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ABSTRACT 

Introduction: Doxorubicin (DOX) is a widely prescribed chemotherapeutic for the treatment of solid 

and haematologic malignancies. However, its clinical utility is limited by irreversible cardiotoxicity, 

which can lead to lifelong, sometimes fatal, heart complications. Recent evidence suggests the 

involvement of TNF-related apoptosis-inducing ligand (TRAIL) which, through binding to its death 

receptors (DR4 and DR5), initiates a signalling cascade leading to cell death. We hypothesise that 

DOX sensitises cardiomyocytes to TRAIL-induced death through modulation of this pathway. 

Method: Using cultured human cardiomyocytes, we assessed the ability of DOX and TRAIL to cause 

cardiomyocyte death, and interrogated molecular factors involved in the TRAIL apoptotic signalling 

pathway using flow cytometry and Western blot. Wild-type and TRAIL-/- mice (n=7 per group) were 

used to evaluate the effect of TRAIL on DOX-induced cardiotoxicity. Cardiac function was assessed 

using echocardiography to measure ventricular ejection fraction (LVEF) and fractional shortening 

(FS).  

Results: We showed that (i) TRAIL was significantly cytotoxic to cardiomyocytes in the presence of 

DOX (p<0.0001); (ii) surface expression of DR5 increased ~2-fold following DOX treatment in 

cardiomyocytes; (iii) expression of X-linked apoptotic inhibitor by cardiomyocytes decreased ~20-

fold in the presence of DOX+TRAIL, and (iv) in wild-type mice, DOX caused a 16% (p<0.001) and 

24% (p<0.001) reduction in LVEF and FS respectively, whereas DOX-treated TRAIL-/- mice had no 

significant reduction in cardiac function.  

Discussion: Our data support the hypothesis that DOX sensitises cardiomyocytes to TRAIL-induced 

death. Collectively, these findings reveal a novel mechanism which could lead to therapeutic 

intervention to limit or eliminate DOX-induced cardiotoxicity. 
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1. INTRODUCTION 

Doxorubicin (DOX) is an anthracycline chemotherapeutic used widely in the treatment of both adult 

and paediatric cancers. Its uses range from solid tumours including breast, lung, and testicular 

malignancies, to haematologic cancers such as leukaemias and lymphomas1. While DOX has strong 

anti-neoplastic potency, it causes many side effects, including nausea, gastrointestinal disturbances, 

and myelosuppression2. Cardiotoxicity is the most severe and dose-limiting effect of DOX treatment3. 

This toxicity has a cumulative, dose-related effect on cardiomyocytes, the heart cells responsible for 

myocardial contractility. Cardiomyocytes are non-regenerative in the adult heart; therefore loss of 

cardiomyocytes results in hypertrophic remodelling of the remaining cells and fibrotic scarring, as 

shown in myocardial infraction4.  

Chronic cardiotoxicity is characterised by permanent morphological and functional changes to the 

heart following DOX treatment. This manifests as a reduction of LVEF and contractile function, 

causing diastolic dysfunction5. The severity of cardiotoxicity ranges from asymptomatic to life-

threatening congestive heart failure (CHF). With the current cumulative dose limit of 550mg/m2, the 

incidence of CHF is between 7 and 26%6, 7. However, once CHF has developed, the 5-year survival 

rate is 50%6. Currently, there is no approved medicine for the prevention of DOX-induced 

cardiotoxicity. 

The primary chemotherapeutic action of DOX is intercalation between DNA base pairs, stabilising 

the DNA-topoisomerase-II complex, and inhibiting DNA and RNA synthesis. Topoisomerase-II is 

responsible for nicking double-stranded DNA during replication, which relaxes the unwinding helix 

to prevent supercoiling8. By stabilising this complex, DOX prevents free nucleotide ligation after 

double-strand breakage, inhibiting cell replication and transcription9. This cytotoxic mechanism 
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targets highly replicating cells such as cancer cells. However, cardiomyocytes are not highly 

replicating cells, suggesting another mechanism is responsible for DOX's cardiotoxicity.  

Many mechanisms have been proposed to contribute to DOX-induced cardiotoxicity. A by-product 

of DOX metabolism is the formation of reactive oxygen species (ROS)10. ROS can induce oxidative 

stress, triggering apoptosis in cancer cells and normal cells, and was hypothesised to cause 

cardiomyocyte damage and apoptosis by DOX11, 12. However, recent studies show the formation of 

ROS may not be the major mechanism of cardiotoxicity13, 14.  Other mechanisms proposed include 

disruption of intracellular homeostasis15,  mitochondrial dysfunction16, and inhibition of DNA and 

protein synthesis17, 18. Despite this research, the pathogenetic pathway of DOX cardiotoxicity remains 

unclear. 

DOX initiates the intrinsic apoptotic signalling pathway in cells19. Activation of this pathway is the 

result of cell injury, from DNA damage or cellular stress, which causes the mitochondria to realise 

cytochrome c, leading to apoptosis (Fig 1). Activation of the intrinsic apoptotic pathway can also 

occur through BH3 interacting-domain death-agonist (BID), a protein primarily involved in the 

extrinsic apoptotic pathway, suggesting an apoptotic “cross-talk” mechanism. 

The extrinsic apoptotic pathway is also affected by DOX; this pathway is activated by TNF-related 

apoptosis-inducing ligand (TRAIL). TRAIL is a naturally occurring cytokine present in the blood and 

tissue; however, its role under normal and pathological conditions is still somewhat unknown. In the 

immune system, TRAIL is expressed on T-cells, Natural Killer cells, macrophages and dendritic 

cells20. In this setting, TRAIL plays a crucial role in tumour-surveillance and apoptosis-induction of 

viral and bacterial infected cells21, 22. The extrinsic apoptotic pathway is activated when TRAIL binds 

to its death receptors, TRAIL-1 (DR4) and TRAIL-2 (DR5)23. These receptors contain an intracellular 

death domain required to initiate the apoptotic pathway. TRAIL binding with DR4 or DR5 results in 
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receptor aggregation and recruitment of adaptor proteins to form a death-inducing signalling complex 

(DISC)24 (Fig 1). DISC formation triggers the activation of initiator caspases-8/10, subsequently 

activating effector caspases-3/7 and poly ADP-ribose polymerase (PARP-1), resulting in apoptosis. 

Inhibitors of this pathway include X-linked inhibitor of apoptosis (XIAP), which can inhibit both 

apoptotic pathways through blocking effector caspase-3, 7, and 9. TRAIL also binds to decoy 

receptors TRAIL-R3 (DcR1), TRAIL-R4 (DcR2), and osteoprotegerin (OPG). DcR1 and DcR2 both 

lack a functional death domain, and therefore cannot induce apoptosis25. The secreted protein OPG 

is a soluble receptor with weak binding affinity for TRAIL and lacks both transmembrane and death 

domain properties required to initiate apoptosis26.  

Figure 1. The extrinsic and intrinsic apoptotic pathway.  
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TRAIL also plays a role in cell proliferation, survival, and migration. Non-apoptotic pathways 

initiated from TRAIL-binding include nuclear factor-κB, protein kinase C, protein kinase B, and 

mitogen-activated protein kinase pathways27. These non-cytotoxic pathways mediated by TRAIL 

indicate the dual function of its cognate receptors and caspases, revealing TRAIL's important role in 

tissue homeostasis. 

Many studies have explored TRAIL's chemotherapeutic effects, given its natural tumour-surveillance 

role. However, issues such as tumour resistance28, promotion of malignancy via survival pathways29, 

and short serum half-life30 have hindered progress. Further research has revealed the administration 

of DOX sensitises some cancer cells to TRAIL-induced death31-33. This sensitisation may occur 

through several mechanisms; one mechanism observed is the upregulation of both DR4 and DR5, 

with modulation of DR5 being more pronounced34, 35. DOX can also alter this pathway downstream 

through downregulating pathway inhibitors, as observed in prostate carcinomas36, 37. Because of this 

synergistic apoptotic mechanism, research has focused on the co-administration of TRAIL and DOX 

as a potential chemotherapeutic regimen32. However, the effect of TRAIL and DOX on 

cardiomyocytes is currently unknown and previously unexamined.  

TRAIL, DR4 and DR5 are all highly expressed in the heart38; despite this, cardiomyocytes are 

seemingly resistant to the apoptotic effects of TRAIL. This is possibly owing to the high expression 

of both XIAP and DcR1 in cardiomyocytes39. At normal physiological conditions, cardiomyocytes 

have been shown to benefit from TRAIL-mediated growth and survival pathways. Studies have 

shown the risk of mortality inversely correlates with levels of TRAIL in coronary heart disease40, 

acute myocardial infarction41, and heart failure42. However, presence of DOX may alter the TRAIL 

pathway's natural homeostasis in cardiomyocytes in favour of apoptosis induction.  

Sensitisation of cardiomyocytes to TRAIL-induced death may be a key mechanism of DOX-induced 

cardiotoxicity. A study by Zhao and Zhang. shows DOX upregulates the expression of death receptors 
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at both protein and mRNA levels in cardiomyocytes, with the most pronounced increase in DR4 (~7 

fold)43. This change in death receptors was associated with increased cytotoxicity. However, this 

mechanism was investigated using induced pluripotent stem cells-derived cardiomyocytes (IPS-

CMs), which phenotype differs to that of adult cardiomyocytes44. For clinical relevance, it is therefore 

necessary to investigate this mechanism in adult primary cardiomyocytes and in vivo. 

We hypothesise that the principal mechanism of DOX-induced cardiotoxicity is modulation of the 

extrinsic apoptotic signalling pathway, resulting in sensitisation of cardiomyocytes to TRAIL-

induced death. We propose that DOX modulates both survival and apoptotic molecular factors in 

favour of apoptosis induction. To test this hypothesis we aim to: (i) determine the ability of DOX 

with and without the presence of TRAIL to elicit human adult cardiomyocyte death; (ii) compare the 

effect of DOX and TRAIL treatment on cardiomyocytes with cancer cells and fibroblasts; (iii) 

investigate the effects of DOX and TRAIL on the expression of key mediators of the extrinsic and 

intrinsic apoptotic pathways in cardiomyocytes; and (iv) utilise TRAIL-knockout mice to investigate 

the in vivo effect of TRAIL on DOX-induced cardiotoxicity. 
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2. MATERIALS AND METHOD 

2.1. Cell culture reagents 

Human adult cardiomyocytes (HCMs), media and supplements were purchased from PromoCell, 

Germany unless otherwise stated. HCMs were cultured in myocyte growth medium supplemented 

with 0.5 ng/ml epidermal growth factor, 2 ng/ml fibroblast growth factor, 5 μg/ml insulin, 1% 

penicillin/streptomycin (ThermoScientific, Australia), and 10% foetal bovine serum (FBS, Life 

Technologies, Australia).  

Human foreskin fibroblasts (HFFs) were purchased from American Type Culture Collection (USA), 

and breast cancer cells MDA-MB231 derivative MDA-MB231-TXSA were gifted by Dr Toshiyuki 

Yoneda (University of Texas Health Sciences Centre, USA). 

HFFs and TXSAs were cultured in Dulbecco's modified eagle medium (ThermoScientific) 

supplemented with 1% penicillin/streptomycin, and 10% FBS. All cells were cultured in a humidified 

incubator with 5% CO2 atmosphere at 37⁰C. 

2.2. In vitro effects of DOX and TRAIL on HCM, HFF, and TXSA cell viability  

To investigate aims (i) and (ii) cells were seeded in 96-well microtiter plates at a density of 8x103 

cells per well and allowed to adhere overnight. HCMs and HFF were treated with vehicle (media, 

control), DOX hydrochloride (Hospira, Australia) (0.5-100µM), TRAIL (Genentech, USA )  (5, 10, 

100 ng/ml) or a combination of DOX (1 µM) and TRAIL (5, 10, 100 ng/ml). TXSAs were treated 

with increasing concentrations of DOX (0.4-50 µM) and increasing concentrations of TRAIL (0.1-

100 ng/ml). From the TRAIL concentration-response curve, we determined the EC15 (5 ng/ml 

TRAIL), which was then used in combination with increasing concentrations of DOX (0.2-50 µM) in 

TXSAs. HCMs and HFFs were incubated with treatments for 48-hours while TXSAs were incubated 

for 24-hours, with six replicate wells for each concentration. After fixing with formalin and staining 
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with crystal violet, plates were left to dry for 24-hours. Stained wells were resuspended in 10% acetic 

acid for 1-hour, and optical density values were read at 595nm using an Optima plate reader.  

2.3. In vitro effects of DOX and TRAIL on the expression of death receptors in HCMs 

Flow cytometry was used to investigate aim (iii). HCMs were seeded in a 24-well microtiter plate at 

a density of 3x104 cells per well and left to attach overnight.  Cells were treated with vehicle (media, 

control), 5 µM DOX, or 100 ng/ml TRAIL for 24-hours or 48-hours, in triplicate. Cells were then 

washed with phosphate-buffered saline (PBS), harvested using 2 mM ethylenediaminetetraacetic acid 

(EDTA) at 37⁰C for 5min, and transferred into one tube per treatment group. Cells were then pelleted 

and washed twice in PBS, then again with ice-cold PBS. All following steps were conducted at 4⁰C 

or on ice. Cells were resuspended in wash buffer of 2% FBS, 2 mM EDTA in PBS (PFE), 

centrifugated, then resuspended in blocking buffer (5% normal goat serum in PFE) and the tubes 

placed on ice for 15min. Primary antibodies (Table 1) were added to each tube at a 1:100 dilution and 

left for 45min in the dark. Cells were then washed three times with PFE and collected by 

centrifugation. Cells were resuspended and fixed in fluorescent-activated cell sorting fix (4% 

paraformaldehyde in PBS) for 10min, centrifuged and resuspended in 200µl of PFE. The tubes were 

stored in darkness at 4°C until analysis. Antibodies for each receptor had been directly conjugated to 

fluorophores of differing wavelengths by the manufacturer. 
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Table 1: Mouse anti-human monoclonal primary antibodies  

Target Receptor Fluorophore Supplier Product no. 

DR4 BV480 BD Biosciences 746250 

DR5 AlexaFluor 647 BD Biosciences 565498 

DcR1 BV421 BD Biosciences 744764 

DcR2 AlexaFluor 488 R&D Systems FAB633G 

 

2.4. Effects of DOX and TRAIL on the expression of key mediators of the extrinsic and intrinsic 

apoptotic pathways  

Aim (iii) was further investigated using Western blot. Confluent T25 flasks of HCMs were treated 

with vehicle (media, control), 2.5 µM DOX, 50 ng/ml TRAIL,  or 2.5 µM DOX + 50 ng/ml TRAIL, 

and incubated for 48-hours. At harvest, flasks were washed in ice-cold PBS and lysed in RIPA buffer 

containing 1:100 dilution of protease inhibitor cocktail (ThermoScientific) for 10min on ice. Lysates 

were collected into tubes and stored in -80⁰C until required. Following a freeze/thaw cycle, lysates 

were analysed for protein concentration using a bicinchoninic acid (BCA) protein assay kit 

(ThermoScientific). Using the BCA standard curve, the lysates were normalised to ensure each 

sample had equal amounts of protein for loading. Samples were run on an electrophoresis 4-12% 

precast polyacrylamide gel (BioRad, USA) and transferred to a nitrocellulose membrane. 

After washing twice in tris-buffered saline with 0.1% tween-20 (TBST), membranes were blocked 

with 5% milk overnight in 4⁰C, then probed with primary antibody overnight (Table 2). After 

washing, the corresponding secondary antibody was incubated on the membrane for 1-hour at room 

temperature. All blots were visualised using enhanced chemiluminescence (GE life sciences, UK), 
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imaged with ChemiDoc Touch imaging system (BioRad), and analysed through ImageLab (BioRad). 

Anti-β-actin primary antibody was used for the loading control in semi-quantitative analysis.  

Table 2: Antibodies used in Western blot analyses 

Primary antibody Supplier Product no. Dilution 
Secondary antibody, 1:5000 

dilution (in 1% milk TBST) 

Mouse anti-β-actin abcam ab8226 1:5000 Goat anti-mouse IgG-HRP 

sc2005 

Rabbit anti-PARP-1 Merck 11835238001 1:1500 
Goat anti-rabbit IgG-HRP 

sc2004 

Mouse anti-caspase-3 
Cell 

Signalling 
9668S 1:1500 

Goat anti-mouse IgG-HRP 

sc2005 

Rabbit anti-BID 
Cell 

Signalling 
2002S 1:1000 

Goat anti-rabbit IgG-HRP 

sc2004 

Mouse anti-caspase-9 
Cell 

Signalling 
9502S 1:1000 

Goat anti-mouse IgG-HRP 

sc2005 

Mouse anti-DR5 
Novus 

Biologicals 
NBP2-80066 1:500 

Goat anti-mouse IgG-HRP 

sc2005 

Mouse anti-caspase-

10 
MBL MO59-3 1:1000 

Goat anti-mouse IgG-HRP 

sc2005 

Goat anti-XIAP 
R&D 

Systems 
AF8221 1:1000 

Donkey anti-goat IgG-HRP 

sc2020 

 

2.5. DOX-induced cardiotoxicity in TRAIL-knockout mice  

To investigate aim (iv), wild-type and TRAIL-knockout45 4-6 week old C57BL/6 mice were donated 

from Dr Mary Kavurma (the Heart Research Institute, NSW). Mice were acclimatised in the Animal 

Housing facility (The Queen Elizabeth Hospital) for one week before treatment. The weight and 

physical wellbeing of the animals were monitored continuously throughout the experiment in 

accordance with the Laboratory Animal Services. All experiments were approved by the University 

of Adelaide Animal Ethics Committee (34020). 
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Mice were treated with saline (vehicle) or 4 mg/kg of DOX once every five days for a cumulative 

dose of 16 mg/kg. Treatment groups were: wild-type vehicle n=8, wild-type DOX-treated n=7, 

TRAIL-/- vehicle n=7, TRAIL-/-DOX-treated n=7.  The dose was administered via intraperitoneal 

injection while under isoflurane gas anaesthetic (Faulding Pharmaceuticals, Australia). 

Echocardiography (Vivid iq, GE Healthcare, Australia) was used to examine cardiovascular function 

three days after the last dose was administered. Echocardiography was performed by a blinded clinical 

echocardiographer, whilst the mice were under continuous isoflurane gas anaesthetic (1-3%). M-

mode analysis was used to assess LVEF and FS (n=3). Mice were humanely killed through cardiac 

puncture whilst under isoflurane gas anaesthetic and their organs harvested.  

2.6 Statistical analyses 

2-way ANOVA was used to compare between groups in cell viability and mice echocardiography 

data. Differences between groups were considered significant at p<0.05. Data are represented as mean 

± standard deviation (SD).  
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3. RESULTS 

 

3.1. In vitro effects of DOX and TRAIL on HCM, HFF, and TXSA cell viability  

After 24-hour incubation with DOX, HFFs showed a decrease in cell viability by 25% (p<0.0001) to 

51% (p<0.0001) in a concentration-dependent manner (Fig 2.A). 48-hour DOX-treatment caused 

HFF viability to decrease between 44% (p<0.0001) and 68% (p<0.0001). 

Following 24-hours of treatment with DOX, HCMs showed no significant decrease in viability (Fig 

2.B). However, following 48-hour DOX treatment, cell viability decreased between 12% (p<0.001) 

to 27% (p<0.0001) in a concentration-dependant manner. 

Figure 2. Sigmoidal dose-response of DOX treatment at 24- and 48-hour incubations in (A) HFFs 

(n=6) and (B) HCMs (n=6). Statistical analysis through 2-way ANOVA. Data are expressed as mean 

±SD. 

TXSA breast cancer cells treated with increasing concentrations of DOX for 24-hours had an EC50 of 

3 µM (95% confidence interval: 2.347- 4.167) (Fig 3). TXSAs co-treated with 5ng/ml of TRAIL and 

with increasing concentrations of DOX showed an EC50 of 0.3 µM (95% confidence interval: 0.2601-

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

20

40

60

80

100

A  HFFs

logDOX(μM)

C
e
ll

 v
ia

b
il

it
y

 (
%

 o
f 

c
o

n
tr

o
l)

24hr

48hr

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

25

50

75

100

B   HCMs

logDOX (μM)

C
e
ll

 v
ia

b
il

it
y

 (
%

 o
f 

c
o

n
tr

o
l)

24hr

48hr



 

14 

 

0.3654). The increased apoptotic effect of TRAIL on DOX-treated cells is shown by a shift in the 

concentration-response curve to the left.  

Figure 3. Sigmoidal dose-response of DOX treatment in TXSAs alone and with 5 ng/ml TRAIL 

(n=6). Data are expressed as mean ±SD. 

The effects of combining DOX and TRAIL on HFF viability are shown in Fig 4. TRAIL alone had 

no effect on viability after 24- or 48-hour incubation. Following 24-hour treatment with DOX, HFF 

viability decreased 37%. After 48-hour treatment with DOX, viability decreased 42% from vehicle-

treated cells. The co-treatment of DOX and TRAIL caused a further decrease in HFF viability 

compared DOX-only treated cells (up to 19% decrease). 
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Figure 4. Viability of HFFs after (A) 24- and (B) 48-hour incubations with vehicle, TRAIL alone 

and with 1 μM DOX (n=6). ++++ p<0.0001 compared to vehicle-only. **** p<0.0001 compared to 

DOX-only. Statistical analysis through 2-way ANOVA. Data are expressed as mean ±SD. 

The effects of combining DOX and TRAIL on HCM viability are shown in Fig 5.  TRAIL alone did 

not affect HCM viability, except in the 24-hour incubation where 10 and 100 ng/ml of TRAIL caused 

a significant increase in viability. DOX alone caused no significant decrease in HCM viability 

following either 24- or 48-hour incubations. However, after 48-hour incubation, the co-treatment of 

DOX and TRAIL caused a significant decrease in HCM viability compared to DOX-only treated cells 

in a TRAIL concentration-dependent manner (up to 43% decrease). 
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Figure 5. Viability of HCMs after (A) 24- and (B) 48-hour incubations with vehicle, TRAIL alone 

and with 1 μM of DOX (n=6). ++ p<0.01 compared to vehicle-only. *** p=0.0001, **** p<0.0001 

compared to DOX-only. Statistical analysis through 2-way ANOVA. Data are expressed as mean 

±SD. 

3.2. Effects of DOX and TRAIL on the expression of death receptors  

Treatment of HCMs with DOX or TRAIL for 24-hours did not affect cell surface expression of decoy 

receptors or DR4 (Fig 6.A). However, DR5 surface expression had a ~1.5-fold increase in the 

presence of DOX when compared to untreated HCM’s.   

48-hour incubation of HCMs with TRAIL had no difference in surface expression of the death and 

decoy receptors, except for a slight decrease (~25%) in DR5 expression compared to untreated cells 

(Fig 6.B). DOX-treated HCMs had a ~1.8-fold increase in DcR1 and a ~2-fold increase in DR5. No 

change was observed in the expression of DR4 and DcR1 following DOX-treatment. 

  

0 1

0

50

100

150

A  HFFs 24-hr

DOX (μM)

C
e
ll

 v
ia

b
il

it
y

 (
%

 o
f 

c
o

n
tr

o
l)

++++

0 1

0

50

100

150

B  HFFs 48-hr

DOX (μM)

C
e
ll

 v
ia

b
il

it
y

 (
%

 o
f 

c
o

n
tr

o
l)

0

5

10

100

TRAILng/ml

****

++++

0 1

0

50

100

150

DOX (μM)

C
e
ll

 v
ia

b
il

it
y

 (
%

 o
f 

c
o

n
tr

o
l)

A  HCMs 24-hr

++ ++

0 1

0

50

100

150

DOX (μM)

C
e
ll

 v
ia

b
il

it
y

 (
%

 o
f 

c
o

n
tr

o
l)

0

5

10

100

B  HCMs 48-hr TRAILng/ml

***

****

****



 

17 

 

Figure 6. Expression of TRAIL death and decoy receptors at (A) 24- and (B) 48-hours on the surface 

of HCMs after incubation with vehicle, 5 μM DOX, or 100 ng/ml TRAIL (n=1).  

3.3 Effects of DOX and TRAIL on the expression of key mediators of the extrinsic and intrinsic 

apoptotic signalling pathways  

Protein analysis via Western blot revealed uncleaved and cleaved products, see Table 3. Cleavage of 

proteins indicates activation has occurred, allowing the protein to carry out its function. Uncleaved 

and cleaved products of PARP-1 can be observed in HCMs (Fig 7A). DOX and DOX+TRAIL treated 

HCMs showed higher concentration of total cleaved protein than uncleaved (~1.5 and 1.7-fold, 

respectively).  

Uncleaved and cleaved caspase-3 in HCMs following treatment is shown in Fig 7B. DOX-treated 

HCMs had the most caspase-3 activation, with the presence of cleaved product ~1.6 fold higher than 

uncleaved product. While TRAIL and DOX+TRAIL treated HCMs had higher levels of uncleaved 

protein, activated caspase-3 was still detected. 
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Table 3: Membranes post-incubation with appropriate primary and secondary antibodies, including 

the molecular weight of proteins identified. 

 

 

                      

β-actin  42kDa uncleaved 

PARP-1  

 
 

 

120kDa uncleaved 

100kDa cleaved 

 

28kDa cleaved 

Casp-3 

 

45kDa uncleaved 

 

32kDa cleaved 

BID 
 

22kDa uncleaved 

Casp-9 
 

47kDa uncleaved 

DR5  40kDa 

Casp-10 

 

61kDa uncleaved 

 

43kDa cleaved 

XIAP  56kDa 

 

Figure 7. Markers of cellular stress and apoptosis. (A) Expression of uncleaved and cleaved PARP-

1 and, (B) uncleaved and cleaved caspase-3 in HCMs incubated for 48-hours with vehicle, 2.5 µM 

DOX, 50 ng/ml TRAIL, and 2.5µM DOX + 50 ng/ml TRAIL (n=1). 
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There were no cleaved BID or cleaved caspase-9 proteins observed in any treatment group (Fig 8). 

However, a decrease in expression of both uncleaved BID and caspase-9 following DOX and 

DOX+TRAIL treatment was observed, suggesting activation. 

Figure 8. Markers of intrinsic apoptosis. (A) Expression of uncleaved BID and, (B) expression of 

pro-caspase-9 in HCMs incubated for 48hours with vehicle, 2.5 µM DOX, 50 ng/ml TRAIL, and 2.5 

µM DOX + 50 ng/ml TRAIL (n=1). 

Total DR5 expression increased ~4-fold in DOX and ~3.4-fold in DOX+TRAIL treated HCMs (Fig 

9.A). Caspase-10 activation was greatest in DOX+TRAIL treated HCMs, with the presence of 

cleaved product ~4.7-fold higher than uncleaved (Fig 9.B). XIAP expression was decreased ~4.3-fold 

in DOX, and ~20.4-fold DOX+TRAIL treated HCMs (Fig 9.C). 
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Figure 9. Extrinsic apoptotic pathway. (A) Total expression of DR5, (B) expression of uncleaved and 

cleaved caspase-10, and (C) inhibitor of both extrinsic and intrinsic apoptosis, XIAP, in HCMs 

incubated for 48-hours with vehicle, 2.5 µM DOX, 50 ng/ml TRAIL, and 2.5 µM DOX + 50 ng/ml 

TRAIL (n=1).  
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3.3 DOX-induced cardiotoxicity in TRAIL-knockout mice  

DOX-treated wild-type mice had significant reduction in LVEF as compared to vehicle-treated wild-

type (~16%, Fig. 10.A). TRAIL-/- DOX-treated mice had no significant reduction in LVEF as 

compared to their vehicle-treated counterparts (Fig 10.B). 

Figure 10. LVEF in (A) DOX-treated (n=7) and vehicle-treated wild-type mice (n=8) (p <0.001) and 

(B) DOX-treated (n=7) and vehicle-treated TRAIL-/- mice (n=7). Statistical analysis through 2-way 

ANOVA. Data are expressed as mean ±SD.  
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DOX-treated wild-type mice had significantly reduced FS as compared to vehicle-treated wild-type 

(~24%, Fig 11.A). DOX-treated TRAIL-/- mice had no significant reduction in FS as compared to 

their vehicle-treated counterparts (Fig 11. B). 

Figure 11. FS in (A) DOX-treated (n=7) and vehicle-treated wild-type mice (n=8) (p<0.001) and (B) 

DOX-treated (n=7) and vehicle-treated TRAIL-/- mice (n=7). Statistical analysis through 2-way 

ANOVA. Data are expressed as mean ±SD. 
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4. DISCUSSION  

Studies have shown that treatment of DOX enhances the ability of TRAIL to induce apoptosis in 

cancer cells36, 37, 46.  Modulation of the extrinsic and intrinsic apoptotic pathway has been identified 

as the mechanism in which DOX sensitises cancer cells to TRAIL-induced death47-49. Here, we have 

proposed a similar mechanism is occurring in cardiomyocytes.  

When treated with DOX alone, HCMs had no significant decrease in viability.  However, DOX 

caused a significant decrease in viability in both HFFs and TXSAs. An explanation for this decreased 

viability is that these are highly replicating cells and therefore, sensitivity to DOX is likely due to 

topoisomerase II inhibition. Interestingly, TXSAs but not HCMs or HFFs were sensitive to the 

treatment of TRAIL alone, and this may be due to high expression of death receptors on the surface 

of the TXSAs as reported by Zinonos et al.50.  

As suggested in previous studies40, 51, TRAIL had pro-survival effects on cardiomyocytes. Following 

treatment with TRAIL, HCM viability increased, and protein analysis revealed greater presence of 

apoptotic proteins in inactivated form.  

Following treatment with the combination of DOX and TRAIL, all three cell types were affected. 

This suggests DOX has sensitised HCMs to TRAIL-induced death. The lack of regeneration abilities 

in cardiomyocytes necessitates long-term survival of these cells in order to prevent irreversible 

cardiac damage52. Therefore, the death of cardiomyocytes, via this DOX and TRAIL apoptotic 

mechanism, may be deleterious to the heart. 
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These results are comparable to those reported by Zhao and Zhang. However, they reported higher 

DOX toxicity at lower concentrations, and this could be because IPS-CMs replicate more rapidly than 

HCMs52. DOX concentrations used in our in vitro studies were higher and more relevant to 

concentrations used clinically53. In order to investigate the effects of low TRAIL we also included a 

5 ng/ml concentration, similar to what was used in the Zhao and Zhang study. 

DOX may have sensitised the cardiomyocytes to TRAIL-induced apoptosis by increasing the 

expression of DR5. Interestingly, and unlike our findings here, Zhao and Zhang observed the most 

profound increase in DR4, not DR543. In the same study, a DR5 neutralising antibody was used to 

prevent apoptosis in IPS-CMs by blocking TRAIL binding,  contradicting their observation of DR4 

being the primary receptor affected by DOX. Other than replication rates, IPS-CMs differ from adult 

cardiomyocytes in structural, electrophysiological, and metabiological properties, with similarities to 

that of embryonic cardiomyocytes54. These phenotypic differences between IPS-CMs and adult 

HCMs may explain the difference in results. 

Increased caspase-10 activation following DOX treatment has been observed in cancer cells55.  In 

cardiomyocytes, we have observed an increase in caspase-10 activation following co-treatment with 

DOX and TRAIL. This finding has not been reported previously and may represent an important 

mechanism by which DOX sensitises cardiomyocytes to TRAIL-induced death. 

Decreased expression of XIAP following DOX treatment has been shown in HCMs in one previous 

study56. However, the addition of TRAIL causing a further decrease in XIAP expression in DOX-

treated HCMs is a novel finding. Upregulation of DR5 may increase TRAIL-binding, and in addition, 

decreased inhibition of the pathway downstream, creating a perfect pro-apoptotic environment for 

the death of cardiomyocytes. Following  DOX treatment, changes in proteins which are indicative of 

intrinsic and extrinsic pathway activation occurred. However, markers of the intrinsic apoptotic 



 

25 

 

pathway such as BID or caspase-9 activation show negligible change, whereas markers of the 

extrinsic pathway, such as caspase-10 and DR5, have been upregulated, suggesting cardiomyocyte 

death is occurring primarily through the extrinsic pathway. Further research into this complex 

pathway is required to confirm these findings and seek a full understanding of DOX's molecular 

effects in cardiomyocytes. 

In this study pathways other than extrinsic and intrinsic apoptosis were not investigated. Therefore, 

the effects of DOX treatment on the TRAIL survival pathways in cardiomyocytes remains 

unexamined. It is also important to consider cardiomyocytes in cell culture do not bear the same strain 

as cardiomyocytes in the body, which require large amounts of energy to contract continually. 

Treating cells with DOX and TRAIL cannot replicate the pharmacokinetics in a living body; however, 

we have supported this data with in vivo studies. 

Clinically, LVEF and FS values are commonly used to diagnose cardiomyopathies57. During 

chemotherapy, a reduction in LVEF of ≥10% is considered left ventricular dysfunction, and further 

therapy is discontinued58. In DOX-treated wild-type mice, we observed a decrease in LVEF of 24%, 

suggesting clinically defined DOX-induced cardiotoxicity occurred and was measurable in the wild-

type mice. Various studies in wild-type mice have comparable results after treatment with similar 

concentrations of DOX59, 60, some of which additionally observed changes in radial strain61, a more 

sensitive echocardiographic measurement.  

In TRAIL-/- mice, DOX treatment demonstrated no significant reduction in cardiac function, 

suggesting lack of TRAIL is cardioprotective against DOX. To our knowledge, this is the first in vivo 

report to demonstrate a causative role for TRAIL in DOX-induced cardiotoxicity.  

In contrast to previous studies62, 63, our application of a low dose, long-duration regimen of DOX to 

induce chronic cardiotoxicity provides a mouse model that is more consistent with morphological 
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changes observed clinically64.  A limitation is that mice only have one apoptosis-inducing TRAIL 

receptor, DR565. This is a homologue of both human DR4 and DR5 (76 and 79% homology, 

respectively); however, it has similar binding affinity for TRAIL to that of human DR4 and DR5.  

Future studies would examine the effect of TRAIL-deficiency on the anticancer efficacy of DOX 

treatment. Any attempt to block TRAIL-signalling during DOX treatment as a means to protect the 

heart must not compromise the anticancer efficacy of DOX. To investigate this, a TRAIL-blocking 

therapeutic would be given in conjunction with DOX treatment in our mouse cancer model, where 

both cardio-protection and anticancer efficacy is assessed simultaneously. 

Potential therapeutics to inhibit the TRAIL-signalling pathway include the use of anti-TRAIL 

antibodies. These antibodies can bind circulating and membrane-bound TRAIL, preventing it from 

binding to its death receptors and preventing apoptosis induction. Another potential therapeutic target 

is using soluble fusion proteins as “decoy receptors” to block TRAIL from binding to DR5. These 

include soluble receptors DR5 or OPG, which can bind TRAIL with varying degrees of affinity. Some 

of these proteins have been formulated and tested for their TRAIL-blocking ability in vitro and in 

vivo66, 67, and our preliminary data for blocking the TRAIL-signalling pathway is promising. 

5. CONCLUSION 

We have shown for the first time that TRAIL is causatively involved in DOX-induced cardiotoxicity, 

a mechanism previously unexplored in adult primary human cardiomyocytes or in vivo. Investigations 

into blocking TRAIL-signalling could lead to a new class of cardioprotective agents to prevent DOX-

induced cardiotoxicity.  
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