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Abstract: In a global context where trading of wines involves considerable economic value, the
requirement to guarantee wine authenticity can never be underestimated. With the ever-increasing
advancements in analytical platforms, research into spectroscopic methods is thriving as they offer
a powerful tool for rapid wine authentication. In particular, spectroscopic techniques have been
identified as a user-friendly and economical alternative to traditional analyses involving more
complex instrumentation that may not readily be deployable in an industry setting. Chemometrics
plays an indispensable role in the interpretation and modelling of spectral data and is frequently
used in conjunction with spectroscopy for sample classification. Considering the variety of available
techniques under the banner of spectroscopy, this review aims to provide an update on the most
popular spectroscopic approaches and chemometric data analysis procedures that are applicable to
wine authentication.

Keywords: authenticity; multivariate analysis; wine fingerprinting; spectral data; machine learning

1. Introduction

Wine is a historic alcoholic beverage that has evolved to be of high commercial
importance. It can be identified as a luxurious commodity and is produced and consumed
in many countries around the world. Wine consists of innumerable compounds spanning
various concentration ranges, many of which are essential to its evolution and quality, as
well as for human health benefits in the case of red wine [1]. In general, the composition of
red wine can be broadly represented on a w/w basis as 86% water, 11% ethanol, and 3% for
the remainder, which includes glycerol, sugars, polyols, phenols, minerals, organic acids,
and volatile compounds [2]. The composition of wine mainly depends on certain factors
that define the wine’s identity, including grape variety, geographical origin, the biophysical
environment of the vineyard, vintage conditions, and winemaking inputs [3]. Different
types of fraud related to those factors have been encountered in wine over the years,
including counterfeiting of labels and brands, adulteration through the use of unauthorised
additives or practices, and substitution based on grape variety or region of origin [4].
Therefore, to confirm the genuineness of wine and protect its value, analytical techniques
need to be applied to explore the chemical constituents of wine that aid in the development
of models for authenticity.

Classical techniques such as gas chromatography-mass spectrometry and high-
performance liquid chromatography are advancing continuously, facilitating wine analysis
with high sensitivity [5]. Considering the applicability in an industrial setting, however, as-
pects such as rapidity, user-friendliness, and cost-effectiveness have become of paramount
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importance in recent times [6]. Spectroscopic techniques provide a great solution due to
their relative simplicity, speed of analysis, simple sample preparation, and environmental
friendliness [7], and have been well-utilised for different wine and grape research stud-
ies, such as for targeted and non-targeted chemical analyses [8], prediction of sensory
attributes [9], and wine authentication [10,11]. A snapshot of selected research outcomes
identified from the Web of Science Core Collection over the past three decades using ‘wine
authentication’ and ‘spectroscopy’ as the search keywords is visualised in Figure 1 to pro-
vide some understanding of the trends in the literature. Aside from those specific keywords,
the terms classification, chemometrics, and geographical origin also feature prominently
and are variously linked upon closer inspection to a range of terms associated with spec-
troscopic (e.g., near-infrared, mid-infrared, NMR, UV–visible, Raman, fluorescence) and
chemometric (e.g., partial least squares discriminant analysis, feature selection, support
vector machines, artificial neural networks, principal component analysis, discriminant
analysis, data fusion, pattern recognition) techniques.
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Figure 1. Bibliometric map of wine science-related research visualised from 222 publications
(from 1990 to 2021) recovered from Web of Science Core Collection using ‘wine authentication’
and ‘spectroscopy’ as keywords. Literature analysis and figure construction were facilitated with
VOSviewer [12]. Different colours are used to define the clusters that terms belong to. The biblio-
metric relationship between terms is indicated using curved lines and the relative size of the words
reflects the number of publications in which the terms occurred.

Among the different spectroscopic methods that are available, techniques such as
nuclear magnetic resonance (NMR), near-infrared (NIR), mid-infrared (MIR), Raman, and
fluorescence have been prominent in past research studies. Moreover, it is clear from
Figure 1 that chemometric techniques (i.e., multivariate data analyses) have been an in-
tegral part of these spectroscopic techniques to draw meaningful conclusions regarding
sample classification and differentiation. Taking these aspects together, this review em-
phasises the application of spectroscopic techniques and chemometrics to authenticity
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in the field of wine research using examples from the past 15 years. The strengths and
weaknesses of different spectroscopic methods for wine authentication are presented and
various chemometric methods applied to address specific requirements in classification are
discussed. Finally, future trends and directions for wine authentication with spectroscopic
approaches have been identified.

2. Spectroscopic Techniques Applied in Wine Authentication

Wine authentication verifies that the label description is in compliance with the content
of the package through an analytical process [13], which can be carried out through targeted
or non-targeted methods. In targeted analyses, variations of a specific marker compound or
certain metabolites are considered for differentiation of samples, whereas in non-targeted
analyses, a chemical ‘fingerprint’ of the sample is obtained and similarities/differences
in fingerprint are used for classification with the aid of chemometrics [14]. Spectroscopic
techniques are frequently utilised for non-targeted wine fingerprinting.

In spectroscopic analysis, chemical and physical (structural) information within sam-
ples is exploited according to the interaction of atoms and molecules with electromagnetic
radiation (Figure 2), which related to the wavelength or frequency spectrum of either
absorbed or emitted energy [14]. For instance, ultraviolet-visible (UV–Vis) absorption
and fluorescence spectroscopy is based on changes that occur in electronic states. In an-
other way, infrared (IR) and Raman spectroscopic techniques are based on vibrational
variations in the molecules. Moving further along the electromagnetic spectrum to longer
wavelengths past the microwave region, NMR involves changes in rotational state, with
nuclear spin being affected within the radiofrequency range. Data obtained from these
methods typically needs to be analysed through multivariate techniques to obtain useful
information hidden in the spectra. For authentication purposes, data can then be further
classified using statistical approaches as outlined in Section 3. Firstly though, the main
spectroscopic techniques applied for wine classification (as identified from Figure 1) are
reviewed, which necessarily involves some mention of chemometrics.
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Figure 2. The electromagnetic spectrum and its relevance to different spectroscopic methods. FIR, far-infrared; MIR, mid-
infrared; NIR, near-infrared; Vis, visible; UV, ultraviolet. Techniques in this review that are applied for wine authentication
are indicated in light blue font. Conceptualised from [15].

2.1. UV–Vis Spectroscopy

UV–Vis spectroscopy is a fast, low-cost, and reliable analytical method that has been
used in the analysis of wine for many decades [16]. Spectra recorded at UV and visible
wavelengths (typically 190–800 nm, Figure 2) provide information about compounds in
wine containing a chromophore, such as hydroxybenzoic (280 nm) and hydroxycinnamic
(320 nm) acids, flavan-3-ols (280 nm), flavonols (370 nm), and anthocyanin glucosides
(520 nm) [17]. As summarised in Table 1, UV–Vis spectroscopy has been applied in
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wine discrimination according to the region of origin [18,19], grape variety and ageing
process [20,21]. Although the specific chemical markers are not necessarily identified,
as a non-targeted method combined with appropriate chemometric techniques such as
linear discriminant analysis (LDA) and partial least squares discriminant analysis (PLS-
DA), Azcarate et al. were able to correctly classify Argentinian Sauvignon blanc wine
samples with 100% accuracy according to their geographical origin [19]. In their study,
Philippidis et al. achieved 97.5% correct classification of grape variety and showed that
the latent variables resulting from orthogonal projections to latent structures-discriminant
analysis (OPLS-DA) could be related to the absorption of aromatic compounds such as
phenolic acids and flavonols [21]. In comparison to other spectroscopic methods, however,
UV–Vis spectroscopy provides a limited number of spectral features; therefore, it could be
used as a screening approach with more sophisticated techniques being implemented for
further analysis. In addition, the combination of other spectroscopic methods like IR and
fluorescence with UV–Vis spectroscopy can improve the accuracy of classification models
used for authentication by fusion of the datasets [22,23].

Table 1. Examples of UV–visible spectroscopy in combination with chemometrics for wine authentication.

Spectroscopic
Technique

Spectral
Range Parameters for Authentication Classification Method 1 Remark Reference

UV–Vis 200–800 nm Geographical origin (Spanish
denomination of origin) SVM

Correct
classification rates

above 96%
[18]

UV–Vis 200–500 nm Geographical origin of
Argentinian regions PCA, LDA, PLS-DA

Correct
classification with
LDA and PLS-DA
methods of 100%

[19]

UV–Vis 300–800 nm Discrimination by origin, grape
variety and ageing process PCA, SIMCA

Correct
classification of

90% for
geographical

origin, and 75% for
variety and ageing

process

[20]

UV–Vis 240–700 nm
Discrimination according to
grape variety, ageing process

and barrel/container type
OPLS-DA

Correct
classification of
97% for variety,
73% for ageing

process and 100%
for container type

[21]

1 SVM, support vector machine; PCA, principal component analysis; LDA, linear discriminant analysis; PLS-DA, partial least squares-
discriminant analysis; SIMCA, soft independent modelling of class analogy; OPLS-DA, orthogonal projections to latent structures
discriminant analysis.

2.2. IR Spectroscopy

IR spectroscopy has been used in wine analysis for several decades [24] and has
become the most frequently applied spectroscopic technique in comparison to other meth-
ods [25]. It is a user-friendly and rapid technique that provides information on many
components in a wine matrix, and can be used for determination of parameters such as
alcohol content, pH, volatile acidity, organic acids, reducing sugars, and polyphenols [26].
Two main IR-based techniques are applied according to the range in the spectral region:
near-infrared (NIR) from 14,000 to 4000 cm−1 and mid-infrared (MIR) from approximately
4000 to 400 cm−1 (Figure 2). NIR spectra contain less intense bands than MIR and it is
difficult to assign chemical groups specifically with NIR due to overlapping signals with
water and ethanol around 1950 nm. In MIR, there is a ‘fingerprint region’ (1500–400 cm−1)
that includes unique absorption patterns of compounds such as phenolics that are mainly
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applied for discrimination purposes, and signals associated with various functional groups
can be assigned, such as C=O related to organic acids at 1700 cm−1, and combinations of
C–H vibrations and overtones related to ethanol and sugars at around 2300–2100 cm−1 [27].
Applicability of IR methods to wine analysis increased with the introduction of techniques
such as Fourier transform (FT), which has improved data collection speed and reproducibil-
ity [28], and the application of attenuated total reflectance (ATR), which simplifies the
sample handling process and is advantageous in routine analysis [29]. Classification of
wine with IR has often been complemented by the use of UV and/or visible spectroscopy
to enhance the accuracy of the classification [30]. Table 2 includes some examples of the
application of IR spectroscopy (with or without UV–Vis) to wine authentication, along
with the spectral region and classification method used.

Table 2. Examples of IR spectroscopy in combination with chemometrics for wine authentication.

Spectroscopic
Technique Spectral Range Parameters for

Authentication
Classification

Method 1 Remark Reference

MIR 5012–926 cm−1
Discrimination of red and

white varieties from
Australian regions

PCA, LDA
Correct classification of
red varieties, 96% and
white varieties, 94%

[26]

UV–Vis, NIR
and MIR

400–2500 nm
(UV–Vis and

NIR) and
4000–400 cm−1

(MIR)

Geographical origin of
Sauvignon blanc wines

from Australia and
New Zealand

PCA, SIMCA,
PLS-DA

Correct classification
using PLS-DA with:

UV–Vis, 67%; NIR, 76%;
MIR, 90%; and combined

IR spectra, 93%

[23]

UV–Vis/NIR 190–2500 nm

Discrimination of white
wines (Albariño cultivar)

from Rías Baixas
subzones in Spain

PCA, LDA,
SIMCA, SVM

Correct classification
using: LDA, 86%; SIMCA,

56%; and SVM, 84%
[30]

NIR and MIR
1750–1000 cm−1

and
4555–4353 cm−1

Geographical origin of
Cabernet Sauvignon

wines from Australia,
Chile, and China

PCA, SIMCA,
DA

Correct classification
using: SIMCA, 97%, 97%,
and 92% for Australian,
Chilean, and Chinese

wines; and DA, 86%, 85%,
and 77%, respectively.

[31]

1 PCA, principal component analysis; LDA, linear discriminant analysis; SIMCA, soft independent modelling of class analogy; PLS-DA,
partial least squares-discriminant analysis; SVM, support vector machine.

In another study, Bevin et al. discriminated Australian red wine (Cabernet Sauvignon,
Shiraz and Merlot) and white wine (Chardonnay, Riesling, Sauvignon blanc and Viognier)
according to grape variety with 96% and 94% accuracy, respectively, using LDA with MIR
spectra [26]. Although subtle variation in wine composition contributed to these varietal
discriminations, MIR signals are highly sensitive to temperature and pH, which needs to be
considered in the application. For geographical authentication, Cozzolino et al. combined
NIR and MIR techniques for Sauvignon blanc wines from Australia and New Zealand,
achieving an overall 93% correct classification with PLS-DA, which was higher than for
the individual IR techniques or for UV–Vis [23]. Similarly, the feasibility of differentiating
subzones within a denomination of origin (DO) has been evaluated by Martelo-Vidal et al.,
who achieved their highest overall correct classification of 86% with LDA in comparison to
soft independent modelling of class analogy (SIMCA, 56%) and support vector machine
(SVM, 84%) for combined UV–Vis and NIR spectra [30]. Hu et al. applied MIR and NIR
to classify Cabernet Sauvignon wines with SIMCA and correctly classified Australian,
Chilean, and Chinese wines with 97%, 97%, and 92% accuracy, respectively [31]. Although
these works yielded an accuracy of > 90% for classification, IR spectroscopy has limitations
in quantitative analysis when measuring low abundance components (<0.5 g L−1) [32].
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2.3. Raman Spectroscopy

In comparison to other spectroscopic techniques, Raman spectroscopy has not been
exploited much for wine analysis until recently [33]. This spectroscopic method involves
detecting the inelastic scattered light emitted from molecular vibrations of a sample, ap-
proximately in the range 200–3600 nm (Figure 2). The Raman effect produces a weak signal,
but the development of optimised detection capability provides the opportunity to obtain
rich information regarding the chemical composition and dynamics of the sample [34].
There are two different regions in Raman spectroscopy, with Stokes Raman scattering
having more dominant ethanol, sucrose and water peaks, and anti-Stokes Raman scattering
from minor components such as aromatic compounds, including various phenolics, which
can be more applicable to wine discrimination [35]. Indeed, for analysis of water dominant
samples such as wine, Raman spectroscopy has an advantage over IR techniques because
of the relatively weak signals from water molecules in the vibrational fingerprint range [36].
Two types of Raman technique are applied in food analysis: FT-Raman spectroscopy and
surface-enhanced Raman spectroscopy (SERS). Both of these methods have been developed
for the purpose of wine authentication, as shown in Table 3.

Table 3. Examples of Raman spectroscopy in combination with chemometrics for wine authentication.

Spectroscopic
Technique Spectral Region Parameters for

Authentication
Classification

Method 1 Remark Reference

FT-Raman

1700–0 cm−1

(Stokes),
−1000–0 cm−1

(anti-Stokes) (laser
emitting at 1064 nm)

Discrimination of
wines geographically,

varietally, and
by vintage

LDA

Correct classification of:
variety, 84%; geographical

origin, 100%; and
vintage, 95%

[37]

SERS 3350–200 cm−1 (laser
emitting at 532 nm)

Discrimination of
wines geographically

(Romanian and
French and different
Romanian regions),

varietally, and
by vintage

LDA

Correct classification of:
variety, 90%; geographical

origin, 83% among Romanian
wines and 100% between

countries; and vintage, 90%

[35]

SERS 1600–450 cm−1 (laser
emitting at 785 nm)

Discrimination of
wines according to

variety and producer
PCA, SIMCA

Correct classification of:
variety, 87%; and

producer, 93%
[38]

1 LDA, linear discriminant analysis; PCA, principal component analysis; SIMCA, soft independent modelling of class analogy.

The effectiveness of FT-Raman was shown in the work of Magdas et al., who dis-
criminated white wine according to variety (Sauvignon, Riesling, Chardonnay, Pinot Gris),
geographical origin (Romania and France), and vintage using LDA, achieving overall
correct classification of 84%, 100%, and 95%, respectively [34,37]. In another study, Magdas
and colleagues applied SERS to discriminate among white wines and compared it with
FT-Raman, identifying a few common marker compounds between the techniques, such
as ferulic and sinapic acids that resulted in differences among the wines. SERS was able
to enhance the signals of more minor compounds such as caffeic acid, p-coumaric acid
and resveratrol [35]. Applying the same SERS approach, Zanuttin et al. discriminated
wines according to variety and producer with SIMCA, deriving an overall correct classi-
fication of 87%. Moreover, they identified major metabolites such as purines, carboxylic
acids and glutathione that can be assigned to specific bands responsible for discrimina-
tion of wine [38]. The advantage of SERS over FT-Raman is the selectivity afforded by
specific molecules being adsorbed to metal nanostructures (mainly noble metals), which
enhances the intensity of Raman signals in SERS [39]. Complexity arises with the sam-
ple preparation step, however, as it is necessary to prepare a colloidal dispersion of Ag
nanoparticles to add to the sample, which can be a disadvantage. Raman spectroscopy
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requires spectral pre-processing such as multiplicative scatter correction (discussed in
Section 3) to avoid the effect of fluorescence that can obscure Raman scattering, especially
when analysing wine [40].

2.4. Fluorescence Spectroscopy

Fluorescence spectroscopy has been deemed as a useful tool in wine authentication
for some time and its application has been enhanced recently with improvements in the
chemometric analysis [41]. Because of the high sensitivity, selectivity, and rapidity of the
technique, fluorescence spectroscopy has an advantage as an analytical platform [42]. It
is based on the emission of longer wavelength light from a substance after absorption of
energy in the UV or visible range (as with UV–Vis spectroscopy, Figure 2). Fluorescence
typically occurs for aromatic molecules and can be well applied to wine analysis, with com-
mon fluorophores being a variety of phenolic compounds, vitamins, and aromatic amino
acids [43]. According to the fluorophoric molecular and macromolecular constituents in
the sample, a three-dimensional excitation-emission matrix (EEM) recorded over multiple
excitation and emission wavelengths can be obtained and considered as the ‘molecular
fingerprint’ of the sample [44]. Therefore, this approach in combination with chemometrics
can be utilised for authentication of wine. When undertaking spectrofluorometric analysis,
it is important to apply corrections for Rayleigh masking, Raman scattering, and inner filter
effects (IFE), as well as to maintain proper pH and temperature to avoid the consequence
of quenching, which can affect the fluorescence intensity. Several types of fluorescence
methods can be applied to wine analysis according to the manner of obtaining the spectrum
(i.e., total luminescence spectroscopy yielding an EEM or synchronous fluorescence spec-
troscopy) and by the geometry of sample illumination (i.e., right-angle for diluted samples
or front-face for bulk liquids or solids) [45]. Fluorescence spectroscopy has been applied in
several studies recently, in combination with chemometric techniques, for discrimination
of wine according to geographical origin or variety (Table 4).

Table 4. Examples of fluorescence spectroscopy in combination with chemometrics for wine authentication.

Spectroscopic
Technique Spectral Region Parameters for

Authentication
Classification

Method 1 Remark Reference

Synchronous
fluorescence
spectroscopy

λex = 250–350 nm and
λem = 250–500 nm

Discrimination of white
wines according to

variety in
Tokaj (Slovakia)

PCA, LDA Correct classification of
variety, 100% [46]

Total
fluorescence
spectroscopy

EEM
λex =240–800 nm and

λem 242–824 nm

Discrimination of
Cabernet Sauvignon

wines from Australia and
Bordeaux, France

SVMDA
XGBDA

Correct classification of
geographical origin using:

XGBDA, 100%; and
SVMDA, 85%

[11]

Total
fluorescence
spectroscopy

EEM
λex = 250–500 nm and

λem 275–600 nm

Discrimination of white
wine from Romania and
France for geographical

origin and variety

PARAFAC,
SIMCA

Correct classification of:
variety, 97%; and

geographical origin, 98%
[47]

Total
fluorescence
spectroscopy

EEM
λex =240–700 nm and

λem 242–824 nm

Discrimination of red
wine varieties from
different Australian

regions for variety and
geographical origin

XGBDA
Correct classification of:

variety, 100%; and
geographical origin, 99.7%

[48]

1 PCA, principal component analysis; LDA, linear discriminant analysis; SVMDA, support vector machine discriminant analysis; XGBDA,
extreme gradient boosting discriminant analysis; PARAFAC, parallel factor analysis; SIMCA, soft independent modelling of class analogy.

Sádecká and Jakubíková applied synchronous fluorescence spectroscopy to discrimi-
nate white wine according to variety (Furmint, Lipovina, and Muscat blanc) using LDA,
achieving an overall rate of 100% correct classification in validation and 93% for predic-
tion [46]. Using total luminescence spectroscopy for authentication, Suciu et al. classified
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white wine according to geographical origin (Romania and France) and variety (Chardon-
nay, Pinot Gris, Riesling and Sauvignon), obtaining correct classification rates of 98% and
97.1%, respectively, by applying parallel factor analysis (PARAFAC) and SIMCA algo-
rithms [47]. Based on an absorbance-transmission and fluorescence excitation-emission
matrix (A-TEEM) approach that also uses right-angle geometry with total fluorescence
spectroscopy, Ranaweera et al. classified Cabernet Sauvignon wines according to geograph-
ical origin with 100% accuracy using EEM data and a machine learning algorithm known as
extreme gradient boosting discriminant analysis (XGBDA) [11]. This was contrasted with
SVM as an alternative machine learning technique, which gave 85% correct classification
according to region. In a subsequent study, those authors used A-TEEM in conjunction
with XGBDA to classify over 200 commercially produced but unreleased Australian red
wines by origin and variety with 99.7% and 100% accuracy, respectively [48]. This method
involved multi-block data analysis of EEM and absorbance datasets, as well as PARAFAC
to extract components according to the major fluorophores differentiating the wines.

2.5. NMR Spectroscopy

Among the most mature forms of spectroscopy for food and beverage classification,
NMR has been applied to wine authentication for decades. Initially, site-specific natural
isotopic fractionation NMR (SNIF-NMR) spectroscopy was proposed as a tool for detecting
the biochemical origin of ethanol according to the natural distribution of deuterium [49],
which can reveal the unauthorised use of chaptalisation (sugar addition) in winemaking,
for example [50]. NMR spectroscopy can be applied for qualitative analysis to determine
molecular structures and for compositional profiling of a sample [51], as well as for quan-
titative analysis of analytes such as amino acids, alcohols, sugars, carboxylic acids and
their derivatives, and phenolic compounds [50]. NMR can be based on acquisition of 1H,
2H, or 13C spectra; for wine authentication, 1H NMR spectroscopy is most advantageous
as data acquisition is fast and highly reproducible compared to other techniques [33].
Moreover, NMR with advancements such as automation of analysis has been introduced
commercially and adapted to wine authentication (e.g., Bruker’s WineScreenerTM) [50].
Using the possibilities of NMR spectroscopy, different aspects of wine authenticity have
been addressed (Table 5).

Table 5. Examples of NMR spectroscopy in combination with chemometrics for wine authentication.

Spectroscopic
Technique Spectral Range Parameters for

Authentication
Classification

Method 1 Remark Reference

1H NMR 0.5–9.5 ppm

Discrimination of wines
geographically (German

wine regions), varietally, and
by vintage

PCA, LDA,
NCM

Correct classification of:
variety, 95%;

geographical origin, 89%;
and vintage, 96–97%

[52]

1H NMR 0.8–9.7 ppm
Varietal differentiation of red
and white wines produced in

different regions in China
PCA, LDA

Correct classification of:
red wines, 83%; and

white wines, 94%
[53]

1H NMR 0.0–10.0 ppm
Varietal differentiation of red
and white wines produced in

Czech Republic
PCA, RF

Correct classification of:
most varieties, ~70%;

and type of wine, 92%
[54]

1 PCA, principal component analysis; LDA, linear discriminant analysis; NCM, nearest class mean; RF, random forest.

Using the entire 1H NMR spectrum as a fingerprint in conjunction with LDA, Godel-
mann et al. classified German wines from five regions according to geography, variety
and vintage with overall correct classifications of 89% (geographical), 95% (varietal), and
96–97% (vintage) [52]. 1H NMR metabolomic data has also been applied for quantifica-
tion of a range of metabolites including sugars, amino acids, organic acids, alcohols, and
phenolic compounds, which were used for wine discrimination as a function of terroir
(encompassing biophysical and cultural factors of the production region) and cultivar [55].



Molecules 2021, 26, 4334 9 of 15

Moreover, Alexandra et al. explored the possibility of combining untargeted 1H NMR
analysis with targeted peptide based sensing arrays to classify Pinot noir wines on the basis
of characteristic metabolic signatures associated with variations in terroir [56]. Other recent
studies have also used 1H NMR as a nontargeted method for authentication. Fan et al.
subjected 99 red and 71 white wines from China to NMR analysis, subsequently using
segment-wise peak alignment followed by PCA and LDA for separating red and white
wine samples as well as different varieties [53]. Similarly, Mascellani et al. used NMR to
classify over 900 Czech wines according to type (based on colour and residual sweetness)
and variety using a random forest (RF) machine learning algorithm [54]. Correct classifi-
cation according to wine type was 92% or more for white wine styles (dry and medium
dry, medium, sweet) and > 99% for dry red, but the chosen model was unable to provide
correct classification for all varieties, with some varieties such as Sauvignon blanc, Pinot
Gris, Pinot blanc, and Pálava being below 50% accuracy. Overall, NMR is shown to be an
effective technique for authentication with rapid determination of range of metabolites,
even if it has become the most expensive spectroscopic approach [33].

In the selection of techniques, it is important to consider the various merits and
characteristics of the approaches and to evaluate these according to the question to be
addressed. Thus, despite the potential challenges, each of the reviewed methods prevail
due to their usability in wine authentication. A summary of the techniques including
perceived advantages and disadvantages is presented in Table 6.

Table 6. Summary of spectroscopic techniques applied to wine authentication [33,57].

Technique Chemical Marker Advantages Disadvantages

UV–Vis
Hydroxybenzoic acids,

hydroxycinnamic acids, flavan-3-ols,
flavonols, and anthocyanin glucosides

Simple analysis, low cost,
small volume

Difficulty in identifying
specific analytes

IR Organic acids, alcohols, reducing
sugars, and polyphenols

Rapid, simple, qualitative and
quantitative analysis

Sensitive to pH and temperature,
high interference of water (NIR)

Raman Organic acids, alcohols,
sugars, phenolics

Rapid, small volume, low
impact of water

Weak signals, extensive
pre-processing requirements

Fluorescence Phenolics, pigments, vitamins,
amino acids

Rapid, sensitive and selective,
qualitative and

quantitative analysis

Extensive pre-processing
requirements, quenching effect

NMR Phenolics, alcohols, organic acids,
amino acids, sugars

Rapid, selective, repeatable and
reproducible

Costly equipment, experienced
analyst required

3. Application of Chemometrics for Modelling with Spectroscopic Data

Spectroscopic methods rapidly produce an abundance of variables (peak intensities
and wavelengths) that need to be dealt with. Therefore, to analyse these high dimensional
sets of ‘big data’, integration with appropriate multivariate statistical analysis methods
(i.e., chemometrics) is essential for pattern recognition or modelling (see Figure 3 for an
overall approach).

As an exploratory technique that reveals underlying patterns in the data, principal
component analysis (PCA) is the most widely applied unsupervised method [33]. It ex-
plores the relationship between individual observations and reveals the trends, or groups
within the multivariate space [58]. PCA is also applied as a dimension reduction technique
that explains the variance of the data matrix in terms of principal components, those being a
small number of non-dependent factors containing important information from the original
set [59]. Other than differentiating among samples and potentially revealing clustering
according to region of origin, for example, data compression with PCA can also be useful
prior to other statistical treatments [58]. Notably, PCA is used for two-way array data. With
three-way data such as EEMs arising from total fluorescence spectroscopy, PARAFAC can
be used instead to decompose and extract the information into different components that
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describe the variability of the EEM data more specifically [47]. These aspects are revealed
in Figure 3 as early steps in the overall data analysis process.
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For classification purposes, supervised statistical approaches such as discriminant
analysis methods are widely applied in authentication of wine (Figure 3). Among spec-
troscopic studies, PLS-DA and LDA methods have mainly been considered. With LDA
(or canonical variate analysis), linear combinations of the original variables (i.e., canonical
variates) are estimated that provide maximum separation between classes (groups) while
minimising the variance within each class. However, for LDA, the number of training
samples needs to be larger than the number of variables, so variable selection by PCA needs
to occur with spectroscopic analysis prior to classification with LDA [60]. On the other
hand, PLS-DA uses regression to estimate the class of a sample from the variables obtained
from a spectral technique, whereby the entire data matrix is regressed on a binary-coded
response array and samples are classified according to their predicted values. In their
study, Geană et al. showed that LDA works well for classification according to variety with
UV–Vis data and PLS-DA improved the classification with FT-IR data [27]. The disadvan-
tage of PLS-DA is that a sample can remain unclassified if it does not belong to any of the
pre-defined classes [61].

Another commonly applied supervised technique for classifying wine involves class
modelling (Figure 3), and specifically SIMCA, in which similarities among samples belong-
ing to the same class are captured. As explained by Suciu et al., SIMCA is built around PCA
and is sensitive enough to identify false outliers to improve the robustness of the model [47].
The advantage of SIMCA over discriminant analyses is that it defines the acceptance area
around the target class, which enables delimiting of the target objects from any other objects
and classes, and allows assignment of a new sample if it locates in the assigned area of
the class [61]. However, due to overlapping of regions, some samples might be classified
in one or more classes, and as Rodionova et al. concluded, all classification tasks require
the use of an appropriate chemometric approach [61]. That will include the application
of new methods, and indeed in more recent years the development of machine learning
techniques has shown great potential as they offer advantages in classification compared
to conventional methods.

Machine learning started gaining attention in food analysis due to the possibility of
performing both linear and non-linear classifications [33]. Among the approaches (Figure 3),
SVM has been explored more for wine authentication [62], in conjunction with UV–Vis
(Table 1) and NIR (Table 2). SVM is an effective machine learning technique suitable for
both classification and regression analysis. It is based on a kernel extension of a binary
linear classifier that classifies samples in a hyperplane built according to the features [63].
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When a sample set is not balanced over the classes, however, the classification accuracy
from SVM may be affected. An alternative machine learning technique involves a decision
tree (DT) approach, of which there are several variations, with the most well-known being
classification and regression tree (CART). DT methods divide the samples into classes
based on the value of certain variables and can be boosted (iterative model) or bagged
(independent models including RF), whereby the DT modelling is repeated on random
subsets of samples combined into ensembles [64]. Such methods show higher accuracy
in classification, are unaffected by outliers or non-linear relationships, and can suitably
address class imbalance problems [64]. XGBDA is one such algorithm based on a boosted
DT that has recently been applied for the first time (Table 3) to geographical and varietal
authentication of red wine using fluorescence spectroscopy [11,48]. Another method for
non-linear classification is nearest class mean (NCM), which has rarely been applied in
spectroscopic analysis of wine. After dimension reduction of data (from NMR for example,
Table 5) with PCA followed by LDA to maximise class separation, NCM can then be
used to assign wines to a class with the minimum distance between the respective model
class mean and the test-set object [52]. Artificial neural network (ANN) is another option
that performs well in classifying samples with non-linear behaviour [65] and has shown
acceptable results in variety classification of grapes using FTIR [66]. Although ANN (and
CART) has been applied to classification of wine based on anthocyanins [67] or volatiles [68]
using chromatographic techniques, there did not appear to be any examples involving
spectroscopic data.

Steps of Chemometric Analysis

It is important to appreciate the key stages in any chemometric approach that need to
be followed to complete the process (Figure 3).

Apart from the modelling aspects mentioned in the preceding paragraphs, applying
a proper spectral pre-processing method depends on the nature of the data set. Noise
reduction and baseline offset are common for all spectroscopic techniques and mainly
involve smoothing using techniques like the Savitzky-Golay algorithm [69]. For vibrational
spectroscopic data, multiplicative scatter correction and standard normal variate methods
are utilised for applying corrections to the spectra by comparing signal intensities to a
reference signal. Instead for EEM data, correction of Rayleigh masking, Raman scattering,
and IFE corrections need to be used. Other than the analytical artefacts, issues can arise
with sample variations. For these, it is important to apply pre-processing methods such
as normalisation to remove differences due to dilution and for equalising the integral of
peaks of the spectra. Different scaling methods, such as autoscaling, and transformations
like mean centring are useful in identifying the important variables among others [69].

Data fusion is another practice that can be carried out to enhance the classification
of products and predict their properties. After data pre-processing, data fusion (usually
involving variables from complementary techniques) can be carried out in different ways.
As a relatively simple approach, low-level data fusion (Figure 3) uses measurements
directly from different techniques. In contrast, mid-level fusion uses features obtained from
the data sources such as PCA scores, which is important when data is diverse in size or
scale. In high-level fusion, the results of the different individual models of the data are
combined and applied to the classification problem [65].

Another essential aspect of the chemometric application is model validation (Figure 3).
After implementation, a classification model’s validity has to be verified with a validation
sample set, to avoid overfitting of the model and to assess its accuracy. It can be categorised
as internal validation when separated into calibration and validation sets, and external val-
idation when independent test sets are used. Cross-validation (CV) is the most commonly
applied validation method, consisting of different techniques such as leave-one-out CV,
multi-fold (k-fold)/Venetian blinds CV, contiguous blocks, and random subsets. There can
also be split validation, where the whole data set is divided according to different methods
such as random, duplex or Kennard-Stone, [64]. In selecting a suitable validation method,
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it is important to consider the number of samples in the set, otherwise validation can lead
to inaccurate results in prediction of new samples. For example, if the sample set is not
large enough, CV methods would be more suitable over split analysis [70]. Furthermore
when considering the sample size, classification methods have been identified as being less
susceptible to sample size variation, such as the RF technique [71]. However, it is difficult
to suggest which combination of classification/validation approaches would always give
significantly better results than any other [72].

Whichever methods are chosen, performance indicators are important parameters to
consider in the model validation process. In authentication applications, misclassification
and correct classification rates, expressed as a percentage of all samples in a class or an
overall average, are most commonly applied to evaluate the model performance in the
studies reviewed in this paper. Other than these measures of accuracy, sensitivity and
specificity can also be evaluated as performance indicators [48]. Measures of performance
specifically for multivariate regression models include coefficient of determination, which
represents the goodness of fit of the model based on the training set, and the root mean
square errors of calibration and prediction (RMSEC and RMSEP), which are used to
understand the predictive capability of the models [64].

4. Future Trends and Directions

Given the international nature of the modern wine trade, reliable methods for as-
sessment of wine authenticity are required to guarantee customer satisfaction of product
quality. Potential approaches need to satisfy a number of criteria, foremost of which is
having sensitivity to accurately classify non-authentic wines with a high degree of certainty
without misclassifying authentic wines as fraudulent. Ideally, a suitable method also needs
to be rapid and easily applied, even in a supply chain setting. Therefore, spectroscopic
techniques are destined to play a major role due to meeting criteria such as being rapid,
user-friendly, and cost-effective.

Among the range of current spectral tools, there have been a number of breakthroughs
in the application of spectroscopy for wine analysis. One exciting development is the
ability to undertake non-destructive wine measurements through-bottle using various
spectroscopic techniques (NIR-Vis, Raman, NMR) which has been successful to a certain
extent in identifying oxidation and illegal or hazardous contaminants [73]. Nevertheless,
improvements in available techniques or development of new ones to identify chemical
markers for geographical, varietal, or vintage authentication is ongoing. NMR provides
a powerful platform but is not readily deployable in the production or supply chains, in
contrast to things like NIR and UV–Vis. Most recently, great promise has been shown with
fluorescence spectroscopy with XGBDA modelling, and indeed, the application of powerful
chemometric methods such as machine learning algorithms along with spectroscopic data
could be exploited further. Improving the user-friendliness of the statistical techniques is
important, however, as that will permit non-specialists to apply them within industry. This
could conceivably be solved with the development of cloud-based processing and database
management, which could also provide accessibility for authorities for the construction
of a robust authenticity database containing rigorous details. Ultimately, integration
of innovative technology and modelling approaches will add a new dimension to wine
authentication and improve the functionality of the current processes. Importantly, this will
give consumers added confidence that the wines they purchase and consume are authentic.
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69. Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M.C. Breaking with trends in pre-
processing? TrAC Trends Anal. Chem. 2013, 50, 96–106. [CrossRef]

70. Callao, M.P.; Ruisanchez, I. An overview of multivariate qualitative methods for food fraud detection. Food Control. 2018, 86,
283–293. [CrossRef]

71. Moghaddam, D.D.; Rahmati, O.; Panahi, M.; Tiefenbacher, J.; Darabi, H.; Haghizadeh, A.; Haghighi, A.T.; Nalivan, O.A.; Tien
Bui, D. The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock
aquifers. CATENA 2020, 187, 104421. [CrossRef]

72. Xu, Y.; Goodacre, R. On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic
sampling for estimating the generalization performance of supervised learning. J. Anal. Test. 2018, 2, 249–262. [CrossRef]

73. Augustine, M.P.; Harley, S.J.; Lim, V.; Stucky, P. An Authentication Device for Full Intact Wine Bottles. U.S. Patent 9,488,599,
8 November 2016.

http://doi.org/10.1021/jf00116a032
http://doi.org/10.1111/1541-4337.12700
http://www.ncbi.nlm.nih.gov/pubmed/33506593
http://doi.org/10.3390/foods10010120
http://doi.org/10.1021/jf400800d
http://doi.org/10.1016/j.foodcont.2017.11.002
http://doi.org/10.1016/j.foodchem.2020.127852
http://www.ncbi.nlm.nih.gov/pubmed/32889133
http://doi.org/10.1007/s12161-018-1310-2
http://doi.org/10.1016/j.foodchem.2021.129531
http://doi.org/10.1021/acsfoodscitech.1c00128
http://doi.org/10.1016/j.chemolab.2021.104304
http://doi.org/10.1007/s12161-019-01605-5
http://doi.org/10.1016/j.foodres.2013.02.014
http://doi.org/10.1016/j.trac.2016.01.010
http://doi.org/10.1016/j.foodchem.2017.02.118
http://doi.org/10.1080/10408340600969486
http://doi.org/10.1016/j.foodres.2019.03.063
http://doi.org/10.1016/j.aca.2015.04.042
http://doi.org/10.1016/j.compag.2019.104922
http://doi.org/10.1016/j.foodcont.2021.107979
http://doi.org/10.1016/j.foodchem.2008.06.047
http://doi.org/10.1016/j.trac.2013.04.015
http://doi.org/10.1016/j.foodcont.2017.11.034
http://doi.org/10.1016/j.catena.2019.104421
http://doi.org/10.1007/s41664-018-0068-2

	Introduction 
	Spectroscopic Techniques Applied in Wine Authentication 
	UV–Vis Spectroscopy 
	IR Spectroscopy 
	Raman Spectroscopy 
	Fluorescence Spectroscopy 
	NMR Spectroscopy 

	Application of Chemometrics for Modelling with Spectroscopic Data 
	Future Trends and Directions 
	References

