1.79E-37 0.21504456 

use all sites chr11 35606942 35607359 418 4 NA 1.84E-36 0.20463823 

use all sites chr4 25028735 25030010 1276 4 SNORD74, SNORA3, snoR442, LGI2, snoU2_19, SNORD65 1.23E-35 0.22019284 

use all sites chr17 17840911 17841862 952 3 SNORA69, TOM1L2 7.07E-35 0.24039485 

use all sites chr8 29686067 29687066 1000 4 SNORA7, RP11-94H18.1 2.46E-35 0.21195064 

use all sites chr1 85870184 85870653 470 3 
snoU13, Y_RNA, SCARNA16, U1, SNORD112, SNORA63, SNORD46, SNORA2, RP11-131L23.1, SNORD81, U3, SNORA51, SNORA25, SNORA58, 
CKS1B, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, DDAH1, SNORA42, SNORA40, SNORD64, 
ACA64, SNORD78, snoU109, SNORD60, SNORD116 

5.25E-34 0.2564641 

use all sites chr3 148581801 148583152 1352 4 CPA3, SNORA81, SNORD66, SNORD2, RP11-680B3.2, Metazoa_SRP, SNORA18, U4 1.25E-37 0.26149987 

use all sites chr11 19612894 19613613 720 4 LSP1, NAV2 2.77E-37 0.24218497 

use all sites chr2 211180001 211181383 1383 3 SCARNA6, SNORD39, SNORA75, SNORA48 1.26E-33 0.283936 

use all sites chr3 156840234 156841889 1656 4 SNORA81, SNORD66, SNORD2, LINC00880, SNORA18, U4 1.17E-36 0.19260793 

use all sites chr9 130115605 130116418 814 3 GARNL3 5.33E-36 0.21608444 

use all sites chr3 137492780 137493800 1021 3 RP11-2A4.3, SNORA81, SNORD66, SNORD2, SNORD5, SNORD63, Metazoa_SRP, SNORA18, U4 9.08E-35 0.22796492 

use all sites chr2 63670795 63671845 1051 3 SNORA73, SNORA64, SNORD75, SNORA12, SNORA74, SNORA19, snR65, 5S_rRNA, SNORA4, SNORD11, SNORA41, SCARNA6, SNORD39, 
SNORD18, SNORA36, SNORA75, WDPCP, SNORA48, SNORD56, SNORA43, SNORA1, Vault 4.19E-35 0.24357739 

use all sites chr6 122531803 122532605 803 3 SNORA8, SNORD28, SNORA20 2.39E-35 0.24041079 

use all sites chr10 123260333 123260551 219 3 FGFR2 8.96E-36 0.36592396 

use all sites chr3 9954087 9954273 187 3 IL17RE, SNORD38 2.01E-35 0.21062065 

use all sites chr11 122797295 122797732 438 3 C11orf63 1.38E-33 0.26638281 

use all sites chr11 16424708 16425891 1184 4 LSP1, snoMBII-202, SOX6 7.19E-36 0.21477755 
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use all sites chr17 17635366 17636909 1544 3 SNORA69, RAI1 1.47E-34 0.22103994 

use all sites chr7 8156924 8157910 987 3 ICA1 1.38E-34 0.29063223 

use all sites chr1 45079807 45080600 794 3 
snoU13, Y_RNA, SCARNA16, U1, SCARNA17, SCARNA18, SCARNA24, SNORD112, SNORA62, SNORA63, RNF220, SNORD46, SNORA2, 
SNORD81, U3, SNORA51, SNORA25, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, SNORA42, 
SNORA40, SNORD64, ACA64, snoU109, SNORD60, SNORD116 

3.72E-34 0.19469353 

use all sites chr21 41029374 41029700 327 4 B3GALT5, AF064860.5 1.03E-35 0.19880168 

use all sites chr8 121772624 121773417 794 3 SNTB1 5.10E-34 0.29023955 

use all sites chr1 30882722 30884528 1807 3 
snoU13, Y_RNA, SCARNA16, SCARNA21, U1, SCARNA17, SCARNA18, SCARNA24, SNORD112, SNORA62, SNORA63, SNORD46, SNORA2, 
SNORD81, U3, SNORA51, SNORA25, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, RP4-591L5.1, SNORA31, 
SNORA42, SNORA40, SNORD64, ACA64, snoU109, SNORD60 

3.37E-34 0.20964563 

use all sites chr1 10825554 10826654 1101 4 snoU13, Y_RNA, SCARNA16, SCARNA21, SNORD112, SNORA62, SNORA2, U3, SNORA51, SCARNA20, SNORA67, SNORA70, SNORA77, 
SNORA26, U8, CASZ1, SCARNA11, SNORA31, SNORA42, SNORA40, snoU109, SNORD60 2.90E-35 0.18138101 

use all sites chr1 152131909 152133193 1285 4 
snoU13, Y_RNA, SCARNA16, SNORD112, SNORA63, U3, SNORA51, SNORA25, SNORA58, CKS1B, SCARNA20, SNORA67, U6, SNORA70, 
SNORA77, SNORA26, SNORA72, U8, SNORA31, SNORA42, SNORA40, SCARNA4, SNORD64, ACA64, SNORD78, snoU109, SNORD60, 
SNORD116 

5.45E-35 0.23156203 

use all sites chr6 12355642 12357406 1765 4 SNORA20 1.86E-32 0.19718297 

use all sites chr1 43610502 43610749 248 3 
snoU13, Y_RNA, SCARNA16, U1, SCARNA17, SCARNA18, SCARNA24, SNORD112, SNORA62, SNORA63, SNORD46, SNORA2, SNORD81, U3, 
SNORA51, SNORA25, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, SNORA42, SNORA40, 
SNORD64, ACA64, snoU109, SNORD60, SNORD116 

7.38E-34 0.20198665 

use all sites chr11 19840651 19841423 773 3 LSP1, NAV2 6.80E-34 0.20711221 

use all sites chr8 21888398 21889714 1317 4 NPM2, SNORA7 7.80E-32 0.19680303 

use all sites chr2 234118754 234119529 776 3 ATG16L1, SCARNA6, SNORD39 6.25E-34 0.18457893 

use all sites chr8 123834661 123835648 988 4 ZHX2 5.43E-34 0.19573622 

use all sites chr11 35217970 35219225 1256 4 CD44 1.81E-33 0.23477625 

use all sites chr14 100942739 100943363 625 3 WDR25 4.09E-33 0.19094421 

use all sites chr4 108814109 108815434 1326 5 SNORD50, SGMS2, SNORA11, RP11-286E11.1, snoU2_19, SNORD65 2.10E-24 0.18916995 

use all sites chr1 178845478 178846607 1130 3 snoU13, Y_RNA, SCARNA16, SNORD112, SNORA63, U3, SNORA51, SNORA25, SNORD59, SCARNA20, RALGPS2, SNORA67, U6, SNORA70, 
SNORA77, SNORA26, SNORA72, U8, SNORA31, snoU109, SNORD60, SNORD116 4.45E-32 0.25483433 

use all sites chr6 8343386 8344604 1219 4 SNORA20 1.87E-30 0.18524821 

use all sites chr10 98982314 98982776 463 3 SNORA17, ARHGAP19-SLIT1, ARHGAP19 4.70E-32 0.19378007 

use all sites chr4 83436999 83438155 1157 3 SNORD74, SNORA3, SNORD50, snoR442, SNORA11, TMEM150C, snoU2_19, SNORD65 9.70E-32 0.1956516 

use all sites chr3 54392776 54393507 732 3 U7, SNORD77, CACNA2D3, SNORA33, SNORA81, SNORD66, SNORD5, SNORD38, SNORD63, Metazoa_SRP, SNORA18 1.46E-32 0.21814232 

use all sites chr10 92757528 92758755 1228 4 RP11-236B18.2, SNORA17 4.80E-33 0.19380927 

use all sites chr6 128222053 128222390 338 3 SNORA8, SNORD28, THEMIS, SNORA20 1.24E-29 0.21372176 

use all sites chr9 38421899 38422794 896 3 SNORA30, IGFBPL1 3.41E-32 0.19783719 

use all sites chr15 48137483 48139022 1540 4 RP11-198M11.2 4.22E-31 0.23843156 
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use all sites chr4 25871753 25872442 690 3 SMIM20, SNORD74, SNORA3, snoR442, snoU2_19, SNORD65 1.84E-28 0.21027605 

use all sites chr4 15239597 15240035 439 3 SNORA3, RP11-665G4.1 9.94E-31 0.2272664 

use all sites chr3 37615009 37615806 798 3 U7, ITGA9, SNORD77, SNORA33, SNORA81, SNORD5, SNORD38, SNORD63, Metazoa_SRP, SNORA18 5.21E-32 0.30351529 

use all sites chr2 66466834 66467093 260 3 SNORA73, SNORA64, SNORD75, SNORA12, SNORA74, SNORA19, snR65, 5S_rRNA, SNORA4, SNORD11, SNORA41, SCARNA6, SNORD39, 
SNORD18, SNORA36, SNORA75, ACA59, SNORA48, SNORD56, SNORA43, SNORA1, Vault 1.06E-29 0.26234382 

use all sites chr1 207112905 207114335 1431 3 snoU13, Y_RNA, SNORD112, U3, SNORA51, SNORA25, SNORA70, SNORA26, SNORA72, U8, PIGR, SNORD116 5.02E-32 0.19126275 

use all sites chr16 53078441 53079491 1051 3 SNORD111, RP11-467J12.4, SNORD33 9.15E-32 0.20698187 

use all sites chr3 9961961 9962252 292 3 IL17RC, SNORD38 6.87E-31 0.23761717 

use all sites chr3 62110823 62111806 984 3 U7, SNORD77, PTPRG, SNORA33, SNORA81, SNORD66, SNORD2, SNORD5, SNORD38, SNORD63, Metazoa_SRP, SNORA18 6.71E-31 0.2665107 

use all sites chr11 75310137 75310269 133 3 MAP6 2.52E-31 0.19386673 

use all sites chr6 116785236 116786636 1401 4 SNORA38, SNORA8, SNORD28, SNORA20 2.33E-31 0.18275341 

use all sites chr11 86437843 86438265 423 3 NA 7.64E-30 0.20608144 

use all sites chr18 21900171 21900538 368 3 SNORD23, OSBPL1A 4.57E-31 0.20458575 

use all sites chr16 56291675 56291813 139 4 GNAO1, SNORD111, SNORD33 2.46E-31 0.22834181 

use all sites chr11 58920029 58921817 1789 3 FAM111A, SNORD43 1.05E-29 0.19631217 

use all sites chr7 12728890 12729527 638 3 ARL4A 6.12E-30 -0.2237739 

use all sites chr9 3898591 3899055 465 3 GLIS3-AS1, GLIS3 1.69E-30 0.20841258 

use all sites chr12 15924004 15925024 1021 3 EPS8, snoMe28S-Am2634 1.05E-30 0.20578185 

use all sites chr5 137043431 137043540 110 3 SNORA27, SNORA68, SNORA57, 7SK, KLHL3, SNORD45, SNORD95 1.47E-30 0.21058504 

use all sites chr4 72118736 72120167 1432 3 SNORD74, SLC4A4, SNORA3, snoR442, SNORA11, SNORD42, snoU2_19, SNORD65 1.26E-30 0.20707807 

use all sites chr5 80743956 80745371 1416 4 snoZ6, SNORA27, SNORA68, RPS23P5, SNORA57, 7SK, SSBP2, SNORD45 2.90E-30 0.26443457 

use all sites chr5 37717742 37718202 461 3 WDR70, SNORA27, SNORA68, RPS23P5, SNORA57, SNORA76, 7SK, SNORD45 5.60E-30 -0.2795764 

use all sites chr6 143855543 143856248 706 3 SNORD28, SNORA20 6.52E-29 0.21952051 

use all sites chr2 70681570 70682536 967 3 SNORA73, SNORA64, SNORD75, SNORA12, SNORA74, SNORA19, snR65, 5S_rRNA, SNORA4, SNORD11, SNORA41, SCARNA6, SNORD39, 
SNORD18, SNORA36, SNORA75, ACA59, TGFA, SNORA48, SNORD56, SNORA43, SNORA1, Vault 1.13E-29 0.20133732 

use all sites chr5 141159440 141160944 1505 3 SNORA68, SNORA57, 7SK, SNORD45, SNORD95 7.32E-30 0.17442324 

use all sites chr5 75904722 75905788 1067 3 IQGAP2, snoZ6, SNORA27, SNORA68, RPS23P5, SNORA57, 7SK, CTD-2236F14.1, SNORD45 6.62E-17 0.22144301 

use all sites chr20 52780980 52781465 486 3 CYP24A1 3.54E-28 0.22013107 

use all sites chr1 236016383 236017325 943 3 snoU13, Y_RNA, SNORD112, SNORA25, LYST 3.24E-28 0.19765694 
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use all sites chr2 166670253 166670619 367 3 SNORA4, SNORD11, SNORD51, SNORA41, SCARNA6, SNORD39, SNORA75, ACA59, SNORA48, AC009495.4, SNORA43, SNORA1, Vault 1.04E-29 0.18816915 

use all sites chr5 121804635 121805509 875 3 snoZ6, SNORA27, SNORA68, SNORA57, 7SK, CTC-210G5.1, SNORD45, SNORD95 3.01E-27 0.23748609 

use all sites chr8 60050151 60051356 1206 4 SNORA7, SNORA32 8.35E-27 0.23573717 

use all sites chr11 122179528 122180195 668 3 RP11-820L6.1 2.16E-29 0.19541611 

use all sites chr2 8453146 8453529 384 3 SNORA73, SNORA64, snR65, LINC00299, SNORA48, SNORD56, SNORA43 3.27E-29 0.19025375 

use all sites chr4 90226782 90227879 1098 4 SNORD74, SNORD50, SNORA11, GPRIN3, snoU2_19, SNORD65 3.88E-27 0.19233985 

use all sites chr22 32440788 32442147 1360 3 SLC5A1 5.76E-27 0.18651288 

use all sites chr11 46004687 46005268 582 3 PHF21A, SNORD43 2.56E-27 0.19960842 

use all sites chr3 148572849 148573450 602 3 CPB1, SNORA81, SNORD66, SNORD2, RP11-680B3.2, Metazoa_SRP, SNORA18, U4 9.06E-25 0.21510514 

use all sites chr5 124254607 124256096 1490 3 RP11-284A20.1, snoZ6, SNORA27, SNORA68, SNORA57, 7SK, SNORD45, SNORD95 3.00E-22 0.19911489 

use all sites chr14 100629365 100630425 1061 3 NA 8.27E-28 0.17203051 

use all sites chr8 101037447 101037516 70 3 SNORA32, RGS22 1.44E-28 0.23791683 

use all sites chr4 106854064 106854773 710 3 SNORD74, SNORD50, NPNT, SNORA11, snoU2_19, SNORD65 4.46E-24 0.21546397 

use all sites chr11 102576094 102577488 1395 3 MMP27 8.07E-26 0.24310727 

use all sites chr1 20504655 20505852 1198 4 snoU13, Y_RNA, SCARNA16, SCARNA21, U1, SCARNA17, SCARNA18, SNORD112, SNORA62, SNORA63, SNORA2, SNORD81, U3, SNORA51, 
SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, SNORA42, SNORA40, ACA64, snoU109, SNORD60 1.72E-25 0.22428289 

use all sites chr8 121549480 121549740 261 3 MTBP, SNTB1 4.05E-27 0.22998515 

use all sites chr4 38942402 38943360 959 4 SNORD74, FAM114A1, SNORA3, snoR442, SNORA11, SNORD42, snoU2_19, SNORD65 1.28E-25 0.21088316 

use all sites chr11 128712280 128712932 653 4 KCNJ1 1.34E-25 0.1917719 

use all sites chr4 2363117 2363153 37 3 ZFYVE28 8.68E-28 0.20934873 

use all sites chr1 219497378 219498589 1212 3 snoU13, Y_RNA, SNORD112, U3, SNORA51, SNORA25, SNORA72, U8 2.89E-26 0.19091844 

use all sites chr2 207687061 207687959 899 4 SCARNA6, SNORD39, SNORA75, SNORA48 2.79E-25 0.22556461 

use all sites chr3 140179238 140180140 903 4 CLSTN2, SNORA81, SNORD66, SNORD2, SNORD5, RP11-68L1.1, Metazoa_SRP, SNORA18, U4 1.20E-27 0.19360227 

use all sites chr10 112515252 112515808 557 3 RBM20, SNORA17 2.06E-27 0.20131986 

use all sites chr8 123858181 123859953 1773 4 ZHX2, AC016405.2 2.12E-24 0.20848925 

use all sites chr9 37715014 37715305 292 3 SNORA30, FRMPD1, RP11-613M10.9 1.62E-26 0.19803352 

use all sites chr1 8066815 8067352 538 4 snoU13, Y_RNA, SCARNA21, SNORD112, SNORA62, U3, SNORA51, SNORA67, SNORA70, SNORA26, U8, ERRFI1, SCARNA11, SNORA31, 
SNORA42, SNORA40, snoU109, SNORD60 1.13E-26 0.19505773 

use all sites chr11 124938944 124940631 1688 3 SLC37A2 1.12E-24 0.21211848 
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use all sites chr1 10781431 10783216 1786 3 snoU13, Y_RNA, SCARNA16, SCARNA21, SNORD112, SNORA62, SNORA2, U3, SNORA51, SCARNA20, SNORA67, SNORA70, SNORA77, 
SNORA26, U8, CASZ1, SCARNA11, SNORA31, SNORA42, SNORA40, snoU109, SNORD60 1.57E-25 0.18274645 

use all sites chr1 30887513 30888725 1213 3 
snoU13, Y_RNA, SCARNA16, SCARNA21, U1, SCARNA17, SCARNA18, SCARNA24, RP4-591L5.2, SNORD112, SNORA62, SNORA63, SNORD46, 
SNORA2, SNORD81, U3, SNORA51, SNORA25, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, 
SNORA42, SNORA40, SNORD64, ACA64, snoU109, SNORD60 

1.66E-22 0.1791372 

use all sites chr7 110969188 110969696 509 3 IMMP2L 1.43E-26 0.25994868 

use all sites chr3 152364824 152365794 971 4 SNORA81, SNORD66, SNORD2, Metazoa_SRP, SNORA18, U4 2.42E-23 0.2229062 

use all sites chr1 65524084 65524885 802 5 
snoU13, Y_RNA, SCARNA16, U1, SCARNA18, SCARNA24, SNORD112, SNORA62, SNORA63, SNORD46, SNORA2, SNORD81, U3, SNORA51, 
SNORA25, SNORA58, CKS1B, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, MIR101-1, SNORA31, SNORA42, 
SNORA40, SNORD64, ACA64, SNORD78, snoU109, SNORD60, SNORD116 

5.05E-25 0.20166053 

use all sites chr2 12442966 12443780 815 3 SNORA73, AC096559.1, SNORA64, snR65, SNORD18, SNORA75, SNORA48, SNORD56, SNORA43 2.16E-26 0.30207253 

use all sites chr3 55504238 55504433 196 3 U7, SNORD77, SNORA33, SNORA81, SNORD66, SNORD5, SNORD38, SNORD63, WNT5A, Metazoa_SRP, SNORA18 1.11E-25 0.20785806 

use all sites chr2 12551974 12553424 1451 3 SNORA73, AC096559.1, SNORA64, snR65, SNORD18, SNORA75, SNORA48, SNORD56, SNORA43 1.58E-23 0.21583622 

use all sites chr2 188136244 188136528 285 3 AC007319.1, SNORA4, SNORD11, SNORD51, SNORA41, SCARNA6, SNORD39, SNORA75, SNORA48, SNORA1, Vault 5.11E-24 0.22690325 

use all sites chr9 113170902 113171134 233 4 SVEP1 6.51E-25 0.23048564 

use all sites chr1 172350469 172351357 889 3 snoU13, Y_RNA, SCARNA16, SNORD112, SNORA63, U3, SNORA51, SNORA25, SNORD59, SCARNA20, DNM3, SNORA67, U6, SNORA70, 
SNORA77, SNORA26, SNORA72, U8, SNORA31, PIGC, SNORD78, snoU109, SNORD60, SNORD116 7.93E-26 0.22724182 

use all sites chr3 25381567 25382277 711 3 U7, RARB, SNORA81, SNORD38, Metazoa_SRP 1.51E-25 0.20252266 

use all sites chr9 4558381 4559720 1340 3 SLC1A1, SPATA6L 3.48E-22 0.24945811 

use all sites chr1 192461180 192461723 544 3 snoU13, Y_RNA, SCARNA16, SNORD112, U3, SNORA51, SNORA25, SNORD59, SCARNA20, U6, SNORA70, SNORA77, SNORA26, SNORA72, 
U8, snoU109, SNORD60, SNORD116 7.65E-19 0.20910495 

use all sites chr7 2448630 2449916 1287 3 CHST12 8.58E-25 0.18440122 

use all sites chr11 125333533 125334935 1403 4 FEZ1 2.17E-25 0.19476718 

use all sites chr2 27224435 27225628 1194 3 SNORA73, MAPRE3, SNORA64, SNORA74, snR65, SCARNA6, SNORD39, SNORD18, AC013472.4, AC013472.3, SNORA75, SNORA48, 
SNORD56, SNORA43, SNORA1, Vault 3.46E-25 0.2357906 

use all sites chr14 100900810 100901630 821 3 WDR25 1.91E-24 0.20323027 

use all sites chr7 84122019 84122752 734 3 SEMA3A 1.08E-24 0.21517183 

use all sites chr3 99246029 99246780 752 3 U7, SNORD77, SNORA33, SNORA81, SNORD66, SNORD2, SNORD5, SNORD63, SNORA24, Metazoa_SRP, SNORA18 1.41E-23 0.2094015 

use all sites chr12 30952032 30953130 1099 3 LINC00941, snoMe28S-Am2634 1.05E-23 0.21262237 

use all sites chr4 138466594 138466819 226 3 SNORD65 2.40E-22 0.19531323 

use all sites chr13 42710869 42711037 169 3 SNORD36, DGKH, SNORD37 1.40E-23 0.22270488 

use all sites chr1 84872603 84874069 1467 4 
snoU13, Y_RNA, SCARNA16, U1, SNORD112, SNORA63, SNORD46, SNORA2, DNASE2B, SNORD81, U3, SNORA51, SNORA25, SNORA58, 
CKS1B, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, SNORA42, SNORA40, SNORD64, ACA64, 
SNORD78, snoU109, SNORD60, SNORD116 

3.07E-23 0.22413141 

use all sites chr9 71155278 71156057 780 3 SNORA30, RP11-274B18.4, TMEM252 2.92E-22 0.19256575 

use all sites chr12 91576441 91578378 1938 5 SNORA9, DCN, snoMe28S-Am2634 3.74E-21 0.16892444 
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use all sites chr17 12453166 12453280 115 3 SNORA69, LINC00670 1.66E-21 -0.2306214 

use all sites chr3 62200121 62200289 169 3 U7, SNORD77, PTPRG, SNORA33, SNORA81, SNORD66, SNORD2, SNORD5, SNORD38, SNORD63, Metazoa_SRP, SNORA18 1.16E-22 0.1916745 

use all sites chr4 174411279 174412482 1204 3 SNORD65 7.06E-22 0.17814612 

use all sites chr12 15315845 15316460 616 3 RERG, snoMe28S-Am2634 1.11E-20 0.19529523 

use all sites chr8 67280854 67281892 1039 3 SNORA7, SNORA32 6.41E-23 0.17945233 

use all sites chr4 47427752 47428108 357 4 SNORD74, GABRB1, SNORA3, snoR442, SNORA11, SNORD42, snoU2_19, SNORD65 4.40E-23 0.19180603 

use all sites chr8 123954739 123955611 873 3 ZHX2 4.69E-23 0.2103721 

use all sites chr1 64379958 64380706 749 3 
snoU13, Y_RNA, SCARNA16, U1, SCARNA18, SCARNA24, SNORD112, SNORA62, SNORA63, SNORD46, ROR1, SNORA2, SNORD81, U3, 
SNORA51, SNORA25, SNORA58, CKS1B, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, SNORA42, 
SNORA40, SNORD64, ACA64, SNORD78, snoU109, SNORD60, SNORD116 

9.96E-22 0.21086385 

use all sites chr2 151484439 151484866 428 3 AC104777.4, 5S_rRNA, SNORA4, SNORD11, SNORD51, SNORA41, SCARNA6, SNORD39, SNORA75, ACA59, SNORA48, SNORD56, SNORA43, 
SNORA1, Vault 2.17E-21 0.25416434 

use all sites chr12 131526494 131527216 723 4 GPR133 1.25E-22 0.20564367 

use all sites chr6 39608096 39608711 616 3 SNORA38, SNORA8, KIF6, SNORA20 4.99E-17 0.21937287 

use all sites chr4 48108327 48108744 418 3 SNORD74, SNORA3, snoR442, SNORA11, TXK, SNORD42, snoU2_19, SNORD65 3.08E-22 0.20033834 

use all sites chr3 114105023 114106326 1304 4 ZBTB20-AS1, SNORA33, SNORA81, SNORD66, SNORD2, SNORD5, SNORD63, SNORD61, ZBTB20, SNORA24, Metazoa_SRP, SNORA18, U4 5.31E-21 0.20715473 

use all sites chr13 34230354 34230675 322 3 SNORD36, RP11-141M1.3, SNORD37 1.61E-20 0.19033388 

use all sites chr2 177373410 177373823 414 3 SNORA4, SNORD11, SNORD51, SNORA41, SCARNA6, SNORD39, SNORA75, ACA59, SNORA48, SNORA43, SNORA1, Vault 1.93E-19 0.18401963 

use all sites chr9 90195336 90196103 768 3 DAPK1 1.05E-19 0.19330737 

use all sites chr17 58826436 58826810 375 3 SNORA69, BCAS3 8.83E-13 0.20895397 

use all sites chr7 96133088 96133991 904 3 SHFM1 2.35E-21 0.19212112 

use all sites chr18 54622933 54624442 1510 3 WDR7 1.16E-20 0.24587942 

use all sites chr9 109426545 109426950 406 3 RP11-308N19.4 1.45E-19 0.21460959 

use all sites chr1 56038581 56038796 216 3 
snoU13, Y_RNA, SCARNA16, U1, SCARNA18, SCARNA24, SNORD112, SNORA62, SNORA63, SNORD46, SNORA2, SNORD81, U3, SNORA51, 
SNORA25, SNORA58, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, SNORA42, SNORA40, 
SNORD64, ACA64, snoU109, SNORD60, SNORD116 

6.66E-18 0.20004102 

use all sites chr3 108672412 108673045 634 3 U7, SNORA33, SNORA81, SNORD66, SNORD2, SNORD5, SNORD63, SNORD61, GUCA1C, SNORA24, Metazoa_SRP, SNORA18 9.61E-21 0.23604284 

use all sites chr1 186429967 186430584 618 3 snoU13, Y_RNA, SCARNA16, SNORD112, SNORA63, U3, SNORA51, SNORA25, SNORD59, SCARNA20, U6, SNORA70, SNORA77, SNORA26, 
SNORA72, U8, SNORA31, PDC, snoU109, SNORD60, SNORD116 2.18E-21 0.2347791 

use all sites chr3 46482949 46484379 1431 3 U7, SNORD77, SNORA33, SNORA81, SNORD5, LTF, SNORD38, SNORD63, Metazoa_SRP, SNORA18 1.68E-18 0.21398901 

use all sites chr6 116744279 116745588 1310 3 SNORA38, SNORA8, DSE, SNORD28, SNORA20 1.58E-18 0.19244886 

use all sites chr2 149793455 149793702 248 3 KIF5C, 5S_rRNA, SNORA4, SNORD11, SNORD51, SNORA41, SCARNA6, SNORD39, SNORA75, ACA59, SNORA48, SNORD56, SNORA43, 
SNORA1, Vault 8.88E-17 0.18993023 
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use all sites chr8 127489179 127489296 118 3 RP11-103H7.1 5.54E-20 0.19193021 

use all sites chr11 16430247 16431370 1124 3 LSP1, snoMBII-202, SOX6 1.19E-18 0.21703824 

use all sites chr5 94616672 94617750 1079 3 snoZ6, SNORA27, SNORA68, SNORA57, 7SK, MCTP1, SNORD45, SNORD95 2.20E-19 0.19510877 

use all sites chr10 60274755 60275541 787 3 BICC1, SNORA71 1.40E-17 0.19854524 

use all sites chr7 70156755 70157145 391 3 AUTS2 6.83E-19 0.18538358 

use all sites chr11 130340832 130341779 948 3 ADAMTS15 2.92E-18 0.18467879 

use all sites chr10 36200347 36201305 959 3 NA 9.70E-16 0.21229466 

use all sites chr3 66533056 66534318 1263 3 U7, SNORD77, SNORA33, SNORA81, SNORD66, SNORD2, SNORD5, SNORD38, SNORD63, LRIG1, SNORA24, Metazoa_SRP, SNORA18 2.44E-17 0.21382895 

use all sites chr5 60083033 60083582 550 3 SNORA50, snoZ6, SNORA27, SNORA68, RPS23P5, SNORA57, ELOVL7, SNORA76, 7SK, SNORD45 7.32E-14 0.19806822 

use all sites chr3 8612614 8613388 775 4 LMCD1-AS1, SNORD38 1.55E-17 0.19660857 

use all sites chr2 187988552 187989001 450 3 AC007319.1, SNORA4, SNORD11, SNORD51, SNORA41, SCARNA6, SNORD39, SNORA75, SNORA48, SNORA1, Vault 2.05E-16 0.21270714 

use all sites chr6 73339270 73339537 268 3 SNORA38, SNORA8, SCARNA15, KCNQ5, SNORD28, SNORA20 3.28E-16 0.2166727 

use all sites chr4 137045738 137046811 1074 3 RP11-775H9.2, SNORD65 2.14E-12 0.17773895 

use all sites chr10 4447810 4448386 577 3 LINC00703 3.44E-15 0.17916395 

use all sites chr14 34077052 34077154 103 3 NPAS3, SNORA79 7.45E-15 0.18087706 

sites at 
TSS2000 chr13 21275739 21277505 1767 7 IL17D, SNORA16, SNORD37 5.64E-52 0.18484952 

sites at 
TSS2000 chr15 75039788 75041386 1599 7 CYP1A2 2.88E-53 0.20004377 

sites at 
TSS2000 chr1 215178601 215179216 616 8 snoU13, Y_RNA, SNORD112, U3, SNORA51, SNORA25, SNORA70, KCNK2, SNORA72, U8, SNORD116 2.95E-58 0.21816757 

sites at 
TSS2000 chr2 25551575 25552751 1177 6 SNORA73, SNORA64, SNORA74, snR65, SCARNA6, SNORD39, SNORD18, DNMT3A, MIR1301, SNORA75, SNORA48, SNORD56, SNORA43, 

SNORA1 7.59E-52 0.19727055 

sites at 
TSS2000 chr13 46757395 46757637 243 4 SNORD36, LCP1, SNORD37 6.66E-55 0.21707905 

sites at 
TSS2000 chr1 84863547 84864880 1334 7 

snoU13, Y_RNA, SCARNA16, U1, SNORD112, SNORA63, SNORD46, SNORA2, DNASE2B, SNORD81, U3, SNORA51, SNORA25, SNORA58, 
CKS1B, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, SNORA31, SNORA42, SNORA40, SNORD64, ACA64, 
SNORD78, snoU109, SNORD60, SNORD116 

4.33E-50 0.19528599 

sites at 
TSS2000 chr12 105322376 105323744 1369 5 SNORA9, SLC41A2 2.45E-46 0.19730917 

sites at 
TSS2000 chr6 2750213 2752360 2148 6 MYLK4 4.29E-47 0.22118473 

sites at 
TSS2000 chr12 79811775 79813192 1418 5 SYT1, MIR1252, SNORA9, RP1-78O14.1, snoMe28S-Am2634 1.18E-46 0.23773521 

sites at 
TSS2000 chr12 6055201 6056642 1442 6 ANO2 1.27E-41 0.19437382 

sites at 
TSS2000 chr6 6622864 6624448 1585 5 LY86, LY86-AS1, SNORA20 8.81E-43 0.19519653 

sites at 
TSS2000 chr15 45802899 45803341 443 4 RP11-519G16.3, HMGN2P46, SLC30A4 2.38E-43 0.32389857 
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sites at 
TSS2000 chr11 105010284 105011637 1354 6 CARD18 4.21E-35 0.1884503 

sites at 
TSS2000 chr12 6553092 6554051 960 5 CD27, CD27-AS1 7.78E-41 0.18968029 

sites at 
TSS2000 chr5 146298512 146300238 1727 4 SNORA68, SNORA57, SNORD45, PPP2R2B, PPP2R2B-IT1, SNORD95 7.33E-41 0.19346385 

sites at 
TSS2000 chr11 76744970 76745431 462 3 B3GNT6 1.26E-39 0.22185956 

sites at 
TSS2000 chr5 60932581 60933135 555 3 SNORA50, snoZ6, SNORA27, SNORA68, RPS23P5, SNORA57, SNORA76, 7SK, SNORD45 1.05E-37 0.21717499 

sites at 
TSS2000 chr15 39541977 39543043 1067 4 C15orf54, RP11-624L4.1 7.43E-36 0.23393044 

sites at 
TSS2000 chr10 74652084 74653449 1366 4 OIT3, SNORA71, SNORA17 4.26E-36 0.19702601 

sites at 
TSS2000 chr15 43513306 43513563 258 3 EPB42 1.61E-34 0.19025913 

sites at 
TSS2000 chr6 128239611 128241185 1575 5 SNORA8, SNORD28, THEMIS, SNORA20 4.30E-33 0.21703883 

sites at 
TSS2000 chr10 91136405 91137460 1056 4 SNORA17, LIPA 2.16E-29 0.21544411 

sites at 
TSS2000 chr3 137851111 137852643 1533 3 SNORA81, SNORD66, SNORD2, SNORD5, SNORD63, A4GNT, Metazoa_SRP, SNORA18, U4 6.04E-33 0.24997344 

sites at 
TSS2000 chr4 88719777 88720640 864 6 SNORD74, SNORD50, SNORA11, snoU2_19, SNORD65 1.19E-26 0.17613958 

sites at 
TSS2000 chr3 148581801 148583152 1352 4 CPA3, SNORA81, SNORD66, SNORD2, RP11-680B3.2, Metazoa_SRP, SNORA18, U4 3.45E-32 0.25854012 

sites at 
TSS2000 chr2 211180001 211181383 1383 3 SCARNA6, SNORD39, SNORA75, SNORA48 5.19E-28 0.2753323 

sites at 
TSS2000 chr17 38721675 38721942 268 3 SNORA69, CCR7 2.10E-31 0.20905431 

sites at 
TSS2000 chr3 156840234 156841889 1656 4 SNORA81, SNORD66, SNORD2, LINC00880, SNORA18, U4 2.17E-30 0.18762665 

sites at 
TSS2000 chr1 152131909 152133193 1285 4 

snoU13, Y_RNA, SCARNA16, SNORD112, SNORA63, U3, SNORA51, SNORA25, SNORA58, CKS1B, SCARNA20, SNORA67, U6, SNORA70, 
SNORA77, SNORA26, SNORA72, U8, SNORA31, SNORA42, SNORA40, SCARNA4, SNORD64, ACA64, SNORD78, snoU109, SNORD60, 
SNORD116 

1.09E-29 0.22397179 

sites at 
TSS2000 chr18 21900171 21900538 368 3 SNORD23, OSBPL1A 2.29E-26 0.19778298 

sites at 
TSS2000 chr12 58328060 58329764 1705 4 RP11-620J15.3, snoMe28S-Am2634 2.20E-20 0.19777851 

sites at 
TSS2000 chr9 3898591 3899055 465 3 GLIS3-AS1, GLIS3 1.71E-25 0.19932396 

sites at 
TSS2000 chr1 236016383 236017325 943 3 snoU13, Y_RNA, SNORD112, SNORA25, LYST 3.67E-24 0.19478811 

sites at 
TSS2000 chr1 65524084 65524885 802 5 

snoU13, Y_RNA, SCARNA16, U1, SCARNA18, SCARNA24, SNORD112, SNORA62, SNORA63, SNORD46, SNORA2, SNORD81, U3, SNORA51, 
SNORA25, SNORA58, CKS1B, SCARNA20, SNORA67, U6, SNORA70, SNORA77, SNORA26, U8, SCARNA11, MIR101-1, SNORA31, SNORA42, 
SNORA40, SNORD64, ACA64, SNORD78, snoU109, SNORD60, SNORD116 

3.61E-21 0.20051478 

sites at 
TSS2000 chr9 71155278 71156057 780 3 SNORA30, RP11-274B18.4, TMEM252 1.57E-19 0.19098288 

sites at 
TSS2000 chr4 88528262 88529234 973 3 SNORD74, SNORD50, SNORA11, RP11-742B18.1, snoU2_19, SNORD65 8.96E-19 0.22560272 

sites at 
TSS2000 chr17 12453166 12453280 115 3 SNORA69, LINC00670 1.71E-18 -0.2272351 

sites at 
TSS2000 chr12 91576441 91577988 1548 4 SNORA9, DCN, snoMe28S-Am2634 1.21E-18 0.18750985 
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sites at 
TSS2000 chr4 15341523 15341878 356 3 C1QTNF7, SNORA3, RP11-665G4.1 2.86E-17 0.15374642 

sites at 
TSS2000 chr7 96133088 96133991 904 3 SHFM1 2.97E-18 0.19047381 

sites at 
TSS2000 chr1 186429967 186430584 618 3 snoU13, Y_RNA, SCARNA16, SNORD112, SNORA63, U3, SNORA51, SNORA25, SNORD59, SCARNA20, U6, SNORA70, SNORA77, SNORA26, 

SNORA72, U8, SNORA31, PDC, snoU109, SNORD60, SNORD116 3.91E-18 0.22791304 

sites at 
TSS2000 chr3 108672412 108673045 634 3 U7, SNORA33, SNORA81, SNORD66, SNORD2, SNORD5, SNORD63, SNORD61, GUCA1C, SNORA24, Metazoa_SRP, SNORA18 2.68E-16 0.22398775 

sites at 
TSS2000 chr3 8612614 8613388 775 4 LMCD1-AS1, SNORD38 2.66E-14 0.18635531 

sites at 
promoters chr13 46757395 46757637 243 4 SNORD36, LCP1, SNORD37 1.53E-49 0.21240441 

sites at 
promoters chr12 8088741 8089207 467 5 SLC2A3, snoMe28S-Am2634 1.22E-44 0.19440806 

sites at 
promoters chr22 20923127 20923814 688 3 MED15 3.80E-42 -0.2156571 

sites at 
promoters chr17 38716802 38718229 1428 4 SNORA69, CCR7 7.50E-25 0.23133691 

sites at 
promoters chr6 143178039 143179316 1278 3 SNORD28, HIVEP2, SNORA20 8.01E-27 0.1777914 

sites at 
promoters chr9 134273620 134273881 262 3 PRRC2B 2.45E-26 0.19567164 

sites at 
promoters chr17 38721675 38721942 268 3 SNORA69, CCR7 3.91E-26 0.20231998 

sites at 
promoters chr18 21572622 21572748 127 4 TTC39C, SNORD23 1.95E-20 0.19406203 

sites at 
enhancers chr2 47077192 47078188 997 3 SNORA73, SNORA64, SNORD75, LINC01119, SNORA74, snR65, 5S_rRNA, SNORD11, SNORA41, SCARNA6, SNORD39, SNORD18, SNORA36, 

SNORA75, SNORA48, SNORD56, SNORA43, SNORA1, Vault 4.99E-51 0.19212875 

sites at 
enhancers chr17 3791228 3792074 847 4 CAMKK1 7.10E-50 0.22750202 

sites at 
enhancers chr7 4764941 4765362 422 3 FOXK1 2.16E-30 -0.2145312 

sites in PMDs chr1 215178601 215179216 616 8 snoU13, Y_RNA, SNORD112, U3, SNORA51, SNORA25, SNORA70, KCNK2, SNORA72, U8, SNORD116 5.19E-57 0.21263031 

sites in PMDs chr7 93189633 93190462 830 5 CALCR 3.02E-35 0.20671069 

sites in PMDs chr22 22383893 22385134 1242 3 PRAMENP 2.91E-35 0.21250144 

sites in PMDs chr1 152131909 152133193 1285 4 
snoU13, Y_RNA, SCARNA16, SNORD112, SNORA63, U3, SNORA51, SNORA25, SNORA58, CKS1B, SCARNA20, SNORA67, U6, SNORA70, 
SNORA77, SNORA26, SNORA72, U8, SNORA31, SNORA42, SNORA40, SCARNA4, SNORD64, ACA64, SNORD78, snoU109, SNORD60, 
SNORD116 

4.18E-30 0.22616413 

sites in PMDs chr5 158892858 158893397 540 4 SNORA57, SNORD45, AC008703.1, SNORD95 1.76E-20 0.18761949 

sites in PMDs chr3 99246029 99246780 752 3 U7, SNORD77, SNORA33, SNORA81, SNORD66, SNORD2, SNORD5, SNORD63, SNORA24, Metazoa_SRP, SNORA18 3.55E-20 0.20646385 

sites in PMDs chr3 114105023 114106326 1304 4 ZBTB20-AS1, SNORA33, SNORA81, SNORD66, SNORD2, SNORD5, SNORD63, SNORD61, ZBTB20, SNORA24, Metazoa_SRP, SNORA18, U4 7.91E-17 0.19469617 

sites in PMDs chr5 94616672 94617750 1079 3 snoZ6, SNORA27, SNORA68, SNORA57, 7SK, MCTP1, SNORD45, SNORD95 2.25E-16 0.18974943 

sites in PMDs chr6 73339270 73339537 268 3 SNORA38, SNORA8, SCARNA15, KCNQ5, SNORD28, SNORA20 5.92E-13 0.20314664 

sites in PMDs chr11 26309578 26309747 170 3 ANO3 3.09E-11 0.16518706 
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Table S4.5 ICRs that can be detected using EPIC array. 
Chromosome start end width ICR type Gene ICR index PMD CpG island Promoter enhancer Delta Beta (≤ 10 weeks' group - > 10 weeks' group) 
chr1 11561497 11561710 214 mat DISP3 ICR1 FALSE TRUE FALSE FALSE -0.0269942 
chr1 11561662 11561907 246 mat DISP3 ICR2 FALSE TRUE TRUE FALSE -0.0335496 
chr1 38461540 38461879 340 pat FHL3 ICR3 FALSE TRUE FALSE FALSE -0.030033 
chr1 39249425 39249603 179 mat RRAGC ICR4 FALSE TRUE FALSE FALSE 0.01439873 
chr1 39249433 39249663 231 mat RRAGC ICR5 FALSE TRUE FALSE FALSE 0.00684583 
chr1 39249604 39254896 5293 mat RRAGC ICR6 FALSE FALSE FALSE FALSE 0.05422418 
chr1 40024971 40025410 440 mat PPIEL ICR7 FALSE TRUE TRUE FALSE 0.03805789 
chr1 40025232 40025414 183 mat PPIEL ICR8 FALSE FALSE TRUE FALSE 0.05698946 
chr1 42384310 42384389 80 pat HIVEP3 ICR9 FALSE TRUE TRUE FALSE 0.00187057 
chr1 42384365 42384473 109 pat HIVEP3 ICR10 FALSE FALSE FALSE FALSE -0.0234045 
chr1 43814764 43815034 271 pat MPL ICR11 FALSE TRUE FALSE FALSE -0.0328412 
chr1 68512539 68512776 238 mat DIRAS3 ICR12 FALSE FALSE FALSE FALSE 0.02968432 
chr1 68512650 68512806 157 mat DIRAS3 ICR13 FALSE FALSE FALSE FALSE 0.02247839 
chr1 68512777 68512844 68 mat DIRAS3 ICR14 FALSE TRUE FALSE FALSE 0.01467518 
chr1 68512807 68512927 121 mat DIRAS3 ICR15 FALSE TRUE FALSE FALSE 0.01297799 
chr1 68512845 68512970 126 mat DIRAS3 ICR16 FALSE FALSE FALSE FALSE 0.00897054 
chr1 68512928 68513062 135 mat DIRAS3 ICR17 FALSE FALSE FALSE FALSE 0.02457739 
chr1 68515788 68515976 189 mat DIRAS3 ICR18 FALSE FALSE FALSE FALSE -0.0041723 
chr1 68515872 68516079 208 mat DIRAS3 ICR19 FALSE TRUE FALSE FALSE -0.0276718 
chr1 68515977 68516100 124 mat DIRAS3 ICR20 FALSE TRUE FALSE FALSE -0.0437175 
chr1 68516138 68516373 236 mat DIRAS3 ICR23 FALSE TRUE TRUE FALSE 2.64E-04 
chr1 68516272 68516452 181 mat DIRAS3 ICR24 FALSE TRUE TRUE FALSE 2.64E-04 
chr1 68516518 68517176 659 mat GNG12-AS1 ICR29 FALSE FALSE FALSE FALSE 0.01667993 
chr1 68516713 68517204 492 mat GNG12-AS1 ICR30 FALSE FALSE FALSE FALSE 0.00149469 
chr1 68517177 68517254 78 mat GNG12-AS1 ICR31 FALSE TRUE FALSE FALSE -0.0145428 
chr1 68517205 68517272 68 mat GNG12-AS1 ICR32 FALSE TRUE FALSE FALSE -0.0153951 
chr1 68517255 68517655 401 mat GNG12-AS1 ICR33 FALSE FALSE FALSE FALSE 0.01277093 
chr1 102308808 102312609 3802 mat OLFM3 ICR34 TRUE FALSE TRUE FALSE -0.0131465 
chr1 149147625 149148260 636 mat LINC02591 ICR36 FALSE TRUE FALSE FALSE -0.0096063 
chr1 149170064 149170351 288 mat LINC02591 ICR38 TRUE TRUE FALSE FALSE 0.01399351 
chr1 152161237 152161520 284 mat HRNR ICR39 FALSE FALSE FALSE FALSE 0.02014128 
chr1 152161397 152161682 286 mat HRNR ICR40 FALSE TRUE FALSE FALSE -0.0263172 
chr1 152161521 152161884 364 mat HRNR ICR41 FALSE TRUE TRUE FALSE -0.0263172 
chr1 152161683 152161926 244 mat HRNR ICR42 FALSE TRUE TRUE FALSE -0.0018826 
chr1 152161885 152162024 140 mat HRNR ICR43 FALSE TRUE FALSE FALSE -0.0190013 
chr1 152161927 152162506 580 mat HRNR ICR44 FALSE FALSE FALSE FALSE -0.0278117 
chr1 248100276 248100406 131 mat OR2L13 ICR45 FALSE TRUE FALSE FALSE -0.027803 
chr2 10637974 10638112 139 pat ODC1 ICR51 TRUE FALSE FALSE FALSE -0.057213 
chr2 177015044 177015124 81 mat MIR10B ICR52 FALSE TRUE FALSE FALSE 0.00239413 
chr2 177015070 177015991 922 mat MIR10B ICR53 FALSE FALSE FALSE FALSE 0.01517312 
chr2 177015125 177016036 912 mat MIR10B ICR54 FALSE FALSE FALSE FALSE 0.01188602 
chr2 177015992 177016166 175 mat HOXD4 ICR55 TRUE FALSE FALSE FALSE 0.01100587 
chr2 207116070 207118252 2183 pat ZDBF2 ICR56 FALSE FALSE FALSE FALSE -0.0119547 
chr2 207116401 207118287 1887 pat ZDBF2 ICR57 FALSE FALSE FALSE FALSE 0.01826316 
chr2 207118253 207127225 8973 pat ZDBF2 ICR58 FALSE FALSE FALSE FALSE 0.00504215 
chr2 207118288 207127363 9076 pat ZDBF2 ICR59 FALSE FALSE FALSE FALSE -0.0024429 
chr2 207127226 207129157 1932 pat ZDBF2 ICR60 FALSE FALSE FALSE FALSE 0.0277394 
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chr2 207127364 207136183 8820 pat ZDBF2 ICR61 FALSE TRUE FALSE FALSE 0.05548822 
chr2 241975140 241975970 831 mat SNED1 ICR63 FALSE FALSE TRUE FALSE 0.02985119 
chr2 241975971 241976243 273 mat SNED1 ICR64 FALSE TRUE TRUE FALSE 0.0622198 
chr3 27674461 27674613 153 mat EOMES ICR65 FALSE TRUE FALSE FALSE -7.94E-04 
chr3 39543515 39543775 261 mat MOBP ICR66 FALSE FALSE TRUE FALSE -0.0196766 
chr3 39543547 39543966 420 mat MOBP ICR67 FALSE FALSE TRUE FALSE -0.0115225 
chr3 39543776 39544191 416 mat MOBP ICR68 FALSE TRUE TRUE FALSE -8.29E-04 
chr3 42727160 42727488 329 mat KLHL40 ICR69 FALSE FALSE FALSE FALSE 0.01616523 
chr3 42727425 42727842 418 mat KLHL40 ICR70 FALSE TRUE FALSE FALSE -0.0301814 
chr3 159557552 159557796 245 pat SCHIP1 ICR71 FALSE FALSE TRUE FALSE 0.12593109 
chr3 159557779 159558030 252 pat SCHIP1 ICR72 FALSE FALSE TRUE FALSE 0.12287067 
chr4 6107021 6107279 259 mat JAKMIP1 ICR74 FALSE FALSE FALSE FALSE 0.01130006 
chr4 6107131 6107319 189 mat JAKMIP1 ICR75 FALSE FALSE FALSE FALSE -0.0104136 
chr4 6107280 6107338 59 mat JAKMIP1 ICR76 FALSE TRUE FALSE FALSE -0.0173527 
chr4 6107320 6107632 313 mat JAKMIP1 ICR77 FALSE TRUE FALSE FALSE -0.0066835 
chr4 6107339 6107648 310 mat JAKMIP1 ICR78 FALSE TRUE FALSE FALSE -0.0106437 
chr4 89618324 89618532 209 mat HERC3 ICR79 FALSE FALSE TRUE FALSE -0.0117902 
chr4 89618411 89618636 226 mat HERC3 ICR80 FALSE TRUE FALSE FALSE 0.00514378 
chr4 89618533 89618666 134 mat HERC3 ICR81 FALSE TRUE FALSE FALSE -0.0031613 
chr4 89618637 89618860 224 mat HERC3 ICR82 FALSE TRUE TRUE FALSE -0.0102708 
chr4 89618667 89618981 315 mat HERC3 ICR83 FALSE TRUE TRUE FALSE -0.0068026 
chr4 89618861 89619013 153 mat HERC3 ICR84 FALSE TRUE TRUE FALSE -0.0073434 
chr4 89618982 89619022 41 mat HERC3 ICR85 FALSE TRUE FALSE FALSE -0.0102221 
chr4 89619014 89619029 16 mat HERC3 ICR86 FALSE TRUE TRUE FALSE -0.0108097 
chr4 89619023 89619037 15 mat HERC3 ICR87 FALSE TRUE FALSE FALSE -0.0072742 
chr4 89619030 89619050 21 mat HERC3 ICR88 FALSE FALSE FALSE FALSE -0.0050212 
chr4 89619038 89619052 15 mat HERC3 ICR89 FALSE FALSE FALSE FALSE -0.0160822 
chr4 89619051 89619084 34 mat HERC3 ICR90 FALSE FALSE FALSE FALSE -0.0123039 
chr4 89619053 89619235 183 mat HERC3 ICR91 FALSE FALSE FALSE FALSE 2.98E-04 
chr4 155702610 155703137 528 mat RBM46 ICR92 FALSE TRUE FALSE FALSE -0.0261184 
chr4 165898707 165898834 128 pat TRIM61 ICR93 FALSE FALSE TRUE FALSE -0.0083785 
chr4 165898825 165898911 87 pat TRIM61 ICR94 FALSE FALSE TRUE FALSE -0.0211497 
chr4 165898835 165898925 91 pat TRIM61 ICR95 FALSE FALSE FALSE FALSE -0.0022341 
chr4 189376704 189395409 18706 pat LINC01060 ICR97 TRUE FALSE TRUE TRUE -0.0171285 
chr5 191600 191792 193 mat LRRC14B ICR98 FALSE TRUE TRUE FALSE 0.03275835 
chr5 191628 191805 178 mat LRRC14B ICR99 FALSE TRUE TRUE FALSE 0.05224109 
chr5 1725285 1725822 538 pat MIR4277 ICR100 FALSE TRUE FALSE FALSE 0.01965591 
chr5 42991495 42991861 367 pat LOC648987 ICR101 FALSE FALSE FALSE FALSE 0.02567563 
chr5 74908125 74908169 45 pat ANKDD1B ICR102 FALSE FALSE FALSE FALSE 0.07137778 
chr5 134363562 134363822 261 mat PITX1 ICR103 FALSE TRUE FALSE FALSE 0.00863398 
chr5 140480597 140480871 275 mat PCDHB3 ICR104 TRUE FALSE FALSE FALSE 0.01527873 
chr5 140719225 140719961 737 mat PCDHGA1 ICR105 FALSE FALSE FALSE FALSE 0.01523694 
chr5 176797920 176798048 129 pat RGS14 ICR106 FALSE TRUE FALSE FALSE -0.020172 
chr6 3848904 3849189 286 mat FAM50B ICR107 FALSE FALSE FALSE FALSE -0.0149571 
chr6 3849095 3849234 140 mat FAM50B ICR108 FALSE FALSE FALSE FALSE 0.02417883 
chr6 3849190 3849271 82 mat FAM50B ICR109 FALSE TRUE FALSE FALSE 0.01913257 
chr6 3849235 3849276 42 mat FAM50B ICR110 FALSE TRUE FALSE FALSE 0.01731574 
chr6 3849272 3849293 22 mat FAM50B ICR111 FALSE TRUE FALSE FALSE 0.02678559 
chr6 3849277 3849326 50 mat FAM50B ICR112 FALSE TRUE FALSE FALSE 0.00974036 
chr6 3849294 3849330 37 mat FAM50B ICR113 FALSE TRUE FALSE FALSE 0.00974036 
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chr6 3849350 3849390 41 mat FAM50B ICR116 FALSE TRUE FALSE FALSE 0.01439402 
chr6 3849381 3849410 30 mat FAM50B ICR117 FALSE TRUE FALSE FALSE 0.01676577 
chr6 3849391 3849433 43 mat FAM50B ICR118 FALSE TRUE FALSE FALSE 0.01913753 
chr6 3849442 3849474 33 mat FAM50B ICR121 FALSE TRUE FALSE FALSE 0.02402767 
chr6 3849458 3849535 78 mat FAM50B ICR122 FALSE TRUE FALSE FALSE 0.015723 
chr6 3849475 3849541 67 mat FAM50B ICR123 FALSE TRUE FALSE FALSE 0.00930722 
chr6 3849536 3849576 41 mat FAM50B ICR124 FALSE TRUE FALSE FALSE 0.02417215 
chr6 3849542 3849687 146 mat FAM50B ICR125 FALSE TRUE TRUE FALSE 0.03678469 
chr6 3849577 3849689 113 mat FAM50B ICR126 FALSE TRUE TRUE FALSE 0.02968018 
chr6 3849688 3849701 14 mat FAM50B ICR127 FALSE TRUE FALSE FALSE 0.02346062 
chr6 3849690 3849800 111 mat FAM50B ICR128 FALSE TRUE FALSE FALSE 0.02398205 
chr6 3849801 3850105 305 mat FAM50B ICR130 FALSE TRUE TRUE FALSE 0.04102292 
chr6 17016226 17016483 258 mat STMND1 ICR131 TRUE TRUE FALSE TRUE 0.019594 
chr6 28945322 28945340 19 pat ZNF311 ICR132 FALSE TRUE FALSE FALSE -0.0602818 
chr6 32116963 32117048 86 mat PRRT1 ICR135 FALSE TRUE FALSE FALSE 0.12759792 
chr6 32116994 32117078 85 mat PRRT1 ICR136 FALSE TRUE FALSE FALSE 0.10399121 
chr6 32117049 32117087 39 mat PRRT1 ICR137 FALSE TRUE FALSE FALSE 0.11620612 
chr6 75953853 75954052 200 pat COX7A2 ICR140 FALSE FALSE FALSE FALSE -0.0112254 
chr6 110736772 110736940 169 pat DDO ICR141 FALSE FALSE FALSE FALSE -0.0063944 
chr6 110736865 110736957 93 pat DDO ICR142 FALSE FALSE FALSE FALSE -0.0505826 
chr6 110736941 110737052 112 pat DDO ICR143 FALSE FALSE FALSE FALSE -0.0233574 
chr6 144328421 144328916 496 mat HYMAI ICR144 FALSE FALSE FALSE FALSE 3.18E-04 
chr6 144328482 144329051 570 mat HYMAI ICR145 FALSE FALSE FALSE FALSE -0.0094333 
chr6 144328917 144329171 255 mat HYMAI ICR146 FALSE FALSE FALSE FALSE 0.00848255 
chr6 144329052 144329330 279 mat HYMAI ICR147 FALSE TRUE FALSE FALSE 0.00758002 
chr6 144329172 144329381 210 mat HYMAI ICR148 FALSE TRUE TRUE FALSE 0.0048772 
chr6 144329331 144329472 142 mat HYMAI ICR149 FALSE TRUE TRUE FALSE -4.70E-04 
chr6 144329382 144329484 103 mat HYMAI ICR150 FALSE TRUE TRUE FALSE 0.00269747 
chr6 144329473 144329731 259 mat HYMAI ICR151 FALSE TRUE TRUE FALSE 0.00730967 
chr6 144329485 144329765 281 mat HYMAI ICR152 FALSE TRUE TRUE FALSE 0.00875462 
chr6 144329789 144329828 40 mat HYMAI ICR156 FALSE TRUE FALSE FALSE 0.01532789 
chr6 144329802 144329886 85 mat PLAGL1 ICR157 FALSE TRUE FALSE FALSE 0.01824924 
chr6 144329829 144329908 80 mat PLAGL1 ICR158 FALSE TRUE FALSE FALSE 0.04081517 
chr6 144329887 144329921 35 mat PLAGL1 ICR159 FALSE TRUE FALSE FALSE 0.06184144 
chr6 144329909 144329961 53 mat PLAGL1 ICR160 FALSE TRUE FALSE FALSE 0.06539765 
chr6 160023581 160023688 108 mat SOD2 ICR161 TRUE TRUE FALSE FALSE -0.0018173 
chr6 160426268 160427500 1233 mat IGF2R ICR162 FALSE TRUE FALSE TRUE 0.02048839 
chr6 170048424 170055331 6908 mat WDR27 ICR163 FALSE FALSE TRUE TRUE -0.0010962 
chr6 170055155 170057476 2322 mat WDR27 ICR164 FALSE FALSE FALSE FALSE -0.0234872 
chr7 2764129 2764245 117 pat GNA12 ICR165 FALSE FALSE FALSE FALSE 0.01206872 
chr7 2802560 2802941 382 pat GNA12 ICR166 FALSE FALSE FALSE FALSE -0.1539074 
chr7 4901750 4901797 48 mat RADIL ICR167 FALSE TRUE FALSE FALSE 0.00687742 
chr7 5183992 5184154 163 mat ZNF890P ICR168 FALSE TRUE TRUE FALSE -0.027714 
chr7 5184014 5184294 281 mat ZNF890P ICR169 FALSE FALSE TRUE FALSE 0.00880657 
chr7 16890879 16891078 200 mat AGR3 ICR170 FALSE TRUE FALSE FALSE -0.0065208 
chr7 27127448 27127575 128 mat HOXA1 ICR171 FALSE FALSE FALSE FALSE -0.0332065 
chr7 27127501 27127751 251 mat HOXA1 ICR172 FALSE TRUE TRUE FALSE -0.0204859 
chr7 27127576 27128045 470 mat HOXA1 ICR173 FALSE TRUE TRUE FALSE 0.00620227 
chr7 27127752 27128168 417 mat HOXA1 ICR174 FALSE TRUE FALSE FALSE 0.00715724 
chr7 27134109 27134258 150 mat HOXA1 ICR175 FALSE FALSE FALSE FALSE -0.0710191 
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chr7 27134225 27134368 144 mat HOXA1 ICR176 FALSE TRUE FALSE FALSE -0.0700157 
chr7 27137922 27138395 474 mat HOTAIRM1 ICR177 TRUE FALSE FALSE FALSE -0.0169781 
chr7 27138173 27138711 539 mat HOTAIRM1 ICR178 TRUE FALSE FALSE FALSE 0.00748979 
chr7 27138396 27138750 355 mat HOTAIRM1 ICR179 TRUE FALSE FALSE FALSE -0.0075876 
chr7 50849639 50849804 166 mat GRB10 ICR180 FALSE TRUE FALSE FALSE -0.0018583 
chr7 50849723 50849930 208 mat GRB10 ICR181 FALSE TRUE FALSE FALSE 0.02473193 
chr7 50849805 50850563 759 mat GRB10 ICR182 FALSE TRUE TRUE FALSE 0.03684063 
chr7 50849931 50850869 939 mat GRB10 ICR183 FALSE FALSE TRUE FALSE 0.01238779 
chr7 50850564 50851502 939 mat GRB10 ICR184 FALSE FALSE FALSE FALSE 0.014624 
chr7 94285642 94285684 43 mat PEG10 ICR185 FALSE TRUE FALSE FALSE 0.01955521 
chr7 94285672 94285711 40 mat PEG10 ICR186 FALSE TRUE TRUE FALSE 0.01816816 
chr7 94285685 94285744 60 mat PEG10 ICR187 FALSE TRUE FALSE FALSE 0.01362008 
chr7 94285712 94285758 47 mat PEG10 ICR188 FALSE TRUE FALSE FALSE 0.00948419 
chr7 94285745 94285767 23 mat PEG10 ICR189 FALSE TRUE FALSE FALSE 0.00867481 
chr7 94285759 94285776 18 mat PEG10 ICR190 FALSE TRUE FALSE FALSE 0.00692326 
chr7 94285777 94285813 37 mat PEG10 ICR191 FALSE TRUE FALSE FALSE 0.00275658 
chr7 94285784 94285872 89 mat PEG10 ICR192 FALSE TRUE FALSE FALSE 0.00468837 
chr7 94285814 94285886 73 mat PEG10 ICR193 FALSE TRUE FALSE FALSE 0.004356 
chr7 94285873 94285901 29 mat PEG10 ICR194 FALSE TRUE FALSE FALSE 0.00353553 
chr7 94285887 94285910 24 mat PEG10 ICR195 FALSE TRUE FALSE FALSE 0.00497923 
chr7 94285902 94285941 40 mat PEG10 ICR196 FALSE TRUE FALSE FALSE 0.01364613 
chr7 94285911 94285950 40 mat PEG10 ICR197 FALSE TRUE FALSE FALSE 0.01201719 
chr7 94285942 94285959 18 mat PEG10 ICR198 FALSE TRUE FALSE FALSE 0.00526359 
chr7 94285951 94285992 42 mat PEG10 ICR199 FALSE TRUE FALSE FALSE 0.01498443 
chr7 94285960 94286085 126 mat PEG10 ICR200 FALSE TRUE FALSE FALSE 0.03012165 
chr7 94285993 94286109 117 mat PEG10 ICR201 FALSE TRUE FALSE FALSE 0.02057464 
chr7 94286086 94286130 45 mat PEG10 ICR202 FALSE TRUE FALSE FALSE 0.01268498 
chr7 94286110 94286207 98 mat PEG10 ICR203 FALSE TRUE FALSE FALSE 0.01572465 
chr7 94286131 94286218 88 mat PEG10 ICR204 FALSE TRUE FALSE FALSE 0.01740025 
chr7 94286208 94286231 24 mat PEG10 ICR205 FALSE TRUE FALSE FALSE 0.01689788 
chr7 94286219 94286242 24 mat PEG10 ICR206 FALSE TRUE FALSE FALSE 0.01569653 
chr7 94286232 94286260 29 mat PEG10 ICR207 FALSE TRUE FALSE FALSE 0.01402347 
chr7 94286243 94286262 20 mat PEG10 ICR208 FALSE TRUE FALSE FALSE 0.01235782 
chr7 94286261 94286266 6 mat PEG10 ICR209 FALSE TRUE FALSE FALSE 0.01043173 
chr7 94286263 94286293 31 mat PEG10 ICR210 FALSE TRUE FALSE FALSE 0.01130865 
chr7 94286267 94286303 37 mat PEG10 ICR211 FALSE TRUE FALSE FALSE 0.0180029 
chr7 94286294 94286342 49 mat PEG10 ICR212 FALSE TRUE FALSE FALSE 0.01947658 
chr7 94286304 94286350 47 mat PEG10 ICR213 FALSE TRUE FALSE FALSE 0.01549845 
chr7 94286343 94286361 19 mat PEG10 ICR214 FALSE TRUE FALSE FALSE 0.01331293 
chr7 94286351 94286419 69 mat PEG10 ICR215 FALSE TRUE FALSE FALSE 0.00921407 
chr7 94286362 94286430 69 mat PEG10 ICR216 FALSE TRUE FALSE FALSE 0.01264467 
chr7 94286420 94286472 53 mat PEG10 ICR217 FALSE TRUE FALSE FALSE 0.01736728 
chr7 94286431 94286483 53 mat PEG10 ICR218 FALSE TRUE FALSE FALSE 0.02634454 
chr7 94286473 94286510 38 mat PEG10 ICR219 FALSE TRUE FALSE FALSE 0.026531 
chr7 94286484 94286520 37 mat PEG10 ICR220 FALSE TRUE FALSE FALSE 0.01585093 
chr7 94286511 94286525 15 mat PEG10 ICR221 FALSE TRUE FALSE FALSE 0.01556462 
chr7 94286521 94286558 38 mat PEG10 ICR222 FALSE TRUE FALSE FALSE 0.01288431 
chr7 94286526 94286631 106 mat PEG10 ICR223 FALSE TRUE FALSE FALSE 0.00791625 
chr7 94286559 94286649 91 mat PEG10 ICR224 FALSE TRUE FALSE FALSE 0.00515613 
chr7 94286632 94286668 37 mat PEG10 ICR225 FALSE TRUE FALSE FALSE 0.01863165 
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chr7 94286650 94286759 110 mat PEG10 ICR226 FALSE TRUE FALSE FALSE 0.01067608 
chr7 94286669 94286792 124 mat PEG10 ICR227 FALSE TRUE FALSE FALSE 0.00803492 
chr7 94286760 94286833 74 mat PEG10 ICR228 FALSE TRUE FALSE FALSE 0.00715038 
chr7 94286793 94286935 143 mat PEG10 ICR229 FALSE FALSE FALSE FALSE 0.00158002 
chr7 94286834 94286952 119 mat PEG10 ICR230 FALSE FALSE FALSE FALSE 0.01298469 
chr7 94286936 94286954 19 mat PEG10 ICR231 FALSE FALSE FALSE FALSE 0.0131023 
chr7 94286953 94287185 233 mat PEG10 ICR232 FALSE FALSE FALSE TRUE 6.59E-04 
chr7 94286955 94287210 256 mat PEG10 ICR233 FALSE FALSE FALSE TRUE -0.0010552 
chr7 94287186 94287241 56 mat PEG10 ICR234 FALSE FALSE FALSE TRUE -0.0069782 
chr7 130130122 130130186 65 mat MEST ICR235 FALSE FALSE FALSE FALSE -9.02E-04 
chr7 130130155 130130287 133 mat MEST ICR236 FALSE FALSE FALSE FALSE 0.0139702 
chr7 130130187 130130319 133 mat MEST ICR237 FALSE FALSE FALSE FALSE 0.01527175 
chr7 130130288 130130382 95 mat MEST ICR238 FALSE TRUE FALSE FALSE 0.01527175 
chr7 130130383 130130480 98 mat MEST ICR240 FALSE TRUE FALSE FALSE 0.04153829 
chr7 130130478 130130587 110 mat MEST ICR241 FALSE TRUE FALSE FALSE 0.03736206 
chr7 130130481 130130739 259 mat MEST ICR242 FALSE TRUE FALSE FALSE 0.02936681 
chr7 130130588 130130746 159 mat MEST ICR243 FALSE TRUE FALSE FALSE 0.03851998 
chr7 130130740 130130752 13 mat MEST ICR244 FALSE TRUE FALSE FALSE 0.04642485 
chr7 130130747 130130917 171 mat MEST ICR245 FALSE TRUE FALSE FALSE 0.03721912 
chr7 130130753 130130994 242 mat MEST ICR246 FALSE TRUE FALSE FALSE 0.05654931 
chr7 130130918 130131084 167 mat MEST ICR247 FALSE TRUE FALSE FALSE 0.04651948 
chr7 130130995 130131135 141 mat MEST ICR248 FALSE TRUE FALSE FALSE 0.00579891 
chr7 130131085 130131137 53 mat MEST ICR249 FALSE TRUE FALSE FALSE 4.24E-04 
chr7 130131136 130131145 10 mat MEST ICR250 FALSE TRUE FALSE FALSE 0.00750833 
chr7 130131138 130131188 51 mat MEST ICR251 FALSE TRUE FALSE FALSE 0.01401562 
chr7 130131146 130131257 112 mat MEST ICR252 FALSE TRUE FALSE FALSE 0.01528655 
chr7 130131189 130131267 79 mat MEST ICR253 FALSE TRUE FALSE FALSE -0.0024768 
chr7 130131258 130131358 101 mat MEST ICR254 FALSE TRUE FALSE FALSE 0.00302544 
chr7 130131268 130131366 99 mat MEST ICR255 FALSE TRUE FALSE FALSE 0.00608702 
chr7 130131359 130131402 44 mat MEST ICR256 FALSE TRUE FALSE FALSE 0.00362462 
chr7 130131367 130131479 113 mat MEST ICR257 FALSE TRUE FALSE FALSE 0.00880952 
chr7 130131403 130131483 81 mat MEST ICR258 FALSE TRUE FALSE FALSE 0.00470009 
chr7 130131480 130131632 153 mat MEST ICR259 FALSE FALSE FALSE FALSE -0.0016708 
chr7 130131484 130131675 192 mat MEST ICR260 FALSE FALSE FALSE FALSE 0.00127446 
chr7 130131709 130131796 88 mat MEST ICR264 FALSE TRUE FALSE FALSE 0.01415431 
chr7 130131730 130131825 96 mat MEST ICR265 FALSE TRUE FALSE FALSE 0.02160664 
chr7 130131797 130131828 32 mat MEST ICR266 FALSE TRUE FALSE FALSE 0.02501837 
chr7 130131826 130131868 43 mat MEST ICR267 FALSE TRUE FALSE FALSE 0.01919057 
chr7 130131829 130131884 56 mat MEST ICR268 FALSE TRUE FALSE FALSE 0.01386369 
chr7 130131869 130131886 18 mat MEST ICR269 FALSE TRUE FALSE FALSE 0.01208582 
chr7 130131885 130131904 20 mat MEST ICR270 FALSE TRUE FALSE FALSE 0.01218199 
chr7 130131887 130131915 29 mat MEST ICR271 FALSE TRUE FALSE FALSE 0.0083917 
chr7 130131905 130131922 18 mat MEST ICR272 FALSE TRUE FALSE FALSE 0.00626706 
chr7 130131916 130131930 15 mat MEST ICR273 FALSE TRUE TRUE FALSE 0.0049377 
chr7 130131923 130132160 238 mat MEST ICR274 FALSE TRUE TRUE FALSE 0.0049377 
chr7 130131931 130132198 268 mat MEST ICR275 FALSE TRUE TRUE FALSE 0.00846914 
chr7 130132161 130132258 98 mat MEST ICR276 FALSE TRUE FALSE FALSE 0.0110178 
chr7 130132199 130132264 66 mat MEST ICR277 FALSE TRUE FALSE FALSE 0.01411401 
chr7 130132259 130132285 27 mat MEST ICR278 FALSE TRUE FALSE FALSE 0.01284607 
chr7 130132265 130132297 33 mat MEST ICR279 FALSE TRUE FALSE FALSE 0.00516894 
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chr7 130132286 130132304 19 mat MEST ICR280 FALSE TRUE FALSE FALSE -6.93E-04 
chr7 130132298 130132318 21 mat MEST ICR281 FALSE TRUE FALSE FALSE 0.00600222 
chr7 130132305 130132359 55 mat MEST ICR282 FALSE TRUE FALSE FALSE 0.00600222 
chr7 130132319 130132418 100 mat MEST ICR283 FALSE TRUE FALSE FALSE 0.00653012 
chr7 130132360 130132421 62 mat MEST ICR284 FALSE TRUE FALSE FALSE 0.00653012 
chr7 130132419 130132452 34 mat MEST ICR285 FALSE TRUE FALSE FALSE 0.01528182 
chr7 130132422 130132789 368 mat MEST ICR286 FALSE TRUE FALSE FALSE 0.01528182 
chr7 130132790 130134487 1698 mat MEST ICR288 FALSE FALSE FALSE FALSE 0.00122601 
chr7 138348981 138349442 462 mat SVOPL ICR289 FALSE TRUE FALSE FALSE 0.03374852 
chr7 154862548 154862968 421 mat HTR5A ICR290 FALSE FALSE TRUE FALSE 0.00342518 
chr7 154862770 154863175 406 mat HTR5A ICR291 FALSE TRUE TRUE FALSE -0.0024016 
chr7 154862969 154863243 275 mat HTR5A ICR292 FALSE TRUE TRUE FALSE 0.00104545 
chr7 154863176 154863337 162 mat HTR5A ICR293 FALSE FALSE TRUE FALSE 0.00269746 
chr7 154863244 154863380 137 mat HTR5A ICR294 FALSE FALSE TRUE FALSE -0.0069154 
chr7 158750244 158750416 173 mat WDR60 ICR295 FALSE TRUE FALSE FALSE -0.0665363 
chr7 158750384 158750606 223 mat WDR60 ICR296 FALSE TRUE FALSE FALSE -0.0319846 
chr7 158750417 158750984 568 mat WDR60 ICR297 FALSE TRUE FALSE FALSE 0.00868713 
chr7 158750607 158751183 577 mat WDR60 ICR298 FALSE TRUE FALSE FALSE 0.01325247 
chr7 158750985 158751590 606 mat WDR60 ICR299 FALSE FALSE FALSE FALSE 0.01341448 
chr8 1321333 1321726 394 mat LOC286083 ICR300 FALSE TRUE TRUE FALSE -0.015285 
chr8 37605552 37605782 231 mat ERLIN2 ICR301 FALSE FALSE FALSE FALSE -0.0053056 
chr8 37605717 37605935 219 mat ERLIN2 ICR302 FALSE FALSE FALSE FALSE 0.00813985 
chr8 37605783 37605977 195 mat ERLIN2 ICR303 FALSE FALSE FALSE FALSE -0.0094115 
chr8 39172097 39172110 14 mat ADAM5 ICR304 FALSE FALSE FALSE FALSE -0.0147134 
chr8 39172099 39172119 21 mat ADAM5 ICR305 FALSE FALSE FALSE FALSE -0.0141105 
chr8 58055591 58056025 435 pat LINC01606 ICR307 TRUE FALSE FALSE FALSE -0.0142405 
chr8 58055876 58056112 237 pat LINC01606 ICR308 FALSE FALSE FALSE FALSE -0.0180301 
chr8 141108113 141108997 885 mat TRAPPC9 ICR309 FALSE TRUE FALSE FALSE 0.01039214 
chr8 141108607 141109050 444 mat TRAPPC9 ICR310 FALSE TRUE FALSE FALSE 0.00865091 
chr8 141108998 141109730 733 mat TRAPPC9 ICR311 FALSE TRUE FALSE TRUE 0.00290476 
chr8 141109051 141110259 1209 mat TRAPPC9 ICR312 FALSE TRUE FALSE FALSE -0.0018997 
chr8 141109731 141110746 1016 mat TRAPPC9 ICR313 FALSE TRUE TRUE FALSE -0.0055205 
chr8 141110260 141110899 640 mat TRAPPC9 ICR314 FALSE TRUE TRUE FALSE 0.01228524 
chr8 141110747 141111079 333 mat TRAPPC9 ICR315 FALSE FALSE FALSE FALSE 0.01843877 
chr8 141110900 141114390 3491 mat TRAPPC9 ICR316 FALSE FALSE FALSE FALSE 0.05471638 
chr9 98075481 98079128 3648 mat FANCC ICR317 FALSE FALSE FALSE FALSE 0.01068592 
chr9 98075492 98079447 3956 mat FANCC ICR318 FALSE TRUE TRUE FALSE 0.01068592 
chr9 129377854 129379318 1465 mat LMX1B ICR319 FALSE FALSE FALSE FALSE -0.0224214 
chr9 140311437 140312445 1009 mat EXD3 ICR320 FALSE FALSE FALSE TRUE 0.01215856 
chr10 27703247 27703328 82 mat PTCHD3 ICR323 FALSE TRUE TRUE FALSE -0.0157769 
chr10 27703289 27703335 47 mat PTCHD3 ICR324 FALSE TRUE FALSE FALSE -0.0203914 
chr10 27703329 27703361 33 mat PTCHD3 ICR325 FALSE TRUE FALSE FALSE -0.0167874 
chr10 27703336 27703376 41 mat PTCHD3 ICR326 FALSE TRUE FALSE FALSE -0.011653 
chr10 43844651 43846375 1725 mat FXYD4 ICR327 FALSE FALSE FALSE TRUE 0.0416833 
chr10 43846376 43846573 198 mat FXYD4 ICR328 FALSE TRUE FALSE FALSE 0.06166909 
chr10 43846539 43846704 166 mat FXYD4 ICR329 FALSE FALSE FALSE FALSE 0.05252212 
chr10 121578384 121578638 255 mat INPP5F ICR330 FALSE FALSE FALSE FALSE -0.0015376 
chr11 1412397 1413281 885 pat BRSK2 ICR331 TRUE FALSE FALSE FALSE 0.02007182 
chr11 1413145 1413314 170 pat BRSK2 ICR332 TRUE FALSE FALSE FALSE 0.02007182 
chr11 1457119 1457345 227 mat BRSK2 ICR333 TRUE TRUE TRUE FALSE -0.0132183 
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chr11 2018724 2019089 366 pat H19 ICR334 FALSE FALSE TRUE FALSE -0.015088 
chr11 2019079 2019115 37 pat H19 ICR335 FALSE FALSE FALSE FALSE -0.0231788 
chr11 2019090 2019128 39 pat H19 ICR336 FALSE FALSE FALSE FALSE -0.0018916 
chr11 2019116 2019166 51 pat H19 ICR337 FALSE FALSE FALSE FALSE 0.02493984 
chr11 2019167 2019451 285 pat H19 ICR339 FALSE FALSE FALSE FALSE -0.0035511 
chr11 2019436 2019567 132 pat H19 ICR340 FALSE FALSE FALSE FALSE -0.0086394 
chr11 2019452 2019586 135 pat H19 ICR341 FALSE FALSE FALSE FALSE -0.0137277 
chr11 2019606 2019625 20 pat H19 ICR344 FALSE FALSE FALSE FALSE 0.00311798 
chr11 2019624 2019654 31 pat H19 ICR345 FALSE TRUE FALSE FALSE 0.0036856 
chr11 2019626 2019666 41 pat H19 ICR346 FALSE TRUE FALSE FALSE 0.0036981 
chr11 2019655 2019729 75 pat H19 ICR347 FALSE TRUE FALSE FALSE 0.00482198 
chr11 2019667 2019731 65 pat H19 ICR348 FALSE TRUE FALSE FALSE 0.004699 
chr11 2019730 2019735 6 pat H19 ICR349 FALSE TRUE FALSE FALSE 0.00362977 
chr11 2019732 2019797 66 pat H19 ICR350 FALSE TRUE FALSE FALSE 0.00718415 
chr11 2019736 2019822 87 pat H19 ICR351 FALSE TRUE FALSE FALSE 0.01000581 
chr11 2019798 2019858 61 pat H19 ICR352 FALSE TRUE FALSE FALSE -0.0011086 
chr11 2019823 2019861 39 pat H19 ICR353 FALSE TRUE FALSE FALSE 3.77E-04 
chr11 2019859 2019929 71 pat H19 ICR354 FALSE TRUE FALSE FALSE 0.01081618 
chr11 2019862 2019942 81 pat H19 ICR355 FALSE TRUE FALSE FALSE 0.01639263 
chr11 2019930 2020027 98 pat H19 ICR356 FALSE TRUE FALSE FALSE 0.01388795 
chr11 2019943 2020029 87 pat H19 ICR357 FALSE TRUE FALSE FALSE 0.01476126 
chr11 2020286 2020313 28 pat H19 ICR358 FALSE FALSE FALSE FALSE 0.0301373 
chr11 2020296 2020416 121 pat H19 ICR359 FALSE TRUE FALSE FALSE 0.03130832 
chr11 2020314 2020536 223 pat H19 ICR360 FALSE TRUE FALSE FALSE 0.03388416 
chr11 2020417 2020548 132 pat H19 ICR361 FALSE TRUE FALSE FALSE 0.03381965 
chr11 2020537 2020555 19 pat H19 ICR362 FALSE TRUE FALSE FALSE 0.00911543 
chr11 2020549 2020559 11 pat H19 ICR363 FALSE TRUE FALSE FALSE 0.01779285 
chr11 2020556 2021102 547 pat H19 ICR364 FALSE FALSE FALSE FALSE 0.02681653 
chr11 2020560 2021242 683 pat H19 ICR365 FALSE FALSE FALSE FALSE 0.02716277 
chr11 2021915 2022385 471 pat H19 ICR369 FALSE FALSE FALSE FALSE 0.03776826 
chr11 2022324 2023449 1126 pat H19 ICR370 FALSE FALSE TRUE FALSE 0.03943518 
chr11 2022386 2023864 1479 pat H19 ICR371 FALSE FALSE TRUE FALSE 0.02779051 
chr11 2023450 2024125 676 pat H19 ICR372 FALSE FALSE FALSE FALSE 0.00283423 
chr11 2023865 2025905 2041 pat H19 ICR373 FALSE TRUE FALSE FALSE 0.01231083 
chr11 2153991 2154112 122 pat INS-IGF2 ICR374 FALSE FALSE TRUE FALSE -0.0625343 
chr11 2154074 2154131 58 pat INS-IGF2 ICR375 FALSE FALSE TRUE FALSE 0.00282557 
chr11 2154113 2154254 142 pat INS-IGF2 ICR376 FALSE TRUE TRUE FALSE -0.0145463 
chr11 2154132 2154431 300 pat INS-IGF2 ICR377 FALSE TRUE TRUE FALSE -0.0587348 
chr11 2154255 2154637 383 pat INS-IGF2 ICR378 FALSE TRUE TRUE FALSE -0.0696278 
chr11 2154432 2154933 502 pat INS-IGF2 ICR379 TRUE FALSE TRUE FALSE -0.0642605 
chr11 2154638 2154951 314 pat INS-IGF2 ICR380 TRUE FALSE TRUE FALSE -0.0639239 
chr11 2718307 2720462 2156 mat KCNQ1 ICR381 FALSE FALSE FALSE FALSE 0.03577909 
chr11 2720229 2720809 581 mat KCNQ1 ICR382 FALSE FALSE FALSE FALSE 0.0211137 
chr11 2720463 2721206 744 mat KCNQ1 ICR383 FALSE TRUE FALSE FALSE 0.01270969 
chr11 2720810 2721242 433 mat KCNQ1 ICR384 FALSE TRUE TRUE FALSE 0.00445009 
chr11 2721207 2721247 41 mat KCNQ1 ICR385 FALSE TRUE TRUE FALSE 0.00564917 
chr11 2721243 2721335 93 mat KCNQ1 ICR386 FALSE TRUE FALSE FALSE 0.00337748 
chr11 2721248 2721350 103 mat KCNQ1 ICR387 FALSE TRUE FALSE FALSE 0.00646983 
chr11 2721336 2721365 30 mat KCNQ1 ICR388 FALSE TRUE FALSE FALSE 0.01183387 
chr11 2721351 2721382 32 mat KCNQ1 ICR389 FALSE TRUE FALSE FALSE 0.01415866 
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chr11 2721366 2721408 43 mat KCNQ1 ICR390 FALSE TRUE FALSE FALSE 0.01079904 
chr11 2721383 2721436 54 mat KCNQ1 ICR391 FALSE TRUE FALSE FALSE 0.00743942 
chr11 2721437 2721590 154 mat KCNQ1 ICR393 FALSE TRUE FALSE FALSE 0.00541369 
chr11 2721480 2721609 130 mat KCNQ1 ICR394 FALSE TRUE FALSE FALSE 0.00541369 
chr11 2721610 2721631 22 mat KCNQ1 ICR396 FALSE TRUE FALSE FALSE 0.00199125 
chr11 2721619 2721798 180 mat KCNQ1 ICR397 FALSE TRUE FALSE FALSE 0.00229512 
chr11 2721632 2721816 185 mat KCNQ1 ICR398 FALSE TRUE FALSE FALSE 0.00879943 
chr11 2721799 2721856 58 mat KCNQ1 ICR399 FALSE TRUE FALSE FALSE 0.00820865 
chr11 2721817 2721865 49 mat KCNQ1 ICR400 FALSE TRUE FALSE FALSE 0.00141743 
chr11 2721857 2721951 95 mat KCNQ1 ICR401 FALSE TRUE FALSE FALSE 0.01365495 
chr11 2721866 2722061 196 mat KCNQ1 ICR402 FALSE TRUE FALSE FALSE 0.0107415 
chr11 2721952 2722072 121 mat KCNQ1 ICR403 FALSE TRUE FALSE FALSE 0.00550038 
chr11 2722062 2722075 14 mat KCNQ1 ICR404 FALSE TRUE FALSE FALSE 0.00317273 
chr11 2722086 2722257 172 mat KCNQ1 ICR409 FALSE FALSE FALSE FALSE 0.01280366 
chr11 2722195 2722339 145 mat KCNQ1 ICR410 FALSE FALSE FALSE FALSE 0.01280366 
chr11 116370272 116371329 1058 mat BUD13 ICR411 FALSE FALSE FALSE FALSE -0.0195181 
chr11 116371188 116371390 203 mat BUD13 ICR412 FALSE TRUE FALSE FALSE -0.0258052 
chr12 10095902 10096111 210 pat CLEC12A ICR413 FALSE FALSE TRUE FALSE 0.01037707 
chr12 10095997 10096117 121 pat CLEC12A ICR414 FALSE TRUE TRUE FALSE 0.03421544 
chr12 10096112 10096151 40 pat CLEC12A ICR415 FALSE FALSE FALSE FALSE 0.04143619 
chr12 10096118 10096793 676 pat CLEC12A ICR416 FALSE FALSE FALSE FALSE 0.03643975 
chr12 14926744 14926985 242 mat H2AFJ ICR417 FALSE TRUE FALSE FALSE 0.0254312 
chr12 47219737 47219796 60 mat SLC38A4 ICR418 FALSE TRUE FALSE FALSE -0.0027257 
chr12 54385436 54385525 90 pat MIR196A2 ICR419 TRUE FALSE FALSE FALSE 0.01100961 
chr12 114107712 114107802 91 mat RBM19 ICR420 TRUE FALSE FALSE FALSE 0.05134331 
chr12 114885621 114886360 740 mat TBX5-AS1 ICR421 FALSE FALSE FALSE FALSE 0.10421539 
chr12 130821962 130822602 641 mat PIWIL1 ICR422 FALSE TRUE TRUE FALSE -0.0131413 
chr12 130822286 130822604 319 mat PIWIL1 ICR423 FALSE TRUE TRUE FALSE -0.0494475 
chr12 130824015 130824327 313 mat PIWIL1 ICR424 FALSE TRUE FALSE FALSE -0.0012748 
chr12 131488414 131488725 312 pat ADGRD1 ICR425 FALSE FALSE FALSE FALSE 0.11067218 
chr12 132671062 132671472 411 mat GALNT9 ICR426 TRUE TRUE FALSE FALSE -0.0167361 
chr12 133186923 133187173 251 pat LRCOL1 ICR428 FALSE TRUE TRUE FALSE -0.0353946 
chr13 20716432 20716727 296 mat GJA3 ICR429 FALSE TRUE FALSE FALSE 0.08229996 
chr13 48892551 48893173 623 mat RB1 ICR430 FALSE TRUE FALSE FALSE 0.03710241 
chr13 48892948 48893375 428 mat RB1 ICR431 FALSE TRUE FALSE FALSE 0.01868113 
chr13 48893174 48893726 553 mat RB1 ICR432 FALSE TRUE FALSE FALSE 0.01868113 
chr13 48893376 48893967 592 mat RB1 ICR433 FALSE TRUE FALSE FALSE 0.0659916 
chr13 48893727 48894213 487 mat RB1 ICR434 FALSE TRUE FALSE FALSE 0.0659916 
chr13 48893968 48894381 414 mat RB1 ICR435 FALSE TRUE FALSE FALSE 0.04386351 
chr13 48894214 48894594 381 mat RB1 ICR436 FALSE FALSE FALSE FALSE 0.04326377 
chr13 48894382 48895240 859 mat RB1 ICR437 FALSE FALSE FALSE FALSE 0.04266404 
chr13 48894595 48895317 723 mat RB1 ICR438 FALSE FALSE FALSE FALSE 0.03455672 
chr13 48895241 48895477 237 mat RB1 ICR439 FALSE FALSE FALSE FALSE 0.04551055 
chr13 48895318 48895969 652 mat RB1 ICR440 FALSE FALSE FALSE FALSE 0.04742687 
chr13 112984602 112984839 238 mat SPACA7 ICR441 TRUE TRUE FALSE FALSE 0.05163413 
chr13 112984728 112984975 248 mat SPACA7 ICR442 FALSE TRUE FALSE FALSE 0.0340349 
chr13 112984840 112985462 623 mat SPACA7 ICR443 FALSE TRUE FALSE FALSE 0.02975741 
chr13 112986667 112986977 311 mat SPACA7 ICR445 TRUE TRUE FALSE FALSE 0.02366208 
chr13 112986927 112989199 2273 mat SPACA7 ICR446 TRUE FALSE FALSE FALSE 0.01947059 
chr14 101194145 101194747 603 mat DLK1 ICR447 TRUE TRUE TRUE FALSE 0.01592086 
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chr14 101290195 101290716 522 pat MEG3 ICR448 FALSE FALSE FALSE FALSE 0.00613633 
chr14 101290556 101290866 311 pat MEG3 ICR449 FALSE FALSE FALSE FALSE 0.02354063 
chr14 101290717 101291067 351 pat MEG3 ICR450 FALSE TRUE FALSE FALSE 0.04388012 
chr14 101290867 101291099 233 pat MEG3 ICR451 FALSE TRUE FALSE FALSE 0.02567808 
chr14 101291068 101291135 68 pat MEG3 ICR452 TRUE TRUE FALSE FALSE 0.01108014 
chr14 101291100 101291179 80 pat MEG3 ICR453 TRUE TRUE FALSE FALSE -1.41E-04 
chr14 101291136 101291287 152 pat MEG3 ICR454 TRUE TRUE FALSE FALSE -0.0088698 
chr14 101291180 101291409 230 pat MEG3 ICR455 TRUE TRUE FALSE FALSE -0.0202626 
chr14 101291288 101291439 152 pat MEG3 ICR456 TRUE TRUE FALSE FALSE -0.0199151 
chr14 101291410 101291458 49 pat MEG3 ICR457 TRUE TRUE FALSE FALSE -0.0055996 
chr14 101291440 101291468 29 pat MEG3 ICR458 TRUE TRUE FALSE FALSE -0.0301424 
chr14 101291459 101291499 41 pat MEG3 ICR459 TRUE TRUE FALSE FALSE -0.0356417 
chr14 101291469 101291570 102 pat MEG3 ICR460 TRUE TRUE FALSE FALSE -0.0368819 
chr14 101291500 101291601 102 pat MEG3 ICR461 TRUE TRUE FALSE FALSE -0.0507084 
chr14 101291571 101291686 116 pat MEG3 ICR462 TRUE TRUE FALSE FALSE 0.08248877 
chr14 101291602 101291828 227 pat MEG3 ICR463 TRUE TRUE FALSE FALSE 0.05520567 
chr14 101291687 101291855 169 pat MEG3 ICR464 TRUE TRUE FALSE FALSE 0.02154079 
chr14 101291829 101291890 62 pat MEG3 ICR465 TRUE TRUE FALSE FALSE 0.02390233 
chr14 101291856 101291932 77 pat MEG3 ICR466 TRUE TRUE FALSE FALSE 0.0323822 
chr14 101291891 101291996 106 pat MEG3 ICR467 TRUE TRUE FALSE FALSE 0.04455974 
chr14 101291933 101292127 195 pat MEG3 ICR468 FALSE TRUE FALSE FALSE 0.027152 
chr14 101291997 101292148 152 pat MEG3 ICR469 FALSE TRUE FALSE FALSE 0.01911791 
chr14 101292128 101292305 178 pat MEG3 ICR470 FALSE TRUE FALSE FALSE 0.0420261 
chr14 101292149 101292391 243 pat MEG3 ICR471 FALSE TRUE FALSE FALSE 0.02877375 
chr14 101292306 101292642 337 pat MEG3 ICR472 FALSE TRUE TRUE FALSE 0.03153949 
chr14 101292392 101292679 288 pat MEG3 ICR473 FALSE TRUE TRUE FALSE 0.02117063 
chr14 101292643 101292871 229 pat MEG3 ICR474 TRUE TRUE FALSE FALSE 0.02780027 
chr14 101292680 101292966 287 pat MEG3 ICR475 TRUE TRUE FALSE FALSE 0.03652719 
chr14 101292872 101293089 218 pat MEG3 ICR476 FALSE TRUE FALSE FALSE 0.02143242 
chr14 101292967 101293449 483 pat MEG3 ICR477 TRUE FALSE FALSE FALSE 0.04221329 
chr14 101293090 101293725 636 pat MEG3 ICR478 TRUE FALSE TRUE FALSE 0.05479394 
chr14 101293450 101293855 406 pat MEG3 ICR479 FALSE FALSE TRUE FALSE 0.04839891 
chr14 101293726 101294146 421 pat MEG3 ICR480 FALSE TRUE FALSE FALSE -0.0100934 
chr15 23807180 23810162 2983 mat MIR4508 ICR481 TRUE FALSE TRUE FALSE -0.0194138 
chr15 23891780 23892655 876 mat MAGEL2 ICR482 TRUE TRUE FALSE FALSE 0.02542656 
chr15 23892574 23892769 196 mat MAGEL2 ICR483 TRUE TRUE FALSE FALSE -0.0038393 
chr15 23892656 23893024 369 mat MAGEL2 ICR484 TRUE FALSE TRUE FALSE -0.0345801 
chr15 23892770 23893039 270 mat MAGEL2 ICR485 TRUE FALSE TRUE FALSE -0.0127962 
chr15 23893025 23893741 717 mat MAGEL2 ICR486 TRUE FALSE TRUE FALSE 0.00639404 
chr15 23893040 23894197 1158 mat MAGEL2 ICR487 TRUE FALSE FALSE FALSE -0.002811 
chr15 23931451 23932369 919 mat NDN ICR488 FALSE FALSE FALSE FALSE -0.0016874 
chr15 23931674 23932372 699 mat NDN ICR489 FALSE TRUE FALSE FALSE -0.0275516 
chr15 23932370 23932396 27 mat NDN ICR490 FALSE TRUE FALSE FALSE -0.0481362 
chr15 23932373 23932411 39 mat NDN ICR491 FALSE TRUE TRUE FALSE -0.0370458 
chr15 23932397 23932619 223 mat NDN ICR492 FALSE TRUE TRUE FALSE -0.0425963 
chr15 23932412 23932757 346 mat NDN ICR493 FALSE FALSE TRUE FALSE -0.0426486 
chr15 24123705 24142934 19230 mat NDN ICR494 TRUE FALSE FALSE FALSE -0.0573139 
chr15 24142935 24347062 204128 mat PWRN2 ICR496 FALSE FALSE TRUE FALSE 0.00741519 
chr15 25031239 25068753 37515 mat SNRPN ICR499 TRUE FALSE FALSE FALSE 0.02433305 
chr15 25068738 25068756 19 mat SNRPN ICR500 TRUE FALSE FALSE FALSE 0.01062769 
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chr15 25068754 25068762 9 mat SNRPN ICR501 TRUE FALSE FALSE FALSE -0.0162141 
chr15 25068757 25068768 12 mat SNRPN ICR502 TRUE FALSE FALSE FALSE -0.0156288 
chr15 25068763 25068789 27 mat SNRPN ICR503 TRUE FALSE FALSE FALSE -0.0114739 
chr15 25068769 25068849 81 mat SNRPN ICR504 TRUE FALSE TRUE FALSE -0.0216108 
chr15 25068790 25069375 586 mat SNRPN ICR505 TRUE FALSE TRUE FALSE -0.0367209 
chr15 25068850 25092068 23219 mat SNRPN ICR506 TRUE FALSE FALSE FALSE -0.0345191 
chr15 25092069 25093365 1297 mat SNRPN ICR507 FALSE FALSE FALSE FALSE -0.0068927 
chr15 25093244 25093455 212 mat SNRPN ICR508 FALSE TRUE FALSE FALSE 0.01763669 
chr15 25093366 25093520 155 mat SNRPN ICR509 FALSE TRUE FALSE FALSE 0.00230859 
chr15 25123287 25123490 204 mat SNRPN ICR510 FALSE FALSE FALSE FALSE -0.086815 
chr15 25123381 25123687 307 mat SNRPN ICR511 FALSE FALSE FALSE TRUE -0.0158734 
chr15 25123491 25123730 240 mat SNRPN ICR512 FALSE FALSE FALSE FALSE 0.01103004 
chr15 25199713 25200405 693 mat SNRPN ICR513 FALSE TRUE TRUE FALSE 0.00150822 
chr15 25200253 25200489 237 mat SNURF ICR514 FALSE FALSE FALSE FALSE 0.00565904 
chr15 25200406 25201019 614 mat SNURF ICR515 FALSE TRUE FALSE FALSE -0.0019246 
chr15 25200490 25201223 734 mat SNURF ICR516 FALSE TRUE FALSE FALSE -0.0075154 
chr15 25201020 25201428 409 mat SNURF ICR517 FALSE FALSE FALSE FALSE 0.0186444 
chr15 25201224 25201731 508 mat SNURF ICR518 TRUE FALSE FALSE FALSE 0.02055113 
chr15 45314789 45314932 144 mat SORD ICR519 FALSE FALSE FALSE FALSE -0.0124392 
chr15 45314915 45314942 28 mat SORD ICR520 FALSE FALSE FALSE FALSE -0.0156454 
chr15 45314933 45315296 364 mat SORD ICR521 FALSE FALSE FALSE FALSE -0.0156115 
chr15 69222592 69223017 426 mat MIR548H4 ICR522 FALSE FALSE TRUE FALSE -0.0614647 
chr15 95870440 95870474 35 mat LINC01197 ICR523 FALSE FALSE FALSE FALSE -0.0445173 
chr15 99408636 99408957 322 mat IGF1R ICR524 FALSE TRUE FALSE TRUE -0.0228099 
chr15 99408804 99409193 390 mat IGF1R ICR525 FALSE FALSE FALSE FALSE -0.0304041 
chr15 99409194 99409410 217 mat IGF1R ICR527 FALSE TRUE FALSE FALSE -0.1102498 
chr15 99409360 99409505 146 mat IGF1R ICR528 FALSE TRUE FALSE TRUE -0.1013788 
chr16 3493133 3493422 290 pat ZNF597 ICR530 FALSE FALSE FALSE FALSE -0.0147485 
chr16 3493336 3493439 104 pat ZNF597 ICR531 FALSE TRUE FALSE FALSE -0.0127018 
chr16 3493423 3493533 111 pat ZNF597 ICR532 FALSE TRUE TRUE FALSE -0.0170508 
chr16 3493440 3493613 174 pat ZNF597 ICR533 FALSE TRUE TRUE FALSE -0.019011 
chr16 3493534 3493680 147 pat NAA60 ICR534 FALSE TRUE FALSE FALSE -0.0094883 
chr16 3493614 3493814 201 pat NAA60 ICR535 FALSE TRUE TRUE FALSE -0.0066878 
chr16 3493681 3493996 316 pat NAA60 ICR536 FALSE TRUE FALSE FALSE -0.0049054 
chr16 3493815 3494093 279 pat NAA60 ICR537 FALSE TRUE FALSE FALSE -0.0102361 
chr16 3493997 3494154 158 pat NAA60 ICR538 FALSE TRUE FALSE FALSE -0.0150054 
chr16 3494094 3497279 3186 pat NAA60 ICR539 FALSE FALSE FALSE FALSE -0.0044975 
chr17 6558365 6558814 450 mat MIR4520-1 ICR541 FALSE TRUE FALSE FALSE -0.0111093 
chr17 6558440 6559108 669 mat MIR4520-1 ICR542 FALSE TRUE FALSE FALSE -0.0111093 
chr17 37024020 37024168 149 mat LASP1 ICR543 FALSE TRUE FALSE FALSE 9.92E-04 
chr17 37093398 37123668 30271 mat FBXO47 ICR544 FALSE TRUE TRUE FALSE 0.04774555 
chr17 37123638 37123670 33 mat FBXO47 ICR545 FALSE TRUE TRUE FALSE -0.0065006 
chr17 37123669 37123710 42 mat FBXO47 ICR546 FALSE TRUE FALSE FALSE -0.0070961 
chr17 70120182 70120410 229 mat SOX9 ICR547 FALSE TRUE TRUE FALSE 0.07033218 
chr17 76871734 76876039 4306 mat TIMP2 ICR548 FALSE FALSE FALSE TRUE 0.13894136 
chr17 76875678 76876205 528 mat TIMP2 ICR549 FALSE FALSE FALSE FALSE 0.03139321 
chr17 76876040 76876238 199 mat TIMP2 ICR550 FALSE TRUE FALSE FALSE 0.03139321 
chr18 29304111 29304481 371 mat SLC25A52 ICR551 FALSE FALSE TRUE FALSE -0.0051177 
chr19 1465556 1466161 606 mat C19orf25 ICR553 FALSE TRUE FALSE FALSE 0.02886617 
chr19 4784940 4785373 434 mat FEM1A ICR554 FALSE FALSE FALSE FALSE -0.0176829 
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chr19 11517079 11517259 181 pat RGL3 ICR555 FALSE TRUE FALSE FALSE 0.06724574 
chr19 48999042 49000896 1855 pat LMTK3 ICR557 FALSE FALSE FALSE FALSE -0.0393972 
chr19 49001890 49002476 587 pat LMTK3 ICR558 FALSE TRUE FALSE FALSE -0.0355784 
chr19 54040774 54040817 44 mat ZNF331 ICR559 FALSE FALSE FALSE FALSE -0.0022357 
chr19 54040813 54041162 350 mat ZNF331 ICR560 FALSE TRUE FALSE FALSE 0.00674457 
chr19 54040818 54041250 433 mat ZNF331 ICR561 FALSE TRUE FALSE FALSE 0.00862918 
chr19 54041163 54041302 140 mat ZNF331 ICR562 FALSE TRUE FALSE FALSE 0.00153357 
chr19 54041251 54041307 57 mat ZNF331 ICR563 FALSE TRUE FALSE FALSE 0.00642584 
chr19 54041303 54041328 26 mat ZNF331 ICR564 FALSE TRUE FALSE FALSE 0.00912126 
chr19 54041308 54041397 90 mat ZNF331 ICR565 FALSE TRUE FALSE FALSE 0.01181669 
chr19 54041329 54041855 527 mat ZNF331 ICR566 FALSE TRUE TRUE FALSE 0.01037801 
chr19 54041398 54041998 601 mat ZNF331 ICR567 FALSE TRUE TRUE FALSE 0.01321358 
chr19 54055365 54057414 2050 mat ZNF331 ICR568 FALSE FALSE FALSE FALSE -0.0276766 
chr19 54057208 54057704 497 mat ZNF331 ICR569 FALSE FALSE FALSE FALSE -0.0102592 
chr19 54057415 54058084 670 mat ZNF331 ICR570 FALSE TRUE TRUE FALSE 0.00262951 
chr19 55476665 55477652 988 mat NLRP2 ICR571 FALSE FALSE FALSE FALSE -0.0355878 
chr19 55476717 55477754 1038 mat NLRP2 ICR572 FALSE FALSE FALSE FALSE -0.0355878 
chr19 57346735 57349678 2944 mat PEG3 ICR574 FALSE TRUE TRUE FALSE -0.0154313 
chr19 57349204 57349708 505 mat PEG3 ICR575 FALSE FALSE TRUE FALSE 0.00296896 
chr19 57349679 57349814 136 mat PEG3 ICR576 FALSE FALSE FALSE FALSE 0.00296896 
chr19 57349709 57350003 295 mat PEG3 ICR577 FALSE TRUE FALSE FALSE 0.01742779 
chr19 57349815 57350095 281 mat PEG3 ICR578 FALSE TRUE FALSE FALSE 0.01779234 
chr19 57350004 57350291 288 mat PEG3 ICR579 FALSE TRUE FALSE FALSE 0.02631495 
chr19 57350096 57350312 217 mat PEG3 ICR580 FALSE TRUE FALSE FALSE 0.03447302 
chr19 57350846 57351321 476 mat PEG3 ICR584 FALSE TRUE FALSE FALSE 0.01034676 
chr19 57351213 57351439 227 mat PEG3 ICR585 FALSE TRUE FALSE FALSE 0.01855113 
chr19 57351322 57351641 320 mat PEG3 ICR586 FALSE TRUE FALSE FALSE 0.02022753 
chr19 57351440 57351790 351 mat PEG3 ICR587 FALSE TRUE FALSE FALSE 0.01409837 
chr19 57351642 57352013 372 mat PEG3 ICR588 FALSE TRUE FALSE FALSE 0.01388108 
chr19 57351791 57352017 227 mat PEG3 ICR589 FALSE TRUE FALSE FALSE 0.01326499 
chr19 57352021 57352133 113 mat ZIM2 ICR592 FALSE TRUE TRUE FALSE 0.01192555 
chr19 57352074 57352141 68 mat ZIM2 ICR593 FALSE TRUE TRUE FALSE 0.01519245 
chr19 57352134 57352175 42 mat ZIM2 ICR594 FALSE TRUE FALSE FALSE 0.02191462 
chr19 57352142 57352184 43 mat ZIM2 ICR595 FALSE TRUE FALSE FALSE 0.02014945 
chr19 57352176 57352251 76 mat MIMT1 ICR596 FALSE TRUE FALSE FALSE 0.01249448 
chr19 57352185 57352268 84 mat MIMT1 ICR597 FALSE TRUE FALSE FALSE 0.01374629 
chr19 57352252 57352464 213 mat MIMT1 ICR598 FALSE FALSE FALSE FALSE 0.01384518 
chr19 57352269 57352518 250 mat MIMT1 ICR599 FALSE FALSE FALSE FALSE 0.02561124 
chr19 57352465 57352541 77 mat MIMT1 ICR600 FALSE FALSE FALSE FALSE 0.02382017 
chr19 57352519 57352583 65 mat MIMT1 ICR601 FALSE FALSE FALSE FALSE 0.00546083 
chr19 57352542 57352656 115 mat MIMT1 ICR602 FALSE FALSE FALSE FALSE 0.02003304 
chr19 57352584 57352685 102 mat MIMT1 ICR603 FALSE FALSE FALSE FALSE 0.03709294 
chr19 57352657 57352728 72 mat MIMT1 ICR604 FALSE FALSE FALSE FALSE 0.04647395 
chr19 57352686 57352745 60 mat MIMT1 ICR605 FALSE FALSE FALSE FALSE 0.05302923 
chr19 57352729 57352784 56 mat MIMT1 ICR606 FALSE FALSE FALSE FALSE 0.03938404 
chr19 57352746 57352806 61 mat MIMT1 ICR607 FALSE FALSE FALSE FALSE 0.02175228 
chr19 57352785 57353127 343 mat MIMT1 ICR608 FALSE FALSE FALSE FALSE 0.00607622 
chr19 58861502 58862062 561 mat A1BG-AS1 ICR609 FALSE TRUE FALSE FALSE 0.03652569 
chr20 30134929 30135107 179 mat HM13 ICR610 FALSE FALSE FALSE FALSE 0.01201711 
chr20 30134973 30135123 151 mat HM13 ICR611 FALSE FALSE FALSE FALSE 0.0187073 
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chr20 30135108 30135148 41 mat HM13 ICR612 FALSE TRUE FALSE FALSE 0.01418526 
chr20 30135124 30135157 34 mat HM13 ICR613 FALSE TRUE FALSE FALSE 0.00885912 
chr20 30135149 30135176 28 mat HM13 ICR614 FALSE TRUE FALSE FALSE 0.0036599 
chr20 30135158 30135290 133 mat HM13 ICR615 FALSE TRUE TRUE FALSE -6.49E-04 
chr20 30135177 30135361 185 mat HM13 ICR616 FALSE FALSE TRUE FALSE -0.0050848 
chr20 30135291 30138142 2852 mat HM13 ICR617 FALSE FALSE FALSE FALSE 0.01786353 
chr20 36148457 36148614 158 mat BLCAP ICR618 FALSE FALSE FALSE FALSE 0.01420337 
chr20 36148604 36148619 16 mat BLCAP ICR619 FALSE FALSE FALSE FALSE 0.01959224 
chr20 36148615 36148641 27 mat BLCAP ICR620 FALSE FALSE FALSE FALSE 0.02328239 
chr20 36148620 36148671 52 mat BLCAP ICR621 FALSE FALSE FALSE FALSE 0.02469328 
chr20 36148642 36148678 37 mat BLCAP ICR622 FALSE TRUE FALSE FALSE 0.03513404 
chr20 36148672 36148698 27 mat BLCAP ICR623 FALSE TRUE FALSE FALSE 0.03986153 
chr20 36148679 36148737 59 mat BLCAP ICR624 FALSE TRUE FALSE FALSE 0.03771416 
chr20 36148699 36148766 68 mat BLCAP ICR625 FALSE TRUE FALSE FALSE 0.03051365 
chr20 36148738 36148774 37 mat BLCAP ICR626 FALSE TRUE FALSE FALSE 0.01904994 
chr20 36148767 36148778 12 mat BLCAP ICR627 FALSE TRUE FALSE FALSE 0.01647276 
chr20 36148775 36148790 16 mat BLCAP ICR628 FALSE TRUE FALSE FALSE 0.02015395 
chr20 36148779 36148802 24 mat BLCAP ICR629 FALSE TRUE FALSE FALSE 0.01762067 
chr20 36148803 36148927 125 mat BLCAP ICR630 FALSE TRUE FALSE FALSE 0.01185574 
chr20 36148860 36148953 94 mat BLCAP ICR631 FALSE TRUE FALSE FALSE 0.01696613 
chr20 36148928 36148960 33 mat BLCAP ICR632 FALSE TRUE FALSE FALSE 0.02559503 
chr20 36148954 36148993 40 mat BLCAP ICR633 FALSE TRUE FALSE FALSE 0.02519966 
chr20 36148961 36149012 52 mat BLCAP ICR634 FALSE TRUE FALSE FALSE 0.03521584 
chr20 36148994 36149021 28 mat BLCAP ICR635 FALSE TRUE FALSE FALSE 0.03521584 
chr20 36149053 36149111 59 mat BLCAP ICR638 FALSE TRUE FALSE FALSE 0.02284227 
chr20 36149081 36149118 38 mat BLCAP ICR639 FALSE TRUE FALSE FALSE 0.03008924 
chr20 36149112 36149120 9 mat BLCAP ICR640 FALSE TRUE FALSE FALSE 0.02739178 
chr20 36149119 36149184 66 mat BLCAP ICR641 FALSE TRUE FALSE FALSE 0.01635326 
chr20 36149121 36149187 67 mat BLCAP ICR642 FALSE TRUE FALSE FALSE 0.02838872 
chr20 36149185 36149193 9 mat BLCAP ICR643 FALSE TRUE FALSE FALSE 0.04044761 
chr20 36149188 36149230 43 mat BLCAP ICR644 FALSE TRUE FALSE FALSE 0.03435242 
chr20 36149194 36149451 258 mat BLCAP ICR645 FALSE TRUE FALSE FALSE 0.03755935 
chr20 36149231 36149454 224 mat BLCAP ICR646 FALSE TRUE FALSE FALSE 0.0268743 
chr20 36149452 36149655 204 mat BLCAP ICR647 FALSE TRUE FALSE FALSE 0.01238705 
chr20 36149455 36149705 251 mat BLCAP ICR648 FALSE TRUE TRUE FALSE 0.04677957 
chr20 36149656 36149749 94 mat NNAT ICR649 FALSE TRUE TRUE FALSE 0.04935779 
chr20 36149706 36150060 355 mat NNAT ICR650 FALSE TRUE TRUE FALSE 0.04619956 
chr20 36149750 36151002 1253 mat NNAT ICR651 FALSE FALSE FALSE FALSE 0.04187495 
chr20 42142236 42142450 215 mat L3MBTL1 ICR652 FALSE FALSE FALSE FALSE 0.00930712 
chr20 42142417 42142483 67 mat L3MBTL1 ICR653 FALSE FALSE FALSE FALSE 0.00907771 
chr20 42142451 42142493 43 mat L3MBTL1 ICR654 FALSE FALSE FALSE FALSE 0.00353741 
chr20 42142484 42142558 75 mat L3MBTL1 ICR655 FALSE FALSE FALSE FALSE 0.00378908 
chr20 42142494 42142595 102 mat L3MBTL1 ICR656 FALSE FALSE FALSE FALSE 0.00274637 
chr20 42142559 42142670 112 mat L3MBTL1 ICR657 FALSE FALSE FALSE FALSE -4.25E-04 
chr20 42142596 42142672 77 mat L3MBTL1 ICR658 FALSE FALSE FALSE FALSE -0.0133838 
chr20 42142671 42142698 28 mat L3MBTL1 ICR659 FALSE TRUE FALSE FALSE -0.0237347 
chr20 42142673 42142750 78 mat L3MBTL1 ICR660 FALSE TRUE FALSE FALSE -0.0164913 
chr20 42142699 42142765 67 mat L3MBTL1 ICR661 FALSE FALSE FALSE FALSE -0.0027208 
chr20 42142751 42142783 33 mat L3MBTL1 ICR662 FALSE FALSE FALSE FALSE 7.10E-04 
chr20 42142766 42142846 81 mat L3MBTL1 ICR663 FALSE FALSE FALSE FALSE -6.98E-04 
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chr20 42142784 42142851 68 mat L3MBTL1 ICR664 FALSE FALSE FALSE FALSE 0.00172173 
chr20 42142852 42142946 95 mat L3MBTL1 ICR666 FALSE FALSE FALSE FALSE 0.02741077 
chr20 42142897 42142994 98 mat L3MBTL1 ICR667 FALSE FALSE FALSE FALSE 0.02741077 
chr20 42142947 42143014 68 mat L3MBTL1 ICR668 FALSE FALSE FALSE FALSE -0.0321437 
chr20 42142995 42143044 50 mat L3MBTL1 ICR669 FALSE FALSE FALSE FALSE -0.0394682 
chr20 42143015 42143095 81 mat L3MBTL1 ICR670 FALSE FALSE FALSE FALSE 0.00240177 
chr20 42143045 42143173 129 mat L3MBTL1 ICR671 FALSE FALSE TRUE FALSE 0.02750593 
chr20 42143096 42143210 115 mat L3MBTL1 ICR672 FALSE FALSE TRUE FALSE 0.02605875 
chr20 42143174 42143398 225 mat L3MBTL1 ICR673 FALSE FALSE FALSE FALSE 0.01473589 
chr20 42143211 42143488 278 mat L3MBTL1 ICR674 FALSE FALSE FALSE FALSE 0.00762548 
chr20 42143399 42143501 103 mat L3MBTL1 ICR675 FALSE TRUE FALSE FALSE 0.00937682 
chr20 44782039 44784897 2859 mat CDH22 ICR676 FALSE FALSE FALSE FALSE 0.01549235 
chr20 44838776 44839186 411 mat CDH22 ICR677 FALSE FALSE FALSE FALSE -0.0016874 
chr20 57414039 57414161 123 pat GNAS-AS1 ICR678 FALSE FALSE FALSE FALSE -0.0019011 
chr20 57414059 57414216 158 pat GNAS-AS1 ICR679 FALSE FALSE FALSE FALSE 0.0193447 
chr20 57414162 57414273 112 pat GNAS-AS1 ICR680 FALSE FALSE FALSE FALSE 0.05069935 
chr20 57414274 57414406 133 pat GNAS-AS1 ICR681 FALSE FALSE FALSE FALSE 0.03323491 
chr20 57414351 57414528 178 pat GNAS-AS1 ICR682 FALSE FALSE FALSE FALSE 0.03323491 
chr20 57414407 57414538 132 pat GNAS-AS1 ICR683 FALSE FALSE FALSE FALSE 0.05947765 
chr20 57414529 57414577 49 pat GNAS-AS1 ICR684 FALSE FALSE FALSE FALSE 0.04793272 
chr20 57414539 57414595 57 pat GNAS-AS1 ICR685 FALSE FALSE FALSE FALSE 0.03327886 
chr20 57414578 57414883 306 pat GNAS-AS1 ICR686 FALSE FALSE TRUE FALSE 0.0316727 
chr20 57414596 57414959 364 pat GNAS-AS1 ICR687 FALSE FALSE TRUE FALSE 0.03242408 
chr20 57414884 57415143 260 pat GNAS ICR688 FALSE TRUE FALSE FALSE 0.03984675 
chr20 57414960 57415176 217 pat GNAS ICR689 FALSE TRUE FALSE FALSE 0.03984675 
chr20 57415144 57415376 233 pat GNAS ICR690 FALSE TRUE FALSE FALSE 0.02979022 
chr20 57415177 57415696 520 pat GNAS ICR691 FALSE TRUE FALSE FALSE 0.0488785 
chr20 57415377 57416220 844 pat GNAS ICR692 FALSE TRUE TRUE FALSE 0.05322346 
chr20 57415697 57416505 809 pat GNAS ICR693 FALSE TRUE TRUE FALSE 0.0178953 
chr20 57416221 57416887 667 pat GNAS ICR694 FALSE TRUE TRUE FALSE -0.0109125 
chr20 57416506 57417151 646 pat GNAS ICR695 FALSE TRUE TRUE FALSE 0.01155404 
chr20 57416888 57417232 345 pat GNAS ICR696 FALSE TRUE FALSE FALSE 0.00691536 
chr20 57417152 57418014 863 pat GNAS ICR697 FALSE FALSE FALSE FALSE 0.02402853 
chr20 57417233 57420941 3709 pat GNAS ICR698 FALSE FALSE FALSE FALSE -0.0020079 
chr20 57425515 57425985 471 mat GNAS ICR699 FALSE FALSE TRUE FALSE -0.0052704 
chr20 57425994 57426137 144 mat GNAS ICR702 FALSE TRUE FALSE FALSE 0.05579752 
chr20 57426131 57426214 84 mat GNAS ICR703 FALSE TRUE FALSE FALSE 0.04822903 
chr20 57426138 57426263 126 mat GNAS ICR704 FALSE TRUE FALSE FALSE 0.04066054 
chr20 57426274 57426367 94 mat GNAS ICR707 FALSE TRUE FALSE FALSE 0.04491596 
chr20 57426322 57426373 52 mat GNAS ICR708 FALSE TRUE FALSE FALSE -2.71E-04 
chr20 57426368 57426382 15 mat GNAS ICR709 FALSE TRUE FALSE FALSE -0.0434822 
chr20 57426374 57426390 17 mat GNAS ICR710 FALSE TRUE FALSE FALSE -0.0403319 
chr20 57426383 57426394 12 mat GNAS ICR711 FALSE TRUE FALSE FALSE -0.0343356 
chr20 57426391 57426419 29 mat GNAS ICR712 FALSE TRUE FALSE FALSE -0.0252573 
chr20 57426395 57426424 30 mat GNAS ICR713 FALSE TRUE FALSE FALSE -0.0210011 
chr20 57426425 57426544 120 mat GNAS ICR715 FALSE TRUE FALSE FALSE -0.0165731 
chr20 57426538 57426569 32 mat GNAS ICR716 FALSE TRUE FALSE FALSE -0.0165731 
chr20 57426759 57426800 42 mat GNAS ICR723 FALSE TRUE FALSE FALSE -0.0371853 
chr20 57426789 57426834 46 mat GNAS ICR724 FALSE TRUE FALSE FALSE -0.0394562 
chr20 57426801 57426857 57 mat GNAS ICR725 FALSE TRUE FALSE FALSE -0.0390011 
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chr20 57426835 57426930 96 mat GNAS ICR726 FALSE TRUE FALSE FALSE -0.0286434 
chr20 57426858 57426949 92 mat GNAS ICR727 FALSE TRUE FALSE FALSE -0.0207016 
chr20 57426931 57426978 48 mat GNAS ICR728 FALSE TRUE FALSE FALSE -0.0293724 
chr20 57426950 57427009 60 mat GNAS ICR729 FALSE TRUE FALSE FALSE -0.0390112 
chr20 57426979 57427016 38 mat GNAS ICR730 FALSE TRUE FALSE FALSE -0.0365857 
chr20 57427010 57427029 20 mat GNAS ICR731 FALSE TRUE FALSE FALSE -0.033473 
chr20 57427017 57427045 29 mat GNAS ICR732 FALSE TRUE FALSE FALSE -0.0415941 
chr20 57427030 57427102 73 mat GNAS ICR733 FALSE TRUE FALSE FALSE -0.0497442 
chr20 57427146 57427172 27 mat GNAS ICR737 FALSE TRUE FALSE FALSE -0.0198294 
chr20 57427170 57427209 40 mat GNAS ICR738 FALSE TRUE FALSE FALSE -0.0215628 
chr20 57427173 57427236 64 mat GNAS ICR739 FALSE TRUE FALSE FALSE -0.0264617 
chr20 57427210 57427273 64 mat GNAS ICR740 FALSE TRUE FALSE FALSE -0.0296274 
chr20 57427237 57427411 175 mat GNAS ICR741 FALSE TRUE FALSE FALSE -0.0196224 
chr20 57427274 57427425 152 mat GNAS ICR742 FALSE TRUE FALSE FALSE -0.0148909 
chr20 57427412 57427442 31 mat GNAS ICR743 FALSE TRUE FALSE FALSE 0.01051162 
chr20 57427426 57427471 46 mat GNAS ICR744 FALSE TRUE FALSE FALSE 0.00851369 
chr20 57427443 57427482 40 mat GNAS ICR745 FALSE TRUE FALSE FALSE -0.0124337 
chr20 57427472 57427492 21 mat GNAS ICR746 FALSE TRUE FALSE FALSE -0.0144133 
chr20 57427483 57427494 12 mat GNAS ICR747 FALSE TRUE FALSE FALSE -0.0219424 
chr20 57427493 57427502 10 mat GNAS ICR748 FALSE TRUE FALSE FALSE -0.0229146 
chr20 57427495 57427555 61 mat GNAS ICR749 FALSE TRUE FALSE FALSE -0.0254056 
chr20 57427503 57427641 139 mat GNAS ICR750 FALSE TRUE FALSE FALSE -0.0283277 
chr20 57427556 57427649 94 mat GNAS ICR751 FALSE TRUE FALSE FALSE 0.01477104 
chr20 57427642 57427729 88 mat GNAS ICR752 FALSE TRUE FALSE FALSE 0.0249909 
chr20 57427650 57427737 88 mat GNAS ICR753 FALSE TRUE FALSE FALSE 0.02092105 
chr20 57427730 57427761 32 mat GNAS ICR754 FALSE TRUE FALSE FALSE 0.04057611 
chr20 57427738 57427820 83 mat GNAS ICR755 FALSE TRUE TRUE FALSE 0.03812576 
chr20 57427762 57427829 68 mat GNAS ICR756 FALSE TRUE TRUE FALSE 0.04380943 
chr20 57427821 57427941 121 mat GNAS ICR757 FALSE TRUE FALSE FALSE 0.0589746 
chr20 57427830 57427972 143 mat GNAS ICR758 FALSE TRUE FALSE FALSE 0.07273493 
chr20 57427942 57428031 90 mat GNAS ICR759 FALSE FALSE FALSE FALSE 0.0572523 
chr20 57429277 57430312 1036 mat GNAS ICR760 FALSE TRUE TRUE FALSE 0.013693 
chr20 57429858 57430662 805 mat GNAS ICR761 FALSE TRUE TRUE FALSE 0.01090011 
chr20 57430313 57431201 889 mat GNAS ICR762 FALSE TRUE FALSE FALSE 0.01275199 
chr20 57430663 57431302 640 mat GNAS ICR763 FALSE TRUE FALSE FALSE 0.02018964 
chr20 57463270 57463329 60 mat GNAS ICR764 FALSE FALSE FALSE FALSE 0.06725492 
chr20 57463325 57463354 30 mat GNAS ICR765 FALSE FALSE FALSE FALSE 0.07205776 
chr20 57463330 57463356 27 mat GNAS ICR766 FALSE FALSE FALSE FALSE 0.08565816 
chr20 57463355 57463396 42 mat GNAS ICR767 FALSE FALSE FALSE FALSE 0.09852517 
chr20 57463357 57463454 98 mat GNAS ICR768 FALSE FALSE FALSE FALSE 0.1182955 
chr20 57463397 57463502 106 mat GNAS ICR769 FALSE FALSE FALSE FALSE 0.12485216 
chr20 57463503 57463529 27 mat GNAS ICR771 FALSE TRUE FALSE FALSE 0.12367546 
chr20 57463527 57463571 45 mat GNAS ICR772 FALSE TRUE FALSE FALSE 0.12012512 
chr20 57463530 57463614 85 mat GNAS ICR773 FALSE TRUE FALSE FALSE 0.11249574 
chr20 57463572 57463652 81 mat GNAS ICR774 FALSE TRUE FALSE FALSE 0.11759547 
chr20 57463615 57463724 110 mat GNAS ICR775 FALSE TRUE FALSE FALSE 0.14647088 
chr20 57463653 57463762 110 mat GNAS ICR776 FALSE TRUE FALSE FALSE 0.14880907 
chr20 57463725 57463766 42 mat GNAS ICR777 FALSE TRUE FALSE FALSE 0.10465852 
chr20 57463763 57463774 12 mat GNAS ICR778 FALSE TRUE FALSE FALSE 0.0708519 
chr20 57463767 57463782 16 mat GNAS ICR779 FALSE TRUE FALSE FALSE 0.0614666 
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chr20 57463775 57463786 12 mat GNAS ICR780 FALSE TRUE FALSE FALSE 0.08602877 
chr20 57463783 57463899 117 mat GNAS ICR781 FALSE TRUE TRUE FALSE 0.11401714 
chr20 57463787 57463902 116 mat GNAS ICR782 FALSE TRUE TRUE FALSE 0.11347561 
chr20 57463900 57463905 6 mat GNAS ICR783 FALSE TRUE TRUE FALSE 0.10950788 
chr20 57463903 57463924 22 mat GNAS ICR784 FALSE TRUE FALSE FALSE 0.11820392 
chr20 57463906 57463983 78 mat GNAS ICR785 FALSE TRUE FALSE FALSE 0.11001229 
chr20 57463925 57463990 66 mat GNAS ICR786 FALSE TRUE FALSE FALSE 0.11304997 
chr20 57463984 57463999 16 mat GNAS ICR787 FALSE TRUE FALSE FALSE 0.12731695 
chr20 57464571 57464969 399 mat GNAS ICR792 FALSE FALSE FALSE FALSE 0.12244321 
chr20 57464742 57464972 231 mat GNAS ICR793 FALSE FALSE FALSE FALSE 0.10911334 
chr20 57464970 57465122 153 mat GNAS ICR794 FALSE TRUE FALSE FALSE 0.08972053 
chr20 57464973 57465124 152 mat GNAS ICR795 FALSE TRUE FALSE FALSE 0.08641373 
chr20 57465123 57465131 9 mat GNAS ICR796 FALSE TRUE FALSE FALSE 0.08595327 
chr20 57465125 57465138 14 mat GNAS ICR797 FALSE FALSE FALSE FALSE 0.09396319 
chr20 57465132 57465174 43 mat GNAS ICR798 FALSE FALSE FALSE FALSE 0.11238569 
chr20 57465139 57465438 300 mat GNAS ICR799 FALSE FALSE FALSE FALSE 0.12593226 
chr20 57465175 57465444 270 mat GNAS ICR800 FALSE FALSE FALSE FALSE 0.12170898 
chr20 62570072 62570695 624 mat UCKL1 ICR801 FALSE TRUE FALSE FALSE 0.0673257 
chr21 40757691 40757898 208 mat WRB ICR802 FALSE TRUE FALSE FALSE 0.00243194 
chr21 40757750 40758207 458 mat WRB ICR803 FALSE FALSE FALSE FALSE 0.01438679 
chr21 47715006 47716528 1523 mat YBEY ICR804 FALSE FALSE FALSE FALSE -0.0736649 
chr21 47716443 47717405 963 mat YBEY ICR805 FALSE FALSE FALSE FALSE -0.1170913 
chr22 31318240 31318372 133 mat MORC2-AS1 ICR806 FALSE FALSE TRUE FALSE -0.0369942 
chr22 42077939 42078329 391 mat SNU13 ICR807 FALSE FALSE FALSE FALSE -0.0114743 
chr22 42078365 42078566 202 mat SNU13 ICR808 FALSE FALSE TRUE FALSE -0.0081365 
chr22 42078388 42078706 319 mat SNU13 ICR809 FALSE FALSE TRUE FALSE -0.0022048 
chr22 42078567 42078722 156 mat SNU13 ICR810 FALSE FALSE TRUE FALSE 0.00412059 
chr22 42548356 42548791 436 pat TCF20 ICR811 FALSE TRUE FALSE FALSE -0.0384239 
chr22 42548783 42548867 85 pat TCF20 ICR812 FALSE TRUE FALSE FALSE -0.0360332 

 
Table S4.6 Cohort clinical information 
Variables ≤ 10 weeks’ (n=48) ≥ 10 weeks’ (n=83) P values 
Fetal sex (F:M) 27:21 36:47 ns (0.204) 
Gestational age (weeks) 7.83 (6-10) 15.98 (11-23) < 2.2e-16 
Trimester (T1:T2) 48:0 15:68 < 2.2e-16 

 
 
  



Chapter 4. DNA methylation profile of placenta across early gestation 

 

189 

Table S4.7 DMR overlapped genes (Minimum probe number for each DMR is 3). 
DMRs Overlapped genes Overlapped promoter of genes 
≤10 weeks’ vs >10 weeks’  
(use all probes) 

295 DMRs in total (see supplementary table 
S4.4) 

SEPTIN4, PRKACB, LGR6, KCNK2, GSDMC, 
CYP1A2, ABLIM1, SLC26A4, MYLK4, SLC30A4, 
BDNF-AS, LY86, CTBP2, CD27-AS1, C1R, OIT3, 
C15orf54, PLD1, ADGRV1, A4GNT, HIF1A, 
CCR7, THEMIS, CPA3, FGFR2, LINC00880, 
DDAH1, GLIS3, THEMIS, MIR100HG, IMMP2L, 
LYPLAL1, SEMA3A, WDR25, SLC37A2, KCNJ1, 
FAM114A1, MIR548G, DNASE2B, TMEM252, 
LINC00670, MIR548F1, GUCA1C, DCN, SOX6 

≤10 weeks’ vs >10 weeks’  
(use probes in TSS2000) 

LCP1, KCNK2, CYP1A2, DNMT3A, SYT1, 
DNASE2B, SLC41A2, SLC30A4, MYLK4, 
LY86, PPP2R2B, EXOC1L, B3GNT6, CD27-
AS1, C5orf64, EPB42, C15orf54, A4GNT, 
OIT3, CCR7, CPA3, TMEM136, THEMIS, 
LINC00880, RPTN, CALHM6, GIHCG, 
MYL1, LIPA, OSBPL1A, GLIS3, TNN, LYST, 
MGC27382, DRC1, TMEM252, MSTN, 
PITX2, LINC00670, MIR548F1, MIR101-1, 
C1QTNF7, GUCA1C, DCN, MLLT6 

KCNK2, CYP1A2, MYLK4, LY86, CD27-AS1, 
C15orf54, A4GNT, CCR7, CPA3, THEMIS, 
LINC00880, GLIS3, TMEM252, MIR548F1, 
C1QTNF7, GUCA1C, DCN 

≤10 weeks’ vs >10 weeks’  
(use promoter related probes) 

LCP1, MED15, SLC2A3, HIVEP2, PRRC2B, 
CCR7, TTC39C 

SLC2A3, CCR7 

 
Table S4.8 Ninety-one probes that consist gestational age clock. 

Probe Coefficient Chromosome Position Correlation with GA Correlation p value Correlation FDR 
(Intercept) -2.797158 NA NA NA NA NA 
cg03264550 0.00156891 chr20 57465448 0.67622036 5.00E-18 1.80E-16 
cg07080244 0.00229858 chr11 120051676 0.83159432 3.31E-33 2.75E-31 
cg08502383 -0.0023289 chr19 1377233 -0.6116469 3.54E-14 9.19E-13 
cg03907570 -0.0036404 chr7 731254 -0.795264 1.66E-28 1.16E-26 
cg26490274 0.00517381 chr16 4385435 0.87312229 3.43E-40 3.08E-38 
cg24465224 0.00673441 chr8 144984599 0.80966134 3.01E-30 2.35E-28 
cg12565585 -0.003446 chr8 105235943 -0.4441823 2.12E-07 1.06E-06 
cg12571629 0.01086403 chr2 445430 0.57275405 2.97E-12 5.94E-11 
cg00989249 0.03304928 chr5 177548398 0.50697168 1.61E-09 1.77E-08 
cg04885749 -0.003433 chr12 64855513 -0.5858128 7.16E-13 1.59E-11 
cg21960624 -0.0306869 chr19 35085474 -0.5652266 6.55E-12 1.11E-10 
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cg04785944 -0.005574 chr9 12554597 -0.6764401 4.83E-18 1.79E-16 
cg05527113 0.04438768 chr15 65204428 0.7932288 2.86E-28 1.91E-26 
cg03682252 0.00619714 chr6 158401952 0.81442076 7.42E-31 5.86E-29 
cg06089960 -3.83E-04 chr1 1498081 -0.7194154 3.37E-21 1.58E-19 
cg07920074 0.02798922 chr1 220981523 0.58615345 6.90E-13 1.59E-11 
cg08737640 0.00360761 chr17 9683136 0.77250562 5.10E-26 3.06E-24 
cg07759237 0.00404935 chr1 150121302 0.77682412 1.81E-26 1.11E-24 
cg17378265 0.01691217 chr10 122740411 0.70728387 2.99E-20 1.26E-18 
cg00862408 0.0029677 chr11 67177034 0.57387786 2.63E-12 5.53E-11 
cg01184449 0.00460536 chr2 42396170 0.64502961 4.71E-16 1.37E-14 
cg15085109 0.00223529 chr11 67818764 0.22258011 0.01259922 0.02519844 
cg08778805 0.00159499 chr11 92572717 0.85308337 1.49E-36 1.31E-34 
cg00405713 0.00803915 chr2 172886349 0.71086644 1.59E-20 6.99E-19 
cg11962355 -0.0172894 chr2 182639419 -0.7928197 3.18E-28 2.10E-26 
cg01575652 0.00412401 chr22 38077606 0.77812537 1.32E-26 8.19E-25 
cg21806580 -0.002609 chr5 18746010 -0.8761593 8.50E-41 7.74E-39 
cg14960290 -0.0167713 chr19 12540901 -0.6757342 5.39E-18 1.89E-16 
cg03058163 -0.0134449 chr1 1153338 -0.7594767 1.01E-24 5.87E-23 
cg21581865 -0.0129632 chr1 32782332 -0.5725602 3.03E-12 5.94E-11 
cg04190262 -0.0196783 chr16 69442518 -0.8451306 2.96E-35 2.52E-33 
cg00403963 0.02465966 chr19 7250751 0.86580834 8.53E-39 7.59E-37 
cg07581823 0.00546007 chr1 155252506 0.72130664 2.37E-21 1.16E-19 
cg01501279 -0.0037678 chr6 10434497 -0.5946168 2.65E-13 6.35E-12 
cg01584939 0.02749233 chr22 37254322 0.76066258 7.77E-25 4.59E-23 
cg05066410 0.01214117 chr3 184802788 0.73400192 2.08E-22 1.13E-20 
cg22144260 -0.0047266 chr2 150267714 -0.7171348 5.13E-21 2.36E-19 
cg09311336 0.00321293 chr22 38653322 0.52139148 4.54E-10 5.44E-09 
cg17358562 0.01725217 chr12 10306335 0.66956164 1.38E-17 4.70E-16 
cg25963539 0.00311218 chr16 89181941 0.70552665 4.07E-20 1.67E-18 
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cg04869116 -0.0957839 chr6 34759164 -0.4946317 4.54E-09 4.46E-08 
cg05195559 -0.0384963 chr2 187383871 -0.7469704 1.50E-23 8.39E-22 
cg09659734 0.02715526 chr16 56227065 0.31553451 3.38E-04 0.00135163 
cg22079271 0.00446427 chr2 233347454 0.61528529 2.26E-14 6.11E-13 
cg05030553 -0.0029584 chr21 44061403 -0.6229006 8.74E-15 2.45E-13 
cg17965492 0.02578238 chr2 237538965 0.56231293 8.86E-12 1.42E-10 
cg08990402 -5.91E-04 chr8 54229644 -0.6620932 4.19E-17 1.34E-15 
cg07592012 0.01462176 chr17 79977307 0.70236492 7.04E-20 2.81E-18 
cg05243267 -0.0074866 chr4 145275499 -0.7286383 5.92E-22 3.08E-20 
cg08047192 0.00516508 chr16 49777781 0.79852638 6.90E-29 4.90E-27 
cg06927540 -0.0016131 chr6 155967744 -0.4787928 1.62E-08 1.30E-07 
cg00796708 -0.0032156 chr14 88491739 -0.5281127 2.46E-10 3.45E-09 
cg09406387 -0.0050103 chr5 58592636 -0.7276096 7.22E-22 3.68E-20 
cg01188078 -0.0191578 chr19 42344665 -0.4490407 1.50E-07 9.00E-07 
cg02570932 -0.0038815 chr2 160945149 -0.4948516 4.46E-09 4.46E-08 
cg03405785 -0.0045232 chr5 148869379 -0.7950494 1.76E-28 1.22E-26 
cg03841081 -0.0295745 chr3 150967799 -0.477623 1.78E-08 1.30E-07 
cg25468120 -0.0030687 chr3 27259020 -0.6980498 1.47E-19 5.58E-18 
cg08253363 -0.0044623 chr19 16529096 -0.8077926 5.17E-30 3.93E-28 
cg15930310 3.81E-04 chr1 24517831 0.82625215 1.90E-32 1.56E-30 
cg16263857 0.01861462 chr19 10201790 0.85191572 2.34E-36 2.04E-34 
cg05375994 -0.0242435 chr16 2960660 -0.7329004 2.59E-22 1.37E-20 
cg10030162 0.01280665 chr16 49591203 0.80454885 1.30E-29 9.37E-28 
cg01332072 -0.0119277 chr22 39679578 -0.8227036 5.87E-32 4.75E-30 
cg01298991 0.02840104 chr2 20422849 0.70777587 2.75E-20 1.18E-18 
cg05742691 -0.0126233 chr5 170288255 -0.5986439 1.66E-13 4.16E-12 
cg06116549 -0.0062014 chr20 45963043 -0.7860601 1.83E-27 1.17E-25 
cg05321946 0.0118018 chr7 55505995 0.65639096 9.57E-17 2.97E-15 
cg07294295 0.010116 chr12 3103790 0.11309757 0.20918866 0.20918866 
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cg15519279 -0.009284 chr7 44635924 -0.7001087 1.04E-19 4.04E-18 
cg09798252 -6.47E-04 chr8 59763565 -0.5331452 1.55E-10 2.32E-09 
cg11052668 0.00997469 chr6 28626564 0.52741808 2.62E-10 3.45E-09 
cg00530710 0.01046899 chr16 49697138 0.75500561 2.70E-24 1.54E-22 
cg01201295 0.00117086 chr14 96710013 0.27917169 0.00161708 0.00485125 
cg02570063 2.03E-04 chr1 201432127 0.807443 5.72E-30 4.29E-28 
cg05983405 8.88E-04 chr10 72360348 0.72091799 2.55E-21 1.22E-19 
cg15338665 -0.035624 chr14 81916796 -0.8368822 5.52E-34 4.64E-32 
cg04124281 5.84E-04 chr15 80190137 0.66860394 1.60E-17 5.26E-16 
cg02016305 0.01036021 chr16 85368682 0.84614232 2.04E-35 1.76E-33 
cg06607997 0.00938805 chr1 27699132 0.72310815 1.69E-21 8.47E-20 
cg17440098 0.00863694 chr11 34871589 0.80959662 3.07E-30 2.36E-28 
cg21290745 -0.0239848 chr20 62721573 -0.5698421 4.04E-12 7.28E-11 
cg18834254 0.0029833 chr2 241286505 0.73791111 9.58E-23 5.27E-21 
cg20111980 0.02807282 chr4 6676796 0.82131361 9.06E-32 7.25E-30 
cg07221039 0.00661016 chr20 61423954 0.77924739 1.00E-26 6.33E-25 
cg13971552 0.00113103 chr19 10463352 0.80694916 6.58E-30 4.81E-28 
cg09308580 -0.0155917 chr2 43405947 -0.6536073 1.42E-16 4.27E-15 
cg08218149 -0.009856 chr11 70072100 -0.7143371 8.53E-21 3.84E-19 
cg14583126 1.47E-04 chr5 66452973 0.79499092 1.79E-28 1.22E-26 
cg05904364 -0.0140176 chr2 20650792 -0.8070499 6.40E-30 4.73E-28 
cg11484828 -0.0156183 chr22 43139880 -0.7879406 1.13E-27 7.37E-26 
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5 DNA methylation profile of maternal peripheral leukocytes 
across early to mid-pregnancy 

 

Abstract 

 

DNA methylation has been shown repeatedly to be a suitable biomarker for early 

prediction of health outcomes that can potentially be widely used in a clinical setting 

[1]. There are some studies that attempt to use DNA methylation in circulating 

maternal leukocytes to predict pregnancy complications but to do this, we need to 

define how DNA methylation changes throughout uncomplicated pregnancies. 

Therefore, the aim of this study was to profile peripheral leukocyte methylomes from 

131 pregnant women across 6-23 weeks’ gestation using Illumina Infinium 

MethylationEPIC BeadChips. We estimated cell proportion for samples and found 

these also changed across early gestation with percentage of neutrophils increased 

and other cell types decreased across early gestation. DNA methylation changes 

related to maternal smoking, maternal age and gestational age were also identified. 

The predicted DNA methylation age of pregnant women was higher than the 

chronological age indicating pregnancy may accelerate aging. To our knowledge, this 

is the first reported study using 131 maternal leukocyte-containing buffy coat samples 

with 6-23 weeks of pregnancy to reveal the DNA methylation changes associated with 

fetal gestational age. This study will lay the foundation for real time assessment of 

pregnancy health using DNA methylation in maternal circulating leukocytes. 
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Keywords: maternal leukocytes, DNA methylation, early gestation, early pregnancy 

 

5.1 Introduction 

 

Epigeneticists study altered phenotypes caused by changes in molecular groups 

attached to chromatin without changes in DNA sequences [2]. Epigenetic mechanisms 

include DNA methylation, histone modification and noncoding RNAs [3]. DNA 

methylation is the first identified and best studied epigenetic modification in mammals 

[4]. By adding a methyl group at 5-cytosine (5mC), DNA methylation of CpG islands 

at gene promoters are associated with gene regulation and have been widely studied. 

The 5mCs at gene promoters can potentially alter chromatin structure, block 

transcription initiation and repress gene expression [5]. 

 

Fetal development is associated with changes of DNA methylation in multiple fetal 

tissues such as placenta and cord blood but also in maternal leukocytes [6]. Studies 

using samples from healthy and complicated pregnancies have shown that pregnancy 

complications are accompanied by DNA methylation changes in placenta, cord blood 

and maternal blood [7-9]. DNA methylation also provides an important link between 

the genome and maternal environmental exposures such as smoking during 

pregnancy and is an important part of translational epigenetics [10]. Compared with 
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studies on pregnancy complications and environmental adverse effects, there are 

fewer that have focused on identifying DNA methylation changes in normal 

pregnancies across gestation which would provide an important baseline. 

 

DNA methylation in peripheral leukocytes is widely studied since it is the most 

commonly available tissue that can be collected non-invasively for use in pregnancy 

[11]. We hypothesise that there are DNA methylation differences between maternal 

leukocyte samples of different clinical phenotypes and also difference between 

leukocytes from pregnant and non-pregnant women. Up to now, there has  only been 

one study focusing on identifying the DNA methylation difference between blood 

samples from pregnant and non-pregnant women using 27K arrays [12]. In the present 

study, we have used Illumina Infinium MethylationEPIC (EPIC) BeadChips to identify 

changes in DNA methylation profiles of maternal leukocytes across early gestation 

which could be considered as biomarkers that could potentially be used to monitor 

fetal development. 

 

5.2 Materials and Methods 

5.2.1 Ethics statement 

 

Same as the ethics statement in Chapter 4. 
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5.2.2 Sample Description 

 

Seventy first trimester (6-13 weeks’) and sixty-one second trimester (14-23 weeks’) 

maternal blood samples were obtained from women with age ranges from 16-45 years 

old and undergoing elective pregnancy terminations at the Pregnancy Advisory Centre 

in Woodville, South Australia. Gestational age was determined using transabdominal 

ultrasonography. Females with infection, endocrine abnormalities, antiphospholipid 

syndrome or other known complications were excluded from the study. At the time of 

termination, 9 mL of whole blood was collected in an EDTA blood collection tube. 

Blood samples were separated by centrifugation followed by the removal of the plasma. 

The buffy coat layer, which contains all the nucleated cells (leukocytes) in blood, was 

isolated and washed in TE buffer before being stored at -80°C until DNA was extracted. 

A modified version of the TES protocol [13] was used to extract DNA. For each sample, 

1 µg of DNA was sent to PathWest Laboratory Medicine (QEII Medical Centre, Perth, 

Western Australia) for bisulfite-conversion and hybridisation to the Illumina Infinium® 

MethylationEPIC BeadChips according to manufacturer’s instructions.  

 

Two data sets, GSE74738 [14] and GSE123914 [15], from GEO database were also 

used in this study. Maternal leukocyte samples from data set GSE74738 are samples 

obtained from pregnant women, and leukocyte samples from data set GSE123914 are 
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from non-pregnant women with age ranges from 51-64 years old. The platforms and 

number of samples used in this study were listed in Table 5.1. 

 
Table 5.1 Samples used in this study 
Trimester Maternal leukocyte 

samples (our study) 
Maternal leukocyte 
samples (GSE74738) 

Non-pregnant female 
leukocytes samples 
(GSE123914) 

Array type EPIC  450K EPIC 
Total number 131 10 69 

 

5.2.3 EPIC array data analysis 

 

5.2.3.1 Quality control 

 

Same as the quality control method in Chapter 4.  

 

5.2.3.2 Probes on microarray and filtering of failed probes 

 

Illumina Infinium® MethylationEPIC array contains 866238 probes [16]. Failed and 

unwanted probes were filtered. The failed probes removed included 7732 probes with 

detection P > 0.01, 13490 probes with probes < 3 beads in 5% of the 131 samples, 

25836 probes with SNPs at CpG/SBE sites on probes [17], and 42249 cross-reactive 

probes [16]. In favour of downstream analysis, 133603 probes with SNPs at probe 

body (not located at CpG/SBE sites) were also removed to decrease the disturbance 
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variables. In total, 222910 probes were removed, and 643328 probes remained for 

downstream analyses. Details of maternal leukocyte samples and filtered probes are 

listed in Supplementary Figure S5.1. 

 

5.2.3.3 Background and dye bias correction 

 

Same as the method in Chapter 4. 

 

5.2.3.4 Data normalisation 

 

Same as the method in Chapter 4 and samples from different studies were normalised 

together with BMIQ method. 

 

5.2.3.5 Identification of differentially methylated positions (DMPs) 

 

Similar as method for detecting DMPs in Chapter 4, M values were used for analysing 

differentially methylated positions of maternal leukocytes across early pregnancy. 

Batch effects were adjusted in the linear models and relative quality weights for 

samples were estimate based on sample variances in groups with highly variable 

samples [18] down-weighted in the models [19]. The equation of the model is DNAm =
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	'!()*+,-.,) + '"01.2ℎ + ∑ '#$
%&# 5,66(78,% + 9, 9~<(µ, >") , where 5,66(78,%  is the 

proportion of *th cells (CD8T, CD4T, NK, B cell, Mono and Gran) [20]. DNAm is the M 

value of each probe in each sample, ()*+,-.,) is the group we are interested, 01.2ℎ 

represents the array received from three different batches. Differentially methylated 

positions were identified between groups of samples from 6-13 weeks (first trimester) 

of pregnancy and 14-23 weeks (second trimester) of gestation with false discovery 

rate (FDR) less than 0.05 and the change of beta values (|∆β| > 0.2) greater than 0.2 

between groups. 

 

5.2.3.6 Maternal age analysis 

 

Normalised beta values of 131 samples were transformed to M values for maternal 

age analysis. Horvath epigenetic clock implemented in R package wateRmelon [21] 

was used for maternal age prediction. The accuracy of predicted age was determined 

by the correlation coefficients between DNA methylation age and maternal age. 

 

5.2.3.7 Estimation of cell-type composition 

 

Cell-type composition of each maternal leukocyte sample was estimated with the 

reference-based method first published by Houseman et al. [22], which uses DNA 

methylation reference profiles of individual cell-types to estimate the cell-type 
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composition of each sample. The proportions of the four major lymphocyte subtypes 

(i.e. CD4+ T, CD8+ T, CD19+ B and CD56+ NK cells) and two myeloid cells types (i.e. 

monocytes, neutrophils) were estimated. This was done using the R package minfi 

[17], because this package enables the estimation of cell proportions of leukocyte 

samples from Illumina Infinium HumanMethylation450 BeadChip platform and the 

method used in this package is based on published methylation data of flow-sorted 

cells [23] using algorithms developed by Houseman et al. [22]. The estimated cell type 

proportions of maternal leukocytes were adjusted in the differential methylation 

analyses [24]. 

 

5.2.3.8 GO and KEGG analyses 

 

The gene ontology (GO), KEGG pathway analysis and gene set analysis (GSA) were 

conducted using the missMethyl [25] R package to determine if differential methylation 

of genes in particular pathways were associated with differences between sample 

groups. The missMethyl package was developed specifically for the Illumina 

HumanMethylation450K and EPIC array, since gometh and gsameth functions in this 

package [25] tested for gene ontology and gene set enrichment for significant positions, 

taking into account the different number of probes for each gene on the array. 
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5.2.3.9 Annotation 

 

Same as the method in Chapter 4. 

 

5.3 Results 

 

5.3.1 Maternal blood DNA methylation profiles across early gestation  

 

PCA and density plots show that the 131 maternal leukocyte samples from pregnant 

women at 6-23 weeks’ gestation (meta data in Supplementary Table S5.1) cluster 

together. Maternal blood samples from our study clustered with publicly available 

maternal blood samples from pregnant women but not with samples from non-

pregnant women (Figure 5.1A). When just EPIC DNA methylation profiles from blood 

samples from pregnant women and non-pregnant women were assessed, they 

clustered separately (Figure 5.1B). The density plot showed, as expected, that there 

were more methylated sites than unmethylated sites in maternal leukocyte DNA 

(Figure 5.1C). A PCA plot based on all 131 maternal leukocyte samples from our study 

showed that the DNA methylation variation of maternal blood is subtle across early to 

mid-pregnancy and samples did not cluster according to gestational age (Figure 5.1D). 

Heatmap of PC1 leading probes (n=6433) showed that most of these sites at CpG 

islands were unmethylated across gestation with slight changes.  
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Figure 5.1 Maternal leukocyte DNA methylation profiles across early to mid-pregnancy. 
PCA plot based on 450K probes (A) and EPIC probes (B) showed that leukocyte 
samples from pregnant women (GSE74738 and our study) and non-pregnant women 
(GSE123914) had different DNA methylation profiles. (C) There are more methylated 
sites than unmethylated sites for leukocyte samples. (D) DNA methylation profiles of 
maternal leukocytes did not separate due to gestational age in pregnancy. (E) 
Heatmap shows subtle changes (|∆β | < 0.2) of DNA methylation of PC1 leading 
probes (top 1%, n=6433) across early to mid-pregnancy. 

 

5.3.2 High variable probes are enriched in immune response  

 

To investigate the variation of maternal peripheral leukocyte DNA methylation across 

samples from 6-23 weeks’ gestation, we analysed the change of DNA methylation for 

the high variable probes with SD of beta values higher than 0.2 across all samples, 
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which is also used in previous publications as cutoff for the most variable CpGs [26]. 

In total, there were 495 probes that passed this threshold. In Figure 5.2A, each row 

represents a DNA methylation site with colour denoting the position of these sites and 

each column is a maternal leukocyte sample with blue colour representing the fetal 

gestational age. The heatmap of these 495 sites showed that even though these sites 

varied across samples, they did not change across gestational age groups (Figure 

5.2A). Unsurprisingly, these probes were enriched in terms related to the immune 

response (Figure 5.2B) indicating that the DNA methylation differences were between 

leukocytes across individuals. 
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Figure 5.2 High variable probes across maternal leukocyte samples from 6-23 weeks’ 
pregnancy. (A) Heatmap of 495 high variable probes across gestation. (B) Gene 
ontology analyses of 495 high variable probes (top 20 GO terms ranked by p-values). 
BP: biological process, MF: molecular function, CC: cellular component. 

 

5.3.3 Cell proportion of maternal leukocytes across early to mid-gestation 

 

Since different cell types including CD4 T cells, CD8 T cells, B cells, NK cells, 

monocytes and neutrophils have different functions and hence different DNA 

methylation profiles (need a reference here) they can impact overall DNA methylation 

patterns of maternal leukocytes, therefore the cell type proportions in each sample 

were estimated [27]. Using data from our study, the cell proportions of 61 maternal 

leukocyte samples from second trimester were identified as different compared to the 
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70 samples from first trimester, with the percentage of neutrophils increasing and the 

percentage of other cell types decreasing (Figure 5.3A). Since an increase of 

neutrophils was most noticeable from 13 weeks’ gestation onwards (which is also the 

cut off for first and second trimesters), we divided samples into two groups i.e. samples 

with gestational age ≤ 13 weeks’ and samples with gestational age >13 weeks’ (Figure 

5.3A). The proportion of four major lymphocyte subtypes (i.e. CD4 T, CD8 T, B and 

NK cells) and two myeloid cells types (i.e. monocytes, neutrophils) are different 

between samples from pregnant and non-pregnant women (Figure 5.3B). There was 

an increase in neutrophils and CD8T cells in blood samples from pregnant women 

compared with non-pregnant women but a decrease in CD4T, NK, B cells and 

monocytes. 
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Figure 5.3 Cell proportion may change across early to mid-pregnancy. (A) Estimated 
cell proportion of maternal leukocytes across early gestation. (B) Estimated cell 
proportion of leukocytes from non-pregnant and pregnant women. 

 

5.3.4 DNA methylation of maternal peripheral leukocytes associated with 

gestational age, maternal age and smoking status 

 

To investigate the influences of phenotypes including maternal smoking, maternal age 

and fetal gestational age on DNA methylation of maternal leukocytes, singular value 

decomposition (SVD) analyses were performed and the results showed that there are 
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DNA methylation changes related to gestational age, smoking, maternal age and cell 

proportion (Figure 5.4A-B). In order to investigate these changes, leading probes in 

PC1 and PC3 were analysed. We identified 17 sites that were associated with 

maternal smoking with group mean beta difference > 0.1 and 3 sites were significantly 

correlated (p-value <0.05) with PC1. DNA methylation of SLIT3 and GLIPR2 were 

significantly correlated with PC1 and DNA methylation of these two sites were 

increased and decreased, respectively in the smoking group compared with the non-

smoking group (Figure 5.4C and Supplementary Table S5.2). Another 13 sites 

identified from PC1 were significantly correlated with gestational age (FDR <0.05 and 

correlation >0.2) and they were associated with 9 genes (GRB10, HOXA10-AS, 

RASGRP1, LINS, SLC25A37, NADK, JAK3, KDM4B and IGF2BP2) (Figure 5.4D and 

Supplementary Table S5.3). We also identified 59 sites from PC3 that were 

significantly correlated with maternal age (FDR <0.05 and correlation >0.2) and 22 of 

these sites co-localized with 5’UTR or transcription start site (TSS) of genes. Two sites 

at the gene body of DIRAS had higher DNA methylation with increasing maternal age 

(Figure 5.4E and Supplementary Table S5.4). 
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Figure 5.4 DNA methylation changes associated with gestational age, smoking status 
and maternal age. (A) SVD analysis for all the maternal leukocyte samples. Variances 
in PC1 mainly related to cell types and gestational age and variances in PC3 mainly 
related to cell types and maternal age. (B) Scree plot for the first 10 principal 
components. PC1 represents the largest variance in this data set. (C) DNA methylation 
of sites related with maternal smoking status. (D) DNA methylation of sites related with 
gestational age. (E) DNA methylation of sites related with maternal age. 

 

5.3.5 DNA methylation is similar in maternal leukocytes before and after 13 

weeks’ gestation 

 

Since there is an increase in the estimated neutrophil cell proportion in samples > 13 

weeks’ gestation compared to ≤ 13 weeks’ gestation, differential methylation analyses 

were applied for 131 maternal peripheral leukocyte samples at this gestational age 

threshold. Since DNA methylation subtly changes across early to mid-pregnancy, 

there were no positions identified as significantly different between groups with cell 

composition adjusted in the linear models. We did not identify DMPs using all probes. 

However, 555 sites in promoter regions with beta changes higher than 0.05 between 

groups were investigated (Figure 5.5A). Each row of the heatmap (Figure 5.5B) 

represents a DNA methylation site with colour denoting whether these DNA 

methylation positions are on CpG islands, transcription start sites (TSS) or UTR 

regions and each column is a maternal leukocyte sample with blue colour representing 

the fetal gestational age. The heatmap showed that DNA methylation of these sites 
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slightly increased or decreased across early to mid-pregnancy and these sites were 

enriched for T cell activation (Figure 5.5C). 

 
Figure 5.5 Comparison of the DNA methylation profile of maternal peripheral 
leukocytes up to and including 13 weeks’ gestation with after that time. (A) Volcano 
plot showed that DNA methylation is similar between the two groups. (B) Heatmap of 
the selected 555 sites that have DNA methylation changes > 0.05. (C) Top 20 terms 
from GO analyses of the genes colocalized with these 555 sites (FDR<0.05). 
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5.3.6 Prediction of age 

 

Since the epigenetic clock has repeatedly been shown to be accurate in estimating 

age [18], in this study, leukocyte samples were used to predict maternal age. Using 

the published epigenetic clock for blood samples based on 353 DNA methylation sites, 

here we show that DNA methylation profile of maternal peripheral leukocytes can be 

used for estimating maternal age. The estimated maternal ages for pregnant women 

were overall higher than the real maternal age with a root mean squared error (RMSE) 

of 9.1 years (Figure 5.6A). The estimated age of non-pregnant women had less 

variation than for pregnant women with a RMSE of 3.9 years, however, overall, the 

correlation between maternal age and the DNA methylation age is not high and this 

could be due to the variation between samples which could be caused by maternal 

age and other unknown phenotypes (Figure 5.6B). 
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Figure 5.6 Pregnant women showed elevated methylation age compare to non-
pregnant women. (A) DNA methylation age estimated for pregnant women. (B) DNA 
methylation age estimated for non-pregnant women. 

 

5.4 Discussion 

 

We describe for the first time, DNA methylation changes in maternal blood across 6-

23 weeks’ pregnancy. The study demonstrated that the DNA methylation profile did 

not change dramatically across early pregnancy. The subtle DNA methylation changes 

across early to mid-pregnancy were related to gestational age, smoking and maternal 

age. The cell proportions of blood samples from pregnant and non-pregnant women 

were different which may reflect immune tolerance that is essential for pregnancy 

success. In addition, the estimated DNA methylation age of pregnant women is higher 

than non-pregnant women in this study with the limitation that the publicly available 

non-pregnant women cohort is much older and likely to be post-menopausal. 



Chapter 5. DNA methylation profile of maternal peripheral leukocytes 

 

225 

 

The 5-cytosine methylated DNA is more stable than RNA and more sensitive to 

environmental stimuli than DNA itself [28, 29]. DNA methylation changes in maternal 

peripheral leukocytes could be promising biomarkers for pregnancy health. Using a 

rat model or human samples, previous studies have shown that DNA methylation 

changes in maternal blood could predict intrauterine growth retardation (IUGR) [30] 

and gestational diabetes mellitus (GDM) [31]. Our study showed that DNA methylation 

of maternal leukocytes slightly increased across early gestation which could be due to 

changes in the maternal immune system related to important physiological alterations 

and adaptations for maintenance of pregnancy [24]. 

 

Our study has confirmed data from others that smoking during pregnancy is 

associated with DNA methylation changes in maternal peripheral leukocytes [32]. 

Decreased DNA methylation (3 sites) was observed in AHRR gene body regions 

between women who smoked throughout pregnancy and non-smokers in DNA from 

the fetal side of the placenta [33]. Similarly, in maternal circulating leukocytes from our 

study, DNA methylation of one site we identified at AHRR gene body is significantly 

lower in women who were smoking at sampling compared to that in women who did 

not smoke. In a previous study, the TSHZ3 gene also contains a CpG site with greater 

methylation in leukocytes of pregnant women who smoked [34]. We also found greater 

DNA methylation at that site in the TSHZ3 gene, but this was not statistically significant. 
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GLIPR2 is hypomethylated in cord blood between newborns with and without 

exposure to maternal smoking in utero [35]. However, the reduced DNA methylation 

of GLIPR2 was not significant in our study. GPR1-AS1 tended to have a different 

methylation pattern between smoking and non-smoking groups. SLIT3 is a gene that 

functions during cell migration. The increased DNA methylation of a site in SLIT3 could 

be a new indicator for maternal smoking according to our study. 

 

Very few studies have revealed that DNA methylation changes in maternal blood were 

associated with gestational age. We have found that there is an overall subtle increase 

of DNA methylation across early to mid-pregnancy in the maternal blood profile. Our 

study showed that a DNA methylation site in the 5’UTR of the maternally expressed 

imprinted gene GRB10 is negatively correlated with gestational age. Methylation of 

GRB10 may be an indicator for fetal development throughout early gestation because 

this gene is also important for placenta development [36]. Another study also showed 

that increased DNA methylation changes of the GRB10 gene in chorionic villous 

samples is associated with spontaneous abortion [37]. 

 

A previous study showed that early pregnancy may be characterized by widespread 

hypomethylation in leukocytes compared with non-pregnant states [12]. However, we 

did not observe overall hypomethylation of blood from pregnant women compared to 

non-pregnant women. This may be due to the major limitation of this study that is 
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maternal leukocyte DNA data from non-pregnant women were obtained from the GEO 

database, and the non-pregnant women from whom samples were derived were 

significantly older than the pregnant women in our study. The cell proportion analyses 

showed a decrease in CD4 T cells in blood from pregnant women compared to non-

pregnant women. This has been shown in a previous study that the CD4 T cell 

population significantly decreased with advancing gestational age, indicating CD4 T 

cells play an important role in the maintenance of pregnancy [38, 39]. Our data also 

show that there is an increase in neutrophils in blood from pregnant women across 

early to mid-gestation compared to non-pregnant women, which is in concordance 

with the result from a previous study that the number of neutrophils increases and then 

plateaus in maternal blood across early to mid-pregnancy [40]. 

 

DNA methylation of ASPA and TRIM59 has previously been shown to strongly 

correlate with age in blood samples [41, 42]. In this study, the detected sites related 

to maternal age showed decreased DNA methylation at TSS1500 of ASPA and an 

obvious increase of DNA methylation at TSS1500 of TRIM59 gene These may indicate 

greater molecular aging than would be expected for the actual maternal age. A 

previous study has also shown that parity is associated with an increase in epigenetic 

age [43]. In the current study, we confirmed that DNA methylation in maternal 

leukocytes can be used to estimate age and we found that pregnant women had an 

elevated methylation age compared to non-pregnant women. This is particularly 
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interesting because the publicly available data for the non-pregnant women was 

derived from older likely post-menopausal women. Potentially, the molecular aging 

seen in pregnant women may be reversible after delivery. More aging markers and 

mechanisms of aging during pregnancy could potentially be identified in the future. 

 

In summary, we found that DNA methylation of maternal leukocytes was associated 

with maternal age, maternal smoking and fetal gestational age. There are DNA 

methylation and methylation age differences between maternal leukocyte samples 

from pregnant and non-pregnant women. The cell proportions of maternal leukocyte 

samples from pregnant and non-pregnant women are also different. These 

phenomena could be associated with the adaptive immune response during 

pregnancy which is characterised by tolerance to paternal antigen [44]. 

 

5.5 Conclusion 

 

In conclusion, this study provides evidence for DNA methylation changes in maternal 

circulating leukocytes across 6-23 weeks’ pregnancy and in a large group of pregnant 

women. These changes in DNA methylation in early pregnancy is not dramatic, but 

they are associated with gestational age, maternal smoking and maternal age. We 

show changes in cell proportions and methylation age differences between pregnant 

and non-pregnant women which deserve further investigation and confirmation. This 
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study may provide insights about more biomarkers for aging and maternal smoking 

during early pregnancy. 
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5.6 Supplementary figures and tables 

 

 
Figure S5.1 Quality control of maternal leukocyte samples and information of filtered probes. (A) Quality control plot showed that are 
maternal leukocyte samples (n=131) are of good quality. (B) Number of maternal leukocyte samples across early pregnancy with 

A 

C 

B 

D 
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fetal sex labelled. (C) Percentage of probes with position relative to CpG islands. (D) Percentage of probes with position relative to 
genes. 
 
Table S.5.1 Meta data of maternal leukocyte samples (n=131). 
Sample.ID Array date received Gestational age Trimester Fetal sex Maternal age Smoking status Tissue 
PAC0006 2017-03-23 9 First F 32 N Buffy coat 
PAC0007 2017-03-23 10 First M 28 N Buffy coat 
PAC0008 2017-03-23 9 First F 26 N Buffy coat 
PAC0009 2017-03-23 8 First F 30 Y Buffy coat 
PAC0010 2017-03-23 8 First F 31 N Buffy coat 
PAC0011 2017-03-23 11 First M 29 N Buffy coat 
PAC0012 2017-03-23 7 First F 29 N Buffy coat 
PAC0013 2017-03-23 10 First F 28 N Buffy coat 
PAC0014 2017-03-23 9 First M 21 N Buffy coat 
PAC0015 2017-03-23 11 First F 35 Y Buffy coat 
PAC0016 2017-03-23 9 First M 27 Y Buffy coat 
PAC0017 2017-03-23 14 Second F 27 N Buffy coat 
PAC0018 2017-08-01 21 Second M 18 N Buffy coat 
PAC0020 2017-08-01 20 Second M 27 Y Buffy coat 
PAC0021 2017-08-01 23 Second M 45 N Buffy coat 
PAC0022 2017-08-01 19 Second M 24 Y Buffy coat 
PAC0023 2017-08-01 22 Second M 35 Y Buffy coat 
PAC0024 2017-03-23 6 First F 31 Y Buffy coat 
PAC0025 2017-03-23 7 First M 25 N Buffy coat 
PAC0026 2017-03-23 16 Second M 18 N Buffy coat 
PAC0027 2017-03-23 16 Second F 29 N Buffy coat 
PAC0029 2017-08-01 17 Second M 19 N Buffy coat 
PAC0030 2017-03-23 13 First M 32 Y Buffy coat 
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PAC0031 2017-03-23 16 Second M 20 N Buffy coat 
PAC0032 2017-03-23 13 First M 21 N Buffy coat 
PAC0033 2017-08-01 22 Second F 16 N Buffy coat 
PAC0034 2017-03-23 8 First F 23 Y Buffy coat 
PAC0035 2017-03-23 6 First F 27 N Buffy coat 
PAC0036 2017-03-23 6 First F 23 N Buffy coat 
PAC0037 2017-03-23 7 First F 22 N Buffy coat 
PAC0038 2017-03-23 9 First F 29 N Buffy coat 
PAC0039 2017-03-23 6 First F 19 N Buffy coat 
PAC0040 2017-03-23 13 First M 27 Y Buffy coat 
PAC0041 2017-03-23 6 First F 30 N Buffy coat 
PAC0042 2017-03-23 8 First M 25 Y Buffy coat 
PAC0043 2017-03-23 12 First M 19 Y Buffy coat 
PAC0044 2017-03-23 9 First M 19 Y Buffy coat 
PAC0045 2017-03-23 7 First M 24 N Buffy coat 
PAC0046 2017-03-23 8 First F 43 N Buffy coat 
PAC0047 2017-03-23 10 First M 22 N Buffy coat 
PAC0048 2017-03-23 6 First M 33 N Buffy coat 
PAC0049 2017-03-23 11 First M 27 N Buffy coat 
PAC0050 2017-03-23 9 First M 20 N Buffy coat 
PAC0051 2017-03-23 7 First F 26 N Buffy coat 
PAC0052 2017-03-23 9 First M 33 N Buffy coat 
PAC0053 2017-03-23 16 Second F 23 N Buffy coat 
PAC0054 2017-03-23 14 Second M 29 N Buffy coat 
PAC0055 2017-03-23 6 First F 20 N Buffy coat 
PAC0056 2017-03-23 6 First F 21 Y Buffy coat 
PAC0057 2017-08-01 17 Second M 26 N Buffy coat 
PAC0058 2017-03-23 16 Second F 17 Y Buffy coat 
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PAC0059 2017-03-23 10 First F 25 Y Buffy coat 
PAC0060 2017-03-23 9 First M 31 Y Buffy coat 
PAC0062 2017-03-23 10 First M 29 Y Buffy coat 
PAC0063 2017-03-23 9 First M 32 N Buffy coat 
PAC0064 2017-03-23 7 First F 33 N Buffy coat 
PAC0065 2017-08-01 12 First M 21 Y Buffy coat 
PAC0069 2017-08-01 15 Second M 32 Y Buffy coat 
PAC0070 2017-08-01 13 First M 27 Y Buffy coat 
PAC0071 2017-08-01 12 First F 35 N Buffy coat 
PAC0072 2017-08-01 12 First M 33 N Buffy coat 
PAC0074 2017-08-01 13 First F 18 Y Buffy coat 
PAC0075 2017-08-01 23 Second M 25 N Buffy coat 
PAC0076 2017-08-01 18 Second M 21 N Buffy coat 
PAC0077 2017-08-01 19 Second M 24 Y Buffy coat 
PAC0078 2017-08-01 14 Second F 35 N Buffy coat 
PAC0083 2017-08-01 8 First M 35 Y Buffy coat 
PAC0084 2017-08-01 19 Second F 18 Y Buffy coat 
PAC0086 2017-08-01 11 First M 20 N Buffy coat 
PAC0087 2017-08-01 14 Second M 26 Y Buffy coat 
PAC0088 2017-08-01 11 First F 22 N Buffy coat 
PAC0091 2017-08-01 11 First M 23 Y Buffy coat 
PAC0093 2017-08-01 15 Second M 30 Y Buffy coat 
PAC0097 2017-08-01 16 Second F NA NA Buffy coat 
PAC0098 2017-08-01 14 Second M 36 N Buffy coat 
PAC0099 2017-08-01 14 Second F 26 Y Buffy coat 
PAC0100 2017-08-01 15 Second F 40 Y Buffy coat 
PAC0102 2017-08-01 15 Second F 25 Y Buffy coat 
PAC0103 2017-08-01 15 Second M 40 N Buffy coat 
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PAC0105 2017-08-01 12 First F 19 N Buffy coat 
PAC0107 2017-08-01 10 First F 25 Y Buffy coat 
PAC0108 2017-08-01 18 Second M 20 Y Buffy coat 
PAC0109 2017-08-01 14 Second F 17 N Buffy coat 
PAC0111 2017-08-01 16 Second F 29 N Buffy coat 
PAC0114 2017-08-01 21 Second M 36 Y Buffy coat 
PAC0117 2017-08-01 21 Second M 32 N Buffy coat 
PAC0118 2017-08-01 23 Second F 29 N Buffy coat 
PAC0120 2017-08-01 14 Second M 22 N Buffy coat 
PAC0122 2017-08-01 10 First M 27 N Buffy coat 
PAC0124 2017-08-01 17 Second F 24 Y Buffy coat 
PAC0127 2017-08-01 18 Second M 21 N Buffy coat 
PAC0129 2017-08-01 14 Second M 37 Y Buffy coat 
PAC0131 2017-08-01 18 Second F 24 Y Buffy coat 
PAC0134 2017-08-01 16 Second F 17 N Buffy coat 
PAC0139 2017-08-01 22 Second M 32 N Buffy coat 
PAC0140 2017-08-01 21 Second F 28 Y Buffy coat 
PAC0019 2019-02-01 17 Second M 33 N Buffy coat 
PAC0068 2019-02-01 13 First M 35 N Buffy coat 
PAC0092 2019-02-01 13 First M 30 Y Buffy coat 
PAC0094 2019-02-01 11 First M 36 Y Buffy coat 
PAC0101 2019-02-01 14 Second F 20 Y Buffy coat 
PAC0106 2019-02-01 11 First F 20 N Buffy coat 
PAC0110 2019-02-01 15 Second F 37 N Buffy coat 
PAC0113 2019-02-01 12 First F 40 Y Buffy coat 
PAC0121 2019-02-01 14 Second F 37 N Buffy coat 
PAC0125 2019-02-01 15 Second F 21 Y Buffy coat 
PAC0126 2019-02-01 12 First F 23 Y Buffy coat 
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PAC0128 2019-02-01 14 Second F 20 Y Buffy coat 
PAC0130 2019-02-01 17 Second M 27 N Buffy coat 
PAC0135 2019-02-01 16 Second M 29 Y Buffy coat 
PAC0137 2019-02-01 17 Second M 18 N Buffy coat 
PAC0141 2019-02-01 8 First M 26 Y Buffy coat 
PAC0148 2019-02-01 8 First M 32 N Buffy coat 
PAC0183 2019-02-01 15 Second F 16 N Buffy coat 
PAC0186 2019-02-01 7 First M 32 N Buffy coat 
PAC0191 2019-02-01 19 Second F 24 Y Buffy coat 
PAC0192 2019-02-01 21 Second M 34 Y Buffy coat 
PAC0193 2019-02-01 6 First F 30 N Buffy coat 
PAC0196 2019-02-01 21 Second F 20 N Buffy coat 
PAC0198 2019-02-01 7 First M 33 N Buffy coat 
PAC0200 2019-02-01 7 First F 38 Y Buffy coat 
PAC0202 2019-02-01 6 First M 25 Y Buffy coat 
PAC0203 2019-02-01 19 Second F 18 Y Buffy coat 
PAC0204 2019-02-01 7 First M 33 N Buffy coat 
PAC0208 2019-02-01 7 First F 30 N Buffy coat 
PAC0211 2019-02-01 17 Second F 20 Y Buffy coat 
PAC0214 2019-02-01 9 First F 25 N Buffy coat 
PAC0215 2019-02-01 23 Second M 37 N Buffy coat 
PAC0219 2019-02-01 6 First F 19 N Buffy coat 
PAC0221 2019-02-01 19 Second M 33 N Buffy coat 
PAC0222 2019-02-01 23 Second F 25 N Buffy coat 

 
  



Chapter 5. DNA methylation profile of maternal peripheral leukocytes 

 

236 

Table S.5.2 DNA methylation sites associated with PC1 and smoking. 
Chromosome Position Name UCSC RefGene name UCSC RefGene group DNA 

methylation 
(Smoker) 

DNA 
methylation 
(Non-Smoker) 

Deta Beta 
(smoker vs 
non-smoker) 

Correlation with 
PC1 (correlation 
P value < 0.05) 

chr5 373378 cg05575921 AHRR 
Body 

0.69474764 0.84895029 -0.1542026 - 

chr5 168217234 cg19589725 SLIT3;SLIT3 
Body;Body 

0.41791186 0.316078 0.10183385 -0.3952281 

chr14 101069717 cg10829391 
 

 
0.74512331 0.63790793 0.10721538 - 

chr7 30219135 cg06405219 
 

 
0.38314947 0.28187733 0.10127214 - 

chr19 31799406 cg18843803 TSHZ3 
Body 

0.87516121 0.77440518 0.10075603 - 

chr12 58570196 cg24418762 
 

 
0.59303987 0.49047384 0.10256603 - 

chr5 29568333 cg00086247 
 

 
0.250736 0.3532745 -0.1025385 -0.2188674 

chr2 20871002 cg10687131 GDF7 
Body 

0.40862553 0.30855077 0.10007476 - 

chr1 82627662 cg07748963 
 

 
0.0959137 0.19745061 -0.1015369 - 

chr3 42387524 cg10123377 
 

 
0.50606187 0.38815799 0.11790388 - 

chr22 30308934 cg26167301 MTMR3;MTMR3;MTMR3 
5'UTR;5'UTR;5'UTR 

0.538816936 0.429408057 0.109408878 - 

chr10 31040939 cg20673407 
 

 
0.45863502 0.56058259 -0.1019476 - 

chr10 28781637 cg11671940 
 

 
0.49292503 0.38225754 0.11066749 - 

chr2 207090465 cg22444562 GPR1-AS 
Body 

0.61100422 0.46397567 0.14702855 - 

chr15 85177792 cg15009596 SCAND2P;SCAND2P 
Body;Body 

0.70989044 0.81079845 -0.100908 - 

chr9 36154750 cg19097407 GLIPR2;GLIPR2;GLIPR2;GLIPR2;GLIPR2; 
GLIPR2;GLIPR2;GLIPR2;GLIPR2;GLIPR2;GLIPR2 

Body;Body;Body;Body;Body; 
Body;Body;Body;Body;Body;Body 

0.29053625 0.393791373 -0.103255124 -0.327650482 

chr7 76221076 cg17404449 LOC100133091 
Body 

0.68914548 0.54238839 0.14675709 - 
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Table S5.3 DNA methylation sites statistically significantly associated with PC1 and gestational age (GA). 
Chromosome Position Name UCSC RefGene name UCSC RefGene group 

SD of beta values across GA Correlation with PC1 Correlation with GA FDR (Correlation with GA) 
chr7 50791421 cg12999836 GRB10;GRB10;GRB10 Body;Body;5'UTR 

0.03603497 -0.3693107 -0.5079993 3.78E-04 
chr7 27207318 cg22260008 HOXA10-AS;HOXA10-HOXA9 TSS1500;Body 

0.03011008 -0.3668673 -0.473821 0.0070085 
chr12 122442863 cg00052692 

  

0.05167106 -0.3867188 -0.4513361 0.04044806 
chr15 38784291 cg07232609 RASGRP1;RASGRP1;RASGRP1 Body;Body;Body 

0.03282354 0.20762558 0.45500342 0.030651 
chr15 101137253 cg25780496 LINS 5'UTR 

0.01485858 -0.4148818 -0.4679995 0.01116902 
chr3 101901234 cg12992827 

  

0.05769898 -0.3097536 -0.4924339 0.00148793 
chr16 11299766 cg08876198 

  

0.03619155 -0.3957219 -0.4543004 0.03233287 
chr8 23405208 cg14505131 SLC25A37 Body 

0.03628865 -0.207491 -0.4624741 0.01724443 
chr1 1689452 cg04439557 NADK Body 

0.01743698 -0.382237 -0.465338 0.01378148 
chr19 17959783 cg20959703 JAK3 TSS1500 

0.03558119 -0.3474714 -0.4530578 0.03552421 
chr19 4973177 cg15745450 KDM4B 5'UTR 

0.03440658 -0.19799 -0.4596803 0.02141736 
chr16 60804969 cg05263979 

  

0.03469328 -0.296304 -0.4606094 0.01993242 
chr3 185538892 cg24960291 IGF2BP2;IGF2BP2 Body;Body 

0.02920448 -0.3027254 -0.4629116 0.01666619 

 
Table S5.4 DNA methylation sites statistically significantly associated with PC3 and maternal age (MA). 

Chromosome Position Name UCSC RefGene name UCSC RefGene group SD of beta 
values across 
MA 

Correlation 
with PC3 

Correlation 
with MA 

FDR 
(Correlation 
with MA) 

chr1 68512845 cg13697378 DIRAS3 Body 
0.036652 0.26563765 0.52298274 1.12E-04 

chr17 28562685 cg14692377 SLC6A4;SLC6A4 1stExon;5'UTR 
0.02025666 0.24130829 0.48064621 0.00459227 

chr14 93389628 cg21620282 CHGA;CHGA;CHGA;CHGA 5'UTR;5'UTR;1stExon;1stExon 
0.02871193 -0.1742736 0.48641464 0.00284966 

chr6 35490818 cg18468088 
  

0.0224442 0.21868405 0.45317444 0.03963178 
chr3 160167977 cg07553761 TRIM59 TSS1500 

0.05190714 0.23454506 0.49798456 0.00106509 
chr1 40098811 cg12634306 HEYL Body 

0.05356098 0.21071845 0.48105268 0.00444173 
chr18 66389420 cg19283806 CCDC102B 5'UTR 

0.05068091 0.18743619 -0.4830347 0.003773 
chrX 53741945 cg08975875 

  

0.03668165 0.26692342 -0.4517365 0.04413713 
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chr3 137838021 cg20747538 
  

0.02316721 0.2992941 -0.4572363 0.02915982 
chr12 7245510 cg23368715 C1R TSS1500 

0.02328596 0.233511 -0.4557206 0.0327124 
chr2 62683973 cg14887028 

  

0.01863478 0.18158736 -0.4914856 0.00185961 
chr3 14832729 cg07504615 

  

0.02384293 0.19143198 -0.6209567 2.09E-09 
chrX 49166019 cg15833111 GAGE10 Body 

0.03363612 0.28918662 -0.4809691 0.00447228 
chr20 4721316 cg27037708 PRNT;PRNT;PRNT TSS200;TSS200;TSS200 

0.02399583 0.24600745 -0.5083836 4.26E-04 
chr15 101971587 cg18767232 PCSK6;PCSK6;PCSK6;PCSK6;PCSK6;PCSK6;PCSK6 Body;Body;Body;Body;Body;Body;Body 

0.04245102 0.27197619 -0.4603743 0.02294261 
chr17 48193712 cg24087280 SAMD14;SAMD14 Body;Body 

0.03094687 0.21965982 -0.4531332 0.03975458 
chr11 35638398 cg11741201 FJX1 TSS1500 

0.02569574 0.24275803 -0.4664398 0.01433345 
chr1 241970344 cg17646797 

  

0.01571006 0.21420654 -0.4518561 0.04374469 
chr7 140739534 cg12776916 

  

0.03803345 0.17812132 -0.5543547 5.01E-06 
chr1 68512807 cg20149168 DIRAS3 Body 

0.0491724 0.24592111 0.5075193 4.60E-04 
chr7 24705461 cg07050404 MPP6;MPP6 Body;Body 

0.0251897 0.19677646 -0.5061341 5.21E-04 
chr13 51723181 cg24674215 

  

0.0254417 0.27278252 -0.468057 0.01262426 
chr16 69743438 cg09286894 NQO1;NQO1;NQO1;NQO1 3'UTR;3'UTR;3'UTR;3'UTR 

0.02807307 -0.2586461 -0.4935537 0.00155936 
chr1 203474297 cg11122885 OPTC 3'UTR 

0.02187406 0.20881757 -0.4876368 0.00257273 
chr11 86517110 cg00475490 PRSS23;PRSS23;PRSS23;PRSS23;PRSS23;PRSS23;PRSS23 5'UTR;Body;Body;5'UTR;Body;Body;Body 

0.03670527 0.17935465 -0.464369 0.01684793 
chr1 241774637 cg19501755 OPN3 Body 

0.03307735 0.18538599 -0.4974158 0.00111885 
chr1 213898865 cg18732257 

  

0.02880666 0.2135547 -0.5085949 4.18E-04 
chr7 19183280 cg17508941 

  

0.0382908 0.22723839 0.46895504 0.01176152 
chr17 48623772 cg20067719 SPATA20 TSS1500 

0.03473553 0.34335426 -0.4760399 0.00668007 
chr2 71098542 cg22112832 

  

0.03656076 0.23700167 -0.5169876 1.95E-04 
chr10 73287051 cg01029119 CDH23;CDH23;CDH23;CDH23;CDH23 Body;Body;Body;Body;Body 

0.02108544 0.19822179 -0.4630294 0.0186942 
chr9 116570319 cg14257429 

  

0.02401317 0.18300535 -0.4693008 0.01144461 
chr2 145116633 cg18826637 

  

0.08312498 0.19254 -0.4955333 0.00131604 
chr4 10583796 cg18805621 CLNK Body 

0.04162366 0.21578176 -0.4706051 0.01032152 
chr3 168185313 cg07323488 EGFEM1P Body 

0.04916146 0.19594492 -0.5026689 7.08E-04 
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chr7 28218686 cg07522171 JAZF1-AS1;JAZF1 TSS1500;Body 
0.02348807 0.23010515 -0.4644364 0.01675987 

chr10 25463350 cg13206721 GPR158;GPR158-AS1 TSS1500;Body 
0.02928301 0.20762818 0.453183 0.03960638 

chr20 36850842 cg17015290 KIAA1755;KIAA1755 ExonBnd;Body 
0.02201488 0.23317695 -0.4891737 0.00226105 

chr9 139776929 cg14620941 
  

0.03201029 0.25372572 -0.4679832 0.01269779 
chr1 116563487 cg08737116 SLC22A15 Body 

0.03336434 0.33591807 -0.4630626 0.01864612 
chr16 58768477 cg10140957 GOT2 TSS1500 

0.02463061 0.17771847 -0.5166614 2.01E-04 
chr7 121944506 cg25045526 FEZF1;FEZF1;FEZF1;FEZF1;FEZF1-AS1 1stExon;1stExon;5'UTR;5'UTR;Body 

0.02332009 0.19965215 0.45510737 0.0342644 
chr6 140762703 cg26413501 

  

0.03543517 -0.1978936 -0.4748152 0.00737306 
chr1 87666926 cg00420212 

  

0.04789914 0.19017523 -0.5012512 8.01E-04 
chr17 3377797 cg18769729 ASPA;ASPA 5'UTR;TSS1500 

0.03873181 -0.2590605 -0.5064468 5.06E-04 
chr2 97202260 cg02085953 ARID5A TSS1500 

0.02325416 0.22035326 -0.513938 2.58E-04 
chr2 64870490 cg10184289 SERTAD2 5'UTR 

0.04737244 0.20141485 0.46950306 0.01126311 
chrX 45616094 cg14817951 

  

0.06193975 0.24060755 -0.4888492 0.00232367 
chr14 105955879 cg02395812 C14orf80 TSS1500 

0.01984611 0.18000643 -0.4615331 0.02098561 
chr17 40177415 cg06874016 NKIRAS2;NKIRAS2;NKIRAS2;NKIRAS2;NKIRAS2 3'UTR;3'UTR;3'UTR;3'UTR;3'UTR 

0.02694696 0.23779381 -0.5356641 3.31E-05 
chr3 147126206 cg16181396 ZIC1 TSS1500 

0.01847959 0.20054019 0.46310175 0.01858974 
chr4 17387235 cg12318914 

  

0.03925808 0.20829076 -0.547032 1.06E-05 
chr1 46309093 cg27447795 MAST2 Body 

0.0460074 0.19999656 -0.5657072 1.50E-06 
chr1 155959036 cg24964298 

  

0.02453034 0.23129906 -0.4655342 0.01538538 
chr6 116883080 cg05389014 

  

0.02255583 0.28231837 -0.5017489 7.67E-04 
chr12 66089473 cg18215449 

  

0.05336194 0.18660924 -0.5459545 1.19E-05 
chr19 33182526 cg02283691 NUDT19 TSS1500 

0.01365148 0.25902299 -0.4855438 0.00306425 
chr3 52738881 cg27312987 GLT8D1;SPCS1;GLT8D1;GLT8D1;GLT8D1;GLT8D1 TSS1500;TSS1500;5'UTR;5'UTR;5'UTR;5'UTR 

0.0229574 0.31971629 -0.4509803 0.04669924 
chr9 136023407 cg03474926 RALGDS Body 

0.01746408 0.22966339 -0.5108794 3.40E-04 
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6 General Discussion 
 

The aim of this research was to profile DNA methylation of the placenta and matched 

maternal leukocytes across early gestation using robust bioinformatics methods. The 

novel findings of this study include developing a way to check tissue purity for placenta 

samples before downstream analyses. This is the first study to profile DNA methylation 

of placenta and matched maternal leukocytes from 6-23 weeks’ gestation at a 

genome-wide scale and the first to report DNA methylation changes across the 10-11 

weeks’ gestation threshold when maternal blood presumably starts to flow into the 

placental intervillous space. Furthermore, we characterised DNA methylation changes 

in maternal blood across early gestation and found an association between fetal 

gestational age and the DNA methylation of maternal leukocytes in this study. Findings 

from this study contribute to bioinformatics in the field of human placental research, 

epigenetic profiling studies and biomarker identification. 

 

6.1 Overall Significance 

6.1.1 Appropriate bioinformatics methodologies and pipelines are important 

for data processing and interpretation 

 

Currently, some studies use the default parameter of bioinformatics methods to detect 

differential methylation between sample groups. However, recent research [1] and our 

study, show that the results change dramatically when using different parameters for 

the same data set. This fact raises the issue that choosing the right methods and 

parameters are important for data interpretation from bioinformatics analyses. It is 

recommended to use a known or published data set to first test the overall 
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performance of different methods and then identify the most suitable method and 

parameters for the data set that the researchers wish to study as documented in 

Chapter 2. 

 

Placenta has a different DNA methylation profile compared with other healthy human 

tissues, so a pipeline more suitable for analysing placenta data is required. Previous 

studies have documented some pipelines designed for DNA methylation array 

analyses, including the cross-package Bioconductor workflow [2] that demonstrated 

the analyses for 450K array data using several R packages (minfi, limma, missMethyl, 

Gviz and DMRcate). RnBeads is another comprehensive package that lately updated 

for analysing DNA methylation data from different platforms (450K array, EPIC array 

and WGBS) and it has a graphical user interface (GUI) named RnBeadsDJ [3]. 

ChAMP is also used for DNA methylation array analyses and have GUI for differential 

methylation analyses [4].  

 

However, these pipelines mentioned above do not contain some analyses specifically 

for placenta such as analyses for PMDs and ICRs, the pipeline used in Chapter 4 will 

be more suitable for profiling DNA methylation in placenta. Using the pipeline 

developed during this study, researchers studying placental development can test 

DNA methylation changes in promoters, enhancers, PMDs and ICRs and do analyses 

such as detecting DMRs with proper parameters, predicting samples from mixed 

tissues that are not comprehensively included in previous pipelines, so this work filled 

the gap of placental data analyses using EPIC array data and contributed to choosing 

proper bioinformatic methods for analysing data from placental tissue. This pipeline 
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will be wrapped in a R package in future so that these methods can be used by other 

researchers conveniently.  

6.1.2 Sample outliers need to be removed with caution 

 

Outliers are commonly found in genome-wide DNA methylation studies. However, only 

some of the studies discussed why these outliers are dramatically different from other 

samples before removing them for data analyses [5]. PCA of our own studies and 

other tissues was used for identifying outliers and confirming whether these outliers 

are caused by the mixing of placenta tissue with other tissue types such as maternal 

decidua tissue. Using placenta specific features such as partially methylated domains 

(40-70% methylated) [6] and placenta-specific imprinting control regions (50% 

methylated) [7] we can identify placenta samples that are contaminated with other 

tissue types. Consequently, the outliers in our study can be removed before 

downstream analyses.  

 

It is important to remove outliers with caution because there may be many factors such 

as phenotypes not included in meta data that cause the observed changes in the DNA 

methylation profile of these outliers. This is especially the case for placenta samples 

collected from early gestation when the outcomes of the fetuses and pregnancies are 

unknown. In Chapter 3, we documented the details about how to identify mixed 

placenta samples and a R shiny app will be developed and shortly available for other 

researchers use our method to check the features of outliers in their data. 
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6.1.3 DNA methylation changes in placenta across early pregnancy is 

associated with placental development 

 

EPIC array data of 125 placenta samples from 6-23 weeks’ gestation were used in 

this study to identify DNA methylation changes across early gestation. In Chapter 4, 

We first confirmed that DNA methylation increases gradually across early gestation. 

The hypomethylation at placental enhancers compared to non-placental enhancers 

are interesting and deserve further investigation, as there are studies indicating the 

important function of DNA methylation at enhancers during developmental processes 

[8, 9]. Genes differentially methylated between groups up to and after 10 weeks’ 

gestation included SLC2A3 and CCR7 that were also differentially expressed, which 

could be involved in glucose transport to the fetus [10], immune tolerance [11] and 

differentiation of cytotrophoblasts [12] which are important processes during early 

pregnancy. In addition, the DNA methylation is stable at partially methylated domains 

and imprinting control regions across early gestation with very few DMRs in these 

regions. This confirms the establishment of partially methylated domains (PMDs) and 

gene imprinting as early as 6 weeks’ gestation in placenta, which could be associated 

with the fundamental functions of placenta during early development.  

 

This is one of the most comprehensive studies of the placental methylome across 

early gestation that could lay a foundation for further research on placental health and 

disease. First, compared to studies using 450K arrays, this study used EPIC array 

data with more DNA methylation sites detected [13]. Second, samples used in this 

study have gestational age covered week by week between 6-23 weeks’ gestation. 

These data are valuable resources for comprehensive DNA methylation 
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characterisation across early human gestation. Third, the influence of oxygen on DNA 

methylation changes during early placental development was explored in this study. 

Previous studies demonstrated that oxygen is an important factor during placental 

development because cell differentiation and invasion may be regulated by oxygen 

gradients (i.e. placenta develops in an environment changing from low oxygen to 

normal oxygen) [14-16]. In this study, DMP, DMR and DMB between the two groups 

separated according to the oxygen tension changes (approximately 10 weeks’) across 

early gestation were identified and the genes related with these regions were 

investigated. This adds to the understanding of the methylome of placenta and 

highlights the need for future research to verify and uncover the functions of these 

DNA methylation changes. 

 

6.1.4 Maternal leukocytes are sources of biomarkers for both maternal and 

fetal health status 

 

As placenta samples are hard to obtain during early gestation and chorionic villous 

sampling for clinical tests may cause miscarriage [17], a good way to monitor 

pregnancy health could be using maternal blood samples which is generally 

considered non-invasive. In Chapter 5, we investigated the DNA methylation of the 

maternal leukocyte samples from the same fetal/maternal pairs where placenta 

samples were collected. Unlike DNA methylation of placenta, DNA methylation of 

maternal leukocytes did not show a gradual changing pattern across early pregnancy, 

but some site-specific changes were detected that were associated with maternal 

smoking, maternal age and gestational age.  
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The study of DNA methylome of maternal leukocytes here contributes to the field of 

biomarker identification during early pregnancy. Frist, unlike methylation of cell-free 

DNA derived from the fetus [18], using matched maternal leukocytes, no DMP nor 

DMRs were identified between first and second trimester groups in this study. This is 

a normal phenomenon since the DNA methylation changes remains probe-wise with 

a low number of probes even for control and disease comparison groups in maternal 

blood [19, 20]. In future, single cell techniques will be suitable for investigating the 

DNA methylation changes in different maternal leukocyte populations across gestation 

and have potential for biomarker identification. Second, this is the first study that 

undertook correlation analyses between DNA methylation of each site and fetal 

gestational age. We reported that changes of DNA methylation at 13 sites in maternal 

leukocytes were statistically significantly correlated with gestational age. These sites 

will be further verified by pyrosequencing [21] in future to confirm whether they are 

real biomarkers for normal placental development. 

 

6.2 Limitations of this study 

6.2.1 Limitation of EPIC array data 

 

DNA methylation arrays are a more targeted and cost-effective platform for detecting 

DNA methylation of the human genome. Compared to 450K array,  the number of DNA 

methylation sites is nearly doubled, especially in open sea regions of the genome in 

EPIC array, however, the coverage of the EPIC array is still lower compared with 

WGBS [22]. Although EPIC array contains more than 800,000 probes and data 

obtained from EPIC array are informative enough to show the patterns of DNA 

methylation in placenta and maternal peripheral leukocytes, it may not contain probes 
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in some regions that may be important for early placental development, so replication 

of these results from EPIC arrays using WGBS data in future will be important to do. 

WGBS is still the gold standard for assessing whole genome DNA methylation profiles. 

WGBS assessment will provide a more rigorous means to verify the findings in this 

study in future, which will also increase the chances of identifying more site-based 

biomarkers in profiling the DNA methylation of maternal leukocytes.  

 

6.2.2 Limitation of R coding for big data analyses 

 

The R programming language is an open source language and contains a lot of 

packages suitable for genome and epigenome studies. The main limitation of R 

programming language is that R is slow in processing large matrices or large data sets, 

especially for calculating correlations for large matrices or computing loops since it 

uses too much computer random-access memory (RAM) [23]. R packages and R 

programming are much slower than other languages such as C programs [24, 25]. We 

used R for data analyses in this study because EPIC array data is relatively smaller in 

size compared with WGBS data. Programmers are always trying their best to improve 

the computational efficiency and reduce computational load using different strategies 

(e.g. Rcpp R package that allows the implementation of C codes in R scripts) while 

using R. In future, splitting of input data or applying reasonable filters to obtain a 

smaller input dataset may be helpful to increase the speed analyses in R. Furthermore, 

other programming languages such as C and Python will also be used in future for 

analyses with larger data sets such as those generated by WGBS. 
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6.2.3 Limitation of non-pregnant cohort for maternal leukocyte DNA 

methylation study 

 

Since there is not any published DNA methylation data (EPIC array) for leukocyte 

samples from non-pregnant women matching the age of the pregnant women in our 

cohort, non-age matched data from GEO data base are used as documented in 

Chapter 5. The differences in DNA methylation between leukocytes from pregnant and 

non-pregnant women in our study may be influenced by the different age ranges of 

the two groups of women because DNA methylation is increased in older adults 

compared to young adults [26]. The public control dataset of circulating leukocytes 

from younger non-pregnant women that we found is a dataset from the 27K platform 

[27]. The number of probes for this dataset is too low compared to EPIC array data, 

so it was not useful for this study. DNA methylation of leukocyte samples from women 

of childbearing age and matched with the age range of the pregnant women in our 

cohort will be profiled in future to verify the results in Chapter 5. 

 

6.3 Future directions 

 

As human placenta is the least understood human organ and is uniquely 

hypomethylated compared with other human tissues, there are still a lot of unknown 

aspects that need to be investigated. This study detailed data analysis methods and 

explored DNA methylation profiles of placenta and matched maternal leukocytes in 

early pregnancy to study placental development and pregnancy health. Except for the 

work presented in this study, there are many more important features of placental and 

maternal DNA methylation that can potentially be explored based on this work. 
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First, fetal sex differences between placenta samples from male and female bearing 

pregnancies can be of great importance because huge differences were observed 

between DNA methylation from placenta in pregnancies carrying male versus female 

fetuses, especially on the sex chromosomes (data not included in this thesis). Sex 

chromosomes were removed when profiling DNA methylation of placenta samples in 

the current study (Chapter 4) to minimise the influence of sex differences. 

Consequently, we are yet to investigate sex differences in the placental DNA 

methylation profile in early pregnancy. In future, analyses with sex chromosomes 

included will be performed and RNA sequencing and microRNA sequencing data will 

be integrated to identify sex differences between placenta from male and female 

bearing pregnancies. 

 

As this research is part of a large NIH funded project that is characterising the 

methylome, transcriptome and miRnome of the human placenta across gestation, the 

integration of DNA methylation, RNA sequencing and microRNA sequencing data 

from placenta and maternal blood will be performed in the near future with up-to-date 

methodologies potentially including machine learning algorithms to characterise early 

placental development more comprehensively. This could provide details about fetal 

sex differences across “omics” during early gestation. 

 

The unique placenta DNA methylation profile indicates more appropriate analytic 

methods and pipelines, integrated analyses and better data visualisation and 

interpretation are required for this essential developmental tissue. According to 

Chapter 2, to better optimise models’ parameters before using our own data, in future, 
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we can adopt machine learning approaches and split data into training and test 

datasets. For future studies, we also recommend always considering fetal sex 

differences [28, 29] and cell compositions [30, 31] in the analytic pipelines for data 

from placenta and maternal leukocytes. Following Chapter 4 and Chapter 5, in future, 

we aim to identify more associations between DNA methylation changes across 

gestation and the functions of these changes during pregnancy. This could be done 

using WGCNA analyses (see below) and examining DNA methylation by gene-set 

analysis. If these changes are important for human pregnancy, whether they can be 

reflected by DNA methylation changes in maternal blood, which can benefit the non-

invasive monitoring of pregnancy [32]. A recent study has used machine learning 

methods to predict DNA methylation levels in placenta using the DNA methylation 

profile of cord blood [33], which indicates that machine learning methods could be 

useful for data integration and biomarker identification. This of course provides 

information just at the time of birth. Furthermore, better data integration and 

visualisation will also contribute to better data interpretation in future work [34, 35]. 

 

When plotting the DNA methylation changes of some differentially methylated regions 

across early gestation, small and gradual changes were observed. However, these 

patterns were not well captured by comparing the DNA methylation differences 

between two sample groups. Better ways to find small and consistent changes of DNA 

methylation across samples or across gestation will be required. Weighted correlation 

network analysis (WGCNA) proved to be a good way to identify DNA methylation 

patterns associated with a continuous variable [36]. Actually, we have tested the 

WGCNA method for co-methylation analyses using the placenta data in this study (not 

included in this thesis) but different from 450K arrays [37], the correlation calculation 
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step for the large numbers of probes on EPIC arrays is too computationally intensive 

in R because of the large number of probes in the EPIC array. In future, an optimised 

filtering of probes (likely by filtering out more unchanged probes across samples) 

needs to be applied before WGCNA analyses to investigate the co-methylation 

patterns in placenta across early gestation. Through co-methylation analyses, DNA 

methylation of gene promoters or other regulatory elements that are co-methylated 

across early gestation will be identified, which may help better elucidate the time-

series changing of DNA methylation during early placental development.  

 

The epigenetic clock for different types of human tissue is an important tool to estimate 

their DNA methylation age. In Chapter 4, we established an epigenetic clock for 

predicting gestational age with placenta DNA methylation data and by using the 

existing Horvath clock [38], and predicted maternal DNA methylation age. This study 

showed that DNA methylation changes in maternal leukocytes associated with 

gestational age. A recent study also demonstrated gestational age prediction 

(placenta epigenetic clock) using public DNA methylation array data from a large 

number of placenta samples (1102 as training data and 187 as test data) [39]. In future, 

an epigenetic clock that uses DNA methylation of maternal leukocytes to estimate 

gestational age should be explored. This epigenetic clock could be a useful tool to 

estimate the missing meta data of publicly available data and may be useful in studies 

of pregnancy complications. 

 

Placenta is a heterogeneous tissue that contains numerous cell types. Ideally, future 

work could consider profiling DNA methylation for each cell type of placenta and 

corresponding maternal leukocyte samples or at single cell level that allows 
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researchers to investigate DNA methylation differences between different cell types 

and subtypes. Previous studies have demonstrated that the gene expression and DNA 

methylation profiles are different between cell types in placenta through single cell 

RNA sequencing [40, 41] and immunohistochemistry [42].  At present, single cell or 

cell type specific methylome for placenta were not well profiled, which highlights the 

need for further research focusing on DNA methylation profiles for individual cell types 

in placenta. While DNA methylation of cell types in circulating blood is well 

characterised [43, 44], and the cell proportion can be predicted through the DNA 

methylation profile of blood samples [45]. However, the DNA methylation difference 

between six types of circulating leukocytes from pregnant and non-pregnant women 

is not well characterised, which may aid biomarker identification for pregnancy health 

and deserves more research in future.  

 

6.4 Conclusion 

 

The work presented in this thesis in the field of DNA methylation analyses in placenta 

and maternal leukocytes aimed to profile genome-wide DNA methylation and 

biomarker identification. Through establishing a pipeline for EPIC array data analysis 

and exploration of the DNA methylation profile of human placenta and maternal 

leukocytes across early gestation, this work has contributed to the field in the following 

aspects. Firstly, this work demonstrated the importance of selecting appropriate 

methods for establishing analytic pipelines for data of interest which will benefit other 

future bioinformatics analyses based on EPIC array data. It also laid the foundation 

for further placenta research by showing DNA methylation changes throughout early 

placental development and showed a complex association between gene expression 
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and DNA methylation. Furthermore, this work showed that DNA methylation changes 

of maternal leukocytes may associate with maternal smoking status, maternal age and 

gestational age This adds to previous studies and informs future studies in biomarker 

identification for both pregnancy health and disease. 
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