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ABSTRACT 8 

The inclusion of fibres substantially improves the shear resistance of reinforced concrete 9 

beams. Fibres can, therefore, be used as a partial or full substitute for traditional transverse 10 

reinforcement. Before replacement of traditional reinforcement with fibres can be undertaken, 11 

reliable expressions which incorporate the effect of fibres are required. In a previous study, a 12 

mechanics approach based on quantifying the pre-sliding shear capacity of fibre reinforced 13 

concrete beams was developed and broadly validated and compared to existing design 14 

approaches. While accurate, the numerical solution is too complicated for routine design and 15 

hence, in this paper, simplified solutions are developed. This is achieved by: (i) approximating 16 

the neutral axis depth at the initiation of shear failure, (ii) developing a closed-form solution 17 

for the angle of the critical diagonal shear crack, removing the need to iterate, and (iii) 18 

incorporating a simple approach to estimate the stress in the fibres crossing cracks, removing 19 

the need to integrate fibre stresses over a range of crack widths. To validate the simplified 20 

solutions, they are used to predict the capacity of tests on 626 reinforced concrete beams 21 

without stirrups, 176 reinforced concrete beams with stirrups and 23 fibre reinforced concrete 22 

beams. Importantly these simplified solutions largely retain the accuracy of the numerical 23 

approach and show an improved fit compared to currently available solutions. 24 

 25 

https://doi.org/10.1061/(ASCE)ST.1943-541X.0003023


INTRODUCTION 26 

The design of reinforced concrete members is based on the assumption that ductile flexural 27 

failure always precedes brittle shear failure. As such, reliable approaches for predicting the 28 

shear capacity of a member and specifying the concrete and transverse reinforcement 29 

contributions to shear capacity are essential to the design process. With recent developments 30 

in concrete technology, the use of fibre reinforced concrete (FRC) has progressed significantly. 31 

Member level testing has identified a significant improvement in shear capacity can be 32 

achieved by the addition of fibres and it has been suggested that fibre reinforcement may reduce 33 

or entirely replace traditional transverse reinforcement (Casanova et al. 1997, Amin & Foster 34 

2016).  35 

 36 

To quantify the increase in shear capacity arising from fibre addition and, therefore, allow for 37 

the increased capacity to be considered in design practice, the Australian standard 38 

AS3600:2018 (Standards Australia 2018) includes expressions for quantifying the shear 39 

capacity of FRC members. In this approach: simplified modified compression field theory is 40 

applied to predict the concrete contribution to the shear capacity; a traditional truss model is 41 

used to determine the steel contribution; and a constant stress in the fibres is used to simulate 42 

the fibre contribution. Additional empirical factors are included to account for fibre orientation 43 

and size effect on the tensile stress in the fibres. The primary criticism here is that the model is 44 

based on simplified modified compression field theory. This approach assumes that aggregate 45 

interlock is the primary contributor to the shear capacity, and that the loss of aggregate interlock 46 

causes shear failure. In contrast to modified compression theory it has been suggested, 47 

including in the approach developed here, that the primary contributor to the shear capacity is 48 

the uncracked concrete above the crack tip (Volgyi & Windisch 2017; Donmez et al. 2020). 49 

The fib Model Code 2010 (fib 2012) also includes an expression to determine the shear capacity 50 



which considers the concrete and fibre contribution together based on the expression for shear 51 

capacity in the Eurocode 2 (CEN 2004). This expression is empirical in nature, hence difficult 52 

to extend to new materials. The fib Model Code 2010 (fib 2012) also outlines an alternative 53 

approach in the commentary based on simplified modified compression field theory similar to 54 

the approach in AS3600:2018 and therefore has similar issues. The Association Francaise de 55 

Genie Civil (AFGC 2013) has developed shear capacity expressions for ultra-high performance 56 

fibre reinforced concrete beams. In this approach, the shear capacity is increased by the vertical 57 

component of the force in the fibres; the stress in the fibres is taken as the average stress when 58 

the flexural strength is achieved and the force in the fibres is assumed to be perpendicular to 59 

the principal compressive stress. The concrete component of the shear capacity is also 60 

empirical hence difficult to extend to new materials. This is recognised as an additional 61 

capacity reduction factor is provided as the equation is extrapolated from that used for high 62 

strength concrete. 63 

 64 

A mechanics based approach is desirable as it is difficult to extend empirical approaches 65 

outside the bounds from which they were calibrated (Lansoght 2019) hence a survey of 66 

mechanical approaches is also provided. These include Voo et al. (2006) which assumes a 67 

plastic distributions of stress in tension and compression along critical diagonal shear crack to 68 

determine the shear capacity. The primary issue with this approach is that it relies on the 69 

definition of effectiveness factors that would need to be calibrated for each new material.  70 

 71 

The approach by Choi et al. (2007) calculates the concrete contribution to the shear capacity as 72 

a function of the shear force required to crack the flexural compression region and the fibre 73 

contribution as a function of a constant stress imposed on an inclined crack. This approach is 74 

based on a similar mechanism to Zhang et al. (2016a,b), where failure is controlled by the 75 



shear-compression failure of the flexural compression region. Unlike Zhang’s approach, Choi 76 

et al. (2007) assumes a fixed 45° crack angle in the flexural tension region whereas in reality 77 

this can vary and the contribution of the fibres is determined based on single fibre pullout 78 

results. Single fibre pullout data is not always available and hence a model that uses the tensile 79 

properties obtained at the material scale is preferable because both AS3600:2018 (Standards 80 

Australia 2018) and the fib Model Code 2010 (fib 2012) consider either direct or indirect testing 81 

of the tensile material properties to be essential for characterising the material behaviour of 82 

FRC. A further limitation of the Choi’s approach is that it requires iteration to determine the 83 

neutral axis depth and top fibre strains, but for a design approach it is desirable that iteration 84 

be avoided if possible.  85 

 86 

Lee et al. (2016) suggested an approach in which the shear demand and capacity attributed to 87 

the compression zone and tension zone is determined and shear failure occurs when demands 88 

exceed the capacity in either region. This model attempts to combine the approaches which 89 

propose a shear failure mechanism of aggregate interlock in the flexural tension region and 90 

shear compression failure in the flexural compression region by attributing a proportion of the 91 

shear resistance to each mechanism. The primary issue in this approach is that it has been 92 

argued that  the shear-compression failure is the dominant mechanism, for example see Volgyi 93 

& Windisch (2017) and Donmez et al. (2020) and hence aggregate interlock has minor 94 

influence on the shear capacity. 95 

 96 

Zhang et al. (2016c) suggested an approach based on simplified modified compression field 97 

theory, in which the stress in the fibres is determined as a function of the bond strength of a 98 

single fibre obtained from single fibre pullout tests. The same criticisms exist here as for the 99 

previous modified compression field theory based approaches. In addition to these issues, the 100 



need for  single fibre pullout tests rather than either direct or indirect tension tests results 101 

complicates the testing required to implement the model. 102 

 103 

Foster & Barros (2018) also adapted simplified modified compression field theory where the 104 

contribution of the fibres is determined by considering the pullout of a single fibre where the 105 

inclination angle of the individual fibres with respect to the crack was considered. The same 106 

criticisms hold as for Zhang et al. (2016c). In addition this model requires data on the pullout 107 

of fibres at a range of angles to the crack face. This adds further complication to the testing to 108 

implement the model. 109 

 110 

In response to criticisms of existing shear design approaches a new model to quantify the shear 111 

strength of FRC where the resistance of the flexural compression region is determined from 112 

the shear friction material properties was proposed by Sturm et al. (2020), with this approach 113 

being consistent with that developed by Zhang et al. (2016a,b) for ordinary reinforced concrete 114 

beams with steel or FRP reinforcement. When compared to existing methods (Voo et al. 2006; 115 

Choi et al. 2007; Lee et al. 2016; Zhang et al. 2016c; Foster & Barros 2018) for quantifying 116 

the shear strength of 29 FRC beams in which all the material properties were known, Sturm’s 117 

was found to have the best precision and accuracy. 118 

 119 

In the approach of Zhang et al. (2016a,b) the equilibrium of forces is considered to determine 120 

the sliding force along a critical diagonal shear crack and shear friction theory is applied to 121 

determine the capacity of this shear crack to resist sliding. When this sliding force exceeds the 122 

sliding capacity then shear failure occurs and the shear capacity is obtained. Sturm et al. (2020) 123 

extended this model to include fibres by including a force perpendicular to the shear crack 124 

which is a function of the crack width. The primary issue with this approach was that the 125 



numerical implementation was too complex for use in routine design. Hence, in this paper this 126 

approach is simplified to produce closed-form solutions where these simplifications represent 127 

the novelty in this paper. The resulting solutions are in fact simpler than the current Australian 128 

standard as it does not require iteration to determine the longitudinal strain at midspan. This is 129 

achieved by approximating the neutral axis depth with the flexural neutral axis depth which is 130 

then given by a quadratic equation. This also simplifies the equilibrium equations forming a 131 

system of linear simultaneous equations which allowed a simple solution to be derived for the 132 

concrete contribution to the shear capacity. The stress in the fibres was also chosen to 133 

correspond to the crack width at the effective depth at yield as this provides a simple approach 134 

to estimate this value without integrating across a range of crack widths. A closed form solution 135 

was also developed for the shear angle which replaces the semi-mechanical expression in 136 

Zhang et al. (2016a,b).  137 

 138 

The simplified design expressions are validated and compared to existing approaches using 139 

tests on 626 reinforced concrete beams without stirrups, 176 reinforced concrete beams with 140 

stirrups and 23 FRC beams. From this, the reliability of the proposed expressions was explored. 141 

This is important since these expressions give the mean shear strength, however in design, the 142 

characteristic shear strength is required. Hence, factors were derived that could be used in 143 

conjunction with these expressions to give the characteristic shear strength. 144 

 145 

SHEAR CAPACITY OF FIBRE REINFORCED CONCRETE BEAMS 146 

First consider the fundamental mechanics of Sturm et al.’s (2020) model as illustrated in Fig. 147 

1(a) where the forces on the free body on the right hand side A-B-C-D are shown. As the shear 148 

force Vu increases, flexural cracks form in the flexural tension region at the bottom face and 149 

propagate towards the load point. While tests have shown these cracks to follow a non-linear 150 



path, a simplification is applied here in which the non-linear crack is replaced with an 151 

equivalent diagonal crack A-B with an angle of β to the horizontal as shown. This 152 

simplification is valid as demonstrated by Zhang (1997), Huang & Nielsen (1998), Zhang et 153 

al. (2016a;b) and Sturm et al. (2020). 154 

 155 

As rotation occurs about this critical shear crack A-B in Fig. 1(a), forces develop in the: tensile 156 

reinforcement Frt; compressive concrete Fc; fibres Ff; and in the stirrups Fst. In line with the 157 

simplifying assumption of Placas & Regan (1971), the compression reinforcement is ignored. 158 

In order to maintain equilibrium with the imposed shear force and moment, a force S also 159 

occurs along the inclined plane as shown. This sliding force S is resisted along B-C by the 160 

concrete in compression and shear failure is considered to occur at the point in which the sliding 161 

force S exceeds the shear capacity Scap of the potential sliding plane B-C, at which point a 162 

fracture plane extends through the flexural compression region along B-C. 163 

 164 

 165 

Fig. 1 Mechanics of Shear Failure 166 



 167 

 168 

The shear stress at the initiation of sliding that is the material shear capacity v can be derived 169 

from shear friction theory (Regan & Yu 1973) such that 170 

𝑣 = 𝑚𝜎𝑁 + 𝑐      (1) 171 

where: σN is the normal stress which is a function of Fc in Fig. 1(a); m is the frictional 172 

component of the shear strength; and c is the cohesion.  173 

 174 

The shear strength of the potential sliding plane Scap can be determined by integrating v over 175 

this plane in the flexural compression region. Importantly in this approach, the shear capacity 176 

is taken as the capacity just prior to the sliding plane extending into the flexural compression 177 

region, that is just prior to sliding in the flexural compression region. As once sliding occurs, 178 

the material shear capacity reduces (Chen et al. 2015) when σN remains the same. Hence, this 179 

paper will take the shear capacity as equal to the pre-sliding capacity as this is equal to or a 180 

lower bound to the actual shear capacity. This same approach has been adopted by Zhang et al. 181 

(2016a;b) and Sturm et al. (2020) where accurate predictions were obtained.  182 

 183 

From a numerical analysis (Zhang et al. 2016a; Sturm et al. 2020), it can be shown that the 184 

shear capacity Vu, through failure along A-B-C in Fig. 1(a), varies with the inclination of the 185 

sliding plane  as shown in Fig. 1(b) (Sturm et al. 2020). However, this failure mode can only 186 

occur after the sliding plane A-B in Fig. 1(a) has formed. The shear load to form the sliding 187 

plane A-B in Fig. 1(a) has been defined by Zhang (1997) as  188 

𝑉𝑐𝑟 =
𝑓𝑐𝑡

∗ 𝑏𝐷2

𝑎 sin2(𝛽)
      (2) 189 



in which: fct
* is the effective tensile strength which is equal to 0.6fct where fct is the concrete 190 

tensile strength (Zhang 1997); b is the width of the section; D is the total depth; and a is the 191 

shear span.  192 

 193 

Consider the variations Vcr and Vu in Fig. 1(b). To the right of 1, Vu exceeds Vcr such that the 194 

sliding plane forms at Vcr before failure at an increased load Vu. To the left of 1, Vcr exceeds 195 

Vu such that the sliding plane fails at Vcr as the strength then reduces to Vu. Hence the intercept 196 

at 1 governs the ultimate strength.  197 

 198 

Having now defined the general mechanics of the approach, now let us consider the 199 

mathematical formulation. From vertical equilibrium of the forces illustrated in Fig. 1(a) 200 

 𝑉𝑢 = 𝑆𝑐𝑎𝑝 sin(𝛽) + 𝐹𝑠𝑡 + 𝐹𝑓 cos(𝛽)    (3) 201 

where Fst is the force in the stirrups and Ff is the force in the fibres. For convenience in design, 202 

Eq. (3) can be rewritten in the same form as AS3600:2018 (Standards Australia 2018) that is 203 

𝑉𝑢 = 𝑉𝑢𝑐 + 𝑉𝑢𝑠 + 𝑉𝑢𝑓     (4) 204 

in which the contribution of the concrete to the shear capacity is  205 

𝑉𝑢𝑐 = 𝑆𝑐𝑎𝑝 sin(𝛽)     (5) 206 

the contribution of the stirrups to the shear capacity is  207 

𝑉𝑢𝑠 = 𝐹𝑠𝑡      (6) 208 

and the contribution of the fibres to the shear capacity is  209 

𝑉𝑢𝑓 = 𝐹𝑓 cos(𝛽)     (7) 210 

 211 

Concrete contribution to the shear capacity 212 



The concrete contribution to the shear capacity uses the closed form expression derived by 213 

Zhang et al. (2016a) for the shear capacity of reinforced concrete beams without stirrups. From 214 

horizontal, vertical and rotational equilibrium 215 

0 = 𝐹𝑟𝑡 − 𝐹𝑐 − 𝑆𝑐𝑎𝑝 cos(𝛽)     (8) 216 

𝑉𝑢𝑐 = 𝑆𝑐𝑎𝑝 sin(𝛽)      (9) 217 

𝑉𝑢𝑐𝑎 = 𝐹𝑟𝑡𝑑 − 𝐹𝑐𝑑𝑐      (10) 218 

where the sliding capacity Scap is obtained by integrating the material shear strength in Eq. (1) 219 

over the area of the sliding plane in compression. This sliding capacity is a function of the 220 

normal stress due to Fc given by  221 

𝜎𝑁 =
𝐹𝑐 sin(𝛽)

[
𝑏𝑑𝑁𝐴
sin(𝛽)

]
=

𝐹𝑐 sin2(𝛽)

𝑏𝑑𝑁𝐴
     (11) 222 

where Fc sin(β) is the component of Fc normal to the sliding plane, whereas, bdNA/sin(β) is the 223 

area of the sliding plane in the flexural compression region as illustrated in Fig. 1(c).  224 

 225 

The component of Fc parallel to the sliding plane Fc cos(β) in Fig. 1(c) has the corresponding 226 

shear stress 227 

𝜏𝑁 =
𝐹𝑐 cos(𝛽)

[
𝑏𝑑𝑁𝐴
sin(𝛽)

]
=

𝐹𝑐 sin(𝛽) cos(𝛽)

𝑏𝑑𝑁𝐴
     (12) 228 

Consequently, the sliding capacity is given by 229 

𝑆𝑐𝑎𝑝 = ∫ (𝑣 − 𝜏𝑁)𝑑𝐴

𝑏𝑑𝑁𝐴
sin(𝛽)

=
𝐶1𝐹𝑐+𝑐𝑏𝑑𝑁𝐴

sin(𝛽)
    (13) 230 

which is the material shear strength less the shear component of Fc. 231 

 232 

Substituting Eq. (13) into Eq. (8) and rearranging gives the force in the longitudinal tension 233 

reinforcement as 234 

𝐹𝑟𝑡 = 𝐹𝑐 [1 +
𝐶1

tan(𝛽)
] +

𝑐𝑏𝑑𝑁𝐴

tan(𝛽)
     (14) 235 



where substituting Eq. (13) into Eq. (9) then rearranging gives the force in the concrete as 236 

𝐹𝑐 =
𝑉𝑢𝑐−𝑐𝑏𝑑𝑁𝐴

𝐶1
       (15) 237 

Substituting Eqs. (14) and (15) into Eq. (10) then rearranging gives the shear capacity as 238 

𝑉𝑢𝑐 =
𝑐𝑏𝑑𝑁𝐴

𝐶2
       (16) 239 

where  240 

𝐶2 = 1 − 𝐶1

𝑎−
𝑑

tan(𝛽)

𝑑−𝑑𝑐
      (17) 241 

in which 242 

𝐶1 = sin(𝛽) [𝑚 sin(𝛽) − cos(𝛽)]     (18) 243 

where d is the effective depth, dNA is the neutral axis depth and dc is the lever arm of the 244 

concrete.  245 

 246 

The primary differences between the above solution and that in Sturm et al. (2020) are the 247 

unknown variables when solving Eqs. (8-10). In the numerical model, the unknown variables 248 

were the shear capacity Vuc, the rotation θ and the neutral axis depth dNA. However, in the 249 

solution presented here, dNA is approximated using its value at flexure. This has allowed the 250 

replacement of θ and dNA by Frt and Fc. This simplifies the solution, as the solution in Sturm et 251 

al. (2020) had terms that were products of θ and dNA which resulted in the neutral axis depth 252 

dNA having to be determined from a quartic equation for the non-iterative solution. In this case, 253 

there are no terms that are products of Frt and Fc, hence, Eqs. (8-10) form a system of linear 254 

simultaneous equations which are straightforward to solve. This change in unknowns also 255 

means that the stress-strain relationship of the concrete or the load-slip relationship of the 256 

reinforcement is not required in the solution further reducing complexity. 257 

 258 

Neutral axis depth 259 



To solve Eq. 18, the neutral axis depth can be approximated using the flexural cracked neutral 260 

axis (Zhang et al. 2016a). For an FRC beam this is complicated by the fact the cracked neutral 261 

axis depth varies with the applied moment and is not a constant (Sturm et al. 2019). Hence, as 262 

a lower bound on the neutral axis depth the value at the yield of the longitudinal reinforcement 263 

can be used. At yield the force in the reinforcement is given by 264 

𝐹𝑟𝑡 = 𝐸𝑟𝐴𝑟𝑡𝜒(𝑑 − 𝑑𝑁𝐴) = 𝑓𝑦𝐴𝑟𝑡     (19) 265 

where Er is the elastic modulus of the reinforcement, Art is the cross-sectional area of the tensile 266 

reinforcement, χ is the curvature, d is the effective depth, dNA is the neutral axis depth and fy is 267 

the yield strength of the reinforcement. Hence rearranging Eq. (19) gives the curvature as 268 

𝜒 =
𝑓𝑦

𝐸𝑟(𝑑−𝑑𝑁𝐴)
      (20) 269 

The force in the fibres is then given by 270 

𝐹𝑓 = 𝑓𝑓𝑏(𝐷 − 𝑑𝑁𝐴)     (21) 271 

where ff is the stress in the fibres, b is the width of the section and D is the total depth. The 272 

force in the concrete is given by 273 

𝐹𝑐 =
1

2
𝑏𝑑𝑁𝐴

2 𝐸𝑐𝜒     (22) 274 

where Ec is the elastic modulus of the concrete. 275 

 276 

Hence from horizontal equilibrium 277 

0 = 𝐹𝑟𝑡 + 𝐹𝑓 − 𝐹𝑐 = 𝑓𝑦𝐴𝑟𝑡(𝑑 − 𝑑𝑁𝐴) + 𝑓𝑓𝑏(ℎ − 𝑑𝑁𝐴)(𝑑 − 𝑑𝑁𝐴) −
1

2
𝑏𝑑𝑁𝐴

2 𝐸𝑐
𝑓𝑦

𝐸𝑟
 (23) 278 

The solution to Eq. (23) is given by 279 

𝑑𝑁𝐴 = 𝑑 (
𝑎2−√𝑎2

2−4𝑎1𝑎3

2𝑎1
)     (24) 280 

where 281 

𝑎1 = −
1

2𝑛
+

𝑓𝑓

𝑓𝑦
    (25) 282 



𝑎2 = 𝜌 +
𝑓𝑓

𝑓𝑦
(1 +

𝐷

𝑑
)    (26) 283 

𝑎3 = 𝜌 +
𝑓𝑓

𝑓𝑦

𝐷

𝑑
     (27) 284 

in which ρ is the reinforcement ratio, n is the modular ratio, ff is the fibre stress, fy is the yield 285 

stress and D is the total depth. Note that if ff is set to zero the neutral axis depth for a section 286 

without fibres is obtained. The lever arm of the concrete is given by dNA/3 (Zhang et al. 2016a). 287 

 288 

Shear Angle 289 

The development of a fully closed form solution for the shear angle is the primary change from 290 

that presented in Zhang et al. (2016a) which used a semi-mechanical expression based on a 291 

numerical model. A further benefit of this closed form solution is that it can incorporate new 292 

materials, whereas, the semi-mechanical expressions need to be recalibrated. From Fig. 1(b) 293 

the shear angle is given when the sliding capacity given by Eq. (16) is equal to the shear force 294 

to cause diagonal cracking given by Eq. (2). Rearranging this gives the following equation for 295 

β1 296 

0 = 1 − sin2(𝛽1) (
𝑚𝑎

𝑑−𝑑𝑐
+ 𝐶3) + sin(𝛽1) cos(𝛽1)

𝑚𝑑+𝑎

𝑑−𝑑𝑐
− cos2(𝛽1)

𝑑

𝑑−𝑑𝑐
 (28) 297 

where 298 

𝐶3 =
𝑐𝑎𝑑𝑁𝐴

𝑓𝑐𝑡
∗ 𝐷2      (29) 299 

Applying trigonometric identities (Olver et al. 2010) 300 

sin(𝛽) cos(𝛽) =
tan(𝛽)

1+tan2(𝛽)
     (30) 301 

sin2(𝛽) =
1

2
−

1

2
[

1−tan2(𝛽)

1+tan2(𝛽)
]    (31) 302 

cos2(𝛽) =
1

2
+

1

2
[

1−tan2(𝛽)

1+tan2(𝛽)
]    (32) 303 

and rearranging gives 304 

0 = 𝑏1 tan2(𝛽1) + 𝑏2 tan(𝛽1) + 𝑏3    (33) 305 



where 306 

𝑏1 = 1 −
𝑚𝑎

𝑑−𝑑𝑐
− 𝐶3     (34) 307 

𝑏2 =
𝑚𝑑+𝑎

𝑑−𝑑𝑐
      (35) 308 

𝑏3 = 1 −
𝑑

𝑑−𝑑𝑐
      (36) 309 

Hence the shear angle is given by 310 

𝛽1 = arctan (
−𝑏2−√𝑏2

2−4𝑏1𝑏3

2𝑏1
)   (37) 311 

 312 

Stirrup contribution to the shear capacity 313 

In Zhang et al. (2016b) and Sturm et al. (2020), the contribution of the stirrups to the shear 314 

capacity was determined by evaluating the force in each individual stirrup as a function of the 315 

vertical opening of the shear crack. This crack opening is a function of the neutral axis depth 316 

dNA and rotation. This approach is not applicable to our simplified solution as the rotation is 317 

never determined. For the closed-form solution in Zhang et al. (2016b), this issue was mitigated 318 

by relating the force in the stirrups to the force in the reinforcement. The solution, however, is 319 

still not ideal for design as there is uncertainty about whether the stirrups have or have not 320 

yielded. To resolve this problem, Zhang’s solution required the shear capacity to be determined 321 

assuming the stirrups are elastic then checking whether the stirrups should have yielded. If 322 

some of the stirrups should have yielded, the shear capacity would be assessed using the correct 323 

assumption. Another problem is that the exact position of the stirrups with respect to the shear 324 

crack is not known.  325 

 326 

To overcome the above uncertainties and to simplify the problem, the conventional solution of 327 

smeared and yielded stirrups was adopted. The force in the stirrups in Fig. 1(a) is given by 328 



𝑉𝑢𝑠 = 𝑓𝑦
𝐴𝑟𝑣

𝑠

𝑑−𝑑𝑁𝐴

tan(𝛽)
     (38) 329 

where Arv is the area of transverse reinforcement and s is the spacing. This assumption can 330 

appear to be unconservative because, as shown by the numerical analyses conducted by Zhang 331 

et al. (2016b) and the experimental work of Wu & Hu (2017), rarely are all the stirrups yielded 332 

in practice at the onset of shear failure. This is mitigated by the fact that while Eq. (42) 333 

overstates the direct contribution of the stirrups to the shear capacity, the increase in the force 334 

in the concrete Fc due to the stirrups (Zhang et al. 2016b) was not included in the derivation of 335 

Vuc. To determine whether this is correct, a large number of beams with stirrups based on the 336 

beams used in the ensuing validation, was analysed using both the above smeared approach 337 

and the discrete crack model presented in Zhang et al. (2016b). The results are shown in Fig. 338 

2, where it is observed that the results from the smeared and discrete approaches are generally 339 

similar. The safety of this approximation is also established in the validation. 340 

 341 

 342 

Fig. 2 Comparison of smeared and discrete stirrup models 343 

 344 

Fibre contribution to the shear capacity 345 



The force in the fibres Ff in Fig. 1(a) is given by integrating the stress in the fibres over the area 346 

of the sliding plane that is in tension 347 

𝐹𝑓 = ∫ 𝜎𝑓(𝑤)𝑑𝐴

𝑏(ℎ−𝑑𝑁𝐴)

sin(𝛽)
= 𝑓𝑓

𝑏(𝐷−𝑑𝑁𝐴)

sin(𝛽)
   (39) 348 

where σf(w) is the stress in the fibres as a function of the crack width w and ff is the average 349 

fibres stress that is constant over the depth. The resulting fibre contribution to the shear capacity 350 

is given by   351 

 𝑉𝑢𝑓 = 𝑓𝑓
𝑏(𝐷−𝑑𝑁𝐴)

tan(𝛽)
     (40) 352 

The fibre stress ff depends on both the magnitude and variation of the crack width along the 353 

tensile region of the sliding plane, as given by the empirical tensile stress-crack width 354 

relationship which is a material property. This can be assessed either directly using tension 355 

tests or indirectly using flexural tests with an associated inverse analysis. In general, the fibre 356 

stress reduces with increasing crack width. A result of this is that the stress is maximum near 357 

the tip of the crack and a minimum at the bottom fibre. Hence to achieve a simple and 358 

conservative solution, the fibre stress is chosen to correspond to the crack width at the depth of 359 

the tensile reinforcement which is close to the bottom fibre of the section. Furthermore, to 360 

provide an upper bound to the crack width and, therefore, a lower bound to ff, the reinforcement 361 

strain is set to the yield strain εy so that the crack width can be approximated as 362 

𝑤𝑑 = 𝜀𝑦𝑆𝑐𝑟     (41) 363 

where Scr is the crack spacing which can be determined using the following expression from 364 

Sturm et al. (2018) 365 

𝑆𝑐𝑟 = [
2𝛼(1+𝛼)

𝜆2(1−𝛼)1+𝛼]

1

1+𝛼
[

𝑓𝑐𝑡−𝑓𝑝𝑐

𝐸𝑐
(

𝐸𝑐𝐴𝑐𝑡

𝐸𝑟𝐴𝑟𝑡
+ 1)]

1−𝛼

1+𝛼
   (42) 366 

in which 367 

𝜆2 =
𝜏𝑚𝑎𝑥𝐿𝑝𝑒𝑟

𝛿1
𝛼 (

1

𝐸𝑐𝐴𝑐𝑡
+

1

𝐸𝑟𝐴𝑟𝑡
)    (43) 368 



where τmax is the maximum bond stress for the longitudinal reinforcement, δ1 is the slip at the 369 

maximum bond stress for the longitudinal reinforcement, α is the non-linearity, Lper is the 370 

bonded perimeter, Art is the cross-sectional area of tensile reinforcement, Act is the cross-371 

sectional area of the tension chord, Ec is the elastic modulus of the concrete and fpc is the post-372 

cracking stress. The bond parameters τmax, δ1 and α can be identified from the bond stress-slip 373 

relationship of the longitudinal reinforcement is determined from pullout tests on embedded 374 

reinforcement as shown in Fig. 3(a). Where experimental data is unavailable, the expressions 375 

suggested by Harajli (2009) for FRCs with strengths less than 100 MPa and Sturm & Visintin 376 

(2018) for FRCs with strengths exceeding 100 MPa can be used. The geometry of the tension 377 

chord is illustrated in Fig. 3(b) as this defines Lper and Act. The post-cracking stress can be 378 

estimated as the first local minimum after the peak as was done in Sturm et al. (2018)  379 

 380 

 381 

Fig. 3 Bond stress-slip relationship and geometry of tension chord 382 

 383 

To use the crack width from Eq. (41), the tensile stress-crack width relationship is required. As 384 

there are no general material models that cover the full range of FRC mixes, this needs to be 385 

determined experimentally. There has been little uniformity in terms of the testing approaches 386 

applied to FRC to characterise the tensile response. In the opinion of the authors, the best 387 

approach is to measure this directly using specimens sufficiently large such that the 3D 388 

orientation of the fibres is not disturbed such as those suggested by AS3600:2018 (Standards 389 

Australia 2018) or Visintin et al. (2018). Specimens that are not sufficiently large may disturb 390 



the distribution of the fibres such that they become aligned with the applied force, hence, 391 

overestimating the tensile strength for members where this is not the case. 392 

 393 

VALIDATION 394 

Reinforced concrete members without stirrups 395 

The shear capacity expressions proposed in this paper for reinforced concrete members without 396 

stirrups are first validated against a database of 626 tests from 26 references (Moody et al. 397 

1954; Morrow & Viest 1957; Chang & Kesler 1958; Watstein & Mathey 1958; Sozen et al. 398 

1959; Diaz de Cossio & Siess 1960; Diaz de Cossio 1962; Leonhardt & Walther 1962; Bresler 399 

& Scordelis 1963; Mathey & Watstein 1963; Kani 1966; Krefeld & Thurston 1966; Kani 1967; 400 

Bhal 1968; Mattock 1969; Placas & Regan 1971; Taylor 1972; Walraven 1978; Chana 1981; 401 

Mphonde & Frantz 1984; Kotsovos 1987; Papadakis 1996; Collins & Kuchma 1999; Kim & 402 

White 1999; Yost et al. 2001; Tang et al. 2009) compiled by Zhang et al (2016). The details of 403 

the tests used for the validation are summarised in a spreadsheet in the supplementary material. 404 

The tests are compared in Fig. 4 to the procedure in this paper as well as the codified approaches 405 

in AS3600:2018 (Standards Australia 2018), ACI 318-19 (ACI 2019) and in Eurocode 2 (CEN 406 

2004). For the validation, the elastic modulus of the reinforcement was assumed to be 200 GPa 407 

while the elastic modulus of the concrete and the tensile strength where estimated using the 408 

expressions in the fib Model Code 2010 (fib 2013). The shear friction material properties 409 

suggested by Zhang et al. (2014b) were used in this validation. 410 

𝑚 =
0.389𝑓𝑐−𝑐

0.250 𝑓𝑐
      (44) 411 

𝑐 = 1.15𝑓𝑐𝑡      (45) 412 

where fc is the concrete compressive strength and fct the tensile strength. 413 

 414 



 415 

Fig. 4 Validation for reinforced concrete beams without stirrups 416 

 417 

It can be seen in Fig. 4 that the proposed approach has a coefficient of variation (COV) of 0.32 418 

which is a significant improvement over the codified approaches where the COV ranges from 419 

0.40 to 0.54, also shown in Fig. 4, the mean fit of the proposed approach is 1.13 compared to 420 

the range of 1.37 to 1.78 for the existing approaches. For design, the characteristic shear 421 

capacity is  422 

𝑉𝑑 = 0.66𝑉𝑢𝑐      (46) 423 

which was estimated by fitting a lognormal distribution. The characteristic value is given by 424 

the lognormal distribution as 425 

𝑅0.05 = exp(𝜆 − 1.645𝜀)    (47) 426 

where λ is the mean of log(x), ε is the standard deviation of log(x) and x is the ratio of  the 427 

experimental to predicted values; this is derived in Appendix A.  428 

 429 

Reinforced concrete members with stirrups 430 



The shear capacity expressions for reinforced concrete members with stirrups are validated 431 

against a database of 176 tests from 16 references (Clark 1951; Bresler & Scordelis 1963; 432 

Krefeld & Thurston 1966; Placas & Regan 1971; Swamy & Andriopoulos 1974; Mattock & 433 

Wang 1984; Mphonde & Frantz 1985; Elzanaty et al. 1986; Anderson & Ramirez 1989; Sarsam 434 

& Al-Musawi 1992; Xie et al. 1994; Yoon et al. 1996; Frosch 2000; Tompos & Frosch 2002; 435 

Lee & Hwang 2010; Lee et al. 2011) compiled by Zhang et al. (2016b). The results are 436 

compared in Fig. 5 to the procedure in this paper as well as the codified approaches  437 

AS3600:2018 (Standards Australia 2018), ACI 318-19 (ACI 2019) and Eurocode 2 (CEN 438 

2004). The proposed approach has the best COV of 0.22 which is a minor improvement over 439 

the codified approaches that range between a COV of 0.23 and 0.36. However, the better fit to 440 

beams without stirrups and to FRC beams generally validates this approach. It should be noted 441 

that the presented approach is conservative with a mean of 1.4 which is in the same range as 442 

for the codified approach which is due to using a smeared rather than discrete approach for the 443 

stirrups. Hence the design shear capacity in this case is given by 444 

𝑉𝑑 = 0.95(𝑉𝑢𝑐 + 𝑉𝑢𝑠)     (48) 445 

For the validation, the elastic modulus of the reinforcement was again assumed to be 200 GPa 446 

while the elastic modulus and tensile strength of the concrete were estimated with the 447 

expressions in the fib Model Code 2010 (fib 2013). Eqs. (44) and (45) were again used to 448 

determine the shear friction material properties. 449 



 450 

Fig. 5 Validation for reinforced concrete beams with stirrups 451 

 452 

 453 

FRC members without stirrups 454 

The shear capacity of FRC members is validated against a database of 23 tests from 3 references 455 

(Casanova et al. 1997; Noghabai 2000; Amin & Foster 2016) compiled by Sturm et al. (2020). 456 

There have been a large number of shear tests performed on FRC beams as evidenced by 457 

Lantsoght (2019), however in general, the tensile response of the FRC was poorly characterised 458 

which makes comparison difficult. Hence, the data was only chosen from tests where the tensile 459 

response was characterised over a range of crack widths in direct tension. The tests are 460 

compared in Fig. 6 to the proposed approach as well as the solutions in Sturm et al. (2020)a, 461 

Sturm et al. (2020)b,  AS3600:2018 (Standards Australia 2018), AFGC (2013) and fib Model 462 

Code 2010 (fib 2012), Choi et al. (2007), Zhang et al, (2016c) and Lee et al. (2016); “Sturm et 463 

al. (2020)a” refers to a numerical solution and “Sturm et al. (2020)b” refers to the non-iterative 464 

solution. Additionally, “fib Model Code 2010a” refers to the solution based on the Eurocode 2 465 

shear capacity expression while “fib Model Code 2010b” refers to the shear capacity expression 466 



based on simplified modified compression field theory. Note that the shear friction material 467 

properties were estimated again using Eqs. (44) and (45). 468 

 469 

 470 

Fig. 6 Validation for FRC beams 471 

From the comparisons in Fig. 6, the proposed solution was found to have a COV of 0.23 which 472 

can be compared to a COV of 0.20-0.22 for the approaches proposed in Sturm et al. (2020). 473 

Hence, the significant simplifications in this paper have only produced a minimal loss in 474 

accuracy. The COV of 0.23 is also a significant improvement on the codified approaches which 475 

had COVs between 0.29 and 0.37. The codified approaches are also conservative with means 476 

between 1.39 and 1.88 as compared to the 1.03 for the proposed solution. Zhang et al. (2016c) 477 



and Lee et al. (2016) had means and COVs in the same range as the codified approaches. 478 

However, the mean and COV for Choi et al. (2007) is in the same range as the proposed 479 

solution. This is interesting as they propose a similar shear failure mechanism to Sturm et al. 480 

(2020) where the shear failure is controlled by the shear crack penetrating the flexural 481 

compression region. The proposed solution however is simpler than that proposed by Choi et 482 

al. (2007) since it does not require iteration to determine the maximum compressive strain at 483 

the loading point. The design shear capacity in this case is given by 484 

𝑉𝑑 = 0.70(𝑉𝑢𝑐 + 𝑉𝑢𝑓)      (49) 485 

 486 

FRC members with stirrups 487 

Further avenues for research include FRC beams with stirrups as it would be useful to 488 

determine the reliability of these expressions when applied in this case. This was not done in 489 

this study as the only study available in the literature where the tensile response was well 490 

characterised was performed by Amin & Foster (2016), hence, sufficient data to determine the 491 

reliability of these expressions is not available. 492 

 493 

ANALYSIS WORKED EXAMPLE 494 

Consider the FRC beam in Fig. 7.  495 

 496 

Fig. 7 Analysis worked example 497 

 498 



The first step is to estimate the crack spacing, so starting with the bond parameter from Eq. 499 

(43) 500 

𝜆2 =
(15.4 𝑀𝑃𝑎)(528 𝑚𝑚2)

(1.5 𝑚𝑚)0.3 [
1

(43000 𝑀𝑃𝑎)(46800 𝑚𝑚2)
+

1

(200000 𝑀𝑃𝑎)(3690 𝑚𝑚2)
] = 13.3 ×501 

10−6 𝑚𝑚−0.3 (50) 502 

where τmax is 15.4 MPa, δ1 is 1.5 mm, α is 0.3 using the expressions in Harajli (2009). 503 

Furthermore, Act is 46800 mm2 and Lper is 528 mm2. Hence the crack spacing is given by Eq. 504 

(42) as 505 

𝑆𝑐𝑟 = [
20.3(1.3)

(13.3×10−6 𝑚𝑚−0.3)(0.7)1,3
]

1

1.3
[

2.28 𝑀𝑃𝑎−1.47 𝑀𝑃𝑎

43000 𝑀𝑃𝑎
(

(43000 𝑀𝑃𝑎)(46800 𝑚𝑚2)

(200000 𝑀𝑃𝑎)(3690 𝑚𝑚2)
+ 1)]

0.7

1.3
=506 

67.0 𝑚𝑚 (51) 507 

The crack width at the depth of the tensile reinforcement is given by Eq. (41) using the yield 508 

strain 0.0025 509 

𝑤𝑑 = 0.0025(42.0 𝑚𝑚) = 0.168 𝑚𝑚   (52) 510 

Hence, the fibre stress ff is 1.51 MPa. The next step is to evaluate the neutral axis depth. From 511 

Eqs. (25-27) 512 

𝑎1 = −
1

2(4.65)
+

1.51 𝑀𝑃𝑎

500 𝑀𝑃𝑎
= −0.105    (53) 513 

𝑎2 = 0.0198 +
1.51 𝑀𝑃𝑎

500 𝑀𝑃𝑎
(1 +

700 𝑚𝑚

622 𝑚𝑚
) = 0.0262  (54) 514 

𝑎3 = 0.0198 +
1.51 𝑀𝑃𝑎

500 𝑀𝑃𝑎

700 𝑚𝑚

622 𝑚𝑚
= 0.0232   (55) 515 

where the modular ratio n is 4.65 and the reinforcement ratio is ρ is 0.0198. Substituting in Eqs. 516 

(25-27) into Eq. (24) 517 

𝑑𝑁𝐴

𝑑
=

0.0262−√(0.0262)2+4(0.105)(0.0232)

−2(0.105)
= 0.362  (56) 518 

Hence, the neutral axis depth dNA is 225 mm such that the lever arm of the concrete dc is 75 519 

mm. The shear friction material properties can be estimated using Eqs. (44-45) to give m of 520 

1.26 and c of 2.62 MPa. The next step is to evaluate the shear angle. Thus from Eq. (29) 521 



𝐶3 =
(2.62𝑀𝑃𝑎)(1750 𝑚𝑚)(225 𝑚𝑚)

(1.37 𝑀𝑃𝑎)(700 𝑚𝑚)2 = 1.54   (57) 522 

where the effective tensile strength fct* is 1.37 MPa. From Eq. (34-36) 523 

𝑏1 = 1 −
(1.26)(1750 𝑚𝑚)

622 𝑚𝑚−75 𝑚𝑚
− 1.54 = −4.57   (58) 524 

𝑏2 =
(1.26)(622 𝑚𝑚)+1750𝑚𝑚

622 𝑚𝑚−75 𝑚𝑚
= 4.63    (59) 525 

𝑏3 = 1 −
622 𝑚𝑚

622 𝑚𝑚−75 𝑚𝑚
= −0.137    (60) 526 

Hence the shear angle is given by Eq. (37). 527 

 tan(𝛽1) =
−4.63−√(4.63)2−4(4.57)(0.137)

−2(4.57)
= 0.983   (61) 528 

Therefore, the shear angle β1 is given as 0.777 radians or 44.5°. The shear contribution due to 529 

the concrete can now be evaluated. Hence, from Eqs. (16-18) 530 

𝐶1 = sin(0.777) [1.26 sin(0.777) − cos(0.777)] = 0.120   (62) 531 

𝐶2 = 1 − 0.120
1750 𝑚𝑚−

622 𝑚𝑚

0.983

622 𝑚𝑚−75 𝑚𝑚
= 0.755    (63) 532 

𝑉𝑢𝑐 =
(2.62 𝑀𝑃𝑎)(300 𝑚𝑚)(225 𝑚𝑚)

0.755
= 234𝑘𝑁    (64) 533 

The contribution of the stirrups is given by Eq. (38) 534 

𝑉𝑢𝑠 = (500 𝑀𝑃𝑎) (0.349
𝑚𝑚2

𝑚𝑚
)

622 𝑚𝑚−225 𝑚𝑚

0.983
= 70.5 𝑘𝑁  (65) 535 

The contribution of the fibres is given by Eq. (40) 536 

𝑉𝑢𝑓 = (1.51 𝑀𝑃𝑎)
(300 𝑚𝑚)(700 𝑚𝑚−225 𝑚𝑚)

0.983
= 219 𝑘𝑁  (66) 537 

Hence the shear capacity is given by Eq. (4) as 538 

𝑉𝑢 = 234 𝑘𝑁 + 70.5 𝑘𝑁 + 219 𝑘𝑁 = 524 𝑘𝑁   (67) 539 

 540 

DESIGN WORKED EXAMPLE 541 

Consider the beam in Fig. 8.  542 



 543 

Fig. 8 Design worked example 544 

 545 

The beam is subject to as shear force V* of 100 kN. So first determine the shear capacity of the 546 

section without fibres or stirrups. From Eqs. (44-45) the shear friction material properties are 547 

m equal to 1.29 and c equal to 2.62 MPa. Next evaluate the neutral axis depth. So, first evaluate 548 

Eqs. (25-27) 549 

𝑎1 = −
1

2(6.1)
= −0.082    (68) 550 

𝑎2 = 𝑎3 = 𝜌 = 0.0225    (69) 551 

where the modular ratio n is 6.1 and the reinforcement ratio ρ is 0.0225. From Eq. (24) the 552 

neutral axis depth is 553 

𝑑𝑁𝐴

𝑑
=

0.0225−√(0.0225)2+4(0.082)(0.0225)

−2(0.082)
= 0.404  (70) 554 

Hence the neutral axis depth dNA is 108 mm. The lever arm of the concrete dc is 36 mm. Next 555 

evaluate the shear angle. Hence from Eq. (29) 556 

𝐶3 =
(2.62 𝑀𝑃𝑎)(1250 𝑚𝑚)(108 𝑚𝑚)

(1.37 𝑀𝑃𝑎)(300 𝑚𝑚)2
= 2.87    (71) 557 

Next evaluate Eqs. (34-36) 558 

𝑏1 = 1 −
(1.29)(1250 𝑚𝑚)

268 𝑚𝑚−36 𝑚𝑚
− 2.87 = −8.82    (72) 559 

𝑏2 =
(1.29)(268 𝑚𝑚)+1250𝑚𝑚

268 𝑚𝑚−36 𝑚𝑚
= 6.88     (73) 560 

𝑏3 = 1 −
268 𝑚𝑚

268 𝑚𝑚−36 𝑚𝑚
= −0.155     (74) 561 

Hence the shear angle is given by Eq. (37) as 562 



tan(𝛽1) =
−6.88−√6.882−4(8.82)(0.155)

−2(8.82)
= 0.757   (75) 563 

Therefore, the shear angle is 0.648 radians or 37.1°. The shear contribution of the concrete is 564 

now given by Eqs. (16-18) as 565 

𝐶1 = sin(0.648) [1.29 sin(0.648) − cos(0.648)] = −0.0113 (76) 566 

𝐶2 = 1 + 0.0113
1250 𝑚𝑚−

268 𝑚𝑚

0.757

268 𝑚𝑚−36 𝑚𝑚
= 1.04    (77) 567 

𝑉𝑢𝑐 =
(2.62 𝑀𝑃𝑎)(150 𝑚𝑚)(108 𝑚𝑚)

1.04
= 40.8 𝑘𝑁    (78) 568 

Hence, if the total required shear capacity is 100 kN then an additional 59.2 kN is required 569 

from the fibres. Hence rearranging Eq. (40) gives the required stress in the fibres as 570 

𝑓𝑓 =
𝑉𝑢𝑓

𝑏(𝐷−𝑑𝑁𝐴)
tan(𝛽) =

59200 𝑁

(150 𝑚𝑚)(300 𝑚𝑚−108 𝑚𝑚)
0.757 = 1.56 𝑀𝑃𝑎  (79) 571 

Note that the presence of fibres effects the neutral axis depth. Recalculating the neutral axis 572 

depth using this fibre stress gives the neutral axis depth as 112 mm. Using the new value of the 573 

neutral axis depth the shear angle is 36.8° and the concrete contribution to the shear capacity 574 

is 41.1 kN. Using these new values the required fibre stress is again 1.56 MPa. 575 

The next step is to determine the crack width at which this stress needs to occur. So from Eqs. 576 

(50-51) the crack spacing is given by 577 

𝜆2 =
(16.3 𝑀𝑃𝑎)(151 𝑚𝑚2)

(1.5 𝑚𝑚)0,3 [
1

(32800 𝑀𝑃𝑎)(9600 𝑚𝑚2)
+

1

(200000 𝑀𝑃𝑎)(905 𝑚𝑚2)
] = 19 × 10−6𝑚𝑚−0.3 578 

 (80) 579 

𝑆𝑐𝑟 = [
20.3(1.3)

(19×10−6 𝑚𝑚−0.3) (0.7)1.3]

1

1.3
{

2.28 𝑀𝑃𝑎−1.56 𝑀𝑃𝑎

32800 𝑀𝑃𝑎
[

(32800 𝑀𝑃𝑎)(9600 𝑚𝑚2)

(200000 𝑀𝑃𝑎)(905 𝑚𝑚2)
+ 1]}

0.7

1,3
= 46.9𝑚𝑚580 

 (81) 581 

in which τmax is 16.3 MPa, δ1 is 1.5 mm and α is 0.3 using the expressions in Harajli (2009). 582 

From the geometry of the tension chord in Fig. 3(b) Lper is 151 mm and  Act is 9600 mm2
. Hence, 583 

from Eq. (41) the crack width is given by 584 

𝑤𝑑 = 0.0025(46.9 𝑚𝑚) = 0.117 𝑚𝑚   (82) 585 



Therefore, FRC with a minimum tensile stress of 1.56 MPa at a crack width of 0.117 mm can 586 

be used.  587 

If the required shear capacity was actually 150 kN then this 50 kN shortfall could be 588 

accommodated by including transverse reinforcement, hence rearranging Eq. (38) gives 589 

𝐴𝑟𝑣

𝑠
=

𝑉𝑢𝑠

𝑓𝑦(𝑑−𝑑𝑁𝐴)
tan(𝛽) =

50000 𝑁

500 𝑀𝑃𝑎(268 𝑚𝑚−112 𝑚𝑚)
(0.874) = 0.56 𝑚𝑚2/𝑚𝑚 (83) 590 

where the yield strength of the transverse reinforcement is 500 MPa. Hence, this requirement 591 

can be met by providing 8 mm diameter stirrups at 150 mm spacings.  592 

 593 

CONCLUSION 594 

Based on free body mechanics, simple design rules have been developed for the shear capacity 595 

of reinforced concrete beams. It has been demonstrated from the validation that these solutions 596 

are more accurate and precise than conventionally codified solutions for reinforced concrete 597 

beams without stirrups and FRC beams while providing comparable performance to the 598 

conventional codified solutions for reinforced concrete beams with stirrups. These rules 599 

separate the contributions of the concrete, stirrups and fibres to the shear capacity and as such 600 

can be used by engineers as a convenient tool to design members with any combination of 601 

concrete, stirrups and fibres and with new types of materials. To illustrate the convenience of 602 

this approach, a worked example of a design is given. 603 

 604 

Previous studies have demonstrated that the application of mechanics can result in accurate 605 

solutions for the shear capacity of FRC beams. However, these solutions were too complicated 606 

for design. Hence in this paper, new design oriented solutions have been developed for the 607 

shear capacity of FRC beams. The simplifications that were applied include using the flexural 608 

neutral axis depth which removes the need to iterate this parameter. In this case the equations 609 

for equilibrium form a system of linear equations which have a simple solution. A closed-form 610 



solution for the shear angle was also developed. A convenient approach has also been suggested 611 

for estimating the stress in the fibres without having to integrate the values across a range of 612 

crack widths. These have then been validated and compared to codified solutions where it was 613 

found that for reinforced concrete beams without stirrups the COV was 0.32 compared to 0.40 614 

for the best codified solution. The mean was also 1.13 as compared to 1.56 for the best codified 615 

solution. For reinforced concrete beams with stirrups, the COV was 0.22 compared to 0.23 for 616 

the best codified solution. The mean was 1.4 which is in the same range as for the other 617 

solutions. For FRC beams, the COV was 0.23 compared to 0.35 for the current Australian 618 

standard. The mean was 1.03 as compared to 1.88 for the current Australian standard. The 619 

solution also retains much of the accuracy of the numerical solutions presented in Sturm et al. 620 

(2020) with the COV increasing to only 0.23 from a COV of 0.20. The presented solutions are 621 

also simpler than the current Australian standard as no iteration is required to determine the 622 

longitudinal strain at the centroid of the beam. Additionally, a log-normal distribution was 623 

fitted to the experimental to predicted results to allow the characteristic shear strength to be 624 

determined from the mean values. The primary improvement over previous codified 625 

expressions for shear is that the concrete and fibre contributions are related to the neutral axis 626 

depth. The solution also includes a simple method to estimate the fibre stress which does not 627 

require either the use of an excessively conservative value or iteration to determine the fibre 628 

stress. 629 

 630 

APPENDIX A CHARACTERISTIC RESISTANCE FOR LOG-NORMAL 631 

DISTRIBUTION 632 

The characteristic value is defined as the value for which only 5% of observations are less than 633 

the given value. The cumulative distribution function for a log-normal distribution (Melchers 634 

& Beck 2018) is 635 



𝐹(𝑥) = Φ [
ln(𝑥)−𝜆

]     (A1) 636 

where x is the random variable, Φ(x) is the cumulative distribution function for a normal 637 

distribution, λ is the mean of log(x) and ε is the standard deviation of log(x). Hence setting F(x) 638 

to 0.05 gives 639 

ln(𝑅0.05)−𝜆
= Φ−1(0.05) = −1.645     (A2) 640 

where R0.05 is the characteristic value and Φ-1(x) is the inverse cumulative distribution function 641 

for a normal distribution. Rearranging gives the characteristic value as 642 

𝑅0.05 = exp(𝜆 − 1.645𝜀)      (A3) 643 
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 651 

NOTATION 652 

Act = cross-sectional area of tension chord; 653 

Art = cross-sectional area of tensile reinforcement; 654 

Arv = cross-sectional area of stirrups; 655 

a = shear span; 656 

a1, a2, a3 = parameters for Eq. (24) 657 

b = width; 658 



b1, b2, b3 = parameters for Eq. (33); 659 

C1, C2 = parameters for Eq. (16); 660 

C3 = parameter for Eq. (34); 661 

c = cohesive component of the shear strength; 662 

D = total depth; 663 

d = effective depth; 664 

dc = lever arm of the compressive concrete; 665 

dNA = neutral axis depth; 666 

Ec = elastic modulus of the concrete; 667 

Er = elastic modulus of the reinforcement; 668 

F(x) = cumulative distribution function for log-normal distribution; 669 

Fc = force in the compressive concrete; 670 

Ff = force in the fibres; 671 

Frt = force in tensile reinforcement; 672 

Fst = force in the stirrups; 673 

fc = concrete strength; 674 

fct = tensile strength; 675 

fct
* = effective tensile strength; 676 

ff = stress in the fibres; 677 

fpc = post cracking stress; 678 

fy = yield strength; 679 

Lper = bonded perimeter; 680 

m = frictional component of the shear strength; 681 

n = modular ratio (=Er/Ec); 682 

R0.05 = characteristic value; 683 



Scap = sliding capacity; 684 

Scr = crack spacing; 685 

s = stirrup spacing; 686 

Vcr = shear force to cause cracking; 687 

Vd = design shear capacity; 688 

Vu = mean shear capacity; 689 

Vuc = contribution of the concrete to the shear capacity; 690 

Vuf = contribution of the fibres to the shear capacity; 691 

Vus = contribution of the stirrups to the shear capacity; 692 

v = material shear strength; 693 

wd = crack width at the effective depth; 694 

x = random variable; 695 

α = non-linearity; 696 

β = shear angle; 697 

β1 = angle of critical diagonal shear crack; 698 

δ1 = slip at the maximum bond stress; 699 

ε = standard deviation of log(x); 700 

εd = strain at the effective depth; 701 

θ = rotation; 702 

λ = mean of log(x); 703 

λ2 = bond parameter; 704 

ρ = reinforcement ratio (=Art/bd); 705 

σN = normal stress; 706 

τmax = maximum bond stress; 707 

Φ(x) = cumulative distribution function for normal distribution; 708 



χ = curvature; 709 

 710 
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