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a b s t r a c t

Understanding how wine compositional traits can be related to sensory profiles is an important and ongoing challenge. 
Enhancing knowledge in this area could assist producers to select practices that deliver wines of the desired style 
and sensory specifications. This work reports the use of spectrofluorometry in conjunction with chemometrics for 
prediction, correlation, and classification based on sensory descriptors obtained using a rate-all-that-apply sensory 
assessment of Cabernet-Sauvignon wines (n = 26). Sensory results were first subjected to agglomerative hierarchical 
cluster analysis, which separated the wines into five clusters represented by different sensory profiles. The clusters 
were modelled in conjunction with excitation-emission matrix (EEM) data from fluorescence measurements using 
extreme gradient boosting discriminant analysis. This machine learning technique was able to classify the wines 
into the pre-defined sensory clusters with 100 % accuracy. Parallel factor analysis of the EEMs identified four main 
fluorophore components that were tentatively assigned as catechins, phenolic aldehydes, anthocyanins, and resveratrol 
(C1, C2, C3, and C4, respectively). Association of these four components with different sensory descriptors was 
possible through multiple factor analysis, with C1 relating to ‘dark fruits’ and ‘savoury’, C2 with ‘barnyard’, C3 with 
‘cooked vegetables’ and ‘vanilla/chocolate’, and C4 with ‘barnyard’ and a lack of C1 descriptors. Partial least squares 
regression modelling was undertaken with EEM data and sensory results, with a model for perceived astringency 
being able to predict the panel scores with 68.1 % accuracy. These encouraging outcomes pave the way for further 
studies that relate sensory traits to fluorescence data and move research closer to the ultimate goal of predicting wine 
sensory expression from a small number of compositional factors.
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INTRODUCTION

Wine is a luxury product with a highly complex 
composition that can be affected by the 
environment in which the grapes are grown 
as well as techniques applied in the vineyard 
and winery. The intrinsic complexity of wine 
has necessitated the development of various 
techniques to obtain an in-depth understanding 
of grape and wine metabolites and control points 
during production that can shape the final product. 
Relating compositional and technological factors 
with the sensory expression of a wine, which is 
a determining factor for the overall consumer 
experience, remains an ongoing focus of 
research. Being able to link chemical and sensory 
information with the practices and techniques that 
wine endures during production would ultimately 
equip practitioners with the ability to make 
more precise decisions for producing targeted  
wine styles.

Multiple methodologies are available for 
sensory profiling of wine, but their suitability 
will depend upon the requirements of the study.  
Rate-all-that-apply (RATA) is a quantitative 
sensory methodology that is rapid and 
effective for wine sensory characterisation 
(Danner et al., 2018), as shown by its successful use 
in different studies (Franco-Luesma et al., 2016; 
Mezei et al., 2021; Nguyen et al., 2020). 
Similarly to sensory profiling, a range of 
analytical approaches are available to define wine 
chemical composition that underpins sensory 
traits. A common approach has therefore been to 
combine sensory data with a number of chemical 
analysis techniques to predict and classify wine 
sensory characters (Niimi et al., 2018), explore 
distinctiveness (Geffroy et al., 2016), comprehend 
the impact of storage and packaging conditions 
(Hopfer et al., 2013), and understand quality drivers 
(Gambetta et al., 2016; Hopfer et al., 2015).  
Many studies rely on analytical methodologies 
that are time-consuming, expensive, and 
relatively intricate (e.g., HPLC or GC with mass 
spectrometry), requiring personnel with specialised 
skills. There is room, however, for more accessible 
approaches (usually spectroscopy-based) that can 
provide chemical information more simply and 
rapidly. As reviewed by Ranaweera et al. (2021a), 
there are various spectroscopic approaches and 
each differs in terms of compounds measured, 
sensitivity, and advantages/disadvantages, among 
other aspects. The choice of methodology should 
therefore be defined according to the needs and 
objectives of the study.

As a spectroscopic technique, spectrofluorometry 
has often been applied to the analysis of food 
products because of its time- and cost-effective 
nature, and its high selectivity and sensitivity 
(Ranaweera et al., 2021a). It can provide a unique 
three-dimensional excitation and emission matrix 
(EEM) that acts as a molecular fingerprint of a sample 
(Coelho et al., 2015; Ranaweera et al., 2021b). 
This technique can be a useful tool to authenticate, 
distinguish and classify different food products 
through a qualitative investigation of specific 
fluorescent substances (e.g., phenolic compounds, 
vitamins, and aromatic amino acids) present at 
different concentrations depending on the product 
(Karoui and Blecker, 2011). This methodology 
is also highly applicable to wine, which contains 
a myriad of fluorophores. Spectrofluorometry 
has been applied to wine for authentication and 
discrimination of samples based on variety, 
origin, or vintage (Ranaweera et al., 2021b; 
Ranaweera et al., 2021c; Sádecká and 
Jakubíková, 2020; Suciu et al., 2019), to analyse 
oxidative changes and sulfur dioxide addition 
(Coelho et al., 2015), and to quantitatively assess 
polyphenol content (Cabrera-Bañegil et al., 2017).

In the quest for a rapid technique that could 
link wine composition and sensory properties, 
this study aimed to explore 1) the association 
between sensory descriptors obtained by RATA 
and the fluorescence EEM data recorded for 
Cabernet-Sauvignon wines from the Coonawarra 
Geographical Indication (GI), and 2) the 
dominant sensory traits of such regional wines. 
Specifically, the study tested the applicability of 
using EEMs with machine learning modelling for 
sample classification based on sensory profiles, 
investigated the relationship between the main 
fluorophores identified by parallel factor analysis 
(PARAFAC) and sensory descriptors using 
multiple factor analysis (MFA), and assessed 
partial least squares (PLS) regression models to 
predict sensory attributes.

MATERIALS AND METHODS 

1. Sample selection

Unreleased vintage 2020 Cabernet-Sauvignon 
wines were sought from commercial producers 
using fruit from the Coonawarra GI of South 
Australia. Most of the wines were monovarietal 
and had only undergone alcoholic and malolactic 
fermentation and racking, with minimal oak 
contact (≤5 months) and limited maturation time. 
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In total, 26 Cabernet-Sauvignon wine samples  
(6 × 750 mL bottles of each wine) were obtained 
from 8 wineries/vineyards within the GI 
(Supplementary data, Table S1).

2. Sensory evaluation

Prior to formal evaluation, the wines were tasted by 
experts as defined by Parr et al. (2002) consisting 
of academics and postgraduate oenology students 
(n = 6), who evaluated aroma, flavour, taste, and 
mouthfeel with a free text assessment followed by 
a discussion of the wines. This informal tasting 
was used to evaluate whether the sample set was 
appropriate for a naïve panel to assess (considering 
that they were not commercially-released wines), 
to ensure that the samples could be differentiated, 
and to decide on the sensory attributes that should 
be included in the formal RATA evaluations.

Naïve wine consumers (n = 60; 27 females and  
33 males from 18 to 77 years of age) were recruited 
based on being 18 years of age or older and 
having consumed red wine at least once a month. 
Evaluations were conducted in a purpose-built 
sensory laboratory at the University of Adelaide’s 
Waite Campus, in individual booths equipped with 
a computer, under white fluorescent lighting, and 
at room temperature (22–23 °C). Samples (20 mL) 
were served at room temperature in clear stemmed 
ISO wine glasses coded with a random four-digit 
number and covered by a petri dish. 

Due to the number of samples and to avoid palate 
fatigue, assessments were divided into three 
sessions: 9 samples in the first, 9 samples in the 
second, and 8 samples in the last session. The 
samples were randomly presented monadically for 
each subject within a session and the same panel 
was used for all three sessions. RATA methodology 
was used to characterise samples by rating the 
intensity only of the attributes that applied from 
a list of 53 comprising aroma, flavour, taste, 
and mouthfeel descriptors (Supplementary data, 
Table S2) on a 7-point scale (from “extremely 
low” to “extremely high”). Between samples, the 
panellists were forced to have a 1-min break and 
could cleanse their palate with deionised water and 
unsalted crackers. A 5-min break was enforced at 
the mid-point of the tasting (between samples 
4 and 5). Data were collected with RedJade 
software (2016, Redwood City, USA). Informed 
consent was obtained from panellists and this 
study was approved by the Human Research 
Ethics Committee of the University of Adelaide 
(approval number: H-2019-031).

3. Chemicals

HPLC grade absolute ethanol and analytical grade 
37 % hydrochloric acid (HCl) were purchased 
from Chem-Supply (Port Adelaide, SA, Australia). 
High purity water was obtained from a Milli-Q 
purification system (Millipore, North Ryde, NSW, 
Australia).

4. Spectrofluorometric analysis

After sensory analysis, the remainder of each wine 
was subsampled into a 4 mL centrifuge tube that 
was completely filled and stored in a refrigerator 
at 4 °C until measurements were performed. 
After warming to room temperature, samples 
were centrifuged at 9300 × g for 10 min and 
diluted with 50 % aqueous ethanol that had been 
adjusted with HCl to pH 2 and vacuum filtered 
(0.45 μm PTFE membrane). The samples were 
diluted 150-fold (Ranaweera et al., 2021c), and 
analysed in a Hellma type 1FL (1 cm path length) 
Macro Fluorescence cuvette (Sigma-Aldrich, 
Castle Hill, NSW, Australia). Samples were 
prepared in duplicate and two measurements 
of each sample were undertaken with a Horiba 
Scientific Aqualog® spectrophotometer (version 
4.2, Quark Photonics, Adelaide, SA, Australia). 
The excitation wavelength ranged from 240 to 
700 nm with an increment of 5 nm under medium 
gain and 0.2 s integration time and the emission 
wavelength ranged from 242 to 824 nm with 
an increment of 4.66 nm. Data acquisition was 
controlled with Origin software (version 8.6, 
OriginLab® Corporation, Massachusetts, USA) 
and EEMs were normalised using water Raman 
scattering units and corrected for the inner filter 
effects, solvent background, dark detector signals, 
and Rayleigh masking (Gilmore et al., 2017).

5. Basic analytical measurements of pH, TA, 
ethanol, and SO2

Sample pH and titratable acidity (TA) were 
obtained with a T50 auto-titrator (Mettler 
Toledo, Melbourne, VIC, Australia). Ethanol 
was measured in triplicate by HPLC analysis 
(Li et al., 2017) of undiluted samples that were 
centrifuged at 9300 × g for 10 min. Separation 
was performed with an Aminex HPX-87H column 
(300 mm × 7.8 mm, BioRad, Hercules, California, 
USA) thermostatted at 60 °C using 2.5 mM H2SO4 
as mobile phase with a flow rate of 0.5 mLmin−1. 
Peaks were detected with a refractive index 
detector (RID-10A, Shimadzu, Kyoto, Japan) 
and quantified by comparison with standards 
prepared in model wine using ChemStation for 
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LC 3D Systems software (Agilent Technologies, 
Santa Clara, CA, USA). Free and total SO2 
concentrations were determined in duplicate using 
the method described by Iland et al. (2004). 

6. Statistical analysis

The raw sensory data were firstly analysed through 
two-way analysis of variance (ANOVA) with 
panellists as a random factor and samples as a fixed 
factor to identify significantly different attributes 
between the samples. Attributes that presented 
a p-value ≤ 0.1 were selected for agglomerative 
hierarchical cluster (AHC) analysis of all samples 
with an automatic entropy truncation and Euclidean 
distance using Ward’s method or unweighted 
pair-group average (UPGMA). With a superior 
cophenetic correlation (0.676 for UPGMA versus 
0.511 for Ward’s method), UPGMA was chosen 
and truncation configured with a minimum of five 
classes. Correlation principal component analysis 
(PCA) was performed to identify sensory profiles 
that arose for different clusters based on the AHC 
analysis. 

EEM data were unfolded using unfold multiway 
(mode 1) in Solo software (version 8.7.1, 
Eigenvector Research, Inc., Manson, WA, USA). 
For classification according to the clusters defined 
by AHC analysis, extreme gradient boosting 
discriminant analysis (XGBDA) was conducted 
(Ranaweera et al., 2021c) using pre-processing 
with mean centring, PLS compression to yield 
a maximum of 25 latent variables (LVs), and 
decluttering with generalised least squares 
weighting at 0.2 for calibration and cross-
validation (k = 10, Venetian blinds procedure). 
Confusion matrix score probabilities were used 
to assess the model effectiveness. PARAFAC was 
performed with a non-negativity constraint in all 
modes imposed and the model was validated by 
split-half analysis (Murphy et al., 2013).

Loadings for the components determined by 
PARAFAC were analysed in conjunction with 
the sensory data (significantly different attributes, 
α = 0.1) through MFA. Separately, a calibration 
model was created with PLS1 regression of 
sensory scores for perceived wine astringency and 
the EEM data to predict astringency ratings. The 
model was optimised through assessment of LVs, 
root mean square error of calibration (RMSEC), 
root mean square error of cross-validation 
(RMSECV, Venetian blinds with 10 splits), and 
root mean square error of prediction (RMSEP).

ANOVA, PCA, AHC, and MFA were performed 
with XLSTAT (version 2019.4.1, Addinsoft, New 
York, USA). XGBDA, PARAFAC, and PLS 
regression analysis were conducted with Solo 
software (version 8.7.1).

RESULTS AND DISCUSSION

Unreleased Cabernet-Sauvignon wines sought for 
the study went through minimal post-fermentation 
processes (e.g., fining, maturation, blending) 
and were bottled at early stages of production so 
that the impact of the Coonawarra GI could be 
assessed with minimal influence of downstream 
winemaking operations. Basic analytical 
measurements were within the normal range for 
red wines at such a stage of production. The total 
and free SO2 content ranged from 0.4 to 70.8 mgL-1 
and 0.4 to 33.4 mgL-1, respectively, TA ranged 
from 5.6 to 7.5 gL-1, pH values ranged from 3.40 
to 3.87, and ethanol concentration ranged from 
12.9 % to 15.3 % (Supplementary data, Table S1).

1. RATA sensory profiling and clustering of 
wines

Of the 53 sensory attributes rated by panellists 
using RATA methodology, 20 were significantly 
different (α = 0.1) according to ANOVA and 
comprised 8 aromas, 8 flavours, 3 tastes, and 
1 mouthfeel attribute (Supplementary data, 
Table S3). The means of the 20 descriptors were 
analysed through a correlation PCA (Figure 1) 
following the AHC analysis (Supplementary 
data, Figure S1). The first factor (F1) in Figure 
1A accounted for 30.6 % of the data variance and 
the second factor (F2) explained a further 19.6 %. 
Cluster 1 (shown in red, 7 wines) appeared on the 
right side of F1 and spread across both segments 
of F2, with 5 samples in the upper half and 2 in the 
lower half. Cluster 2 (green, 14 samples) mostly 
presented near the origin, with 11 samples on the 
left and 3 samples on the right of F1, and a more 
or less even spread across F2. Cluster 3 (cyan, 
2 samples) was found on the left side of F1 and 
upper half of F2, and Cluster 4 (pink, 1 sample) 
was separated from the rest in the bottom right 
portion of the plot. Squared cosine values for 
samples in Cluster 5 (data not shown) indicated 
a higher representation on F3, in the lower half as 
seen in Figure 1B.

In terms of the sensory descriptors, ‘barnyard’ 
flavour and aroma, and bitterness and astringency 
were plotted on the right side of F1 and lower part 
of F2; ‘minty’, ‘cooked vegetables’, ‘dark fruits’, 
‘tobacco’, and ‘earthy’ aromas and flavours, ‘oaky’ 
and ‘savoury’ aromas, and acidity were plotted 
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FIGURE 1. Principal component analysis biplots of Cabernet-Sauvignon wines (n = 26) using significantly 
different (α = 0.1) RATA attributes, showing (A) F1 versus F2 and (B) F1 versus F3. 
Colour coding represents the clusters resulting from the agglomerative hierarchical cluster analysis (Supplementary data, Figure S1), 
with samples in the same cluster bearing the same colour. Cluster 1, red; Cluster 2, green; Cluster 3, cyan; Cluster 4, pink;  
Cluster 5, blue. A-, aroma; F-, flavour; MF-, mouthfeel; T-, taste. 

on the right side of F1 and upper half of F2; and 
‘vanilla/chocolate’ and ‘cherry cola’ flavours, 
and sweetness were plotted on the left side of 
F1 and upper half of F2 (Figure 1A). The aroma 
and flavour of ‘cooked vegetables’ were better 
represented in the upper half of F3 (Figure 1B).

The clusters defined by AHC analysis 
(Supplementary data, Figure S1) 
could be explained through different 
sensory profiles as shown in Figure 1. 

Cluster 1 was characterised by savoury characters 
including ‘earthy’ and ‘tobacco’, along with 
‘oaky’ and ‘dark fruits’ aromas, and higher 
acidity, whereas Cluster 2 on the opposite side 
was generally characterised by a lack of those 
characters. Considering that these were young 
wines, the results might indicate the presence of 
some oak contact during fermentation for most 
samples in Cluster 1 as opposed to no oak contact 
for samples in Cluster 2 (Crump et al., 2015). 
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Cluster 3 was associated with higher sweetness 
and ‘cherry cola’ flavour and low bitterness 
and astringency. Cluster 4 was characterised 
by ‘barnyard’ aroma and flavour, relatively low 
‘vanilla/chocolate’ and ‘cherry cola’ flavours, a 
higher bitter taste and astringent mouthfeel, and a 
lack of sweetness. Cluster 5 was especially related 
to ‘cherry cola’ and ‘vanilla/chocolate’ flavours 
(Figure 1B), as opposed to the savoury profile 
found for Cluster 1 (Figure 1A). Sensory profiles 
have similarly been used in the past for regional 
classification of Australian Cabernet-Sauvignon 
wines (Souza Gonzaga et al., 2019; 
Souza Gonzaga et al., 2020) and Australian Shiraz 
and Chardonnay wines (Kustos et al., 2020). 
Those studies with commercial wines reported 
that some distinctive sensory traits can be more 
important and more associated with a specific 
wine-producing region, with the current work on 
unreleased wines also indicating the existence of 
perceived differences within a GI according to 
Figure 1.

The main differences reported previously for 
Cabernet-Sauvignon wines were the duality 
between ‘green’ and ‘fruity’ related characters 
and between ‘oak’ related traits and ‘eucalyptus’ 
or ‘minty’ attributes (Heymann and Noble, 1987; 
Souza Gonzaga et al., 2020). In the present study, 
the contrast was between ‘barnyard’, astringency 
and bitterness attributes, and ‘cherry cola’, 
‘vanilla/chocolate’, and sweetness. Oak-related 
and savoury attributes and the ‘minty’ trait were 
found in the same quadrant, not in direct contrast, 
and the same was evident for fruity and vegetal 
characters (Figure 1A). Considering the samples 
were dominated by or exclusively produced 
from Cabernet-Sauvignon (Supplementary 
data, Table S1) and were all from the same GI, 
albeit from different vineyards and wineries, the 
disparity in the sensory profiles of the present 
work might be associated with differences in the 
winemaking processes, as seen previously by 
Kustos et al. (2020) with Australian Chardonnay 
and Shiraz wines. Additionally, the wines in the 
present study had a minimal influence of oak (i.e., 
less than 5 months) or other maturation treatments 
compared to commercially released red wines, 
which might have allowed sensory traits that 
could be attributed to aspects of terroir (e.g., soil, 
topography, and vineyard management practices) 
to be more perceivable, such as the ‘minty’ and 
fruity attributes.

Some samples in Cluster 2 indicated that 
‘minty’ flavour was an important characteristic, 

although in general not much difference was 
seen between the samples (Figure 1A). A ‘minty’ 
character has been reported previously for 
Coonawarra Cabernet-Sauvignon wines, which 
might indicate this as a dominant trait for the 
Coonawarra region (Robinson et al., 2011; Souza 
Gonzaga et al., 2019; Souza Gonzaga et al., 2020). 
Characters described as ‘minty’ and ‘eucalyptus’ in 
Cabernet-Sauvignon wines have been associated 
with the presence of eucalyptol (i.e., 1,8-cineole) 
and hydroxycitronellol, and although ‘eucalyptus’ 
aroma and flavour were not statistically significant 
(α = 0.1) in the present work (Supplementary data, 
Table S3), studies have shown that they might be 
interchangeable and indistinguishable by a sensory 
panel (Capone et al., 2012; Robinson et al., 2011; 
Souza Gonzaga et al., 2020). The current study did 
not explore the presence of volatile compounds so 
the link between ‘minty’ and ‘eucalyptus’ from 
both sensory and chemical viewpoints is open 
for further examination. Among the possibilities, 
the occurrence of 1,8-cineole in wine has been 
related to the presence of Eucalyptus trees within 
the vineyard environment (Capone et al., 2012), 
whereas some studies report the presence of ‘minty’ 
traits associated with an aged profile of Bordeaux 
red wines specifically under the influence of the 
proportion of Cabernet-Sauvignon in the blend 
(Picard et al., 2015; Picard et al., 2016b). Mint 
aroma in that case has been associated with the 
presence of piperitone (Picard et al., 2016a). 
Considering that the present study examined 
young Cabernet-Sauvignon wines, it seemed 
unlikely that piperitone or other limonene-derived 
compounds (Picard et al., 2017) were responsible 
for the presence of the ‘minty’ attribute, although 
further investigation is required to clarify the role 
of various monoterpenoids in the perception of 
mint-related characters.

2. Classification of sensory clusters based on 
spectrofluorometric analysis 

To examine whether sensory information could 
be classified using spectrofluorometric data, the 
results from AHC (Supplementary data, Figure 
S1) were modelled in conjunction with the EEMs 
of the wine samples through machine learning with 
the XGBDA algorithm. Various algorithms and 
machine learning tools exist for wine classification 
based on EEM data, such as soft independent 
modelling of class analogy and support vector 
machine, but XGBDA performs well when 
analysing a complex heterogeneous matrix with 
uneven class distribution (Babajide Mustapha 
and Saeed, 2016). The analysis was undertaken 
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after PLS compression, used to improve the 
stability of the model by making it less disposed to 
overfitting. The class CV prediction demonstrated 
in Figure 2 shows each cluster (denoted using 
different symbols and colours) that was predefined 
by AHC. The model attempted to predict the class 
(cluster) to which each sample belonged, based on 
the relationship of the sensory profiles and EEM 
data. Figure 2 and the confusion matrix obtained 
from cross-validation (data not shown) highlighted 
that all clusters were 100 % correctly classified 
with a discrete segregation between the classes in 
the cross-validated model. This result indicated 
that the underlying composition of the wines 
encompassed in the fluorescence fingerprints 
might be driving the sensory differences of the 
clusters determined from RATA evaluation.

Classification methods using fluorescence 
spectroscopy have been previously applied for 
wine varietal, vintage and origin authentication 
(Ranaweera et al., 2021b; Ranaweera et al., 2021c; 
Sádecká and Jakubíková, 2020; Suciu et al., 2019), 
which tends to yield similar or even better 
performance compared to other spectroscopic 

methods like UV-vis, near-infrared, mid-infrared, 
synchronous fluorescence, or Raman 
(Mandrile et al., 2016; Riovanto et al., 2011; 
Tan et al., 2016). Ultimately, studies involving 
spectrofluorometry and chemometrics have 
demonstrated the approach as a valid tool for 
authenticating wine, and along with the present 
work, highlight the extent to which this type of 
data can be used to understand important traits 
related to wine chemical and sensory properties.

3. Using PARAFAC to identify main 
fluorophoric compounds

Attempting to shed light on the relationship 
between fluorescence data and sensory properties, 
PARAFAC was performed on the EEM data to 
identify the main fluorophores present in the 
samples. The percentage of core consistency of the 
data can be applied in combination with split-half 
analysis to assess the model suitability, especially 
with high complexity matrices such as wine 
 (Airado-Rodríguez et al., 2011; 
Murphy et al., 2013). The split-half analysis 
compares the similarity between each half of 

FIGURE 2. Class CV predicted for classification of RATA clusters arising from AHC based on XGBDA 
modelling for the set of Cabernet-Sauvignon wines (n = 26). 
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the data set, and like with core consistency, a 
higher percentage is desirable when deciding 
on the number of components for the model 
(Murphy et al., 2013). Using all samples in the first 
PARAFAC model generated a core consistency 
of less than 0 % and a split-half result of less 
than 19 %. Investigating further, analysis of 
residuals of the samples showed that three (CS2, 
CS7 and CS26) of the 26 wines were outliers 
and presented equally high residuals for the 
four determinations (i.e., duplicate readings 
of duplicate samples) compared to the other 
samples. Based on the available data, no possible 
reason was identified that could explain the three 
samples as outliers. Although sample CS7 was the 
only sample produced with 100 % uninoculated 
alcoholic and malolactic fermentation, which 
might indicate a possible factor, that was not 
the case for the other two outlier samples.  

Nonetheless, PARAFAC modelling was performed 
again without the outlier samples, this time 
yielding a core consistency of 61 % and split half 
analysis of 93.7 % for the four main fluorescent 
components (Figure 3).

From PARAFAC it was possible to identify 
the maximum intensities (λex and λem) for the 
four components as demonstrated in Figure 3, 
and therefore to tentatively assign chemical 
compound classes that are naturally present 
in wine (Airado-Rodríguez et al., 2011; 
Airado-Rodríguez et al., 2009). Such 
spectral data can typically be related to 
fluorophoric compounds such as vitamins 
(Christensen et al., 2006) and especially phenolic 
compounds (Schueuermann et al., 2018). For 
PARAFAC component 1, maximum intensities of 
λex = 275 nm and λem = 310 nm were tentatively 

FIGURE 3. Contour plots for excitation and emission wavelengths identified from the PARAFAC model, 
indicating the four main fluorescent components (i.e., C1, C2, C3, C4) present in the sample set.
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FIGURE 4. Multiple factor analysis biplot of the four components from PARAFAC (in grey, ) using 
significantly different (α = 0.1) descriptors from RATA evaluation (in black, ●) for 23 Cabernet-Sauvignon 
wine samples (excluding CS2, CS7 and CS26).

identified as compounds associated with catechin 
(including tannin). Component 2 peak intensities 
were λex = 255 nm and λem = 375 nm and can 
be proposed to result from phenolic aldehyde 
related compounds. Component 3 peak intensities 
were λex = 270 nm and λem = 335 nm and were 
considered to be associated with anthocyanins. 
Finally, component 4 peak intensities were 
λex = 315 nm and λem = 375 nm and tentatively 
assigned to stilbenoids such as trans-resveratrol. 

Ranaweera et al. (2021c) and Airado-
Rodríguez et al. (2009) proposed similar 
assignments for PARAFAC model components 
in red wine, which are reasonable considering the 
main compounds (i.e., catechins, anthocyanins, 
and other phenolics) expected to be abundant 
in red wine. It is noteworthy that compound 
classes assigned from the PARAFAC modelling 
(i.e., phenolics) were not necessarily driving the 
sensory characters themselves, but could act as 
indirect markers that indicated compositional 
aspects of the wines that were not essentially 
measured by fluorescence. For example, different 
gene copies responsible for the biosynthesis of 
important wine compounds such as anthocyanins 
in grape berry can belong to multicopy families, 

having an expression profile coinciding with other 
specific flavonoids that may impact wine sensory 
profile by correlation rather than causation 
(Kuhn et al., 2013). In contrast, there could be 
a direct relationship with compounds associated 
with aspects such as the taste and mouthfeel of 
the wine, as explained in more detail in the next 
section.

4. Relation between PARAFAC components 
and RATA results according to MFA

Considering the compound classes tentatively 
identified by PARAFAC modelling of EEM data 
can impact wine sensory profile (either directly or 
by implying an indirect correlation), the relative 
loadings of the four classes were analysed in 
conjunction with RATA results through MFA. 
Means of the significantly different (α = 0.1) 
descriptors and means of the four compound 
class loadings from 23 wines (excluding CS2, 
CS7 and CS26) were used for the analysis 
(Figure 4). MFA yielded an RV coefficient 
of 0.232 between both sets of data, an RV 
coefficient of 0.751 between PARAFAC data and 
the MFA model, and an RV coefficient of 0.816 
between the RATA data and the MFA model.  
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The MFA biplot explained 45 % of the variance 
in the data, with 24.6 % represented by F1 and 
20.5 % by F2. PARAFAC C1 was plotted on the 
right side of F1 and the upper portion of F2, C2 
and C3 were explained entirely along F1, with C3 
on the right side and C2 on the left side, and C4 
was plotted on the left side of F1 and lower part of 
F2, more or less opposite to C1 (Figure 4).

Catechin monomers associated with C1 are usually 
extracted from grape skin and seed and can increase 
the bitter taste of wine (Fischer and Noble, 1994) 
whereas polymers of catechin (e.g., tannins), 
extracted from the same sources, are related with 
astringency (Waterhouse et al., 2016a). Figure 4 
shows C1 was associated with ‘dark fruits’ and 
‘cooked vegetables’ aromas and flavours and 
‘savoury’ aroma, which is likely to be an indirect 
relationship as mentioned in the previous section. 
Analysing the RV coefficients, the correlation 
between bitterness and C1 was not significant 
(p = 0.313), thus indicating that there might not be 
an association. In contrast, the correlation between 
astringency and C1 was significant (p = 0.006) and 
had an RV coefficient of 0.315, demonstrating a 
moderate association. This implied that polymers 
had a greater influence on the expression of C1 
than monomers, which would be reasonable given 
their relative concentrations in red wine.

Phenolic aldehydes assigned to C2 can be influenced 
by the origin of wood (usually oak) incorporated 
either during fermentation or maturation and 
can vary in concentration depending on ageing 
time — such compounds can be responsible for 
some oak-related aroma traits (e.g., vanillin) in 
wine (del Alamo Sanza et al., 2004). Other oak 
compounds (e.g., volatile phenols, hydrolysable 
tannins) that may influence sensory traits would 
undoubtedly be extracted as well. C2 was related 
to ‘barnyard’ aroma and flavour and ‘minty’ 
aroma. Anthocyanins assigned to C3 are pigments 
present in red grape skins that are important to the 
colour of red wine (He et al., 2012). Anthocyanins 
might also be responsible for an increase in 
the ‘fullness’ of a wine (Vidal et al., 2004), as 
well as perceived astringency and bitterness 
(Ferrero-del-Teso et al., 2020; Paissoni et al., 2018). 
Additionally, as explained in the section 
dealing with PARAFAC, genes involved in 
the biosynthesis of anthocyanins in grapes 
are expressed through pathways that coincide 
with the biosynthesis of other flavonoids and 
volatile compounds (Czemmel et al., 2012; 
Kuhn et al., 2013). This could explain why 
anthocyanins could act as markers for compounds 

that impart aroma or flavour (Ristic et al., 2010) 
but lack a fluorophore themselves.  
From the MFA, C3 was linked to ‘cooked 
vegetables’ aroma and flavour, ‘vanilla/chocolate’ 
flavour, and sweetness. Lastly, stilbenoids 
assigned to C4 are compounds that can be found 
in grape berry skins and are extracted into wine 
during fermentation (Waterhouse et al., 2016b). 
Stilbenoids, especially trans-resveratrol, are 
responsible for the antioxidant characteristics 
of red wine and its association with the 
prevention of age-related diseases in consumers 
(Pawlus et al., 2012). According to Gaudette and 
Pickering (2011), trans-resveratrol seems to have 
minimal impact on the sensory qualities of wine 
(when spiked at less than 200 mgL-1). Figure 4 
shows that C4 was associated with ‘barnyard’ 
aroma and flavour, which is likely to be another 
example of an indirect relationship between the 
fluorophoric component and the sensory data.

It is worth noting that the associations between 
sensory traits and tentative compound types 
found through PARAFAC do not allow for 
strict conclusions. It is possible, considering the 
complexity of what is being modelled, that some 
relationships may arise due to chance, and more 
in-depth research is necessary to better understand 
and explain the proposed relationships.

5. Regression model for astringency prediction

Considering that most of the compounds detected 
by spectrofluorometric analysis can directly 
affect basic mouthfeel and taste attributes in 
wine, PLS regression was performed with the 
two mouthfeel and three taste attributes described 
by the sensory evaluation of the 26 wines. 
Astringency was the only attribute that could 
be well modelled from the EEM data without 
overfitting, based on the model parameters.  
An optimal model was generated with eight LVs, 
giving RMSEC = 0.085, RMSECV = 0.132, 
RMSEP = 0.222, R2 calibration = 0.936,  
R2 cross-validation = 0.848, and  
R2 prediction = 0.681. The model was thus 
able to explain 84.8 % of the variance in the 
samples and able to predict the results with 
68.1 % accuracy (Figure 5). Furthermore, the 
low value for RMSECV indicated that the error 
associated with the prediction of astringency 
was around 2 % in relation to the sensory scale 
used (7-point), demonstrating that the model 
appeared to be suitable. This outcome showed 
that spectrofluorometric data had reasonable 
capabilities for predicting a perceived mouthfeel 
attribute rating for this data set, which was 
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encouraging given the simplicity of the approach 
and the complexity of what was being modelled.

The chemical composition of Cabernet-Sauvignon 
wines has also previously been used for sensory 
profile prediction, with regression models 
described by Niimi et al. (2018) explaining 
between 44.2 % and 69.1 % of the variance 
in the sample set, and 56.5 % for astringent 
mouthfeel. In that work, the model for predicting 
perceived astringency score involved anthocyanin 
concentration and colour measures, both of which 
can be determined using the A-TEEM approach 
and used in combination with a multi-block 
analysis (Ranaweera et al., 2021c) to add 
information beyond that encompassed in the 
EEM data alone. Notably, the present study is the 
first known attempt to correlate and predict wine 
sensory profiles from EEM readings, and although 
the outcomes are positive, further work with 
additional samples will be necessary to improve 
and extend the modelling. Furthermore, different 
spectroscopic methods have been validated 
before for determining phenolic compound 
concentrations in a way that is less time consuming 
and more cost-effective than other options, and 
such approaches could become a valuable tool for 
assisting winemakers in monitoring and controlling 
phenolic composition (Cozzolino et al., 2008; 

Cozzolino et al., 2004; Dambergs et al., 2012; 
Janik et al., 2007; Ranaweera et al., 2021c). 
Fluorescence spectroscopy in particular can 
quantify compounds that are present in the sample 
at a lower concentration than other spectroscopic 
methods (Gilmore and Chen, 2020), thus providing 
an attractive option for additional development  
in future. 

CONCLUSIONS 

This study aimed to explore the association 
between sensory traits and spectrofluorometric 
data of unreleased, commercially produced 
2020 Coonawarra Cabernet-Sauvignon wines. 
It combined cluster analysis of sensory profiles 
obtained using RATA with fluorescence data by 
using a machine learning algorithm, and examined 
the prediction of sensory ratings from fluorophoric 
compounds via regression modelling. Thus, 
five distinctive clusters arose that could be well 
explained by the sensory results of the RATA 
evaluation. Cluster 1 wines were characterised 
by savoury-related characters, Cluster 2 by 
‘minty’ traits and a lack of the savoury-related 
attributes, Cluster 3 by ‘cherry cola’ flavour and 
low bitterness and astringency, Cluster 4 by higher 
sweetness and ‘barnyard’ aroma and flavour, 
and Cluster 5 by ‘vanilla/chocolate’ flavour.

FIGURE 5. Correlation between the predicted and measured ratings for perceived astringency according 
to partial least squares regression modelling for Cabernet-Sauvignon wines (n = 26). 
The green line shows the 1:1 correlation and the red line is the model fit. 
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Additionally, the EEM data analysed through 
XGBDA were able to predict with 100 % accuracy 
the clusters that arose from the sensory profiling, 
demonstrating that there might be a good 
association between the EEMs and sensory ratings 
(whether direct or indirect). After excluding three 
outlier samples, PARAFAC analysis showed 
that four main fluorophores could be segregated 
to explain the data set, with compound classes 
tentatively associated with the intensity readings 
being catechins (C1), phenolic aldehydes (C2), 
anthocyanins (C3) and stilbenoids (C4). MFA 
was used to identify associations between the 
PARAFAC components and the sensory ratings, 
revealing that C1 was associated with ‘dark fruits’ 
and ‘savoury’ characters, C2 was associated with 
‘barnyard’, C3 was related to ‘cooked vegetables’ 
and ‘vanilla/chocolate’, and C4 was related with 
‘barnyard’ but more characterised by the lack 
of attributes associated with C1. However, the 
nature of any relationship between the proposed 
compound classes and perceived sensory attributes 
requires further study. PLS regression resulted in a 
suitable model that was able to predict perceived 
astringency score with 68.1 % accuracy, although 
no suitable model was found for the other sensory 
attributes. Overall, the correlation of sensory 
profiles with spectrofluorometric data was quite an 
optimistic feat, yet the results from this study were 
promising. This work may inspire further research 
that is designed to better understand the chemical 
drivers of sensory traits and the most influential 
factors throughout wine production using a rapid 
technique like spectrofluorometry, perhaps with 
the inclusion of a small selection of compositional 
variables.
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