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ABSTRACT As deep learning continues to dominate all state-of-the-art computer vision tasks, it is
increasingly becoming an essential building block for robotic perception. This raises important questions
concerning the safety and reliability of learning-based perception systems. There is an established field
that studies safety certification and convergence guarantees of complex software systems at design-time.
However, the unknown future deployment environments of an autonomous system and the complexity
of learning-based perception make the generalization of design-time verification to run-time problematic.
In the face of this challenge, more attention is starting to focus on run-time monitoring of performance and
reliability of perception systems with several trends emerging in the literature in the face of this challenge.
This paper attempts to identify these trends and summarize the various approaches to the topic.

INDEX TERMS Machine learning, performance evaluation, reliability, robot learning.

I. INTRODUCTION
Deep Neural Networks (DNNs) show impressive results on
many computer vision tasks such as image classification [1],
object detection [2], depth estimation [3] and semantic seg-
mentation [4]. This has led to their increased use for the per-
ception pipeline of robotic and autonomous systems such as
driverless cars, service, agricultural and field robots [5]–[8].
However, a growing body of research is showing that state-
of-the-art DNNs suffer a drop in performance when tested on
data that differs from their training and testing sets [9]–[11].
This fact is of particular importance for deep learning based
robotic perception since a robot may experience a wide range
of environmental conditions that were not represented in the
training data. This can lead to unexpected perception failures
which pose an unacceptable safety risk. Without the ability to
assess the reliability of the deep learning based components
of the robotic system at run-time, the whole system’s safety
must be questioned.

The core of the problem is that, deep learning models are
currently developed using a large dataset, split into training
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and test samples. As a result, the samples in the two sets are
generated from the same distribution. In addition to that, most
DNNs are trained with a closed-world assumption where
all inputs are assumed to belong to one of a set of known
categories. However, this is not always the case in the per-
ception pipeline of a robot. The models’ input data might
come from unseen or different distributions than the training
and testing sets due to environmental variables and novel
contents that were not represented during design-time (i.e.,
the development and training stage). If this critical issue is not
addressed, we can not generalize the model’s performance on
the test set to predict the performance during actual run-time
(i.e., post-deployment on the robot) in a meaningful way.

Although there is an increasing interest in the area of
safety certification and convergence guarantees for deep
learning models at design-time (see [12] for a comprehensive
overview), most of the current methods do not scale to large
deep neural networks that are typical of what is used for
robotic perception. In addition to this scale issue, there are the
open-world deployment conditions that some mobile robots
operate under (e.g. autonomous vehicles and field robots)
that make the achievement of safety certification and con-
vergence guarantees during design-time extra challenging.
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Consequently, the focus is shifting towards verification, val-
idation and monitoring at run-time. Run-time monitoring
checks a mobile robot’s performance at its deployment phase,
where ground-truth labels are not available. This monitoring
is critically important for mobile robots’ safety, and reliability
as performance monitoring can work as a trigger to hand-over
control to a less-capable-but-safe system or a human operator
or shift to a fail-safe mode. To this end, this paper iden-
tifies and discusses emerging research trends that address
the run-time performance monitoring of the learning-based
components in autonomous robotic systems.

The paper is organized as follows: Section II presents our
categorization of the reviewed papers based on how they
perform the run-time monitoring. In Section III, we revisit
the same papers and re-categorize them based on where in
the perception pipeline they perform the monitoring (i.e.,
whether at the input stage or in the target model itself or
at its output stage or a combination of the above). Finally,
we conclude with general observations in Section IV.

II. RUN-TIME MONITORING
Although run-time monitoring of machine learning for
robotic perceptions is an emerging research topic, we can
identify several trends in the literature based on their
approach of detecting or predicting run-time failures. The
first trend includes techniques that utilize past examples of
failures or predicting the quality of the output based on the
similarity of context or the place of operation to previous
experiences. The second trend includes methods that detect
inconsistencies in the perception output, either over a stream
of input data or input from different sensors or outputs from
different models. The third trend is based on confidence
learning and uncertainty estimation, where perception mod-
ules express their own confidence in their output.

A. MONITORING BASED ON PAST EXPERIENCES
This section will discuss the literature that focuses on mon-
itoring perception system performance based on previous
experience. We can categorize this literature into two groups.
The first group monitors perception performance using past
examples of success and failures, and the second group uses
the experience from the same workspace or context for per-
formance monitoring.

1) PAST EXAMPLES OF SUCCESS AND FAILURES
Generally, performance monitoring using examples of failure
depends on an auxiliary network to predict the base network’s
failure. The base network can be responsible for any specific
task – image classification, segmentation or object detection.
The auxiliary network is trained using both positive and
negative samples where the base network performed its par-
ticular task with expected accuracy. During the deployment
phase, the auxiliary network operates along with the base
network and predicts the base network’s success or failure
for performing the specific task.

The idea of using past examples of failures for the training
of a self-evaluation system that detects perception failures at
run-time has roots before the breakthrough of deep learning.
An early example is the work by Jammalamadak et al. [13]
where evaluator algorithms were proposed to predict the
accuracy of a human pose estimation algorithm. They intro-
duced the idea of self-evaluation and framed that as a binary
classification task that uses additional features extracted from
the target model’s output. The binary classifier is trained as
the evaluator, using examples of failures on the target model’s
training set. During inference, a threshold on the evaluator’s
quality is used to determine the human pose estimator’s suc-
cesses and failures.

Following similar approach to [13], Zhang et al. [14]
proposed alert – a generalized warning framework to detect
the failure of any vision system. Alert uses multiple generic
hand-crafted image features to predict the accuracy of the
vision system on that particular input image. They also intro-
duced two new metrices – accuracy of vision system ver-
sus declaration rate, and risk-averse metric to evaluate the
proposed performance prediction algorithm. Experimental
results have shown alert is effective in predicting the failure
of image segmentation, 3D layout estimation, image mem-
orability and attributes-based scene and object recognition
tasks. Daftry et al. [15] applied the alert framework to predict
perception failure of an autonomous navigation task. They
trained the alert system to predict Micro-Air Vehicle (MAV)
navigation failure from the input image and corresponding
optical flow. Here, alert is designed using spatiotemporal
convolutional neural network for feature extraction and Sup-
port Vector Machine to identify cases where MAV will fail to
navigate safely. Using a similar framework, Saxena et al. [16]
trained the vision system of an autonomous quadrotor to iden-
tify navigational failure and response accordingly to avoid the
consequences.

Joining the trend of using a separate system to monitor
and predict a target model’s failure, Mohseni et al. [17]
proposed an approach to train a student model to predict the
target model’s error for input instances based on a saliency
map extracted from the input images. The failure predictor
is trained on examples of steering angle prediction errors of
the target model for frames from the training set. In [18],
a secondary model is trained using the softmax probabilities
outputs of a target model to predict if its predictions are cor-
rect or not, therefore estimating the true inference accuracy on
new and unseen data. The accuracy monitoring model needs
to be pre-trained using data relevant to the target domain.

Most recently, Rahman et al. [19] addressed the problem of
run-time performancemonitoring of object detection onboard
a mobile robot. They focused on the performance difference
between the training and testing environment. They empha-
sized tracking the performance at run-time for the safety
and reliability of object detection system during deployment.
This work proposed a cascaded neural network to monitor
performance by predicting the mean-average-precision met-
ric over a sliding window of input images. In related work,
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[20] used an object detector’s internal features to predict if
the mean-average-precision for a particular image will be
higher or lower than a predefined threshold. Identifying the
false-negative object has been used by [21] as a means of
run-time performance monitoring of object detection. In this
work, they exploited features from specific feature map loca-
tions to identify potential false-negative objects. In a similar
context, Schubert et al. [22] proposed a meta-classifier to
discriminate between true-positive and false-positive, and
performed meta-regression to predict the intersection-over-
union (IoU) score without using any ground-truth labels
during deployment. These approaches rely on the object
detection output and hand-crafted features to evaluate object
detection quality in run-time. Rabiee and Biswas [23] intro-
duced a framework named introspective vision for obstacle
avoidance (iVOA) consisting of a perception system and an
introspection module for the task of obstacle avoidance. The
introspection module is trained to detect false-positive and
false-negative patches of input images where the perception
system fails to detect obstacles. The authors demonstrated
the feasibility of the proposed introspection model for both
indoor and outdoor dataset.

2) EXPERIENCES IN THE SAME WORKSPACE OR CONTEXT
As mobile robots often operate in the same places or the
same contexts over long periods encountering periodic and
seasonal variations in the deployment conditions, perfor-
mance monitoring and failure prediction methods can take
advantage of this knowledge. One example is the work by
Hawke et al. [24]where they introduced an Experience-Based
Classification (EBC) framework to improve mobile robot
performance for pedestrian detection. They applied multiple
scene filters to identify false-positive errors made by the
pedestrian detector. They used those filtered out images to
re-train the detector to achieve better performance on the
same location during the next traversal. Through experimen-
tal evaluation, EBC was shown to be a viable alternative to
hard-negative-mining without manually labeled data.

In the context of mobile robot Teach and Repeat, [25]
proposed a localization envelop to capture the likely localiza-
tion performance from the Teach phase to improve the per-
formance during the Repeat phase. However, this approach
is location-dependent and requires multiple Teach phases to
learn the expected performance. To improve upon this work,
Dequaire et al. [26] proposed an appearance-based approach
to predict the localization envelop using a single Teach pass.

Using a probabilistic framework, Gurau et al. [27] pre-
dicted perception performance of a pedestrian detection
system deployed on a mobile robot based on its previous
visits to the same location. They estimated the detection
performance for a particular place and granted or denied
autonomy to the mobile robot based on the predicted perfor-
mance. Most recently, in the Simultaneous Localization and
Mapping (SLAM) paradigm, Rabiee and Biswas [28] pro-
posed the idea of introspective vision-based SLAM. A self-
supervised approach for learning to predict sources of failure

for visual SLAM and to estimate a context-aware noise model
for image correspondences, moving objects, non-rigid objects
and other causes of errors.

In the context of Autonomous Vehicles (AV),
Hecker et al. [29] argued that failure in the onboard vision
system is not uncommon, and this does not happen randomly.
Heavy traffic, complex intersections, adverse weather and
illumination condition are conditions where the vision system
will fail. They presented a method to learn to predict how
challenging an environment is to a given vision-based model.
Their proposed work predicts whether the current driving
conditions are safe or hazardous for an underlying speed and
steering angle prediction network that uses images collected
from a vehicle’s front-view camera.

B. MONITORING BASED ON INCONSISTENCIES
DURING INFERENCE
Another trend we can identify in the performance monitoring
literature is the detection of inconsistency during the infer-
ence period. This inconsistency detection can be an indica-
tor of performance degradation. The proposed approaches
focus on using temporal and stereo vision, multiple sensor
modalities, misalignment detection between the input and the
output and abnormal neuron activation pattern. This section
will provide a brief overview of these approaches.

Ramanagopal et al. [30] proposed using stereo and tem-
poral inconsistency of a deployed object detection system to
identify false negative instances. The stereo disparity is used
to transfer detected object from one camera view to another
for stereo inconsistency detection. A multi-object tracker is
used to construct tracklets using the detected objects, and
any missing tracklets in subsequent frames work as a false
negative hypothesis.

Building on the literature of multiprocessor diagnosabil-
ity, Antonante et al. [31] developed the temporal diagnostic
graphs, a framework to reason over the consistency of percep-
tion outputs over time and demonstrated the ability to detect
perception failures in an autonomous driving simulator.

Zhou et al. [32] proposes an automatic validation pipeline
incorporating an additional sensor (LIDAR) to examine the
performance of a semantic segmentation model in run-time.
Using the geometric properties of neighboring LIDAR points,
they recognized road boundaries near the vehicle and auto-
matically generated labels data for the road. By comparing the
road segmentationmodel’s predictions with the automatically
generated labels, they measured the segmentation models
accuracy at run-time.

Yang and Patras [33] introduced the concept of mir-
rorability and mirror-error for object part localization, and
showed that mirror-error could be measured without any
ground-truth data. They also showed a high correlation
between the mirror-error and the corresponding ground-truth
error. Because of this correlation, mirror-error can be used to
indicate localization/alignment error at run-time.

Gupta and Carlone [34] proposed anAdversarially-Trained
Online Monitor (ATOM) to track the performance of neural
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networks that estimate 3D human shapes and poses from
images. They address this problem by identifying the align-
ment inconsistency between the input image and the output
mesh of a human shape and pose reconstruction network,
GraphCMR [35]. ATOM generates a mesh correctness score
and uses that to monitor the performance of GraphCMR
prediction.

Henzinger et al. [36] proposed an abstraction-based frame-
work to monitor a neural network by observing its hidden
layers. This framework is a neural network architecture-
independent, and the proposed abstraction represents all val-
ues encountered in the chosen layers during the training
phase. During deployment, run-time monitoring is performed
by comparing the current values in the layers with the abstrac-
tion. Another related work is proposed by Cheng et al. [37].
They stored the neuron activation pattern in an abstract form
and used Hamming distance to compare the generated pattern
at run-time to the abstract form. This comparison detects
whether the run-time prediction made by the network is
consistent with the prior training data.

C. MONITORING BASED ON UNCERTAINTY ESTIMATION
AND CONFIDENCE
In this section, we will provide a brief overview of the liter-
ature that focus to monitor the performance of a perception
system using uncertainty estimation, prediction confidence
and quality scores.

1) UNCERTAINTY ESTIMATION
Uncertainty estimation is an active area of deep learn-
ing research. It includes approaches as simple as softmax
entropy [38] to more principled methods such Bayesian
Neural Networks [39] and their approximation [40], and
ensemble techniques [41]. For a comprehensive review of
uncertainty estimation methods used in machine learning
and deep learning see [42]. Due to the promising role of
uncertainty estimation in increasing autonomous and robotic
systems’ safety by indicating low confidence in output pre-
dictions – and consequently detecting failures – many authors
in the field of robotic perception investigated and compared
variations of themainmethods of estimating uncertainty from
DNNs. Examples include uncertainty estimation for steering
angle estimation [43], road segmentation [44], visual odom-
etry [45], and vehicle and object detection [46]–[48].

The work by Grimmett et al. [49] is one of the earlier
attempts to use uncertainty to monitor learning-based robotic
perception. They showed that, in the robotic context, tradi-
tional performance metrics are inadequate to train and eval-
uate classifiers used for mission-critical decision making.
To overcome this shortcoming, they proposed the concept of
introspection – the ability to assess confidence to mitigate
overconfident classifications. Based on this idea, they ana-
lyzed the introspective capability expressed using uncertainty
estimation of multiple image classifiers and suggested using
model ensemble instead of using a single model to take
critical decisions in safety-critical robotic applications.

In the context of end-to-end controllers for self-driving
cars, Michelmore et al. [50] explored the effectiveness of
multiple measures of uncertainty and showed that mutual
information, a measure of epistemic uncertainty [51], is a
promising indicator of forthcoming crashes of the car. The
evaluation was done using self-driving car simulator. In the
context of vehicle detection, Feng et al. [52] proposed a
probabilistic LIDAR vehicle detection network that captures
model epistemic uncertainty by Monte Carlo Dropout [53]
and aleatoric uncertainty [54] by adding an auxiliary output
layer to the vehicle detection network.

Tian et al. [55] showed that different uncertainty measures
correlate differently to different types of sensory data degra-
dation, and proposed a method to combine multiple types of
uncertainties in an adaptive fusion scheme for unseen degra-
dation with application to RGB-D semantic segmentation.

Henne et al. [56] compared several methods for esti-
mating uncertainty for image classification task against
safety-related requirements and metrics designed to mea-
sure the model’s performance in safety-critical domains.
Their findings emphasize the repeatedly reported observa-
tion that Deep Ensembles [41] method for estimating uncer-
tainty demonstrates strong performance. They also found that
learned-confidence methods, the subject of the next section,
produce consistently low confidence scores and can reject
false predictions while producing higher confidence scores
for correct predictions.

2) CONFIDENCE AND QUALITY SCORES
As shown in [10], deep neural networks often produce erro-
neous predictionswith high confidence (low predictive uncer-
tainty) when tested with data that differ from their training
and test set. This is frequently the case for DNNs deployed on
mobile robots in open-world settings. An emerging research
trend for failure prediction is learning a specialized confi-
dence score that acts as a measure for the quality of the target
model outputs or as an indicator of the difficulty of the input
to flag potential low-quality predictions.

For estimating model confidence, Corbière et al. [57]
defined a new confidence criterion called the TrueClass Prob-
ability (TCP) and proposed a network, ConfidNet, to learn the
target confidence criterion. They provided theoretical guar-
antees and empirical evidence that predicting TCP instead of
using maximum class probability (MCP) directly is better at
predicting the failure of convolutional neural networks for a
classification and a semantic segmentation task.

An example of the use of quality score is the works by
Rottman et al. [58]. They proposed a meta-classifier to mon-
itor the performance of a semantic segmentation model. The
proposed approach uses pixel-wise uncertainty estimation
and hand-crafted features corresponding to the target model
segmentation’s geometry to train a meta classifier or regres-
sor to predict the IoU score with unknown ground-truth at
run-time. Maag et al. [59] extend the work to account for
temporal dependency between the input frames. As for input
hardness prediction, Wang and Vasconcelos [60] proposed
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an adversarially trained hardness predictor for a convolu-
tional neural network classifier. The hardness-predictor is an
auxiliary network that predicts a score for each input to the
classifier denoting how hard it will be on the classifier. Based
on this score, the classifier can either accept to classify the
image or reject it altogether.

Although not directly applied to a robotic application,
the approach of Valindria et al. [61] to semantic segmentation
quality monitoring can be extended to robotic perception.
They introduced the concept of Reverse Classification Accu-
racy (RCA) to evaluate a deployed segmentation model’s
performance without using any ground-truth labels. RCA
is a reverse classifier trained using the predictions of the
target segmentation model as pseudo-ground-truth. Dice sim-
ilarity coefficient (DSC) – aka F1-score – between RCA’s
outputs and the target model’s predictions is used as a qual-
ity score. Instead of applying RCA to predict the DSC,
Robinson et al. [62] proposed to use a convolutional neural
network. Their approach provides real-time inference and
better accuracy for predicting the DSC for image segmenta-
tion task.

3) OUT-OF-DISTRIBUTION DETECTION
Throughout the literature, out-of-distribution (OOD) detec-
tion is referred by multiple terms, for example anomaly,
novelty or outlier detection [63], [64]. Nevertheless, these
approaches’ common objective is to identify testing samples
that do not belong to the training set’s data distribution.
Concretely, let us assumewe have trained a perception system
to perform some specific task – image classification, segmen-
tation or object detection, using a dataset sampled from the
distribution Din. Any dataset that is not a member of Din will
be referred to as out-of-distribution. At run-time, we want to
detect when the input comes from a distribution very different
from Din. (See [11] for a recent review of the different meth-
ods that tackle OOD detection and [65] for an empirical eval-
uation of several of these methods). In the context of robots
that operate in open-world settings, this knowledge is essen-
tial since the DNNs could make an over-confidently wrong
predictions when operating on out-of-distribution data. Upon
identifying out-of-distribution input, the mobile robot can
enable a fail-safe mode or hand-over control to a human oper-
ator’s to ensure safety and reliability. This section discusses
examples that use ideas related to OOD detection to monitor
mobile robot performance.

In the context of a mobile robot’s safe visual navigation,
Richter and Roy [66] proposed using an autoencoder along
with a collision-avoidance system. The autoencoder decides
whether an input image is similar enough to the training
data to be confident about the collision avoidance system’s
prediction. In the case of low confidence, the mobile robot
reverts to safe recovery behavior which reduced the number
of collisions and resulted in faster navigation time than the
baseline approach. Cai andKoutsoukos [67] demonstrated the
application of out-of-distribution control input detection in
the context of a self-driving car. Their approach is based on

conformal prediction [68] and anomaly detection. The non-
conformity score is computed using a variational autoencoder
and a deep support vector machine. The experimental results
show a decrease in the number of false-positive errors and a
faster execution time during inference.

Nitsch et al. [69] proposed an uncertainty-based OOD
detection technique that uses auxiliary training along with
post-hoc statistics without requiring any external out-of-
distribution dataset. The proposed approach takes advan-
tage of Generative Adversarial Network (GAN) to enforce
the object classifier to assign low confidence on OOD
data and uses cosine similarity to identify OOD samples.
Whereas Che et al. [70] proposed Deep Verifier Network to
detect OOD and adversarial input to a deep neural network
using conditional variational autoencoder.

Recently, Jafarzadeh et al. [71] formalized the open-world
recognition reliability problem and proposed multiple
automatic reliability assessment policies using only the
reported probability distribution of a classifier. The proposed
open-world reliability assessment works for both closed-set
and open-set settings and shows significant improvement
over a baseline algorithm.

A related topic to the approaches in this category is absten-
tion or rejection learning, which is concerned with designing
robust model that can reject an input assuming the possibility
of making a wrong decision. Abstention learning can be used
as an implicit approach for run-time performance monitor-
ing. In abstention learning, each error and rejection incur
a predefined cost, and the goal of abstention learning is to
keep this error-reject cost at an optimal level. The error-reject
tradeoff was first introduced by Chow [72], [73], where the
author formalized the optimal rejection rule and derived the
relation between the error and rejection probabilities. Fol-
lowing this work, [74], [75] and [76] introduced a rejection
option to Support Vector Machines, nearest neighbors and
boosting algorithms respectively. The rejection module in
these approaches is trained separately from the targeted per-
ception approach. Later Cortes et al. [77] and Geifman and
El-Yaniv [78] proposed rejection option that can be jointly
learned with the perception system. Reference [78] integrated
a reject option with a deep neural network.

III. RUN-TIME MONITORING MAPPED TO THE ROBOTIC
PERCEPTION PIPELINE
Another way to categorize the papers reviewed in this survey
is by where they perform the monitoring in the robotic per-
ception pipeline (Figure 1). We can categorize the literature
above according to whether they perform the monitoring
by input validation or output evaluation or inner activations
inspection or a combination of them.

Input validationmeans the performancemonitoring system
directly uses the same input as the perception system to pre-
dict failures and/or monitor the performance. As an example,
[14] and [15] predict the success or failure of the percep-
tion system using a classifier that uses the same input as
the perception system. In this case, performance monitoring
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TABLE 1. Re-categorization of the papers based on where in the robotic perception pipeline they perform the monitoring and whether they required
training during design-time or not.

FIGURE 1. In a robotic system that uses a learning-based perception
module, we can categorize the methods reviewed in this survey under
methods that perform the monitoring by input validation or output
evaluation or inner activations inspection or a combination of the above.

is separated from the perception system. Output evaluation
refers to the cases where performance monitoring is done by
evaluating the perception system’s output to predict its quality
and express low or high confidence in it. References [30] and
[58] are examples of this paradigm. The activation inspection
related research utilizes the perception system DNN’s inter-
nal layer activations to monitor its performance and detect
failures. [36] and [57] are examples of this category.

Moreover, we can categorize the performance monitoring
literature into explicit and implicit monitoring. In explicit
monitoring, performance monitoring utilizes examples of
success and failure from design-time before deployment.
As an example, in [18] and [17], the performance monitor
is trained using the perception system input and their cor-
responding accuracy and steering error, respectively. On the
other hand, implicit monitoring does not require train-
ing using examples of success or failure. For example,
[30] uses the stereo and temporal inconsistency to identify
false-negatives and [66] identifies inputs dissimilar to the
training set as a potential cause of navigation failure. Table 1
lists all the papers and their corresponding categorization.

IV. CONCLUSION
Run-time monitoring of learning-based perception systems –
dominated by deep neural networks – is crucial for robotic
applications due to the difficulty in applying design-time
formal verification and safety guarantees for such systems,
mainly due to their complexity and the complexity of model-
ing their deployment environments. In this survey, we identi-
fied an emerging research direction that focuses on run-time
verification and monitoring. The approaches we reviewed
tackle the problem in various ways. Some depend on past
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experiences and examples of success and failures to train
a monitoring system that verifies some input/output/neural
activations properties for the target model. Other approaches
detected run-time inconsistencies in the input/output/internal
activations as a mean to predict failures. The last group of
methods use uncertainty estimation, learned confidence, and
detect out-of-distribution input to predict the low-quality out-
put from the target model. We also mapped these approaches
based on where they perform the monitoring in the perception
system pipeline and whether they require training during
design-time. Due to the importance of this line of research for
many safety-critical systems that use learning-based compo-
nents such as deep neural networks with millions of param-
eters, a more principled approach to run-time monitoring is
needed – one that considers not only the target perception
module by itself but also the whole robotic system and the
interaction between its various modules overtime.
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