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Abstract: Docosahexaenoic acid (DHA) accumulates in the fetal brain during pregnancy and is
thought to have a role in supporting neurodevelopment. We conducted a multicenter, double-blind,
randomized controlled trial in women with a singleton pregnancy who were <21 weeks’ gestation at
trial entry. Women were provided with 800 mg DHA/day or a placebo supplement from trial entry
until birth. When children reached seven years of age, we invited parents to complete the Strengths
and Difficulties Questionnaire (SDQ), the Behavior Rating Inventory of Executive Function (BRIEF),
and the Conners 3rd Edition Attention-Deficit Hyperactivity Disorder (ADHD) Index to assess child
behavior and behavioral manifestations of executive dysfunction. There were 543 parent–child pairs
(85% of those eligible) that participated in the follow-up. Scores were worse in the DHA group than
the placebo group for the BRIEF Global Executive, Behavioral Regulation and Metacognition Indexes,
and the Shift, Inhibit, Monitor, Working Memory, and Organization of Materials scales, as well as for
the Conners 3 ADHD index, and the SDQ Total Difficulties score, Hyperactivity/Inattention score,
and Peer Relationship Problems score. In this healthy, largely term-born sample of children, prenatal
DHA supplementation conferred no advantage to childhood behavior, and instead appeared to have
an adverse effect on behavioral functioning, as assessed by standardized parental report scales.

Keywords: DHA; RCT; omega-3 fatty acids; supplementation; behavior; behavioral problems; prenatal

1. Introduction

The omega-3 long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA,
22:6n − 3) is known to accumulate in the fetal brain in the last trimester of pregnancy [1,2].
DHA is thought to be critical for appropriate neurodevelopment [3–5], which occurs at a
rapid rate over the last trimester of pregnancy [6]. Both animal models [7–9] and obser-
vational studies in humans [10–14] have suggested neurodevelopmental benefits for the
offspring after ensuring adequate dietary DHA during pregnancy. Numerous randomized
controlled trials (RCTs) have attempted to evaluate the effect of providing supplemental
DHA to pregnant women on child brain development through performance-based mea-
sures such as intelligence quotient tests. Multiple reviews of these RCTs have concluded
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very little evidence of an effect of a DHA intervention on cognition [15–18], executive
functioning (higher-order cognitive abilities) [15,18,19], motor [15–18], or language abili-
ties [15–18,20]; however, a recent review suggested some behavioral effects [21].

Behavioral functioning can be broadly dichotomized into internalizing or externalizing
behaviors [22]. Internalizing behaviors reflect the internal psychological environment
in terms of emotions and thoughts where problems may result in a child being overly
shy or anxious, withdrawing socially, having poor self-esteem, or being less interested
in social, academic, or recreational activities [23,24]. Internalizing behavior disorders
include depression, anxiety, dissociative disorders, and obsessive-compulsive disorder.
Externalizing problems are behaviors or actions that are outwardly expressed towards
the environment or other individuals, such as hyperactivity and impulsivity, verbal and
physical aggression, opposition to authority, inattention, poor inhibition, destruction or
theft of others property, and poor temper control [23,24]. Externalizing behavior problems
are considered disruptive disorders and include ADHD, and issues with conduct such as
oppositional defiant disorder.

Whilst behavioral functioning has a complex etiology, DHA has been highlighted
as potentially influential [25–31]. Case–control studies have revealed lower DHA status
among children diagnosed with autism spectrum disorder [32] and ADHD [33] when
compared with controls. Associations between low cord blood DHA status (reflecting DHA
exposure in late pregnancy) and increased likelihood of ADHD symptoms (externalizing
behavior) were reported in one observational study [34], and were reported contrastingly
with internalizing behaviors but not externalizing behaviors in another study [35]. High
seafood intake, the predominant source of dietary DHA, during pregnancy was associated
with reduced hyperactivity (externalizing behavior) at 9 years of age [10], while low seafood
intake was associated with poorer prosocial behavior in children at 8 years of age [11].

Despite positive associations detected in observational studies, RCTs of DHA supple-
mentation have not clearly demonstrated benefits of DHA interventions for behavioral
functioning [16,21]. One of the largest RCTs of prenatal DHA supplementation included
assessments of child behavior at 1.5 [36], 4 [37], and 7 years of age [38] through standard-
ized parent rating scales. At 1.5 years of age, parents completed the Social-Emotional and
Adaptive-Behavior scales of the Bayley Scales of Infant and Toddler Development, Third
Edition [36]. There was no effect of the DHA intervention on either of the overall scale
scores, although there was an unexpected sex by treatment interaction where females in the
DHA group had poorer adaptive behavior scores compared with females in the placebo
group [36]. When parents rated behavior again at 4 years of age on the Strengths and
Difficulties Questionnaire (SDQ) and the Behavior Rating Inventory of Executive Function
(BRIEF), Preschool Edition, children in the DHA group were reported to exhibit more
hyperactivity and inattention (symptoms of externalizing behaviors) as well as worse
emergent metacognition and ability to plan and organize compared with children in the
placebo group [37]. Scores reflecting internalizing behaviors did not differ between the
randomization groups [37]. When the children reached 7 years of age, parents again com-
pleted the SDQ and BRIEF as well as a measure of symptoms of ADHD (indicating poor
externalizing behavior).

Given that DHA is thought to be beneficial for brain development in general [10–14],
alongside suggestions that DHA supplementation may reduce externalizing behavioral
problems such as ADHD [29,39] or oppositional behaviors [40], it is important to further
explore the unexpected effects on behavior and whether there are effects on global behavior
or specific behavioral domains. The assessments of behavior in this large prenatal DHA
RCT offer an ideal opportunity to explore the effect of the intervention on numerous
domains of behavioral development, as well as the severity of any effect. By 7 years of
age, behavioral functioning is reasonably stable [22,41] and, if problematic, may start to
adversely affect schooling [42–47], and health-related quality of life [48], as well as being
predictive of employment and income in adulthood [49]. Only overall summary scores
were reported from this study, all of which revealed more behavioral symptoms in the DHA
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group compared with the placebo group [38]. Summary scores reflect overall functioning
(combining internalizing and externalizing behaviors), and do not indicate whether effects
are limited to a specific domain [50]. To better understand the pattern of behavioral
problems related to DHA supplementation, analysis of the individual clinical scales is
necessary. Furthermore, as only mean scores were compared between randomization
groups, it is impossible to determine whether there was an increased risk of children being
categorized as possibly having dysfunctional behavior requiring follow-up. The objective
of the current study was to determine the effect of prenatal DHA supplementation on the
individual scales of the behavioral assessments completed at 7 years of age, particularly
measures of externalizing behavior, in addition to whether any differences resulted in
behavioral symptoms that could be considered clinically dysfunctional. Based on the
behavioral assessments in this cohort at 1.5 [36] and 4 [37] years of age, this study explored
the hypothesis that effects of DHA would be restricted to externalizing behaviors.

2. Materials and Methods
2.1. Participants

Methods and results for the DHA to Optimize Maternal Infant Outcome (DOMInO)
trial and follow-up studies are published [36,38,51,52]. To summarize, women were eligible
to participate in this multicenter, parallel, double-blind, randomized controlled trial if
they had a singleton pregnancy less than 21 weeks’ gestation. Exclusion criteria were
current use of a DHA supplement or anticoagulant therapy, bleeding disorders (contraindi-
cating fish oil consumption), history of drug or alcohol abuse, current participation in
another fatty acid trial, inability to provide written informed consent, known major fetal
abnormality, and any language but English being the main language spoken at home. A
computer-driven telephone randomization service employing an independently generated
randomization schedule was used to allocate women to receive three capsules of either
DHA-rich fish oil (800 mg DHA/day and 100 mg/d eicosapentaenoic acid; Incromega
500 TG, Croda Chemicals, East Yorkshire, England) or vegetable oil daily from trial entry
until delivery [36]. The randomization schedule used balanced variable-sized blocks with
stratification by enrolment (medical) center and parity (first birth vs. subsequent birth)
to ensure approximately equal numbers in each randomization group. All investigators
and study staff were blinded to group allocation throughout the trial and follow-ups.
Women could request knowledge of their group allocation from an independent statis-
tician once the primary outcome analyses from the 1.5-year assessments were complete,
although the majority (92%) remained blinded throughout the follow-up studies to 7 years
of age. Women who requested to know their group allocation were instructed to keep this
knowledge confidential, and not to discuss this with study staff.

A total of 2399 women from five hospitals were recruited to the trial. There were
726 mother–child pairs (DHA group n = 351, placebo n = 375) from two hospitals selected
a priori for long-term neurodevelopmental follow-up, including all children born preterm
(n = 96) and a random selection of children born full-term (n = 630) [36]. By the 7-year
follow-up, there were 638 mother–child pairs (DHA group n = 310, placebo n = 328)
remaining in the study (who had not previously withdrawn from the DOMInO trial
or died). Families were invited to the follow-up prior to the child’s seventh birthday.
Consenting families attended an appointment at a hospital clinic room (at the Women’s
and Children’s Hospital or the Flinders Medical Centre in Adelaide, South Australia) or a
local community center (such as a library or school) and were assessed with a battery of
developmental assessments and parents completed questionnaires [38,51]. If this was not
possible, children were assessed at home.

Parents completed a hard (paper) copy of each behavioral questionnaire whilst their
child was undergoing the assessments in a different room. If preferred, parents could
complete the questionnaires through interview with study staff at the appointment, or over
the phone. The results of the developmental assessments, as well as the overall summary
scores from the parent-completed questionnaires have been previously published [38].
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All procedures were approved by an overseeing Human Research Ethics Committee.
The original trial was reviewed and approved by the ethics committee for the Children, Youth,
and Women’s Health Service (approval code REC1657/12/2007, approved 6 September 2005)
and the 7-year follow-up was reviewed and approved by the committee of the Women’s
and Children’s Health Network (approval code REC2526/12/15;HREC/12/WCHN/112,
approved 4 February 2013). Mothers provided written informed consent prior to enrolment in
the DOMInO Trial, and a legal guardian provided written informed consent on behalf of the
child for the 7-year assessments. Pregnant women were originally enrolled into the DOMInO
trial between October 2005 and January 2008, and the 7-year assessments were completed
between March 2013 and August 2015.

2.2. Strengths and Difficulties Questionnaire (SDQ)

The SDQ is a 25-item report of symptoms of behavioral problems as well as strengths,
with parents rating each item on a -point scale [53]. There are five scales, four of which
assess problematic behaviors. The Conduct Problems scale assesses behaviors that in-
dicate a child does not conform to societal behavioral expectations or respect the rights
of others, such as disobedience, fighting with other children, lying, and stealing. The
Hyperactivity/Inattention scale reflects symptoms of ADHD, for example distractibility,
excessive fidgeting, poor concentration and attention span, impulsivity, and restlessness.
The Emotional Symptoms scale captures mood and emotional reactions disproportionate
to the stimulus, such as fearfulness, anxiousness, low confidence, and unhappiness. The
Peer Relationship Problems scale assesses the ability to form relationships with other
children their age, such as having friends their own age, being liked by other children,
and preferring to play with other children rather than solitary play. The fifth scale, the
Prosocial Behavior scale, measures strengths in terms of voluntary consideration of others,
for example helpfulness, kindness, and thoughtful actions towards others.

The Conduct Problems and Hyperactivity/Inattention scales reflect externalizing
behaviors, whilst the Emotional Symptoms and Peer Relationship Problems scales indicate
internalizing behavioral problems [54]. The four behavior problem scales are summarized
in an overall Total Difficulties Score [53]. An Impact score also captures whether behavioral
difficulties are perceived to have an adverse impact on the child or their family.

SDQ scores are not age standardized and higher scores on any scale indicate more
perceived behavioral problems, with the exception of the Prosocial Behavior scale, where
higher scores indicate more strengths in this area [53]. A Total Difficulties Score >16 is
considered abnormal and warrants further clinical investigation for a possible behavioral
problem. Among the scales, scores are categorized as abnormal when they are >4 for
Emotional Symptoms, >3 for Conduct Problems, >6 for Hyperactivity/Inattention, >3 for
Peer Problems, and <5 for Prosocial Behavior. A score > 1 on the Impact scale is also
considered to be elevated.

2.3. Conners 3rd Edition ADHD (Diagnostic and Statistical Manual of Mental Disorders Version
IV) Index (Conners 3TM AI-Parent)

The Conners 3TM AI-parent is a questionnaire capturing symptoms of ADHD, as
defined by the Diagnostic and Statistical Manual of Mental Disorders version IV [55]. The
Conners 3TM AI-parent is an abbreviated, 10-item version of a larger questionnaire and
as such does not contain any subscales that could be explored here. The Conners 3TM

AI-parent generates one overall score that is age standardized to a mean of 50 and standard
deviation of 10. Higher scores are suggest more symptoms and a score ≥70 (in the very
elevated range) is indicative of possible ADHD.

2.4. Behavior Rating Inventory of Executive Function (BRIEF)

The BRIEF is an 86-item report of behavioral manifestations of executive dysfunc-
tion [56]. Parents rate each item on a three-point scale and higher scores indicate more
perceived problems. Scores are normed for age to a mean of 50 and standard deviation
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of 10. Higher scores reflect poorer perceived behavior and scores ≥ 65 are considered
indicative of a dysfunction.

The BRIEF generates an overall Global Executive Composite score, as well as the Be-
havioral Regulation Index (BRI) and Metacognition Index (MI). These two indices are com-
posed of several individual scale scores capturing individual aspects of functioning [56].

The BRI reflects the ability to self-monitor and regulate behavior and emotion ap-
propriately, and consists of the Inhibit, Shift, and Emotional Control scales. The Inhibit
scale assesses being able to inhibit impulses, reactions, or inappropriate behavior and resist
distractions. The Shift scale captures mental flexibility, or the ability to switch between
thinking about two different concepts, situations, or tasks. The Emotional Control scale
refers to the ability to regulate one’s own emotions and emotional responses.

The MI captures the ability to control and regulate conscious cognitive processes,
such as sustaining ideas and tasks in working memory as well as planning and organizing
problem-solving approaches, and consists of the Initiate, Working Memory, Plan/Organize,
Monitor, and Organization of Materials scales. The Initiate scale reflects an individual’s
ability to commence a task or instigate a response or problem-solving strategy indepen-
dently. The Working Memory scale measures representational memory, or the capacity to
hold key pieces of information in mind, possibly involving some encoding of the informa-
tion, in order to achieve a specific short-term goal. The Plan/Organize scale captures the
ability to anticipate, plan, and manage current and future-oriented tasks such as organizing
key information and ideas and developing the appropriate sequential steps needed to
accomplish a task. The Monitor scale assesses the ability to monitor and check one’s own
work or performance whilst undertaking a task or shortly afterwards, such as to improve
accuracy. The Organization of Materials scale is the ability to organize materials in an
orderly fashion.

2.5. Statistical Methods

A sample size of n = 726 was originally selected for neurodevelopmental follow-up
based on detecting differences between treatment groups in the mean Cognitive Scale
of the Bayley Scales of Infant and Toddler Development, Third Edition, at 1.5 years [36].
At 7 years, this sample size provides >80% power to detect a 0.25 SD difference (a small
effect size) between the treatment groups in the mean SDQ subscale scores, assuming 75%
follow-up.

All analyses were performed on an intention-to-treat basis according to the mother’s
allocation to the treatment or placebo group. Analyses were performed according to the pre-
specified statistical analysis plan using SAS Version 9.3 and Stata Release 13. Data collected
on participants up to the point of withdrawal were included in the analyses. Multiple
imputation was performed separately by treatment group using chained equations to
create 100 complete datasets for analysis, under the assumption that data were missing at
random [57]. The primary analysis was based on imputed data and included all participants
who consented to the follow-up study. Secondary analyses were performed on the available
data and on imputed data for the 726 children in the original sub-sample, excluding four
deaths. All analyses produced similar results and only the results of the primary analysis
are presented.

Continuous behavior scores were analyzed using linear regression models, with
treatment effects expressed as adjusted mean differences (AMDs; DHA-placebo). Binary
outcomes (defined as scores in the normal range versus scores indicative of a possible
problem) were analyzed using log binomial regression models, with treatment effects
expressed as adjusted relative risks (ARRs; DHA/placebo).

Analyses took into account both the sampling design and probability weights, cal-
culated as the inverse of the probability of selection. A priori secondary analyses were
performed to estimate treatment effects separately by infant sex and test for evidence of ef-
fect modification by sex, due to the previously reported sex differences in treatment effects
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on and language at 18 months in this cohort, and results from other studies suggesting that
boys and girls may respond differently to supplementation [36,58].

Both unadjusted and adjusted analyses were performed, with adjustment for the
stratification variables (center and parity), as well as child sex and mother’s secondary
education, further education, and smoking status at baseline. Unadjusted and adjusted
analyses produced similar results, and both are presented in the results tables, but only
the adjusted analyses are reported or interpreted in the text. Statistical significance was
assessed at the two-sided p < 0.05 level. All outcomes presented are secondary and no
adjustment was made for multiple comparisons; hence, the results of these analyses should
be interpreted with caution.

Post-randomization child demographics and clinical characteristics were compared
between treatment groups based on the available data using t-tests for continuous vari-
ables, and chi-squared tests for categorical variables, accounting for the sampling design
and weights.

3. Results

Of the 726 infants selected a priori for follow-up, there were 638 eligible and ap-
proached for the 7-year follow-up. There were 95 families that did not consent to the
follow-up (DHA group n = 51, placebo n = 44), 52 of which were not able to be located
and contacted, and 43 declined the follow-up with the predominant reason being that
they were too busy to participate. A total of 543 families consented to the assessment at
7 years (75% of the 726 originally selected for neurodevelopment follow-up and 85% of the
638 invited). Participant characteristics in the subset consenting to the follow-up were com-
parable between randomized groups at baseline and at 7 years (Table 1), with the exception
of maternal smoking, which was accounted for in analyses. There were similar proportions
of females and males in each randomization group (DHA group females n = 133, 51.4%;
placebo group females n = 140, 49.3%).

Table 1. Treatment group comparison of baseline and post-randomization demographic, social, and clinical characteristics 1.

DHA Placebo p Value

Characteristics at Study Entry n = 259 n = 284

Mother primiparous, n (%) 142 (54.8) 158 (55.6)

Mother completed secondary education, n (%) 171 (66.0) 192 (67.6)

Mother completed further education, n (%) 2 175 (67.6) 203 (71.5)

Non-smoker before and during early pregnancy, n (%) 190 (73.4) 187 (65.8)

Characteristics at 7 Years n = 259 n = 284

Age at assessment, mean (SD) days 2648 (110) 2652 (134) 0.73

Living with both natural parents, n/N (%) 188/256 (73.4) 191/283 (67.5) 0.36

Primary language English at child’s home, n/N (%) 246/256 (96.1) 271/283 (95.8) 0.85
1 Data are presented as mean (SD) with p-value based on t-tests, or n (%) with p-values from a chi-square test. Analyses are based on
the raw data and account for the sampling design and weights. No statistical tests were performed for baseline characteristics. 2 Degree,
diploma, certificate, trade.

3.1. Strengths and Difficulties Questionnaire (SDQ)

As previously reported, the Total Difficulties score of the SDQ was 1.09 points higher
on average in the DHA group compared with the placebo group (p = 0.02, Table 2) [38].
This appeared to be driven by effects within the Hyperactivity/Inattention (AMD 0.49,
95% CI 0.13 to 0.85; p = 0.01) and Peer Relationship Problems (AMD 0.27, 95% CI 0.01 to
0.53; p = 0.04) subscales. Children in the DHA group were more likely to be categorized
as being in the at-risk range on the SDQ Hyperactivity subscale (Table 3; ARR 1.56, 95%
CI 1.12 to 2.17; p = 0.01) and to have an Impact score indicative of a possible behavior
problem that was substantially adversely impacting their everyday functioning (ARR 1.44,
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95% CI 1.07 to 1.94; p = 0.02) compared with the placebo group. There was evidence of a
sex by treatment interaction on the Hyperactivity/Inattention mean score (AMD 0.97, 95%
CI 0.43 to 1.51; p < 0.01, interaction p = 0.01) and the proportion of scores in the abnormal
range (ARR 2.27, 95% CI 1.50 to 3.44; p = 0.01; interaction p = 0.01), where males in the
DHA group scored more poorly than males in the placebo group. Males in the DHA group
also appeared to have worse scores on the Total Difficulties score, although the interaction
tests did not reach statistical significance.

3.2. Conners 3rd Edition ADHD Diagnostic and Statistical Manual of Mental Disorders Version
IV Index (Conners 3TM AI-Parent)

As stated in the primary results paper [38], children in the DHA group had scores that
were 2.84 points higher on average (reflecting more symptoms) on Conners 3TM AI-parent
ADHD index than children from the placebo group (p = 0.02). The mean score for children
in the DHA group (60.94) fell just within the elevated range (scores 60–69), indicating more
concerns about symptoms of ADHD than is typical. However, there was limited evidence of
a difference between the randomization groups in the proportion of children who scored in
the clinical range (p = 0.06). There was evidence of a sex by treatment interaction (p = 0.02),
where males in the DHA group had higher scores on average than placebo group males
(AMD 5.79, 95% CI 2.13 to 9.44; p < 0.01) and were more likely to fall within the abnormal
range, although the interaction test was not statistically significant (p = 0.36).

3.3. BRIEF

Parent-reported assessments indicated more perceived problems in the DHA group
than the placebo group (Table 2). As previously reported [38], overall scores on the BRIEF
and the Global Executive Composite were 2.38 points higher on average in the DHA group
(p = 0.01). More children in the DHA group also had Global Executive Composite scores in
the at-risk range than did children in the placebo group (Table 3; ARR 1.48, 95% CI 1.07
to 2.05; p = 0.02). These effects appeared to have been driven by a negative effect of DHA
supplementation predominantly within males; however, the sex interaction effects did not
reach statistical significance (p = 0.08).

The BRI was 2.09 points higher on average in the DHA group (95% CI 0.40 to 3.79;
p = 0.02). The Inhibit (AMD 2.40, 95% CI 0.79 to 4.00; p < 0.01) and Shift (AMD 2.05, 95% CI
0.33 to 3.78; p = 0.02) scales were the only scores to differ between groups and were elevated in
the DHA group, and children in the DHA group were more likely to score in the at-risk range
for the Inhibit scale (Table 3; ARR 1.49, 95% CI 1.04 to 2.13; p = 0.03). Exploratory analyses
by sex suggested that there were no effects within females, whereas the DHA group males
had elevated (ie. poorer) Shift scale (53.89 vs. 49.81, AMD 3.89, 95% CI 1.37 to 6.41; p < 0.01;
interaction p = 0.04), BRI, and Inhibit scale scores than placebo group males, although the
interaction test did not reach statistical significance for the BRI and Inhibit scale.

The MI was 2.25 points higher on average in the DHA group compared with the placebo
group (95% CI 0.57 to 3.92; p = 0.01). The Working Memory (AMD 1.88, 95% CI 0.20 to 3.57; p
= 0.03), Plan/Organize (AMD 2.20, 95% CI 0.49 to 3.92; p = 0.01), Monitor (AMD 2.99, 95%
CI 1.25 to 4.72; p < 0.01), and Organization of Materials (AMD 1.80, 95% CI 0.29 to 3.31; p
= 0.02) scales were all elevated in the DHA group, as was the proportion of children in the
at-risk range for the Monitor scale (ARR 1.72, 95% CI 1.17 to 2.51; p = 0.01). Although the
mean Initiate scale scores did not differ between groups overall, there was evidence of a sex
by treatment interaction effect (p = 0.03), where males in the DHA group scored 2.75 points
higher on average than males in the placebo group (95% CI 0.69 to 4.80; p = 0.01). Males in
the DHA group also scored more poorly on the Working Memory scale (AMD 3.73, 95% CI
1.19 to 6.28; p < 0.01; interaction p = 0.03) and were more likely to score in the at-risk range
compared with placebo group males (ARR 1.59, 95% CI 1.08 to 2.35; p = 0.02; interaction p =
0.01). The MI, Plan/Organize scale, and Monitor scale also appeared to be worse in the DHA
group males, with a higher proportion having a problematic score than the placebo group
males, although the interaction effects did not reach statistical significance.
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Table 2. Parent-reported outcomes of behavior at 7 years of age 1.

Outcome
DHA Weighted
Mean (95% CI)

n = 259

Placebo Weighted
Mean (95% CI)

n = 284

Un-Adjusted
Estimate (95% CI)

Un-Adjusted
p

Un-Adjusted
Interaction p 3

Adjusted Estimate
(95% CI) 2

Adjusted
p

Adjusted
Interaction p 3

BRIEF

Global Executive
Composite 4 54.89 (53.71, 56.07) 52.54 (51.32, 53.76) 2.35 (0.66, 4.04) 0.01 0.10 2.38 (0.67, 4.08) 0.01 0.08

Females 54.33 (52.87, 55.80) 53.43 (51.66, 55.21) 0.90 (−1.39, 3.20) 0.44 0.86 (−1.44, 3.16) 0.46

Males 55.49 (53.62, 57.36) 51.69 (49.99, 53.38) 3.80 (1.28, 6.33) <0.01 3.93 (1.43, 6.44) <0.01

Behavioral Regulation
Index 4 53.66 (52.49, 54.83) 51.54 (50.31, 52.76) 2.12 (0.43, 3.81) 0.01 0.10 2.09 (0.40, 3.79) 0.02 0.10

Females 53.44 (51.95, 54.93) 52.76 (51.09, 54.43) 0.68 (−1.55, 2.91) 0.55 0.68 (−1.59, 2.96) 0.56

Males 53.89 (52.06, 55.73) 50.36 (48.58, 52.15) 3.53 (0.97, 6.08) 0.01 3.55 (1.02, 6.07) 0.01

Inhibit scale 53.23 (52.08, 54.39) 50.86 (49.73, 51.99) 2.37 (0.76, 3.98) <0.01 0.39 2.40 (0.79, 4.00) <0.01 0.31

Females 53.02 (51.56, 54.49) 51.37 (49.85, 52.88) 1.66 (−0.45, 3.76) 0.12 1.57 (−0.54, 3.68) 0.15

Males 53.46 (51.65, 55.28) 50.38 (48.71, 52.05) 3.08 (0.63, 5.54) 0.01 3.24 (0.80, 5.69) <0.01

Shift scale 53.14 (51.89, 54.39) 51.07 (49.88, 52.25) 2.07 (0.36, 3.78) 0.02 0.02 2.05 (0.33, 3.78) 0.02 0.04

Females 52.44 (50.77, 54.11) 52.39 (50.72, 54.05) 0.05 (−2.28, 2.39) 0.96 0.27 (−2.13, 2.66) 0.83

Males 53.89 (52.01, 55.77) 49.81 (48.12, 51.50) 4.08 (1.56, 6.60) <0.01 3.89 (1.37, 6.41) <0.01

Emotional Control
scale 53.48 (52.32, 54.65) 52.48 (51.22, 53.74) 1.01 (−0.71, 2.72) 0.25 0.20 0.95 (−0.78, 2.67) 0.28 0.18

Females 53.40 (51.85, 54.95) 53.55 (51.79, 55.31) −0.15 (−2.49, 2.19) 0.90 −0.21 (−2.59, 2.16) 0.86

Males 53.57 (51.80, 55.34) 51.45 (49.64, 53.26) 2.12 (−0.41, 4.66) 0.10 2.14 (−0.36, 4.64) 0.09

Metacognition Index 4 54.68 (53.51, 55.84) 52.49 (51.29, 53.69) 2.19 (0.52, 3.86) 0.01 0.15 2.25 (0.57, 3.92) 0.01 0.12

Females 54.01 (52.51, 55.50) 53.03 (51.25, 54.81) 0.98 (−1.34, 3.30) 0.41 0.94 (−1.37, 3.24) 0.43

Males 55.40 (53.59, 57.21) 51.97 (50.35, 53.59) 3.43 (1.01, 5.86) 0.01 3.60 (1.19, 6.02) <0.01

Initiate scale 53.12 (52.08, 54.17) 52.09 (50.96, 53.22) 1.03 (−0.51, 2.57) 0.19 0.05 1.05 (−0.51, 2.62) 0.19 0.03
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Table 2. Cont.

Outcome
DHA Weighted
Mean (95% CI)

n = 259

Placebo Weighted
Mean (95% CI)

n = 284

Un-Adjusted
Estimate (95% CI)

Un-Adjusted
p

Un-Adjusted
Interaction p 3

Adjusted Estimate
(95% CI) 2

Adjusted
p

Adjusted
Interaction p 3

Females 52.03 (50.55, 53.50) 52.53 (50.75, 54.31) −0.50 (−2.82, 1.81) 0.67 −0.59 (−2.90, 1.71) 0.62

Males 54.31 (52.83, 55.78) 51.67 (50.26, 53.08) 2.63 (0.59, 4.68) 0.01 2.75 (0.69, 4.80) 0.01

Working Memory
scale 54.46 (53.28, 55.65) 52.79 (51.60, 53.98) 1.67 (−0.02, 3.35) 0.05 0.07 1.88 (0.20, 3.57) 0.03 0.03

Females 52.67 (51.24, 54.10) 52.50 (50.83, 54.17) 0.17 (−2.03, 2.37) 0.88 0.09 (−2.13, 2.31) 0.94

Males 56.40 (54.50, 58.31) 53.08 (51.38, 54.78) 3.32 (0.76, 5.89) 0.01 3.73 (1.19, 6.28) <0.01

Plan/Organize scale 55.52 (54.28, 56.76) 53.31 (52.14, 54.48) 2.21 (0.51, 3.91) 0.01 0.05 2.20 (0.49, 3.92) 0.01 0.06

Females 55.01 (53.52, 56.50) 54.52 (52.80, 56.24) 0.49 (−1.78, 2.75) 0.67 0.56 (−1.71, 2.84) 0.63

Males 56.07 (54.04, 58.09) 52.15 (50.56, 53.74) 3.91 (1.34, 6.49) <0.01 3.89 (1.30, 6.48) <0.01

Organization of
Materials scale 54.71 (53.60, 55.81) 52.85 (51.85, 53.86) 1.85 (0.35, 3.35) 0.02 0.73 1.80 (0.29, 3.31) 0.02 0.84

Females 55.37 (53.81, 56.93) 53.28 (51.80, 54.76) 2.09 (−0.07, 4.24) 0.06 1.95 (−0.19, 4.10) 0.07

Males 54.00 (52.43, 55.57) 52.45 (51.07, 53.82) 1.55 (−0.53, 3.63) 0.14 1.64 (−0.47, 3.75) 0.13

Monitor scale 52.51 (51.28, 53.73) 49.48 (48.24, 50.72) 3.03 (1.29, 4.77) <0.01 0.37 2.99 (1.25, 4.72) <0.01 0.35

Females 52.42 (50.90, 53.94) 50.20 (48.39, 52.02) 2.21 (−0.14, 4.57) 0.07 2.17 (−0.17, 4.51) 0.07

Males 52.61 (50.65, 54.56) 48.79 (47.08, 50.50) 3.82 (1.23, 6.41) <0.01 3.83 (1.26, 6.40) <0.01

Conners 3TM

AI-parent

ADHD t score 4 60.94 (59.10, 62.78) 58.37 (56.74, 60.00) 2.56 (0.13, 5.00) 0.04 0.04 2.84 (0.38, 5.30) 0.02 0.02

Females 59.43 (57.14, 61.73) 59.36 (56.96, 61.76) 0.07 (−3.23, 3.38) 0.97 −0.03 (−3.35, 3.29) 0.99

Males 62.56 (59.64, 65.48) 57.43 (55.21, 59.64) 5.13 (1.50, 8.77) 0.01 5.79 (2.13, 9.44) <0.01

SDQ

Total Difficulties Score
4 9.71 (9.07, 10.35) 8.63 (7.99, 9.28) 1.08 (0.17, 1.98) 0.02 0.16 1.09 (0.18, 2.00) 0.02 0.14

Females 8.89 (8.11, 9.67) 8.43 (7.56, 9.29) 0.47 (−0.69, 1.62) 0.43 0.42 (−0.75, 1.58) 0.48

Males 10.60 (9.58, 11.62) 8.83 (7.86, 9.80) 1.76 (0.36, 3.16) 0.01 1.79 (0.40, 3.17) 0.01
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Table 2. Cont.

Outcome
DHA Weighted
Mean (95% CI)

n = 259

Placebo Weighted
Mean (95% CI)

n = 284

Un-Adjusted
Estimate (95% CI)

Un-Adjusted
p

Un-Adjusted
Interaction p 3

Adjusted Estimate
(95% CI) 2

Adjusted
p

Adjusted
Interaction p 3

Emotional Symptoms
score 2.21 (2.01, 2.41) 1.97 (1.76, 2.18) 0.24 (−0.05, 0.53) 0.10 0.98 0.23 (−0.07, 0.52) 0.13 0.84

Females 2.38 (2.07, 2.69) 2.14 (1.85, 2.44) 0.24 (−0.19, 0.66) 0.28 0.25 (−0.18, 0.69) 0.25

Males 2.03 (1.77, 2.28) 1.80 (1.50, 2.10) 0.23 (−0.16, 0.62) 0.25 0.20 (−0.19, 0.58) 0.32

Conduct Problems
score 1.74 (1.56, 1.92) 1.63 (1.45, 1.81) 0.11 (−0.14, 0.36) 0.39 0.21 0.10 (−0.15, 0.36) 0.43 0.17

Females 1.55 (1.33, 1.77) 1.59 (1.35, 1.84) −0.04 (−0.37, 0.28) 0.79 −0.08 (−0.41, 0.26) 0.65

Males 1.94 (1.65, 2.24) 1.66 (1.40, 1.92) 0.28 (−0.11, 0.67) 0.16 0.29 (−0.10, 0.68) 0.15

Hyperactivity score 4.13 (3.87, 4.39) 3.67 (3.42, 3.92) 0.45 (0.09, 0.82) 0.01 0.02 0.49 (0.13, 0.85) 0.01 0.01

Females 3.58 (3.27, 3.89) 3.52 (3.16, 3.88) 0.06 (−0.42, 0.54) 0.80 0.03 (−0.45, 0.51) 0.91

Males 4.71 (4.29, 5.13) 3.82 (3.47, 4.17) 0.90 (0.35, 1.44) <0.01 0.97 (0.43, 1.51) <0.01

Peer Problems score 1.61 (1.41, 1.80) 1.34 (1.16, 1.52) 0.27 (0.01, 0.53) 0.05 0.65 0.27 (0.01, 0.53) 0.04 0.75

Females 1.38 (1.15, 1.61) 1.16 (0.94, 1.38) 0.22 (−0.10, 0.54) 0.18 0.23 (−0.09, 0.54) 0.17

Males 1.85 (1.54, 2.17) 1.51 (1.23, 1.79) 0.34 (−0.07, 0.76) 0.11 0.31 (−0.10, 0.72) 0.14

Prosocial Behavior
score 8.12 (7.92, 8.32) 8.18 (7.99, 8.38) −0.06 (−0.34, 0.22) 0.69 0.65 −0.05 (−0.32, 0.23) 0.74 0.45

Females 8.44 (8.19, 8.69) 8.45 (8.19, 8.71) −0.01 (−0.37, 0.35) 0.95 0.06 (−0.30, 0.42) 0.75

Males 7.78 (7.47, 8.09) 7.92 (7.63, 8.21) −0.14 (−0.56, 0.28) 0.52 −0.16 (−0.58, 0.27) 0.47

Impact score 0.90 (0.73, 1.08) 0.69 (0.53, 0.85) 0.21 (−0.02, 0.45) 0.08 0.65 0.23 (−0.01, 0.46) 0.06 0.57

Females 0.59 (0.41, 0.78) 0.42 (0.27, 0.57) 0.18 (−0.07, 0.42) 0.15 0.16 (−0.09, 0.41) 0.22

Males 1.24 (0.94, 1.54) 0.95 (0.68, 1.22) 0.29 (−0.12, 0.69) 0.17 0.30 (−0.10, 0.69) 0.15
1 Data are presented as weighted mean (95% CI) with the effect estimate (95% CI) being the mean difference (DHA-Placebo). Analyses are based on 100 imputed datasets and were performed using linear
regression models accounting for the sampling design and weights. 2 Adjusted for center, parity, infant sex, mother’s secondary education, mother’s further education, and mother’s smoking status. 3 p-value
for infant sex by treatment group interaction term. 4 Data reported previously [38]. BRIEF: Behavior Rating Inventory of Executive Function. Conners 3TM AI-parent: Conners 3rd Edition Attention-Deficit
Hyperactivity Disorder Diagnostic and Statistical Manual of Mental Disorders version IV Index. SDQ: Strengths and Difficulties Questionnaire.
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Table 3. Proportion of children with scores within the clinically significant range for behavior and behavioral manifestation of executive functions at 7 years of age 1.

Outcome DHA Weighted %
(95% CI) n = 259

Placebo Weighted %
(95% CI) n = 284

Unadjusted Estimate
(95% CI)

Un-Adjusted
p

Un-Adjusted
Interaction p 3

Adjusted Estimate
(95% CI) 2

Adjusted
p

Adjusted
Interaction p 3

BRIEF

Global Executive
Composite ≥65 20.62 (16.42, 24.81) 14.24 (10.80, 17.67) 1.45 (1.06, 1.98) 0.02 0.24 1.48 (1.07, 2.05) 0.02 0.27

Females 19.51 (13.76, 25.27) 16.17 (10.98, 21.36) 1.21 (0.78, 1.86) 0.40 1.25 (0.79, 1.95) 0.34

Males 21.80 (15.67, 27.94) 12.38 (7.87, 16.89) 1.76 (1.11, 2.79) 0.02 1.80 (1.13, 2.85) 0.01

Behavioral Regulation
Index ≥65 18.12 (14.10, 22.14) 16.56 (12.83, 20.28) 1.09 (0.80, 1.50) 0.57 0.99 1.11 (0.80, 1.53) 0.54 0.93

Females 16.88 (11.47, 22.28) 15.33 (10.12, 20.54) 1.10 (0.69, 1.75) 0.68 1.12 (0.69, 1.84) 0.64

Males 19.47 (13.48, 25.45) 17.73 (12.42, 23.04) 1.10 (0.71, 1.69) 0.67 1.09 (0.72, 1.67) 0.68

Inhibit scale ≥65 17.79 (13.77, 21.81) 11.92 (8.70, 15.15) 1.49 (1.05, 2.12) 0.03 0.78 1.49 (1.04, 2.13) 0.03 0.68

Females 14.97 (9.80, 20.15) 10.54 (6.06, 15.03) 1.42 (0.82, 2.45) 0.21 1.36 (0.76, 2.44) 0.30

Males 20.83 (14.63, 27.03) 13.24 (8.60, 17.88) 1.57 (0.99, 2.49) 0.05 1.59 (1.00, 2.52) 0.05

Shift scale ≥65 13.53 (10.01, 17.05) 14.41 (10.93, 17.88) 0.94 (0.66, 1.34) 0.73 0.19 0.96 (0.67, 1.39) 0.83 0.39

Females 10.99 (6.63, 15.34) 15.01 (10.07, 19.95) 0.73 (0.44, 1.23) 0.24 0.80 (0.46, 1.40) 0.44

Males 16.27 (10.68, 21.87) 13.83 (8.93, 18.74) 1.18 (0.72, 1.93) 0.52 1.12 (0.68, 1.84) 0.66

Emotional Control
scale ≥65 17.62 (13.69, 21.55) 18.93 (15.06, 22.81) 0.93 (0.69, 1.26) 0.64 0.36 0.94 (0.68, 1.28) 0.69 0.35

Females 15.25 (10.11, 20.40) 18.99 (13.43, 24.56) 0.80 (0.51, 1.26) 0.34 0.80 (0.49, 1.28) 0.35

Males 20.18 (14.18, 26.18) 18.88 (13.46, 24.29) 1.07 (0.71, 1.62) 0.75 1.08 (0.71, 1.63) 0.72

Metacognition Index
≥65 19.36 (15.23, 23.49) 15.01 (11.44, 18.57) 1.29 (0.94, 1.77) 0.12 0.12 1.28 (0.93, 1.76) 0.14 0.14

Females 17.18 (11.68, 22.67) 17.12 (11.69, 22.55) 1.00 (0.64, 1.57) 0.99 1.01 (0.64, 1.58) 0.98

Males 21.72 (15.51, 27.93) 12.99 (8.37, 17.61) 1.67 (1.06, 2.64) 0.03 1.63 (1.03, 2.58) 0.04

Initiate scale ≥65 16.29 (12.49, 20.09) 14.18 (10.62, 17.73) 1.15 (0.82, 1.62) 0.43 0.39 1.14 (0.80, 1.63) 0.47 0.38

Females 13.72 (8.82, 18.61) 13.99 (8.92, 19.07) 0.98 (0.59, 1.63) 0.94 0.96 (0.57, 1.62) 0.88

Males 19.06 (13.21, 24.91) 14.35 (9.39, 19.31) 1.33 (0.84, 2.11) 0.23 1.31 (0.82, 2.11) 0.26
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Table 3. Cont.

Outcome DHA Weighted %
(95% CI) n = 259

Placebo Weighted %
(95% CI) n = 284

Unadjusted Estimate
(95% CI)

Un-Adjusted
p

Un-Adjusted
Interaction p 3

Adjusted Estimate
(95% CI) 2

Adjusted
p

Adjusted
Interaction p 3

Working Memory
scale ≥65 18.93 (14.89, 22.98) 17.23 (13.52, 20.95) 1.10 (0.81, 1.49) 0.54 0.01 1.16 (0.85, 1.58) 0.36 0.01

Female 11.31 (6.74, 15.89) 16.69 (11.42, 21.97) 0.68 (0.41, 1.13) 0.14 0.67 (0.40, 1.12) 0.13

Males 27.15 (20.44, 33.86) 17.75 (12.51, 22.99) 1.53 (1.04, 2.25) 0.03 1.59 (1.08, 2.35) 0.02

Plan/Organize scale
≥65 21.13 (16.87, 25.38) 17.42 (13.71, 21.13) 1.21 (0.91, 1.62) 0.19 0.03 1.20 (0.90, 1.62) 0.22 0.05

Females 18.81 (13.17, 24.45) 21.31 (15.54, 27.07) 0.88 (0.59, 1.32) 0.55 0.91 (0.61, 1.36) 0.66

Males 23.63 (17.22, 30.04) 13.69 (9.04, 18.35) 1.73 (1.12, 2.66) 0.01 1.67 (1.07, 2.59) 0.02

Organization of
Materials scale ≥65 23.47 (19.08, 27.86) 17.09 (13.41, 20.78) 1.37 (1.03, 1.83) 0.03 0.69 1.32 (0.98, 1.78) 0.07 0.60

Females 26.86 (20.55, 33.16) 20.74 (15.06, 26.42) 1.29 (0.90, 1.86) 0.16 1.24 (0.86, 1.80) 0.25

Males 19.83 (13.77, 25.88) 13.60 (8.89, 18.30) 1.46 (0.92, 2.31) 0.11 1.45 (0.92, 2.30) 0.11

Monitor scale ≥65 17.17 (13.18, 21.16) 10.16 (7.17, 13.14) 1.69 (1.16, 2.46) 0.01 0.50 1.72 (1.17, 2.51) 0.01 0.52

Females 15.94 (10.57, 21.31) 10.73 (6.31, 15.14) 1.49 (0.87, 2.53) 0.14 1.51 (0.88, 2.60) 0.13

Males 18.50 (12.56, 24.44) 9.61 (5.56, 13.66) 1.93 (1.14, 3.26) 0.02 1.94 (1.14, 3.30) 0.01

Conners 3TM AI-parent

ADHD t score ≥70 31.05 (26.25, 35.85) 25.55 (21.27, 29.83) 1.22 (0.97, 1.52) 0.09 0.43 1.25 (0.99, 1.58) 0.06 0.36

Females 25.69 (19.41, 31.97) 23.27 (17.36, 29.18) 1.10 (0.78, 1.57) 0.58 1.10 (0.76, 1.58) 0.62

Males 36.84 (29.56, 44.11) 27.74 (21.56, 33.92) 1.33 (0.99, 1.78) 0.06 1.37 (1.01, 1.84) 0.04

SDQ

Total Difficulties score
>16 14.33 (10.78, 17.88) 12.02 (8.76, 15.27) 1.19 (0.83, 1.72) 0.35 0.38 1.20 (0.82, 1.74) 0.35 0.42

Females 10.72 (6.51, 14.93) 10.80 (6.34, 15.26) 0.99 (0.56, 1.75) 0.98 0.99 (0.56, 1.77) 0.98

Males 18.22 (12.45, 24.00) 13.18 (8.45, 17.91) 1.38 (0.86, 2.23) 0.19 1.36 (0.83, 2.20) 0.22

Emotional Symptoms
score >4 13.30 (9.85, 16.75) 13.33 (9.89, 16.76) 1.00 (0.69, 1.44) 0.99 0.56 0.97 (0.66, 1.43) 0.89 0.64

Females 16.65 (11.46, 21.84) 15.49 (10.30, 20.67) 1.08 (0.68, 1.70) 0.76 1.04 (0.65, 1.68) 0.87
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Table 3. Cont.

Outcome DHA Weighted %
(95% CI) n = 259

Placebo Weighted %
(95% CI) n = 284

Unadjusted Estimate
(95% CI)

Un-Adjusted
p

Un-Adjusted
Interaction p 3

Adjusted Estimate
(95% CI) 2

Adjusted
p

Adjusted
Interaction p 3

Males 9.68 (5.22, 14.14) 11.25 (6.72, 15.78) 0.86 (0.47, 1.58) 0.62 0.87 (0.46, 1.62) 0.65
Conduct Problems

score >3 4 15.98 (12.19, 19.78) 12.02 (8.84, 15.21) 1.33 (0.93, 1.90) 0.12 0.89 1.34 (0.94, 1.91) 0.11 0.84

Females 11.19 (6.86, 15.51) 8.58 (4.51, 12.64) 1.31 (0.71, 2.40) 0.39 1.27 (0.69, 2.35) 0.44

Males 21.15 (14.85, 27.46) 15.32 (10.45, 20.20) 1.38 (0.89, 2.13) 0.15 1.37 (0.89, 2.13) 0.15

Hyperactivity score >6 19.80 (15.71, 23.90) 13.28 (9.93, 16.62) 1.49 (1.08, 2.07) 0.02 0.01 1.56 (1.12, 2.17) 0.01 <0.01

Females 10.56 (6.13, 14.98) 13.08 (8.35, 17.82) 0.81 (0.46, 1.41) 0.45 0.77 (0.44, 1.37) 0.38

Males 29.78 (22.90, 36.66) 13.46 (8.75, 18.18) 2.21 (1.46, 3.36) <0.01 2.27 (1.50, 3.44) <0.01

Peer Problems score
>3 13.74 (10.16, 17.33) 10.76 (7.59, 13.93) 1.28 (0.86, 1.89) 0.22 0.55 1.28 (0.86, 1.89) 0.22 0.69

Females 10.25 (5.86, 14.64) 9.18 (5.07, 13.29) 1.12 (0.60, 2.07) 0.72 1.16 (0.63, 2.13) 0.64

Males 17.51 (11.78, 23.24) 12.27 (7.49, 17.06) 1.43 (0.86, 2.37) 0.17 1.36 (0.82, 2.27) 0.24

Prosocial Behavior
score <5 3.98 (1.87, 6.09) 4.40 (2.37, 6.43) 0.90 (0.45, 1.82) 0.78 0.58 0.97 (0.48, 1.95) 0.93 0.50

Females 2.86 (0.50, 5.22) 3.97 (1.13, 6.81) 0.72 (0.24, 2.15) 0.56 0.73 (0.25, 2.18) 0.58

Males 5.19 (1.63, 8.76) 4.81 (1.91, 7.71) 1.08 (0.43, 2.67) 0.87 1.18 (0.50, 2.79) 0.71

Impact score >1 22.64 (18.27, 27.00) 15.57 (12.02, 19.12) 1.45 (1.08, 1.96) 0.02 0.34 1.44 (1.07, 1.94) 0.02 0.31

Females 16.71 (11.29, 22.14) 9.12 (5.02, 13.23) 1.83 (1.05, 3.20) 0.03 1.84 (1.04, 3.25) 0.04

Males 29.03 (22.17, 35.90) 21.74 (16.07, 27.41) 1.34 (0.94, 1.90) 0.11 1.30 (0.91, 1.85) 0.15
1 Data are presented as weighted percentage (95% CI) with the effect estimate (95% CI) being the relative risk (DHA/placebo). Analyses are based on 100 imputed datasets and were performed using log
binomial regression accounting for the sampling design and weights. 2 Adjusted for center, parity, infant sex, mother’s secondary education, mother’s further education, and mother’s smoking status. 3 p-value
for infant sex by treatment group interaction terms. 4 Analyzed using log Poisson regression as convergence issues were encountered with log binomial regression for some imputed datasets. BRIEF: Behavior
Rating Inventory of Executive Function. Conners 3TM AI-parent: Conners 3rd Edition Attention-Deficit Hyperactivity Disorder Diagnostic and Statistical Manual of Mental Disorders version IV Index. SDQ:
Strengths and Difficulties Questionnaire.
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4. Discussion

It has previously been reported that in this large RCT, DHA supplementation in
pregnancy resulted in more parent-rated behavioral symptoms and ADHD symptoms,
as well as behavioral manifestations of executive dysfunction at 7 years of age [38]. The
current in-depth exploration of the behavioral ratings supported the hypothesis that effects
of prenatal DHA (800 mg per day) were most prominent in indices reflecting externalizing
behaviors. Additionally, DHA group children appeared to be more likely to score in the
at-risk range for externalizing behavioral problems more frequently than placebo group
children. The poorer scores in the DHA group were largely driven by an effect within
males. These results are somewhat consistent with the findings of potentially adverse
effects on externalizing behavior at 1.5 [36] and 4 [37] years of age; although, at 1.5 years,
adverse effects were detected within females only [36], and at 4 [37] years of age, there was
no sex by treatment interaction. Performance-based assessments of executive functioning
(administered by study assessors) were largely null at 4 and 7 years of age, with the
exception that males in the DHA group had slightly poorer inhibition and mental flexibility
compared with males in the placebo group [38], which is consistent with the differences
found on the parent-rated Shift and Inhibit scales. Importantly, the effect sizes of the
potentially adverse effects of the DHA intervention were relatively small, even though
slightly more DHA group children were classified as being in the at-risk range, suggesting
the magnitude of an effect is likely negligible. The differences in parent-rated behavior
were not reflected in the clinical diagnoses of behavioral problems [38]. It may be that the
DOMInO trial has highlighted a true, small underlying adverse effect of DHA on behavior,
or these may be chance findings due to the large number of comparisons made.

The most comparable trial to DOMInO with long-term developmental follow-up is a
large RCT of DHA in Australian infants born <33 weeks’ gestation [59]. Supplementation
with a high-dose of DHA or a standard-dose of DHA occurred from within a week of birth
until infants reached 40 weeks’ gestation (equivalent to full term) [59], which corresponds
to the same supplementation period in the DOMInO trial, although supplementation
took place ex utero. Parents completed the BRIEF, SDQ, and Conners 3TM AI-parent
questionnaires when the children reached 7 years of age [59]. Comparable to DOMInO,
behavioral outcomes, particularly externalizing behaviors and executive dysfunction, were
slightly worse in infants who received the high-dose DHA; however, the effects appeared
to be driven by differences in females [59]. Whilst similar aspects of behavioral functioning
were affected by DHA in these large trials, the sex by treatment interaction is unexpectedly
inconsistent. It is important to note that in both trials, behavioral functioning was a
secondary outcome and may be subject to random error.

Nine other prenatal DHA RCTs with behavior assessments have reported no positive
or negative effects on behavioral functioning [60–71]. However, follow-up was typically
prior to school age [60–62,64,69], samples were small in all but two trials [67,68], none used
the measures administered in DOMInO, only two explored a treatment by sex interac-
tion [67,69], and the dose of DHA was generally low and may have been insufficient to
elicit an effect [61–63,65–71]. A recent review identified 25 RCTs of DHA supplementation
in the first 1000 days that administered a measure of behavior, of which 19 detected no
effect of DHA, 5 reported a negative effect, and 1 reported both positive and negative effects
of DHA intervention on an aspect of behavior [21]. In a trial of breastfeeding mothers,
males in the DHA group had poorer ratings of prosocial behavior compared with males
in the placebo group [72]. A separate trial found temperamental indices of externalizing
behavior worse in formula-fed infants randomized to DHA compared with infants in the
placebo group [73]. When the behavior was measured in a trial conducted in preterm
infants, effortful control in early childhood was worse in the DHA group among infants
from higher income households when compared with children in the placebo group who
were also from higher income households, although children in the DHA group were con-
versely likely to have fewer symptoms of autism spectrum disorder [74,75]. A subsequent
follow-up of these children resulted in no differences in parent-rated behavior [76]. The
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same investigators conducted a DHA intervention in older children displaying symptoms
of autism spectrum disorder and found fewer symptoms after the intervention [77]. A RCT
conducted in Australian formula-fed infants reported that the DHA group children had
poorer scores for externalizing behavior at 6 years of age than did placebo group children,
particularly for oppositional defiant behavior and effects were most prominent within
males [78]. As with the DOMInO trial, negative effects were largely limited to externalizing
behaviors, but again, these were secondary outcomes in studies conducted in developed
countries (Australia, the United States of America, and Denmark) with populations likely
to be nutritionally replete.

Although there is evidence for a possible adverse effect of early DHA interventions on
externalizing behavior, in all trials, behavior was a secondary outcome, and attrition was
often high [21]. No differences have been detected in diagnoses of behavioral problems or
the use of medications for behavioral problems [21], suggesting that if there are true adverse
effects, they are not having a clinically significant impact on functioning. Importantly, there
are well over 100 published DHA intervention trials in the first 1000 days, and less than a
quarter have assessed behavior [21].

DHA is considered necessary for optimal brain development; however, as with many
nutrients, it is possible that there is an upper limit for safe levels of DHA. Children in
both randomization groups of DOMInO were doing well overall, with average intelligence
quotient close to the expected mean of 100 [38] and very few diagnoses of neurological
disorders (such as ADHD or a language disorder) or chronic health conditions, likely
because the mothers were from a well-nourished population and the majority of children
were born full term [38]. It may be that fetal brain development is protected against
insufficient DHA [79,80], but may not be protected against excess DHA. Another recent
large prenatal RCT in Australia found that high-dose DHA supplementation protected
against early preterm birth in women with low DHA status, but conversely increased
the risk of early preterm birth in women whose baseline status was high [81]. A RCT in
formula-fed infants tested the effects of three formulas with differing doses of DHA and a
placebo formula on a range of cognitive, language, and executive functioning tasks across
childhood [82]. Authors consistently found that the two middle-DHA doses performed
best, whilst the group receiving the highest dose of DHA and the placebo group performed
slightly more poorly by comparison [82]. A recent, large observational study identified
an inverted U-shaped relation between omega-3 long-chain polyunsaturated fatty acid
concentration mid-pregnancy and total grey and white matter volume in children at
10 years of age [83]. Lower maternal omega-3 concentrations were associated with lower
child brain volume, but a ceiling effect may have been present at higher concentrations [83].
When considered together, there is evidence emerging that may suggest a dose effect of
DHA, in which an excess may cause harm to some outcomes. However, further research is
needed to explore this.

Whilst the DOMInO trial is the largest and most comprehensive study and has the
advantages of a robust trial design and low attrition, with a low risk of bias, there are
limitations to consider. Primarily, the results presented here are secondary outcomes and
there are a substantial number of group comparisons, meaning we cannot exclude the
possibility of random error. The behavioral questionnaires administered are designed as
screening tools to identify potential problems and are not diagnostic. Including teacher
ratings of child behavior would have been a beneficial addition to the study, although two
smaller trials that included both parent- and teacher-rated behavior found null effects on
both [78,84]. Women were able to request knowledge of group allocation after the primary
outcome analysis was complete. At the 7-year follow-up, 92% remained blinded, and
knowledge of the intervention did not appear to influence any of the post-randomization
characteristics, such as DHA intake or home environment, so it is unlikely that knowl-
edge influenced parents’ perceptions of their child’s behavior. The DOMInO sample was
comparable to women who gave birth in South Australia at the time of study recruitment,
with the exception that the proportion of pregnant women who smoked was higher in the
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DOMInO sample [85,86], which was adjusted for in all analyses. Given the large sample
size of DOMInO, and a relatively low rate of attrition even sever years after enrolment, our
results are likely generalizable to other populations in developed Western countries.

Further research to clarify any effects of DHA on behavior and whether an upper limit
of DHA exposure is needed. Whilst it would not be ethical to endorse future additional
trials of DHA supplementation for the purpose of detecting harm, current DHA interven-
tion trials should conduct measures of behavior, particularly externalizing behaviors. A
new, larger, follow-up of a DHA RCT in almost 1000 children born <29 weeks’ gestation is
currently underway, with behavioral assessments administered at 5 years of age [87,88].
The results of this follow-up study will be important for confirming any adverse effects of
DHA supplementation on behavioral functioning, and for further investigating whether
there is a sex by treatment interaction. Likewise, behavioral assessments of children in the
recent and largest prenatal DHA trial (involving over 5000 women) [89] would provide
invaluable information to address the ongoing uncertainty.

5. Conclusions

An intervention with about 800 mg DHA per day in a large general sample of well-
nourished pregnant women resulted in possible adverse effects on externalizing behavior
in the children. This finding needs to be confirmed in future, robust research, preferably
through the follow-up of existing, large DHA RCTs.
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