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Abstract

Connecting Machine Learning to Causal Structure Learning with the
Jacobian Matrix

by Xiongren Chen

In this thesis, a novel approach is proposed to connect machine learning to causal
structure learning with the Jacobian matrix of neural networks w.r.t. input variables.
Causal learning distinguishing causes and effects is the way human understanding and
modeling the world. In the machine learning era, it also ensures that the model is
more interpretable and sufficiently robust. Due to the enormous cost of the traditional
intervention and randomized experimental methods, studies of causal learning have
focused on passive observational data which can generally be divided into static data
and time-series data. For different data types and different levels of causal modeling,
different machine learning techniques are applied to do causal modeling and the causal
structure can be read out by the Jacobian matrix. We focus on three aspects in this
thesis. Firstly, a novel framework of neural networks to causal structure learning on
static data under structural causal models assumptions is proposed and the results
of various experiments show our method has achieved state-of-the-art performance.
Secondly, we extend static data causal modeling to the highest level as the physical
system which is usually in terms of ordinary differential equations. Lastly, our Jacobian-
based causal modeling framework is applied to time series data with the ORE-RNN
technique and the results show that the success of temporal causal structure learning
in time series cases.
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Chapter 1

Introduction

In this chapter, we briefly introduce the motivation and contributions of this research
and give the organization of this thesis at the end of this chapter.

1.1 Motivation of Research

Machine learning has achieved great success in CV, NLP and other fields, especially
in the accuracy of prediction and some may have exceeded the human capabilities
[1]. However, it is difficult for these models to answer questions about causes and
effects. In financial markets, for example, what is at work in the current U.S. stock
booming during the pandemic of Covid-19? Is it a quantitative easing policy by
the Federal Reserve? So where do the markets go if the Fed doesn’t implement
monetary easing? In terms of time, how long will the impact of this policy be, a year
or a month? Most machine learning algorithms including deep learning are based
on correlation, which is encoded and learned to improve accuracy in prediction [2].
However, correlation only shows that there is a relationship between the variables and
does not give information about the dependencies in directions. For example, two
variables may have a common causal variable, then the two variables are correlated
but do not have a causal dependency. Such non-causal relationship models are less
explainable and weak robust. When the value of variables interference by other factors
outside of the environment, such as human intervention, the model will not get the
expected results and the model will break down. Most scientific research requires
learning causality rather than correlation between variables. The natural sciences, for
example, we need to know the direct causes of global warming, the interactions of cells
and viruses, and the effects of policy on climate change. While in finance, we need to
know the direct effects of policy on markets. Causality ensures that the model is more
interpretable and sufficiently robust. At the same time, a sufficiently robust model
based on causality can also answer and solve the problem of external intervention.
Since most of the data in machine learning algorithms learned comes from a closed
environment, if the closed environment is cracked and the variation in the variables is
likely to be due to external interventions, the predictive models encoding correlations
between variables in the closed environment data will collapse. Causal models can
predict the effect of an externally intervening variable on other variables because they
understand the mechanism by which the variable takes its value (usually represented
by the Structure Causal Models [3]).

Probability theory(please see the detail at Section 3.2.1) allows us to learn from
data to get the probability space(probabilistic learning), through which we know
the possible distributions of the data, and the distribution obtained by learning can nat-
urally give us the probability of different results of the next experiment(probabilistic
reasoning). Causality, with the structure of directed edges between variables, not only
allows us to predict the results of the next experiment but also can make inferences
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about interventions, counterfactuals(causal reasoning). And the leaning process of
the causal structure from random experiments and observed data is causal structure
learning.

Figure 1.1. Adapted from the paper [3]. We will focus on causal
structure learning in this thesis.

Reichenbach’s common cause principle gives a clear explanation of the connection
between statistical and causality [3]: if two random variables X and Y are statistically
dependent, then there exists a third variable Z that affects both X and Y . In other
words, Z screensX and Y from each other in the sense of thatX and Y are independent
of each other given Z. In the form of a graph, there are three nodes X, Y , and Z
and two arrows pointing from Z to X and Z to Y . Z may coincide with either X or
Y , then there are only two points X and Y and one arrow in the graph. If Z and X
coincide, then the arrow points from X to Y . If Z and Y coincide, then the arrow
points from Y to X. For example, we have two random variables A={rain, no rain}
and B={floor wet, floor not wet}, the corresponding causality is that A causes B, and
B cannot cause A. If we show causal relationships in the form of a graph, the nodes
are A and B and the direction of the arrow is from A to B.

X

Y Z

(a) Z affects both X and Y

X Y

(b) Z coincides with X and X
causes Y

X Y

(c) Z coincides with Y and Y
causes X

Figure 1.2. Reichenbach’s common cause principle gives a clear
explanation of three random variables X, Y and Z. [3]
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The causal structure can be obtained by the intervention that changes the values
of variables and sees their impacts on other variables in experiments or by randomized
experiments. However, due to the limitations of the experimental setting, we can not
do human interventions or the cost of the interventions is huge. For example, we cannot
allow patients to use drugs that have not been clinically validated, which is illegal and
unethical. We also can’t arbitrarily change financial policy to see how it affects the
market, because the costs of doing so are enormous. So most experiments can only get
passive observations and we just learn causal relationships between variables relying
on observed data. There are numerous non-machine learning methods and machine
learning methods are proposed to learn causal structures on observed data. However,
non-machine learning methods rely heavily on conditional independent tests and they
are inefficient as the number of variables grows. For machine learning methods, the
connection between causality and machine learning is unclear so that only simple
Multiple Layer Perception(MLP) architecture can be used to handle it. In this thesis,
we try to connect machine learning to causal structure learning with the Jacobian
matrix of output Y w.r.t input X to link the two clear and use advanced machine
learning techniques to do causal modeling.

1.2 List of Common Symbols

The common symbols are listed in Table 1.1.

Symbol Description

X,Y, Z random variables; N for the noise variable
x value of a random variable
PX probability distribution of variable X
P (x) probability density of variable X
G graph
E(X) expectation of X
πGj the set of parents of node j in G
xπG

j
the vector containing the variables corresponding to the parents of j in G

f function
P (A | B) the probability of event A given event B

Table 1.1. List of the common symbols

1.3 Contributions

As more information becomes available, there are generally 4 levels of causal modeling
which are summarized in the table and we will present these 4 levels in more detail
in Section 3.2. Observed data can generally be divided into two categories: static
data that is non-time sequence and time-series data. For different data types and for
different levels of causal modeling, we use different machine learning methods to do
causal modeling, which is summarized in the Table 1.3.

The main contributions of this thesis are summarized as follows:

• A novel approach to bridging causal structure learning and machine learning is
proposed for both static and time-series data, which is effective and computation-
ally easy to apply to complex deep learning techniques and opens the possibility
of designing better frameworks for causal learning in the future.
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Model
Predict
in i.i.d.
setting

Predict under
changing distr.
or intervention

Answer
counterfactual

questions

Obtain
physical
insight

Learn
from
data

Physical System yes yes yes yes ?
Structural causal model yes yes yes ? ?
Causal graphical model yes yes no ? ?
Statistical yes no no no yes

Table 1.2. Adapted from paper [2]: a summarization of different level
of Causal Modeling.

Data Type
Level

of Causal
modeling

Machine learning
techniques
we used

Chapter Contributions

Static data Structural causal model MAF [34] 3 2.1
Static data Physical System Neural ODE [51] 4 3.1
Time Series Physical System ODE-RNN [51] 5 4.1

Table 1.3. Thesis Overview(Main Body)

• Each Chapter’s contributions can be viewed at the end of each Chapter’s Intro-
duction Section and we summarized references in the Table 1.3.

1.4 Organization

The rest of this thesis is organized as follows:

• In Chapter 2, a novel framework of neural networks to causal structure learning
on non-sequence(static) data under structural causal models assumptions is
proposed and the results of various experiments show our method has achieved
state-of-art performance;

• In Chapter 3, we extend non-sequence data causal modeling to "the most detailed
model" [2] as the physical system which is usually in terms of ordinary differential
equations;

• In Chapter 4, our Jacobian-based causal modeling framework is applied to time
series data which widely exists in our world.

• In Chapter 5, we summarize the thesis and point the directions in the possible
future works.
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Chapter 2

Causal Structure Learning for
Static Data

2.1 Introduction

How to find meaningful relationships, especially causal relationships, from massive
amounts of non-sequence observed data is one of the research areas most likely to
create business value and make scientific discoveries in data science, and it is receiving
widespread attention from international peers. Causality strictly distinguishes between
the cause and effect variables and has an important role that cannot be replaced by
the relationship in revealing the mechanism of things and guiding the intervention
behavior.

Causal learning has been widely studied in many applications. For example, [27]
applied causal structure into the operational risk model to learn which human factor
attributing to the operational risk in finance, while in the medical field, [28] learned the
causal structure of clinical conditions and outcomes from static observation data, and
the causal network of protein interaction published in Science [29] has been commonly
accepted by researchers in this field. There are also studies of causal inference in
epidemiology [30], education [31], and environmental health [32].

In general, performing random experiments is an effective method for obtaining
causal relationships [4], but random experimentation is mostly impossible to intervene
or the cost of interventions is enormous. Thus, the existing methods of causal learning
are mostly based on observational data. In particular, the recent NOTEARS [22]
reformulates the combinatorial optimization problem into a continuous problem with
acyclicity constraint, which significantly reduces the size of the search space and
enables efficient learning of linear structural equation models. Following this line,
many methods extend NOTEARS to learn nonlinear causal models by leveraging
neural networks. DAG-GNN [23] extends NOTEAR’s continuous linear causal model
to a non-linear model with VAE and Graph Convolutional Networks (GNN [83]).
However, DAG-GNN use an adjacency matrix and neural networks to represent the
function fj but only use the weighted adjacency matrix as causal structure, which
makes the method biased. To solve this issue, gradient-based methods, e.g., GraN-
DAG [24], determine the causal relationship between two variables through neural
network connectivity. However, neither DAG-GNN nor GradN-DAG are suitable
for counterfactual inference. Can we have a model that can do causal discovery,
interventional effect estimation, and counterfactual reasoning? Causal autoregressive
flows (CAREFL) [85] provides a promising way for counterfactual reasoning by using
normalizing flows model to reconstruct the structural causal models. However, due to
the use of fixed causal order as input, the search space of graphs grows exponentially
with increasing size of the input variables, which is not suitable for multivariate causal
discovery.
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In this chapter, we propose a Jacobian matrix scored-based method called Causal
Normalizing Flows (CNF) with the assumption of Additive Noise Models (ANMs)
[20] to learn causal dependencies among the input variables. We use the Jacobian
matrix of fitted functions w.r.t. input variables as causal relationships and a reverse-
order flow which is effective to fit the structural causal models. Our method also
extends NOTEARS [22] that enforces the important acyclicity constraint on the
continuous adjacency matrix of graph nodes and significantly reduces the computational
complexity of the search space of graphs. Furthermore, the flow-based model can do
transformations between input variables and noise, so our model naturally supports
counterfactual reasoning and interventions.

In summary, this work makes the following five main contributions.

• To the best of our knowledge, we are the first to propose a single flow model
that is able to represent all possible causal orderings without enumerating nor
even sampling from the huge factorial permutation space. This is based on
our key observation: for an arbitrary order, say (2, 1, 3), of the variables fed
into a masked autoregressive density estimation (MADE) block, if we feed the
MADE block’s output to a second MADE block in the reverse order (3, 1, 2),
the combined two-block unit is able to represent all possible orderings. Stacking
multiple reverse-order units forms a flow that captures richer non-linear causal
relations.

• Formulating causal discovery in our reverse-order flow allow us to utilize the
Jacobian matrix, which naturally represents contributions of the variables to
each SCM function (one function per target variable), hence the final causal
graph can be easily inferred.

• The invertible nature of the flows naturally empower counterfactual reasoning,
as the exogenous (noise) variables can be easily estimated.

• Extensive experiments show that the our method outperforms the previous meth-
ods in a range of tasks including causal discovery, intervention, and counterfactual
reasoning.

2.2 Background

2.2.1 Causal Models

Following [4], we use the Directed Acyclic Graph (DAG) with arrows pointing from the
parent (direct cause) node to the child (direct effect) node as a formalism to represent
causal relationships. Based on the DAG, there are two major ways to represent the
causal mechanism underlying the data distribution, including causal Bayesian Networks
(CBNs) and Structural Causal Models (SCMs).
Causal Bayesian Networks Let G = (V,E) be a DAG over a set of variables
X = (X1, X2, · · · , Xd) and P be a joint distribution over X. The pair 〈G,P 〉 is a
causal Bayesian network if the Causal Markov condition and modularity condition hold
[4]. More specifically, the causal Markov condition implies that the joint distribution
p(x) enjoys the the following factorization:

p(x) =
d∏
i=1

p(xi|xPAG
i

), (2.1)
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where xPAG
j
stand for the parent nodes in G. This factorization implies a variable

Xi is conditionally independent given its parent nodes (direct causes). Modularity
means that the causal process of a variable Xi, defined by p(xi|xPAG

i
), is invariant

when other variables are intervened on, which enables the calculation of intervention
distribution using do-calculus [4]. For example, the interventional distribution after
intervening on Xk can be written as

p(x|do(Xk = xk)) =
∏
i 6=k

p(xi|xPAG
i

)δXk,xk . (2.2)

Causal Bayesian Network provides a principled way to represent causality, but it has
two practical drawbacks. First, it is hard to make stronger restrictions to ensure
identifiability of causal model learned from data. Second, it is inconvenient to perform
counterfactual inference.
Structural Causal Models In its general form, a SCM is a tuple 〈S, P 〉 consisting
of a set of equations S = (S1, . . . , Sd):

Si : Xi := fi(XPAG
i
, Ni) i = 1, ..., d, (2.3)

and a probability distribution P over X = (X1, . . . , Xd). In Eq 2.3, XPAi denotes the
direct causes of Xi and Ni represent disturbances or errors. Nis are required to be
jointly independent, i.e., q(n) =

∏d
i=1 q(ni). The causal relations between variables in

a SCM can also be represented as a graph G derived from the structural equations.
In an SCM, it is convenient to enforce additional assumptions on fi and Ni that

make the causal structure identifiable, i.e., uniquely recovered, from observational data.
For example, if fi are linear functions and Ni are non-Gaussian, the causal model is
identifiable from observational data [17]. In the bivariate case, identifiability can also
be guaranteed when fi are nonlinear functions, for example, the additive noise models
(ANMs) [44]. In addition, SCM enables counterfactual inference, in which we infer
the values of Ni based on observed X data and manipulate the target variables to
calculate counterfactual outcomes [4].

2.2.2 The SCM and the Rule of Change of Variables

For Equation 2.3, we try to model PX by a set of equations and place restrictions
on functions fi so that identifiability can be achieved. If the functions fi are non-
invertible, it is hard to estimate these functions because the corresponding conditional
distributions p(xi|xPAG

i
) may not have a simple form. As a consequence, the likelihood

might be intractable. Fortunately, if the functions fi are invertible, we can infer the
error terms Ni from equation (2.3) as

Ni := f−1
i (XPAG

i
, Xi), i = 1, . . . , d. (2.4)

Equivalently, we can write the inverse function as n = f−1(x). According to the rule
of change of variables, we have

p(x) = q(n)

∣∣∣∣det
∂n

∂x

∣∣∣∣ = q(f−1(x))

∣∣∣∣det(
∂f−1

∂x
)

∣∣∣∣ , (2.5)

where det(∂f
−1

∂x ) is the determinant of the Jacobian matrix of f−1 over x. Assume
the error terms Ni follow a simple distribution, for example, Gaussian distribution,
the likelihood can be expressed in terms of the q distribution, provided that the
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computation of the Jacobian matrix is tractable. Then standard maximum likelihood
estimation can be used to estimate the parameters in the functions fi. In the following
section, we will review a special type of density estimation model called Masked
Autoregressive Density Estimation (MADE) [48], which enjoys invertibility and easy
computation of the Jacobian matrix. Our approach will be built upon the MADE
model.

2.2.3 Masked Autoregressive Density Estimation (MADE) and the
Order of Variables

In MADE [48], given any variable order, the joint distribution p(x) can be decomposed
into a product of one-dimensional conditionals as p(x) =

∏d
i=1 p(xi|x1:i−1), which is

called the autoregressive property. MADE uses a masked matrix in each layer of neural
networks to ensure the output xi to depend only on the preceding inputs x1:i−1. To
simplify the calculation, p(xi|x1:i−1) is chosen to be a simple known distribution such
as Gaussian parameterized by mean and variance as

p(xi | x1:i−1) = N (xi | µi, (expαi)
2), (2.6)

where µi = fµi(x1:i−1) and αi = fαi(x1:i−1) are nonlinear functions which can be fitted
by neural networks. Therefore, the form of fj and f−1

j in MADE are given by

fi =⇒ Xi = Ni expαi + µi,

f−1
i =⇒ Ni = (Xi − µi) exp(−αi),

(2.7)

where Ni follows a normal distribution. For example, when d = 3, we can use a neural
network with three nodes to represent p(x) = p(x1)p(x2|x1)p(x3|x2, x1), as shown in
Figure 2.1. This network approximates the following equations:

X1 := N1 expα1 + µ1,

X2 := N2 expα2(X1) + µ2(X1),

X3 := N3 expα3(X1, X2) + µ3(X1, X2).

(2.8)

x1

x2

x3

Input
layer

1

1

2

2

Hidden
layer 1

1

1

2

2

Hidden
layer 2

x̂1

x̂2

x̂3

Output
layer

Figure 2.1. Autoregressive property of MADE naturally supports
causal modeling with known causal order x1, x2, x3.

The connection between MADE and SCM was recently established in [85]. In
specific, if the causal order among the variables is unknown, one can consider MADE
as a specific SCM in which a variable xi depends on the variables before it in the
form of Eq. 2.8. Then, by fitting stacked MADE in the same order, i.e., causal
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autoregressive flow [85], to the data, one can obtain the sparse causal graph with
additional constraints.

However, in practice, the causal order among variables is usually unknown. [85]
proposes to shuffle the variables to obtain all the possible orders, then fit a MADE to
the shuffle data, and finally compare the goodness of fit. This method works well in
the two variable case, but enumerating or even sampling from the entire permutation
space is computationally expensive when d is large. Next, we will show how to extend
MADE to represent all possible orderings without enumerating or sampling from the
permutation space.

2.3 Reverse Order Flow, Causality, and Jacobian Analysis

In this section, we first present the details of our reverse-order flow model which models
the distribution input data in both original and reverse order. Then, we demonstrate
how the proposed model can be used for causal discovery by analysis of the Jacobian
matrix.

2.3.1 Reverse-Order Flow

As described in Section 2.3, MADE requires a fixed order to present autoregressive
property and is suitable to do causal modeling with known causal order. For example,
causal autoregressive flow [85] stacks a series of MADE with fixed order as a causal
model. However, for causal discovery, the causal order is what we should learned from
the data and thus we introduce reverse-order flow to represent all possible causal orders.
We first show that by reversing the order of the output of the first MADE block, and
then feeding the order reversed output into the second MADE block, this combined
two-block unit, which we call Reverse-Order Unit (ROU), can indeed represent all
possible orderings. Here we give a three variable example illustrated in Figure 2.2.
We can pick an arbitrary order (the order is not important as you shall see later)
say (2, 1, 3). The input layer and two hidden layers and the first output layer form a
the first block of MADE, which is followed by the second MADE. Note that in the
middle of the unit, the output of the first MADE block is fed into the second MADE
in the reverse order (3, 1, 2). This crucial operation enables the final output variables
to take all the other variables as inputs (i.e., parents in terms of causality). This
removes the limitation of traditional MADE, where a variable can only be represented
by the preceding variables. By stacking multiple these units together, we can get
an reverse-order Flow that is also able to represent any ordering and and stacked
architecture provides richer representations.

2.3.2 Reverse-Order Flow for Structural Causal Models

The ability of representing any ordering of the variables makes our reverse-order flow
ideal for learning structural causal models from data. Figure 2.2 shows a neural
network of ROU with three variables of unknown causal order. The first block of
the ROU can infer the relations of Xi on the preceding variables X1:i−1 which is
g1(X1:i−1, Xi) while another one inferring relations of Xi on the following variables
Xi+1:d as g2(Xi+1:d, g1(X1:i−1, Xi)). We can rewrite equation (2.4) as

Ni := g2i(g1i(X1:i−1, Xi), Xi+1:d).

Xi := g−1
1i

(g−1
2i

(Xi+1:d, Ni), X1:i−1).
(2.9)
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Figure 2.2. ROU with three variables of unknown order, where n̂i is
the output ni for each block.

Therefore, our ROU can model the relation between a variable Xi and all its potential
parents and the functions (denoted as g) in all the involved functions in Eq. 2.9 can
be estimated by maximum likelihood:

max
g
−Loss = EX∼PX

 d∑
j=1

log q(g−1
2 (g−1

1 (X)) +

2∑
i=1

log

∣∣∣∣det(
∂gi
∂X

)

∣∣∣∣
 . (2.10)

There are some examples that extend the framework of ANMs to obtain the DAG
identifiability. For example, the linear Gaussian case with equal error variances, the
linear non-Gaussian ANMs, and nonlinear Gaussian ANMs [3]. In this paper, we
assume the nonlinear Gaussian cases and use neural networks to fit the function fj to
make sure the requirement of nonlinear satisfied [24]. Therefore, the true graph should
be the one with the minimum loss and if the neural networks with the minimum loss,
we can have the Jacobian Matrix from the neural networks as the causal dependencies
to form the true graph.

2.3.3 Jacobian Matrix as Causal Dependencies

Suppose xj := fj(xk) is a nonlinear function with first-order partial derivatives exist
∂fj
∂xk

on Rd, we can define a Jacobian matrix of neural networks over random variables
X as

J =
[
∂f
∂x1
· · · ∂f∂xd

]
=


∂f1

∂x1
· · · ∂f1

∂xd
...

. . .
...

∂fd
∂x1

· · · ∂fd
∂xd

 . (2.11)

With the transformation fi as ni = (xi−µi) exp(−αi) in MADE, where ni is the noise
variable, each element in the Jacobian matrix is given by

∂fi
∂xj

=


exp(−αi), if i = j

− ∂µi
∂xj

exp(−αi) + (xi − µi)(− exp(−αi))∂αi
∂xj

, if i > j

0, otherwise

, (2.12)

where µi = fµi(x1:i−1) and αi = fαi(x1:i−1) are nonlinear functions. With 2 blocks of
MADE in ROU, we can multiply two Jacobian matrix of MADE as the new Jacobian
matrix of ROU. Sparce-DAG [26] proposed if || ∂fj∂xk

||L2 = 0 then there is no dependency
of xj on xk, where || · ||L2 is the usual L2 norm. In the experiments we found that the
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case of || ∂fj∂xk
||L2 = 0 is relatively rare, so generally we need to set a threshold to do

eliminate the edges with small norms.
For example, the relationships of input data X in SCM language is

X1 := N1,

X2 := f2(X1) +N2,

X3 := f3(X1, X2) +N3.

(2.13)

The order of input X is unknown. We assume the input order (not the causal order) of
input X as (X2,X1,X3), and the networks of ROU would be trained from the neural
networks shown in Figure 2.2.

When we trained the neural networks to the maximum log-likelihood and the Jaco-
bian matrix should be satisfied with that if || ∂fj∂xk

||L2 = 0 then there is no dependency
of xj on xk as the true graph. The neural networks of ROU shown in Figure 2.3
satisfies the causal structure by checking the connectivity between output variables
and input ones.
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Figure 2.3. The neural networks of ROU with the maximum log-
likelihood.

2.3.4 Adding Acylicity Constraint to Loss function with Augmented
Lagrangian

The weighted adjacency matrix of nonlinear extension can be defined asW (f) = ||J ||L2 ,
the optimization problem is given by [23]

min
f

Loss,

s.t. h(W (f)) = 0,
(2.14)

where Loss is the objective function in Eq. 2.10 with g replaced by its inverse f and
h(W (f)) is the constraint and we can add the constraint to the objective function to
form a Lagrangian function

Lc(θ, λ) = f(θ) + λh(W (f)), (2.15)

where λ is the Lagrangian multiplier. The Lagrangian function is an unconstrained
optimization problem and its solution is an optimal solution to the constrained problem
(2.14). However, the Lagrangian function can not guarantee an optimal solution so we
should add an augmented term to ensure the feasibility and optimal solution of the
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method, having the form of

Lc(θ, λ) = f(θ) + λh(W (f)) +
ρ

2
| h(W (f)) |2, (2.16)

where ρ is the penalty parameter. We follow the strategy of [23] to do optimization
for the above Augmented Lagrangian function.

2.3.5 Interventions

We use do(X = x) [4] to denote the intervention that causes the event x to occur. The
following example shows how SCMs implements the intervention. The relationship
between the variables X1,X2,X3 can be represented by the following equations:

X1 := N1,

X2 := f2(X1, N2),

X3 := f3(X2, N3).

(2.17)

When we preform the intervention do(X2 = x2), we cut off all edges pointing to
X2 and assign X2 to x2. Thus, the new SCMs have a new collection of structural
equations:

X1 := N1,

X2 := x2,

X3 := f3(X2, N3).

(2.18)

In summary, a SCM estimates P (Xj |do(Xi = xi)) by completing the intervention
do(Xi = xi) on the original model and obtaining a new model. Subsequently, P (Xj)
can be estimated by the new model. In causal normalizing models, it is easy to do
interventions and answer the questions. Take the above SCM for example, we can
draw samples from the mutual independent distribution P (N1) and P (N3) and feed
the samples into the flows, which help us to calculate the intervention distribution of
P (Xj |do(Xi = xi)).

2.3.6 Counterfactual Reasoning

Counterfactual inference tries to answer a question like: “What is the value of Y if
X = x1 instead of X = x0 in reality?". That is, we have a set of realistic observations
(x0) to consider in the model and when all else being unchanged and we intervene
to make an event happen (X = x1), what we will obtain? The requirement here
is to update the noise distribution with the existing observations and to obtain the
counterfactual distribution through the intervention. Consider the following simple
example to explain [3]:

X := NX ,

Y := X2 +NY ,

Z := 2Y +X +NZ .

(2.19)

If the realistic observations is (X,Y, Z) = (1, 2, 4) and the noise variable should be
updated to (NX , NY , NZ) = (1, 1,−1). Therefore, we can infer that Z = 11 when
X = 2, which is a counterfactual statement. We can easily to do counterfactuals in
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causal normalizing models by transforming the observations to obtain SCMs with new
noise distribution and doing interventions with the new SCMs.

2.4 Experiments

In this section, we evaluate the performance of our method CNF on both synthetic
and real-world datasets.

2.4.1 Competing Methods and Evaluation Metrics

CNF is compared with five recent state-of-the-art methods, including Gradient-based
Neural DAG Learning (GraN-DAG [24], Learning Sparse non-parametric DAGs (sparse-
DAG [26]), NOTEARS [22], NOTEARS’s nonlinear extension DAG-GNN [23], and
causal additive models (CAM [46]).

In the implementation of our method, we combine 3 ROU with 1 hidden layer of 100
neurons and use ReLU as the activation function. The implementation of all contenders
are taken from their authors, with their hyperparameters set as recommended in original
papers.

Two widely-used performance metrics, true positive rate (TPR) and structural
Hamming distance (SHD), are used to evaluate the effectiveness of the methods. Larger
TPR (smaller SHD) indicates better performance.

2.4.2 Causal Discovery on Synthetic Data

Following [24, 25], we use Erdos-Renyi (ER) as the generation scheme of graph and ERx
for xd edges, and then generate synthetic data sets from SCMs Xj = fj(Xpa(Xj)) + zj
for all j in topological order on the given graph. Function fj can be Gaussian Process
with a unit bandwidth RBF kernel and independently sampled σ2

j , MLP networks
with mutually independent noise σ2

j , or additive models with Gaussian Processes. In
our experiments, we use Gaussian Processes with unit independent Gaussian noises.

Effectiveness

We evaluate our model on three synthetic datasets, including ER1 and ER4 for 10
nodes, and ER1 for 50 nodes. The SHD of ER4 for 50 nodes is too large to have
meaningful comparison, so this dataset is omitted in our experiments. The comparison
results are shown in Table 2.1. We can see that our model CNF performs the best
at 10 nodes, while CAM leads ER1 in 50 nodes but CAM performs poorly in ER4
with 10 nodes. This indicates that CAM is not suitable for datasets with dense edges.
We also tested 10 nodes with 45 edges, on which CAM performed even worse (the
averaged SHD is 31.2 in the case of 5 samples), far worse than CNF (SHD averaged
23.5 in 5 samples) and GraN-DAG (SHD averaged 25.1 in 5 samples). The main
reason may be that CNF uses an advanced normalizing flow model MAF to fit the
data, which can stack batch normalizing layers to largely enhance the fitting ability of
our model. NOTEARS and its nonlinear extension DAG-GNN fail to work effectively,
because NOTEARS can only deal with linear causality. Although DAG-GNN improves
NOTEARS by multiplying linear adjacency matrix with some nonlinear functions to
gain better fitting capability, its causality modeling is largely limited by the use of the
linear adjacency matrix. Sparse-DAG has a similar issue as DAG-GNN.
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Table 2.1. Comparison of different methods on non-linear SCMs gen-
erated from Gaussian processes (GPs) with unit independent Gaussian

noise.

ER1 with 10 nodes ER4 with 10 nodes ER1 with 50 nodes
SHD TPR SHD TPR SHD TPR

CNF 1.3±2.3 0.92±0.26 16.4±4.9 0.77±0.12 18.6±6.2 0.77±0.10
GraN-DAG 2.4±2.2 0.85±0.13 18.6±4.1 0.66±0.11 15.1±7.7 0.79±0.05
Sparse-DAG 3.6±2.7 0.82±0.22 20.1±6.7 0.63±0.10 20.9±5.9 0.73±0.06
CAM 5.1±2.1 0.90±0.06 20.8±1.6 0.61±0.08 5.3±1.8 0.95±0.01
NOTEARS 4.8±3.0 0.62±0.18 35.2±2.7 0.16±0.04 22.8±7.1 0.66±0.12
DAG-GNN 7.0±3.5 0.51±0.26 37.0±2.2 0.12±0.09 33.4±7.4 0.44±0.10

2.4.3 Causal Discovery on Real-world Data

Our model is evaluated a widely-used real-world benchmark dataset [29] with causal
relations verified and accepted by the biological community. The dataset consists
of 11 continuous variables corresponding to different proteins and phospholipids in
cells of the human immune system of 7466 observations, each of which indicates the
measured level of each biological molecule in a single cell under different experimental
interventions.

While the ground truth of the consensus network is 17 edges, our model obtains a
SHD of 14, with 9 edges predicted, in which there are 6 expected edges and 3 reversed
edges. Particularly, the 6 true positives include Raf → Mek, Plcg → PIP2, PIP3 →
PIP2, Erk → Akt, PKC → Mek, and PKC → P38. The 3 reversed edges include PKA
→ Raf, PKA → Erk, and PKA → Akt. There are 8 missing edges, which are Mek
→ Erk, Plcg → PIP3, PKA → Mek, PKA → P38, PKA → Jnk, PKC → Raf, PKC
→ PKA, and PKC → Jnk. By comparison, DAG-GNN obtains a SHD of 19, with 18
edges predicted, GraN-DAG gains a SHD of 13, with 16 edges predicted, Sparse-DAG
obtains a SHD of 16, with 13 edges predicted.

2.4.4 Intervention and Counterfactual Reasoning

We generate a four-variable synthetic data for the intervention experiments, following
the experimental design in CAREFL [85]. Specifically, the data is generated by using
the following equation:

X1 := N1,

X2 := N2,

X3 := X1 + c1X
3
2 +N3,

X4 := c2X
2
1 −X2 +N4,

(2.20)

where Ni is sampled from standard Gaussian distributions, and (c1, c2) are coefficients
that is also drawn from standard Gaussian distributions. The experiment is to
estimate expectations of E(X3|do(X1 = α)) and E(X4|do(X1 = α)) by doing the
intervention do(X1 = α) on the original structural equation models. For counterfactual
reasoning experiments, we consider a set of realistic observations (x1, x2, x3, x4) =
(0.2, 0.15, 0.14,−0.1) and (x1, x2, x3, x4) = (2, 1.5, 1.4,−1) and perform interventions
with x1 = α for X3 and X4, respectively.

Our model is compared with CAREFL and ANM models with respective linear
regression (ANM-linear) and Gaussian Process (ANM-GP). The empirical result are
shown in Figure 2.4. It is clear that our model CNF largely outperforms the competing
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methods in mean square error for intervention experiments on SCMs of X3 and/or X4,
and achieves better intervention distributions of X3 and X4. As shown in Figure 2.5,
our model also achieves comparably good counterfactual reasoning to the very recent
state-of-the-art model CAREFL.

Figure 2.4. Mean square error for intervention experiments on SCMs
of X3 and X4.

Figure 2.5. Predictions on SCMs of X3 and X4 under counterfactuals.

2.5 Related Work

Most existing methods of causal inference are constraint-based, score-based, and
structure causal model-based methods. Score-based methods that we use in this paper
define a score function such as Bayesian information criterion (BIC) scores [35] and
Bayesian Dirichlet (BD) score [36] and try to optimal one with the highest score from
a set of DAGs. Due to the huge super-exponential search space with a growing number
of variables, a greedy search algorithm is introduced to solve this intractable problem.
GES [38] uses BIC as a score function and try to find the local optimal graph from
adding edges and removing edges phases.

For structure causal model-based methods, representative algorithms include Linear
Non-Gaussian Acyclic Model (LiNGAM [17]), Post-NonLinear (PNL [41]), ANMs [43]
and their extensions [44] and Information Geometric Causal Inference (IGCI [45]).
LiNGAM [17] assumes the function fi is linear with non-Gaussian noises and acyclic
dependency paths, which is based on Independent Component Analysis (ICA) and
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rely heavily on the initial solutions. In PNL [41], there are two non-linear functions in
an assignment as the form of Xj := fj2(fj1(xπG

j
) +Nj). PNL has broad and general

applicability but the two non-linear functions increased computational complexity.
ANMs [43] describe a method for implementing the discovery of causality between
two variables under nonlinear conditions and their successors [20] extend the ANM
model to the case of multidimensional variables with the method of regression with
subsequent independence test (RESIT), which is applicable to cases of the same
variance error data or discrete data. IGCI [45] assumes that the causal influence
process is noiseless and the derivatives of nonlinear functions between two variables are
statistically uncorrelated. Therefore, ICGI-like methods focus primarily on no-noise
or low-noise and complex functions cases. Causal Additive Model (CAM [46]) is a
example of nonlinear Gaussian ANM, which satisfies the requirement of identifiability,
having a form of Xj :=

∑
k∈PAj

fj,k(Xk) +Nj , where PAj denotes the parent nodes
of Xj in G. However, such assumptions of functions are too strong to generalize.

NOTEAR [22] reformulates the combinatorial optimization problem into a con-
tinuous problem with acyclicity constraint and significantly reduces the size of the
search space of linear structural equation models. DAG-GNN [23] extends NOTEAR’s
continuous linear Structural Causal Model (SCM) to a non-linear model with VAE and
Graph Convolutional Networks (GNN [83]), learning a neural network by maximizing
an evidence lower band. However, DAG-GNN use an adjacency matrix and neural
networks to represent the function fj but only use the weighted adjacency matrix as
causal structure, which makes the method biased. To solve this issue, gradient-based
methods are proposed by GraN-DAG [24], Masked Gradient-Based Causal Structure
Learning (Masked-Grad [25]) Learning Sparse Non-parametric DAGs (Sparse-DAG
[26]), determining the causal relationship between two variables through neural net-
work connectivity. Gradient-based methods outperform DAG-GNN at all aspects of
benchmarks in empirical comparisons, which are proven to be a good way to learn
causal structure. However, GraN-DAG uses weights in neural networks to ensure
connectivity with less generalizability compared to the Jacobian matrix which we use
in this paper and the loss function does not include the divergence of distribution of
input data and target data. Masked-Grad tries to learn a binary matrix instead of
a continuous weighted matrix with the same framework of GraN-DAG. Sparse-DAG
has the same issue with DAG-GNN, only ensuring the connectivity of the input layer
and first hidden layer, however, its performance is competitive with fewer samples
of data. Causal Autoregressive Flows (CAREFL) [85] use autoregressive flow to do
causal modeling and interventions and counterfactuals.

2.6 Conclusion

In this chapter, we propose a score-based method with normalizing flows called CNF to
learn causal dependencies of input observational data with the Jacobian analysis and
do interventions and counterfactuals with the invertible nature of our model. We use
the Jacobian matrix of output w.r.t. input as causal relationships and this method can
be generalized to any neural networks especially flow-based generative neural networks
such as Masked Autoregressive Flow (MAF) which compute the log-likelihood loss
and divergence of distribution of input data and target distribution. This method also
enforce the important acyclicity constraint of NOTEARS on the continuous adjacency
matrix of graph nodes to reduce the computational complexity of the search space
of the graph. We did massive experiments and the results show that our method
outperforms the original NOTEARS, its nonlinear extension DAG-GNN, and other
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machine learning-based methods such as GraN-DAG. We argue that the Jacobian
matrix is the key to causal structure learning and we will extend this approach to
the physical system in form of the ordinary differential equation on static data and
discrete time-series data in following works.
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Chapter 3

Learning to Model Physical
System for Static Data

3.1 Introduction

As a financial quantitative for years, I always have to make predictions that generally
have an assumed premise. For example, in the financial markets, if the U.S. dollar
depreciates, how it affects the price of crude oil, whether it goes up or down, and
then we make investments based on that prediction. It is a common practice to
obtain historical price observations of the dollar and crude oil to calculate a correlation
coefficient. The correlation coefficient and the change in the dollar are then used to
calculate the change in the price of crude oil. From a statistical point of view, the
correlation coefficient is a statistical indicator of how closely two variables are correlated
and generally reflects the degree of linear correlation. A change in one variable can
be obtained through the correlation coefficient for another variable. In the field of
machine learning, the technique of learning the relationship between variables from
data, and then making predictions is very well established. However, we still need to
be very cautious about using this technique in the financial field, as predictions based
solely on correlations between data are not widely used stress tests in the financial
market. For example, a typical stress test case would be that if the central bank
adjusts the interest rate, how does it affect a stock market index. This is where we
have to make calculations using human expertise in the financial market, rather than
simply using correlations. Human expertise in a particular field is generally presented
in the form of differential equations, which in the physical world can also be called
physical systems. And the causal relationships between variables can be easily read
out from the differential equations. In this work, we try to build differential equations
by observational data given certain assumptions and constraints and then read out
the causal relationships between variables from the physical systems [2].

Differential equations are widely used in various areas of modern science, such as the
Black-Scholes option pricing model for the financial system, population development
models, and traffic flow models for the social sciences, and especially in physics,
where they are used extensively in electromagnetic fluid dynamics, chemical fluid
dynamics, power meteorology, ocean dynamics, and groundwater dynamics. As an
example, R.M.Anderson gives an ordinary differential equation model of infectious
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disease dynamics as [49],

dX(t)

dt
:= A− dX − βXY + σZ,

dY (t)

dt
:= βXY − (γ + α+ d)Y,

dZ(t)

dt
:= γY − (σ + d)Z,

(3.1)

Where X(t), Y (t) and Z(t) denote the number of susceptible, infections, and removed
individuals respectively. And A denotes constant immigration rate, d is for constant
natural death rate, β represents transmission coefficient, α denotes disease-related
death rate, γ is for the recovery rate and σ represents a loss of immunity rate. With
differential equations, we can know the values of arbitrary variables in history, as
well as predict future trends and changes in the system, or we can intervene with the
system to get the desired results. At the same time, we can make inferences and give
intuitive explanations, which is not possible with today’s machine learning techniques.
And, of course, we can easily read out causal relationships between variables.

Usually, an Ordinary Differential Equation(ODE) has the form of

dh(t)

dt
:= f(t,h(t)), (3.2)

with some known initial value, for example, h(t = t0) = h0. If f is Lipschitz, we can
have a unique solution h(t) according to The Picard–Lindelöf theorem [50]. Equation
3.2 can also have the form as

h(t+ dt) := h(t) + f(t,h(t))dt, (3.3)

where dt is the terms of infinitesimal differentials of time t. If we can get the solution
to the ordinary differential equation, we can know which variables in the system
affect the state at the next point of time. These variables can then have any direct
causal influence on the result in the future. However, it is almost impossible to obtain
ordinary differential equations and their solutions from large amounts of observations
and existing human expertise in a particular field, and random experiments and
systematic interventions are generally required.

In the era of machine learning, Neural ODE [51] takes inspiration from the following
iterative process of ResNet [52],

h(t+ 1) := h(t) + f(h(t)), (3.4)

which is equivalent to the Euler iterative solution of a differential equation [53]. If we
use more layers and smaller steps, it can be optimized to Equation 3.3. That is the
basic idea of Neural ODEs and function f can be trainable neural networks. we can
easily read out causal relationships between variables as a form of the Jacobian matrix

J =
[
∂f
∂x1
· · · ∂f∂xd

]
=


∂f1

∂x1
· · · ∂f1

∂xd
...

. . .
...

∂fd
∂x1

· · · ∂fd
∂xd

 . (3.5)

Contributions The main contributions of this work can be summarized as follows,

• We extend causal modeling to the physical system which is "the most detailed
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model" [2] in causal modeling. This is the first research work trying to read out
the causal dependencies from physical system using neural networks.

• By comparing extensive experiments with current state-of-art methods for learn-
ing causal structures, the method in this paper wins in datasets with denser
causal relationships. It is shown that the method in this work is better suited to
handle more complex causal relationships between nodes.

This work is ready to submit to IJCAI 2021.

3.2 From Statistical to Physical System

3.2.1 The Great Success of Statistical

Probability theory relies on a probability space(Ω, F, P ) totaling a measure of 1
(P(Ω)=1). The first term Ω is a non-empty set, sometimes called the sample space.
And the second term F is a subset of the sample space Ω and (Ω, F ) together is
called the probability measure space. The third term P is called the probability,
or probability measure [3]. It is a function from the set F to the real domain R.
Each event is assigned a probability value between 0 and 1 by this function. For
example, for the toss of a coin the sample space Ω is {head, tail}, F is obtained
from a random coin toss experiment, which may be A = {head} or B = {tail},
and the corresponding probabilities P(A) = 0.5 and P(B) = 0.5. Probability theory
allows us to infer the probability of the possible outcome of the next experiment
from the data obtained from random experiments. In general, we need to learn
from historical random experiments to get the probability space, through which we
know the possible distributions of the data, and the distribution obtained by learning
from historical data can naturally give us the probability of different results of the
next experiment. For example, an independent random experiment has a set of
observations, (x1, y1) · · · (xn, yn), where xn is the input data and yn is the output
data. We assume that (xn, yn) are from variables X and Y which are independent
and identically distributed(i.i.d.) with the unknown joint distribution PXY . Generally,
existing machine learning and statistical methods follow the assumption that the
data is i.i.d.. In machine learning, supervised learning is that we need to know Y
given a value of X as the function Y = f(x), or the probability of Y given X as
P (Y |X). Learning the decision function Y = f(x) or the conditional probability
distribution P (Y |X) directly from the data is typically used as a model for prediction,
which we consider to be discriminative models. Typical discriminative models include
K-Nearest Neighbors(KNN [54]), MultiLayer Perceptron(MLP), Decision Tree, Logistic
Regression, Maximum Entropy Models, Support Vector Machine(SVM), Conditional
Random Fields(CRFs [55]), etc. Another method is learning a join distribution P (XY )
through observed data, and then finding P (Y |X) with P (Y |X) = P (XY )/P (X),
which we called generative models. Typical generative models include the Hidden
Markov Models(HMM), Mixed Gaussian models(MGMs), Averaged One-Dependence
Estimators (AODE [56]), Latent Dirichlet Allocation(LDA [57]), and the Restricted
Boltzmann Machine [58].

The great success of deep neural networks in statistical methods is generally
considered to be due to [2]: (1) large amounts of data, especially precisely labeled
data; (2) very powerful computational power, especially with the development of
GPUs; (3) very complex and large computational systems with a large number of
trainable parameters and (4) a closed static environment in which all data is assumed
to be independent and identically distributed and the data distribution is constant.
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And since the existing deep learning models rely on i.i.d. data obtained in a closed
environment, the models are working for some tasks but not for others. For example,
if we add some noise to an image, the model may not be able to accurately identify
and classify it. The same is true in the field of reinforcement learning, where a model
trained in one game is difficult to transfer to another game because the model relies
on a closed training environment and the i.i.d. data generated from the environment.
If the environment changes or if human intervention occurs, the model will fail. For
example, a set of i.i.d. data A={rain, not rain} and B={floor is wet, floor is not wet}.
The model can learn from this set of data and go on to predict B from A, or predict A
from B. However, if human intervention occurs and someone pours water on the floor
causing the floor to be wet, then the previous model must fail. The open environment
and systems interventions are not the realm of statistical but they are the realm of
causal inference.

3.2.2 Causal Graphical Models

We use the Directed Acyclic Graph with arrows pointing from the parent(direct cause)
node to the child(direct effect) node as a formalism to represent causal relationships.
These models are causal graphical models or graphical causal models that contain the
observed data distribution and graph structure with nodes and arrows. We give its
definition as follows.

Definition of Causal Graphical Model A Causal Graphical Model contains a
Directed Acyclic Graph G(V,E) where V is for nodes or vertices representing variables
X = (X1, X2, · · · , Xn) and E is for edges between nodes and a set of probability
density function P (Xj |XPAG

j
) , such that the joint distribution P (X) over X equals

the recursive product decomposition as follows [3],

P (X) =
∏
d

P (Xj |XPAG
j

), (3.6)

whereXPAG
j
is for the parent nodes in a DAG. This equation implies that variablesXi is

conditionally independent given the parent nodes of Xi. Causal Graphical Models can
use do-calculus [84] to intervene in the system and have a new distribution but they can
not answer counterfactual questions. Since this paper does not deal with interventions
and counterfactuals, we skipped this part and if interested you can check out Peter’s
paper [3]. The problem with Causal Graphical Models is that it is hard to make
stronger restrictions on Causal Graphical Models to ensure identifiability. For example,
decomposing P (AB) can get P (AB) = P (A)P (B|A) or P (AB) = P (A)P (B|A) and
we can’t make other assumptions here to get the correct DAG. Therefore, we have to
introduce Structural Causal Models(SCMs), which can guarantee the identifiability
after adding some restrictions on the functions.

3.2.3 Structural Causal Models(SCMs)

We give the definition of SCM as follows.
Definition of Structural Causal Model In a structural causal model over

variables X1, X2, · · · , Xd, there is a collection of d equations(assignments):

Xj := fj(Xpaj , Nj) j = 1, ...d, (3.7)

Where Xpaj denotes the set of parent nodes of Xj and Nj represents mutually inde-
pendent noise usually are Gaussian noise with zero mean. For example, we can get a
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SCM of rain and damp floors case we mentioned above as

A := N1,

B := f2(A) +N2.
(3.8)

An SCM is based on data generative assumptions, which allows the addition of rich
assumptions about how the data are generated, and thus the causal structure of
the data can be obtained based on function assumptions. SCMs are also the model
basis for most current causal discovery methods. In a Causal Graphical Model, the
decomposition of jointly distributed probabilities is difficult to distinguish between
directions, such as P (AB) = P (A)P (B|A)or P (AB) = P (B)P (A|B). It is also difficult
to make assumptions over probabilities to ensure causal direction since conditional
probability and some simple continuous probability distributions are invertible. It is
also difficult to distinguish directions in structural learning if noisy variables are not
introduced in SCMs. For example, two random variables X and Y with relationship
as Y = 2X + 1 can be algebraically transformed to X = (Y − 1)/2 . This symmetry is
unintuitive in a causal relationship since we cannot assume that it must be raining
if the floor is wet, and we cannot assume that the air temperature has also changed
by artificially adjusting the thermometer readings. In an SCM, we can also think
of Xpaj as an endogenous variable, the noise variable Nj as an exogenous variable
for unconsidered environmental factors, and there is only one exogenous variable.
Endogenous variables are dependent on other variables and there is at least one edge
pointing to the node; exogenous variables are independent of other variables and there
are no edges pointing to the node. At the same time, assignment function fj can be
linear or nonlinear. In the era of deep learning, it is easy to fit complex nonlinear
functions with neural networks. Therefore, as a broadly used modeling framework,
SCMs can generate a wide variety of powerful models to simulate complex data.

However, given a distribution PX on X(X1, X2, · · · , Xd), we can get different
SEMs to entail this distribution. In the previous example of two variables, P (AB) =
P (A)P (B|A) can get a SCM or P (AB) = P (A)P (B|A) can get an another SCM but
both point to P (AB) at the same time. Therefore, we need additional information to
help us get the right SCM, and this additional information would be the assumption of
the data generation method fj . We outline below several assumptions of fj to ensure
identifiability results.

Linear Non-Gaussian Acyclic Models

Linear Non-Gaussian Acyclic Models(LiNGAM [17]) require that the function fj in
the assignment satisfy three conditions to ensure identifiability. First condition is
that graph is a directed acyclic graph, in which the variables X1, X2, · · · , Xd have a
sequential causal order and the preceding variables do not affect the following variables.
Secondly, the model is linear which requiring the variables to be linear summations of
the parent node variables in graph. The last condition is that the noise variables are
non-Gaussian or there is only noise variable with Gaussian distribution. Further more,
Noise variables are independent of other variables including noise variables. LiNGAM
has the form of

Xj :=
∑
k∈Paj

βjkXk +Nj j = 1, ...d, (3.9)

where all Nj follow non-Gaussian distribution or only a Nj is Gaussian distributed
and all βjk are non-zero for all k ∈ Paj . Therefore, the SEM is identifiable from the
joint distribution PX .
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Linear Gaussian Models with Equal Error Variances

Linear Gaussian Models with Equal Error Variances(LGMEER [59]) require that the
function fj in the assignment satisfies two conditions to ensure identifiability from the
joint distribution over X(X1, X2, · · · , Xd): (1) the noise variables are Gaussian with
variance σ2 independent on j;(2) The model is linear which requiring the variables to
be linear summations of the parent node variables in graph. LGMEER has the form of

Xj :=
∑
k∈Paj

βjkXk +Nj j = 1, ...d, (3.10)

where all βjk are non-zero for all k ∈ Paj and LGMEER is identifiable from the joint
distribution PX .

Additive Noise Models(ANMs [3])

LiNGAM and LGMEER only solve the problem where the function is linear; in the
nonlinear case, we generally assume an ANM which has the form of

Xj := fj(Xpaj ) +Nj j = 1, ...d, (3.11)

where Xpaj denotes the set of parent nodes of Xj and Nj represents mutually inde-
pendent noise. An ANM with nonlinear assignments can ensure identifiable from
the joint distribution PX . If the assumption of Gaussian Noise Nj , then we have
Nonlinear Gaussian Additive Noise Models which is also identifiable. If we have a
stronger restriction on assignments fj with the form of

Xj :=
∑
k∈Paj

fjk(Xk) +Nj j = 1, ...d, (3.12)

where all fjk are three times identifiable and nonlinear, then the model is a Causal
Additive Model(CAM [46]).

3.2.4 Physical systems or Ordinary Differential Equations

SCMs can also be formed as differential equations. Let us first consider the case
of discrete time in linear mode. There is an SCM over variables X(X1, X2, · · · , Xd)
having the following form,

X := WX +N,

where W is d× d adjacency matrix and N represents noise vector. If X is a sequence
of variables Xt with a value at time t, then we have iteration assignment,

Xt := WXt−1 +N (t−1).

As the linearity of the assignment, we have the form of the case of continuous time as

dX(t)

dt
:= C

where C is constant matrix and we can certainly read out the causal relationships
from C. For a nonlinear case, a SCM can be replaced by differential equations as

dX(t)

dt
:= f(X),
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or
X(t+ ∆t) := Xt + ∆t · f(X).

If we can get the solution to the ordinary differential equation, we can know which
variables in the system affect the state at the next point of time. These variables
can then have any direct causal influence on the result in the future and the causal
relationships can be read out by Jacobian matrix of f(X) on variable X. The various
levels of causal modeling are summarized in Table 1.2 from Peter’s paper. It is clear
that the physical system is at top level and contains the most information. This
chapter aims to do causal modeling at the highest level and determine the validity of
modeling by reading out the causal structure via the Jacobian Matrix.

3.3 Neural ODEs for Causal Structure Learning

3.3.1 From ResNet to Neural ODE

Neural ODE [51] takes inspiration from the following iterative process of ResNet [52],

h(t+ 1) := h(t) + f(h(t)),

which is equivalent to the Euler iterative solution of a differential equation. If we
use more layers and smaller steps, it can be optimized to Equation 3.3. That is the
basic idea of Neural ODEs and function f can be trainable neural networks. We
need to solve the equation and obtain the function h(t) and its arguments θ, so we
use the conventional methods of solving ordinary differential equations, which starts
solving the problem from the initial state h0. This problem is generally called the
initial value problem(IVP). Conventional methods for obtaining numerical solutions to
differential equations by integrating the time variable include simple Euler methods
and higher-order variants of the Runge-Kutta method, such as RK2 and RK4. However,
these methods require very small post-integration slices of the time variable, which
is equivalent to having many layers of ResNet, which can lead to high Memory costs.
That’s not what the introduction of differential equations was about. For example,
when using the Euler method to solve Equation 3.3, after K-step iterations we get

h1 := h0 + f(h0),

· · ·
hk := hk−1 + f(hk−1),

(3.13)

which is similar to having k blocks of ResNet. If k is 1M, it would be ResNet with 1M
layers and will cause memory issues. Neural ODE introduced the Adjoint method to
solve the issues. The Adjoint method is the introduced second time backward ODE
that keeps track of the gradient at time t and then backpropagates with the gradient at
time t. Since the gradient at any time can be obtained from the integral, the memory
issues can be solved. For example, we have the following loss function evaluating from
time t0 to t1 with parameters θt,

L(h(t1)) = L(

∫ t1

t0

f(h(t), t, θ)dt) = L(ODESolve(h(t0), f, t0, t1, θ)). (3.14)
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We can compute the gradient of L w.r.t. hidden state with infinitesimal change and
define it as Adjoint state

a(t) = − ∂L

∂h(t)
. (3.15)

It’s derivative on time t, which describes the dynamics of Adjoint state is given by,

da(t)

dt
= −a(t)T

∂f(t,h(t), θt)

∂h(t)
. (3.16)

It is also an ODE and its solution can also be written in integral form as follows,

a(t) =

∫
a(t)T

∂f(t,h(t), θt)

∂h(t)
dt. (3.17)

Numerical solutions at different time t can be obtained by an ODE solver. The gradient
at any time t can be obtained by invoking the ODE solver backward in time from the
initial point which is the gradient at time t1(the gradient of the loss function on the
output layer and it is easy to compute), e.g. the gradient at time t0 can be solved as
follows,

a(t0) =

∫ t0

t1

−a(t)T
∂f(t,h(t), θt)

∂h(t)
dt. (3.18)

Similarly, we can compute the gradient of loss function w.r.t. parameters θ,

dL

dθ
=

∫ t0

t1

−a(t)T
∂f(t,h(t), θt)

∂θ
dt. (3.19)

It can also be solved by an ODE solver and all three integrals can be solved with an
ODE solver by vectorizing the problem.

3.3.2 Continuous Normalizing Flow and SEMs

We assume the assignments of SCMs are ANMs. Therefore, we can train a model
which transform Nj from simple distribution to input data X as

Z
(0)
j := Nj ,

Z
(t)
j := X

(t)
j − fj(X

(t)

πG
j

),

Z
(1)
j := Xj ,

(3.20)

where t is state variable in model, which can be t hidden layer in neural networks or
t block in normalizing flows. We also can have residual form of equation (3.20) as
follows,

Z
(0)
j := Nj ,

Z
(t+1)
j := Z

(t)
j + gj(Z

(t)
j ), where gj(Z

(t)
j ) = ∆

[
X

(t)
j − fj(X

(t)

πG
j

)

]
,

Z
(1)
j := Xj .

(3.21)

If we continuously add more blocks or layers to a limit and we can have the continuous
dynamics of Z(t)

j with an ordinary differential equation(ODE) [51] parameterized by θ,
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dZ(t)

dt
= f(Z(t), t, θ). (3.22)

The equation (3.22) can be solved by a black box of ODE solver and this continuous
dynamics models called Continuous Normalizing Flows(CNF [51]). The change of log
density is also a differential equation named Instantaneous Change of Variables [51],

∂ log p(Z(t))

∂t
= −Tr

(
df

dZ(t)

)
. (3.23)

Therefore, the change from Z(0) to Z(1) can be computed by,

log p(Z(t1)) = log p(Z(t0))−
∫ t1

t0

Tr

(
df

dZ(t)

)
dt, (3.24)

which is the log function we try to maximize. We can solve the integral with an ODE
solver and backpropagate the solution with the Adjoint Method( [60])

3.4 Acyclicity Constraint and Jacobian Matrix

3.4.1 Linear Case: NOTEAR’s Acyclicity Constraint

We consider a linear case of SCM in NOTEAR [22], which has the form of fj(X) =
W T
j (X). We define W = [W1|W2| · · · |Wd] ∈ Rd×d as the coefficient matrix which

encodes a graph. When Wij = 0 then there is no edges from node i to node j, when
Wij 6= 0 there exists an edge pointing from node i to node j in the graph. NOTEAR
proposed that if the graph is directed acyclic, then the following condition should to
be satisfied,

h(W ) = Tr(eW◦W )− d = 0, (3.25)

where ◦ is the Hadamard product, Tr is the trace function of matrix and eM =
∑inf

k=0
Mk

k! .
Let us see why this constraint can express the condition of a directed acyclicity. If
the element (i, j) in the k-th power of a non-negative adjacency matrix A (Ak)ij > 0 ,
then there exists a path of length k between node i and node j. If the element (i, i)
in the k-th power is greater than 0, then there exists a cycle in the graph. The zero
power has a value of 1, then the exponential power of matrix A must be d which is the
dimension of data to ensure that the graph is a DAG. Also to ensure non-negativity,
the Hadamard product can be used. And it is easy to calculate the gradient of h(W )
by the following equation,

∇h(W ) = (eW◦W )T ◦ 2W. (3.26)

Meanwhile, we can use the equation as follows to simplify the calculation,

h(W ) = Tr[(I + αW ◦W )d]− d = 0, (3.27)

where α can be any value greater than 0 and the gradient computation can be done
by deep learning framworks such as Pytorch’s Autograd rather than being written
manually in code implementation.



28 Chapter 3. Learning to Model Physical System for Static Data

3.4.2 Non-Linear Case: the Jacobian Matrix and Acyclicity Con-
straint

However, In nonlinear SCM cases, we cannot find a linear W but we can use partial
derivatives to represent the causal dependency of fj on the k-th variable. We define
the partial derivatives of of fj on the kth variable by ∂kfj and there exits an edge
from the node j to the node k if and only if ∂kfj 6= 0. Therefore, the Jacobian matrix
J represents causal dependencies between input variables X1, X2, · · · , Xn and h(W )
in nonlinear SCM cases is,

h(J) = Tr(eJ◦J)− d = 0 (3.28)

It’s also easy to get that J equals W in linear cases, so it can also be argued that W
is only a special case of J .

3.4.3 Augmented Lagrangian Optimization

And now, the maximum likelihood optimization problems we need to solve is

log p(Z(t1)) = log p(Z(t0))−
∫ t1

t0

Tr

(
df

dZ(t)

)
dt s.t. h(J) = 0. (3.29)

We can use the Augmented Lagrangian method to solve this optimization problem. The
Augmented Lagrangian method adds a quadratic penalty to the Lagrangian method
so that the converted problem can be solved more easily. Therefore, the maximum
likelihood optimization problem can be transformed with the Augmented Lagrangian
method as [23],

L(J, θ, λ) = log p(Z(t1) | θ, J)− ρ

2
|h(J)|2 − λh(J), (3.30)

where ρ and λ are quadratic penalty coefficient and Lagrangian multiplier respectively.
When ρ is sufficiently large, J∗ and θ∗ are the minimum points of the loss function, and
the parameters obtained must satisfy h(J) = 0. Therefore, we incrementally increase
the value of ρ and then optimize the entire neural network under this condition, while
updating the Lagrange multiplier λ accordingly to make it converge to the optimal
points.

3.5 Related Work

Traditionally, there are three main families of methods for causal structure learning,
namely, constraint-based methods, score-based methods, and structural causal function
model-based methods. Constraint-based methods use a conditional independence test
between variables to determine a particular structure and then determine the direction
based on a particular V-structure [3]. The score-based approach uses a score function
to search for the optimal network structure and is the basis of the methodology of this
paper. The structural causal model-based approach is based on the structural causal
model of the data generating mechanism and extends the structural causal model to
increase the expressive power to discover the causal relationship between variables.
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3.5.1 Constraint-based Methods

Constraint-based methods are used to learn a set of causal networks that satisfy the
conditional independence between variables in data. We use statistical test methods
to verify that candidate causal networks satisfy the Causal Faithfulness Assumption.

Definition of Causal Faithfulness Assumption [3] If variables Xi and Xj are
independent of each other or conditionally independent given a set of variables Z, then
all paths between variables Xi and Xj are d-separated by the set of variables Z in the
causal graph G that defines the process by which data X is generated. Then the joint
distribution PX over random variables X is Causal Faithfulness to the graph G.

There are three steps in this family of algorithms, the skeleton learning stage,
direction learning stag, and possible orientation stage. In the learning phase of the
skeleton graph, a skeleton graph without orientations is obtained by the independence
of the variables with independence tests or conditional independence tests technologies.
Commonly used tests for conditional independence are the statistical analysis-based
chi-square test or the information theory-based mutual information test. In the
direction learning phase, the direction is determined based on a specific V-structure.
In the possible orientation stage, we use three rules to orient undirected edges as many
as possible. The main problem with this family of methods is that the number of
conditional independent tests grows exponentially as the number of nodes increases,
and the computational cost is very high. So the main research direction of such
algorithms is to reduce the number of tests.

We briefly introduce the Peter Clark(PC [61]) algorithm here. At the first stage,
the skeleton of DAG with undirected edges is estimated. We start with a completed
connected graph with no oriented edges and search depth equals 0(depth=0 means
the neighbor nodes of test nodes). For each pair of nodes Xi and Xj , test one by one
that given neighbor node Xk of the two in the graph, whether these two nodes are
conditionally independent. If yes, then remove the edge of these two nodes Xi and Xj

and add neighbor node Xk to the set of d-separated Sij . When all edges are removed
with depth=0, increase the depth to 1 and repeat this process until the number of
neighbors of the node is less than the depth. In the second stage of PC algorithm, For
each pair of unconnected nodes Xi and Xj with a common connected neighbour Xk,
if Xk is not in d-separate set Sij then the undirected V-Structure Xi −Xk −Xj is
orientated to Xi → Xk ← Xj . Otherwise Xk is not a collider of the V-Structure. In
the third stage, we continue to check if there is new edges can be oriented with three
rules avoiding new V-Structure discovered and new cycles(the graph is acyclic): (1)
we point from Xi to Xj if Xk pointing to Xj and Xi is not the neighbour node of Xi;
(2) we point from Xi to Xj if there exists a chain Xi → Xk → Xj ; (3) we point from
Xi to Xj if Xi −Xk → Xj and Xi −Xl → Xj .

The Inductive Causation(IC [62]) algorithm and its variants [63] are similar to the
PC algorithm in which they also use three stages to learn the causal network structure.
However, most independence tests are chi-square test or partial correlation tests based
on Gaussian distribution or multinomial distribution. To overcome these limitations,
many effective methods have been proposed to handle more complex data distributions.
For example, using Kernel-based Hilbert-Schmidt Norms and Kernel-based conditional
independence test for more complex distributed data. Furthermore, when Causal
Faithfulness Assumption is violated, there may be unobservable confounding factors.
The FCI(Fast Causal Inference [64]) algorithm and FCI improved RFCI (Really Fast
Causal Inference [65]) algorithm are proposed to the discovery of causality with hidden
variables through extended graphs.
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Constraint-based methods are effective for discovering causality and can be widely
used with given reliable conditional independence tests. However, it is not possible
to determine the direction of all edges through conditional independence tests and
V-structures. Therefore, we need other types of methods to do causal learning.

3.5.2 Scored-based Methods

Score-based methods are an alternative to learning causal structures. A score-based
approach uses a scoring function to quantify how well a Bayesian network fits a given
distribution of data and then uses a search algorithm to find the graph structure that
best fits the data. In this approach, the choice of the scoring function is crucial, the
scoring function maps the candidate causal graph to a certain scalar based on a given
structure. Bayesian Information Criterion(BIC [66]) is commonly and widely used one
and its formula is BIC(X,G) = k ln(n) − 2 ln(L), where L is the maximized value
of the likelihood function of given graph G and n is the number of the samples and
k denotes the number of the variables. However, BIC failed to do feature selection
in high-dimension data. Another popular one of the Bayesian score function is the
Bayesian Dirichlet equivalent uniform (BDeu [67]) score which has the form of

S(X,G) =

n∏
i=1

qi∏
j=1

Γ(α/qi)

Γ(α/qi +
∑ri

k=1 sijk)

ri∏
k=1

Γ(α/qi + sijk)

Γ(α/qi)
,

where ri is the number of stats of Xi; qi indicate the number of configurations of the
parents of Xi; sijk denotes the number of observation data that Xi is its k-th value
and the parents of Xi took the j-th sample.

However, the number of candidature graph structures grows exponentially as the
number of variables increases, and the problem becomes NP-hard due to the large search
space. Therefore, heuristic search algorithms such as Greedy Equivalence Search(GES
[14]) and its extension Fast GES(FGES [16]) are often used to find a locally optimal
graph. In the GES algorithm, there are two stages, a forward phase where edges are
added and a backward phase where edges are removed. In the forward phase, edges
are added in a greedy manner (i.e., maximizing the score which is calculated by a score
function defined by GES) until the score can not be further increased. In the second
phase, the edges are greedily removed until the score is optimal. GES can search the
graph space in a very efficient way because it includes a greedy algorithm. However,
the scoring process of the algorithm is too redundant, and adding edges causes the
number of scoring to increase exponentially. It means that adding edges can make
the time complexity grow exponentially and it becomes impractical as the number of
variables increases. The FEGS algorithm improves the GES algorithm by decreasing
the computational complexity when adding a new edge. Moreover, FEGS parallelizes
special steps and does not depend on the order of operations, which makes the scoring
processes much faster than the GES algorithm.

The hybrid approach combines Scored-based Methods and Constraint-based meth-
ods to overcome their respective drawbacks by using conditional independence tests
to reduce the complexity of the candidate graph search space, followed by a scoring-
based approach to find the best network structure. For example, the Max-Min
Hill-Climbing(MMHC [68]) algorithm first learns a skeleton of a graph by the Max-Min
Parents and Children(MMPC [69]) algorithm, which is equivalent to a constraint-based
approach, followed by a greedy Bayesian score climbing search method to orient the
graphs. This approach is not only suitable for high-dimensional data, but also improves
the effectiveness of learning causal structures.
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3.5.3 Structural Causal Function Model-based Methods

Constraint-based methods have Markov equivalence class problems and cannot orient
all edges while score-based methods are not efficient due to the large search space,
therefore, many studies have proposed structural causal models from the perspective
of data generation or causal mechanisms between the variables of data. The general
form of the structural causal model has the form of Xj := fj(Xpaj , Nj) Where Xpaj

is for the set of parent nodes of Xj and Nj is for mutually independent noise. The
structural causal model describes the mechanism for generating data between variables
rather than an algebraic equation describing the equality of the left and right sides.
However, different SEMs to entail a same distribution PX on X(X1, X2, · · · , Xd).
Therefore, more information such as a stronger assumption of the data generation
method fj should be provided. These algorithms with stronger assumptions include
Linear Non-Gaussian Acyclic Model(LiNGAM), Post-NonLinear(PNL), Additive Noise
Model(ANM) in non-linear cases and its extensions, Information-Geometric Causal
Inference(IGCI), and hybrid algorithms combining Constraint-based methods and
Structural Causal Function Model-based Methods. The detail of LiNGAM, ANM,
LGMEER can be seen in subsection of 3.2.3.

3.6 Experiments

In this section, we experimentally verify whether it is possible to derive dynamic physical
systems from observed data via Neural ODEs and then read the causal structure from
the physical systems. For ODE Sovler, we used the Pytorch implementation from the
public Github repository of Nueral ODEs. Deriving dynamic physical systems with
SCMs from static data has not been done before, so it is not possible to compare
with previous works. But previous works of learning the causal structure between
variables allows us to get some benchmarks. The aim of this chapter is to verify the
idea of obtaining a dynamic physical system from observed data and then reading out
the causal structure of the variables in the data from the physical system. However,
for learning the causal structure of the variables, this approach outperforms previous
works to learn the causal structure in some datasets.

Baselines we choose the following algorithms as baselines for comparison: two
gradient-based methods GraN-DAG [24] and Sparse-DAG [26] using weights in neural
networks as causal dependencies; CAM [46] for non-linear additive structural causal
models based method; NOTEARS for linear structural causal models and its non-linear
extension DAG-GNN [23]. Other algorithms such as PC, GES, and FGS have been
shown to be poor performance in multiple experiments [24, 26, 23], so we omitted.

Metrics we choose the following metrics to evaluate the causal structure learned
observed data: True Positive Rate(TPR) and the structural hamming distance. The
former is the number of correctly identified oriented edges divided by the total number
of oriented edges in true DAG and the latter counts the number of falsely adding,
deleting, and orienting edges.

3.6.1 Synthetic Data

In the synthetic data experiments, we used Erdös–Rényi(ER) as the graph type to
generate random graphs G and generated data from the random graphs G in which
the causal order defined. We generated datasets X1, X2, · · · , Xd with d = 10 and 1d
and 4d edges denoted by ER1 and ER4 respectively. The data generating process we
choose is Non-linear Gaussian ANMs with the form of Xj := fj(Xpaj ) +Nj j = 1, ...d,
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Where Xpaj is for the set of parent nodes of Xj and Nj is for mutually independent
unit Gaussian noise and fj we used is Gaussian Process(GP) with a unit bandwidth
RBF kernel. Due to the non-linear assignment of fj and Gaussian noise, the DAG is
identifiable from the distribution PX over data X. The results of comparisons among
different methods are shown in Table 3.1, in which we can see that our proposal method
DAG-ODE outperforms other algorithms in all aspects in the dataset of 10 nodes.

Table 3.1. Comparison of different methods on non-linear SCMs gen-
erated from Gaussian processes(GPs) with unit independent Gaussian
noise. The lower the better for SHD and the higher the better for TPR.

Our method is DAG-ODE.

ER1 with 10 nodes ER4 with 10 nodes
SHD TPR SHD TPR

DAG-ODE 2.3±1.9 0.86±0.22 10.2±3.5 0.86±0.15
GraN-DAG 2.4±2.2 0.85±0.13 18.6±4.1 0.66±0.11
Sparse-DAG 3.6±2.7 0.82±0.22 20.1±6.7 0.63±0.10
CAM 5.1±2.1 0.90±0.06 20.8±1.6 0.61±0.08
NOTEARS 4.8±3.0 0.62±0.18 35.2±2.7 0.16±0.04
DAG-GNN 7.0±3.5 0.51±0.26 37.0±2.2 0.12±0.09

3.6.2 Real Data

We evaluate the real dataset that is generally accepted by the biological community
and is often used as a benchmark. The data consists of 11 continuous variables
corresponding to different proteins and phospholipids in cells of the human immune
system with 7466 observations, each of which indicates the measured level of each
biological molecule in a single cell under different experimental interventions [29]. The
ground truth of consensus network as a causal graph is shown in Figure 3.2.

While the ground truth of the consensus network is 17 edges, we report SHD of
13 estimated 4 edges which are all expected edges as shown in Figure 3.1. For detail,
the 4 true positives are Raf → Mek, Plcg → PIP2, PIP3 → PIP2, Erk → Akt. By
comparison, while DAG-GNN reports SHD of 19 with 18 edges predicted, GraN-DAG
estimated 16 edges with SHD of 13 and Sparce-DAG predicted 13 edges with SHD of
16.

3.7 Summary

In this chapter, we extend the Jacobian-based to the physical system which is the
method humans explore and reason the world and it is "the most detailed model"
[2] of causal learning. By functions fitting with Neural ODE, we can read out the
causal structure from functions. Our approach also enforces an important acyclicity
constraint on the continuous adjacency matrix of graph nodes and significantly reduces
the computational complexity of the search space of graphs. For the task of structure
learning, our method outperforms other current state-of-art methods for learning causal
structures in experiments of datasets of 10 nodes and improves the performance in
datasets with more dense causal relationships. In the next chapter, we will apply our
Jacobian-based approach to time series data which is non-IID.
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Figure 3.1. The causal graph of Sachs dataset estimated by our
methods, in which the gray arrows represent missing edges from the

ground truth.

Figure 3.2. The ground truth causal graph of Sachs dataset
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Chapter 4

Causal Structure Learning for
Time Series Data

4.1 Introduction

Time series data are widely available in the natural science and social science fields and
causal structure learning of time-series data is important for these areas. In financial
markets, for example, as a result of technological advances and globalization, financial
links between countries are becoming more and more strong and form a complex system.
Therefore, we need to analyze the immediate and ongoing effects within individual
financial markets as well as the temporal impacts between multiple financial markets.
For example, the impact of changes in the Federal Reserve’s financial policy on US
financial markets and on other countries can last for a long time. The various indicators
of daily economic life, such as GDP, CPI, electricity consumption, weather indicators
of temperature, humidity are all existing in the form of time series. Compared to
static data, if we can dig out the unknown and valuable structures and mechanisms
behind the time series data in time dynamics and then predict or intervene in the
causal direction, it will be significant for scientific research, commercial marketing,
engineering production, and other aspects. Current correlation and statistical methods
based on machine learning in CV, NLP, and other fields have achieved great success,
especially in the accuracy of prediction and some may have exceeded the human
capabilities [1]. However, it is difficult for these models to answer questions about
cause and effect. In financial markets, for example, what is at work in the current
U.S. stock booming during the pandemic of Covid-19, is it quantitative easing policy
by the Federal Reserve? So where do the markets go if the Fed doesn’t implement
monetary easing? In terms of time, how long will the impact of this policy be, a year
or a month? Correlation helps machine learning algorithms to do predictive tasks but
does not answer the above questions due to a lack of direction in dependencies.

Most machine learning algorithms including deep learning are based on correlation,
which is encoded and learned to improve accuracy in prediction [2]. However, correlation
only shows that there is a relationship between the variables and does not give
information about the dependencies in directions. For example, two variables may
have a common causal variable, then the two variables are correlated but do not have
a causal dependency. Such non-causal relationship models are less explainable and
weak robust. When the value of variables interference by other factors outside of
the environment, such as human intervention, the model will not get the expected
results or break down. Most scientific research requires learning causality rather than
correlation between variables. The natural sciences, for example, need to know the
direct causes of global warming, the interactions of cells and viruses, and the effects
of policy on climate change and in finance and we need to know the direct effects
of policy on markets. Causality ensures that the model is more interpretable and
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sufficiently robust. At the same time, a sufficiently robust model based on causality
can also answer and solve the problem of external intervention. Since most of the
data in machine learning algorithms learned comes from a closed environment, if the
closed environment is cracked and the variation in the variables is likely to be due to
external interventions, the predictive models encoding correlations between variables
in the closed environment data will collapse. Causal models can predict the effect
of an externally intervening variable on other variables because they understand the
mechanism by which the variable takes its value (usually represented by the Structure
Causal Models).

Traditionally, causal structures can be obtained by the intervention that changes
the values of variables and sees their impacts on other variables in experiments or by
randomized experiments. However, due to the limitations of the experimental setting,
we can not do human interventions or the cost of the interventions is huge. For example,
we cannot allow patients to use drugs that have not been clinically validated, which is
illegal and unethical. We also can’t arbitrarily change financial policy to see how it
affects the market, because the costs of doing so are enormous. So most experiments
can only get passive observations and learn causal relationships between variables
relying on observed data. Observed data can generally be divided into two categories:
static data that are non-time-sequence and time-series data. For learning structure
from static data, there are three main families of methods, namely, constraint-based
methods, score-based methods, and structural causal function model-based methods.
Causal structure learning based on temporal data is simpler than causal reasoning
on static data because temporal data itself contains information about the causal
direction in the time dimension, in which the effect factors cannot occur ahead of the
cause factors [3]. However, there are also three main issues with causal learning based
on temporal sequential data. Firstly, the set of variables is not causally sufficient.
Secondly, there are instantaneous effects on which variables are not the time ordered
a priori. Lastly, it is often only possible to obtain repeated observations at different
times. Generally, the causal learning problem based on temporal data can be defined
as follows. Given a time series data Xd

t with d-variate and time length T , where at
time t in time length T we have the vector (X1

t , X
2
t , ·, Xd

t ). Xj
t represents the j-th

variable at time t and we aim to learn the causal structure between all the variables
Xj
t where j ∈ (0, d) and t ∈ (0, T ). Depending on whether there is an instantaneous

effect or not, causal structure learning problems based on temporal data are divided
into two types, which are with instantaneous effects and without instantaneous effects.
In the causal graph without instantaneous effects, there is no arrows from Xj

t to Xk
t

where j, k ∈ (1, d) and Xt nodes only impact other nodes Xs in the future where s > t,
as shown in Figure 4.1. For causal graph with instantaneous effects(see Figure 4.2),
arrows not only point from nodes Xj

t to other nodes Xk
t at the same time t but also

go to the future nodes Xs, where s > t.
We define the temporal directed causal graph as G = (V,E,D,L) over observed

time series data (X1, X2, · · · , Xd), where Vi is vertex for the time series (Xi, i ∈ (0, d))
and an edge eij pointing from vertex Vi to Vj represents a causal relationship that Vi
has an effect on Vj , and Dij and Lij annotating the edge eij denote the time delay
between occurrence of Vi to occurrence of Vj and the time lag l(it is also called time
order in auto-regression models) between Vi and Vi since V

j
t+1, V

j
t+2, · · · , V

j
t+l have

impacts on Vj , respectively. For example, the Vector AutoRegressive models VAR(2)
with order 2 has the following form,
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Figure 4.1. A Temporal Structure Example without Instantaneous
Effects
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Figure 4.2. A Temporal Structure Example with Instantaneous
Effects

X1
t = α1 + φ11X

1
t−1 + φ12X

2
t−1 + φ13X

3
t−1 +N1

t ,

X2
t = α2 + φ21X

2
t−1 + φ22X

3
t−1 + φ23X

3
t−2 +N2

t ,

X3
t = α3 + φ31X

3
t−1 + φ32X

3
t−2 +N3

t ,

(4.1)

where φij is the coefficient of cause variables and N j
t is mutually independent noise,

and we have the temporal directed causal graph of the VAR(2) as shown in Figure 4.3
In this work, we assume that the following structural causal models [3] can describe

the time series,

Xj
t := f j((PAjq)t−l−d), · · · , (PAjq)t−d−1, (PA

j
q)t−d), N

j
t ), (4.2)

where
· · · , N1

t−1, · · · , Nd
t−1, N

1
t , · · · , Nd

t , N
1
t+1, · · · , Nd

t+1, · · ·
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X1X2 X3

1,1

1,1

1,1 1,2

1,2

Figure 4.3. The temporal directed causal graph of the VAR(2). From
the graph, X2 caused by X3 with 1 time delay and 2 time lag and

itself with 1 time delay and 1 time lag.

are mutually independent noises, and d and l are time delay between occurrence of
the cause and occurrence of the effect and the time lag(order), respectively. The term
(PAjq)t−s denotes the cause variables which influence Xj

t . And we can read out the
causal structure from structural causal models by Jacobian matrix.

Contributions The main contributions of this work can be summarized as follows,

• Unlike studies that use attentions in neural networks as potential causal rela-
tionships for time series and require the use of independence tests for validation,
our approach proposes partial differentials as causal relationships. This is the
first research to use this method for causal learning of time series data, and
it is sufficient to calculate the partial differential as to whether one variable is
causally related to other variables.

• It is the first paper to propose the time delay and the time lag together and
use the Jacobian matrix to derive these two values in proposed structural causal
models.

4.2 Related Work

This section is organized as follows: the first subsection will discuss structural learning
models based on time series from previous work; the second subsection will explain
existing time series prediction methods; the third subsection will describe dynamic
causal models based on differential equations.

4.2.1 Temporal Causal Structure Learning

Granger Causality

Granger Causality(GC [70]) is the first method of analyzing the causal relationships
between time-series variables, mainly by detecting techniques to reveal the temporal
dependencies between different variables. The basic idea of Granger Causality is that
using past values of X and past values of Y can predict future values of Y better
than just using past values of Y , then the time-series X Granger causes Y . It can be
written in the following form,

X Granger-causes Y :⇐⇒ Yt 6⊥⊥ X<t | Y<t
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For Y which can be modeled as an autoregressive process, we can compare the following
two time-series prediction models,

Yt =

q∑
i=1

aiYt−1 +Nt,

Yt =

q∑
i=1

aiYt−1 +

q∑
i=1

biXt−1 + N̂t.

(4.3)

If the noise term N̂t obtained by regression with X included is significantly smaller
than the term Nt obtained by prediction models without X, then X Granger causes
Y . Since Bivariate’s GC method can not solve the problem of multiple time-series,
conditional Granger Causality [71] made the following extension,

Xj Granger-causes Xk :⇐= Xk
t 6⊥⊥ X

j
<t | X

−j
<t .

However, there are limitations in Granger causality. Firstly, violation of causal
sufficiency is one of the more serious problems [3]. Secondly, if there are unobserved
variables, Granger causality is misleading because it does not deal with unobserved
variables or hidden confounders. Besides, Granger’s causality only deals with linear
dependencies between time series. In the presence of non-linear functions, Granger
causality is prone to detect spurious causal relations based on observed local correlations
[3].

Constraint-based Methods

The constraint-based approaches learn a set of DAGs that satisfy the Causal Faith-
fulness Assumption by conditional independent tests between variables and then
determine the optimal DAG by a particular structure in the graphs. The process of
these methods contains three stages, which are the skeleton learning stage, direction
learning stage, and possible orientation stage. The well-known constraint-based meth-
ods are the Peter Clark(PC [61]) algorithm and the Inductive Causation(IC [62]), but
these two can not deal with unobserved confounders. The FCI (Fast Causal Inference
[64]) algorithm and the FCI improved version RFCI (Really Fast Causal Inference [65])
algorithm are designed to overcome the limitations of the PC and the IC when the
Causal Faithfulness Assumptions are violated. The PCMCI [72] and the tsFCI [73]
are the time series extensions of the PC and the FCI respectively.

Information Theoretic Methods

The basic idea of the Information Theoretic approach is that if values of the lag time
of variable X provides information about the current state of variable Y , then X is
likely to be the cause of Y . In the case of two variables, then the pairwise dependency
can be computed from mutual information I(Xt−τ , Yt) = H(Yt)−H(Yt | Xt−τ ), where
H(Yt | Xt−τ ) is the conditional entropy. For the causal inference of the pairwise
dependency of two variables, we also need to take into account the influence of
additional information in the system, which can be solved by conditional mutual
information [74] I(Yt;Xt | Zt). Conditional mutual information calculates the mutual
information given other information in the system. Many other methods take into
account the influence of additional information in the system( [75, 76]). For example,
Transfer Entropy(TE [75] calculates the information that is transferred from other
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variables X to Yt given the Yt historical state and it is given by

TEX→Y (τ) = I(Yt;Xt−1, Xt−2, · · · , Xt−τ | Yt−1, Yt−2, · · · , Yt−τ ).

However, TE can only deal with stationary time series data and Partial Symbolic
Transfer Entropy(PSTE [77]) is proposed to solve non-stationary sequential data
problems.

Structural Causal Model Methods

Due to the limitations of Constraint-based Methods and Information Theoretic Methods,
a new family structure learning methods structural causal Models is proposed, and
the form of structural causal Model methods is given by Xj := fj(Xpaj , Nj) Where
Xpaj is for the set of parent nodes of Xj and Nj denotes mutually independent noise.
For the time series version of the structural causal Model, please see Equation 4.2. In
SCMs, making different assumptions on assignments fj can lead to different models.
For example, Linear Non-Gaussian Acyclic Model(LiNGAM [17]) assumes

Xj :=
∑
k∈Paj

βjkXk +Nj j = 1, ...d, (4.4)

where all Nj follow non-Gaussian distribution or only a Nj is Gaussian distributed and
all βjk are non-zero for all k ∈ Paj . The extension of LiNGAM for time series is TS-
LiNGAM [78], which has the linear assumption and it can have instantaneous effects.
For identification of the Structural Vector Auto-Regression(SVAR), VAR-LiNGAM
[78] is proposed. LiNGAM based methods are only for linear data, however, TiMINo
[79] can handle non-linear relationships but TiMINo is not suitable for large datasets.

4.2.2 Dynamic Causal Modeling

Dynamic Causal Modeling(DCM [80]) is a technique that uses differential equations
to analyze the interactions between different brain regions and can learn causal
relationships between brain regions. Whereas previous understanding of the mechanism
between brain regions was based on statistical correlation, DCM uses differential
equations to advance this mechanism into the realm of dynamical systems to depict
the relationship between variables in nonlinear systems. Assuming that the form of
the differential equation which describes the dynamics of activity of different brain
regions is given by

d

dt
z = F (z, u, θ),

where z denotes the activity of different brain regions and F is an unknown function, u
is the external input, and θ refers to the effective connection parameter to be estimated.
Also, the equation can be linearly approximated as

d

dt
z = Az +

m∑
j=1

ujB
jz + Cu,

where matrix A represents the intrinsic connections between brain regions in the
absence of external stimuli; uj denotes the j-th external input; Bj is for the change in
connections caused by the j-th effective input. And C represents the direct effect of
the external input on neural activity.
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4.3 Gradient-based Temporal Causal Structure Learning

4.3.1 Recurrent Neural Networks For Time Series

For time series modeling over input (X1, X2, · · · , Xt), Recurrent Neural Networks(RNN)
can generally be used, which has an architecture shown below,

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
Figure 4.4. Vanilla RNN Architecture

In the Figure 4.4, ht is the hidden state of the neural networks, containing infor-
mation from x0 to xt−1. The output ot can be predicted using ht and xt. This process
can also be described mathematically by the following equations,

ht = φ(Uxt +Wht−1 + b)

ot = V ht + c

x̂t = σ(ot)

(4.5)

where φ and σ are activation functions, U,W, V are weight matrix as parameters to
be learned in neural networks and x̂t is the final predicted output by RNNs. However,
RNNs do not work well for modeling long sequences due to the problem of gradient
vanishing. Therefore, LSTM(Long short-term memory) [82] is proposed to solve this
problem, and the architecture is shown in Figure 4.5.

σ σ Tanh σ

× +

× ×

Tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

Cell

ht

Hidden

htOutput

Figure 4.5. LSTM Architecture

LSTM consists of three parts: the forget gate, that controls which parts are
kept and which parts are discarded; the Input gate, where the sigmoid function is
responsible for selecting newer information and the tanh function is responsible for
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adding new candidates; and the Output gate controls which parts should be output.
The GRU(Gated Recurrent Unit) simplifies the LSTM and it consists of two parts:
a reset gate, which combines the input with the previous state, and an update gate,
which decides how much of the input and state is retained.

4.3.2 Neural Ordinary Differential Equations(ODEs)

Neural ODEs use ordinary differential equations to redefine the continuous time hidden
state ht and then solve the Initial Value Problem using the ODE solver(IVP):

dh(t)

dt
:= fθ(t,h(t)), where h(t0) = h0, (4.6)

where the function fθ describes the dynamics of hidden state h0 by a neural network
with parameters θ. The hidden state h at time t1 can be solved by integral from t0 to
t1 and the numerical solutions can be solved by an ODESolver [51] with the form of

ht1 =

∫ t1

t0

f(h(t), t, θ)dt. (4.7)

4.3.3 ODE-RNNs

We can combine ODEs and RNNs by calculating the state for i observed date from
the previous hidden state via an ODESolver as,

h′i = ODESolve(hi−1, f, θ, ti−1, ti) (4.8)

and updating the latent state hi−1 in a Standard RNN cell by

hi = RNNCell(h′i, xi). (4.9)

ORE-RNNs [51] can be used to do sequence modeling. If there is a sequence {Xi}Ti=0

where for each Xi is a vector of {Xj}dj=0, the task of the model is to make predictions
for the next time step from past historical data, i.e. maximizing the conditional
probability,

p(x) =
∏
i

pθ(Xi | Xi−1, · · · , x0). (4.10)

4.3.4 Temporal Causal Structure Learning with Jacobian Matrix

For each xjt , we learn an ORD-RNN with parameters θ to fit the assignment of
Structural Causal Models as,

xjt := f jθ (Xt−1, Xt−2, · · · , X0, N
j
t ), where Xt = {Xj

t }dj=0. (4.11)

We now can compute the Jacobian matrix of xjt over input variables as

J j =
[
∂fj

∂x1
· · · ∂f

j

∂xd

]T
=


∂fj

∂x1
0
· · · ∂fj

∂x0
t

...
. . .

...
∂fj

∂xd0
· · · ∂fj

∂xdt

 . (4.12)
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Figure 4.6. Use a simple Neural ODE to fit the data sampled from
VAR(1) models and dashed lines for trajectories of learned Neural ODE

networks.

If ||∂f
j

∂xdt
||L2 = 0 then xjt is independent of xdt , where || · ||L2 = 0 denotes the usual

L2-norm.

4.4 Experiments

4.4.1 A Toy Example

Considering the time series data sampled from the following VAR(1) without the term
of noise,

x1
t = α1 + φ11x

1
t−1 + φ12x

2
t−1,

x2
t = α2 + φ21x

1
t−1 + φ22x

2
t−1.

(4.13)

We can rewrite the Equation (4.13) as the form of

Xt = A+ ΦXt−1, (4.14)

where A = (α1, α2)T and Φ for the matrix {φij , i, j = {1, 2}} in the Equation (4.13).
We assume that the formula is one unit of time variation. In general, the time step
can be any unit of time and we can change the time step in the formula to ∆t
by changing the time step. In this way, the Equation (4.14) can be rewritten to
Xt−Xt−∆t

∆t = A+ (Φ− 1)Xt−1. As ∆t approaches 0, the formula becomes a first-order
time-dependent ordinary differential equation,

dX

dt
= A+ (Φ− 1)X. (4.15)

We can use a simple Neural ODE fθ with parameters θ to fit the function dX
dt . The

performance of function fitting can be viewed in Figure 4.6. The structure can be
easily read out by the Jacobian matrix of fθ w.r.t. input, please see in Figure 4.7.

4.4.2 Stock Market Data

This time series was generated through a simulation of the FAMA Three-factor model
[81], in which the stock portfolio’s return series is based on three factors: ’volatility’,
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Figure 4.7. The temporal directed causal graph of the VAR(1).

’size’ and ’value’, and the return of stock portfolio at time t is given by

Ri,t =
∑
j

βijfjt +Nit,

where fij denotes value of one of the three factors at time t, βij is weight for fij
at the portfolio and Nit represents the portfolio specific noise term. We used the
generated data with 6 portfolios and 4000 time points and then split 80% and 20% of
the observation length of data for the training and test datasets, respectively. The
structure can also be easily read out by the Jacobian matrix of functions learned by
neural networks w.r.t. input, please see in Figure 4.8.

4.5 Summary

In this chapter, we connect machine learning techniques to causality on time series
data which widely exist in our world with the Jacobian matrix of the function f j on
input variables X as causal relationships. It is the first paper to propose it in causal
inference experiments on time series data. we also use a full-time causal graph with
the time delay and the time lag together to replace the traditional temporal causal
structure. Future more, we use ORE-RNN to do function fitting and with experiments,
the results show that the success of temporal causal structure learning of time series
data.
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Figure 4.8. The temporal directed causal graph of the financial
dataset. The dashed line for the missing edge.
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Chapter 5

Conclusions and Future Work

In this thesis, a Jacobian matrix based approach is proposed to connect machine
learning to causal structure learning on both static data and time-series data. Unlike
traditional methods, this method interfaces with deep learning which is a powerful tool
for function fitting. And unlike previous machine learning methods that use weights to
verify input-output connectivity, our Jacobian-based approach is more straightforward
and effective. Furthermore, by using a more flexible approach, the state-of-art deep
learning techniques can be adopted instead of simply using multiple layer perceptrons,
such as the MAF [34] and Neural ODE [51] we use in this paper, or adding a Batch-
Norm layer [34] in the neural networks, which was not possible in previous approaches.
For static data, the combination of these new deep learning techniques, which increase
the model’s fitting ability, also allows the method to handle more complex causal
structures, which is demonstrated in our experiments. For time-series data, there has
traditionally not been a clear general technical framework, and we argue that the
framework of our method in this paper is general and clear. The variables in previous
data are whether direct causes of future predictions or not, calculating the partial
differential of the predictions over the variables can get the answer and this method
has also been shown to be valid in experiments. Due to the limited research time for
the master’s degree, we did not go much deeper to apply our method on time series
data, but this thesis has already pointed out the direction of future research, which is
to find a better neural network architecture of deep learning and then read out the
causal structure between variables through the Jacobian matrix.
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