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Abstract

3D Scene Reconstruction from A Monocular Image

by Wei Yin

3D scene reconstruction is a fundamental task in computer vision. The established
approaches to address this task are based on multi-view geometry, which create cor-
respondence of feature points with consecutive frames or multiple views. Finally, 3D
information of these feature points can be recovered. In contrast, we aim to achieve
dense 3D scene shape reconstruction from a single in-the-wild image. Without mul-
tiple views available, we rely on deep learning techniques. Recently, deep neural net-
works have been the dominant solution for various computer vision problems. Thus,
we propose a two stage method based on learning-based methods. Firstly, we em-
ploy fully-convolutional neural networks to learn accurate depth from a monocular
image. To recover high-quality depth, we lift the depth to 3D space and propose a
global geometric constraint, termed virtual normal loss. To improve the generaliza-
tion ability of the monocular depth estimation module, we construct a large-scale and
diverse dataset and propose to learn the affine-invariant depth on that. Experiments
demonstrate that our monocular depth estimation methods can robustly work in the
wild and recover high-quality 3D geometry information. Furthermore, we propose a
novel second stage to predict the focal length with a point cloud network. Instead
of directly predicting it, the point cloud module leverages point cloud encoder net-
works that predict focal length adjustment factors from an initial guess of the scene
point cloud reconstruction. The domain gap is significantly less of an issue for point
clouds than that for images. Combing two stage modules together, 3D shape can
be recovered from a single image input. Note that such reconstruction is up to a
scale. To recover metric 3D shape, we propose to input the sparse points as guidance.
Our proposed training method can significantly improve the robustness of the system,
including robustness to various sparsity patterns and diverse scenes.
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Chapter 1

Introduction

Human beings have strong abilities to interact with the world based on understanding
of the 3D information of environments, such as grasping objects and avoiding obsta-
cles. Even with a single eye, they can still understand the 3D layout of an environment.
This implies that human beings are able to create an implicit reconstruction of a 3D
environment from a single monocular viewpoint. The question of how to empower ma-
chines with this ability to understand 3D environments from a monocular viewpoint
has been a long lasting problem. There have been many different 3D reconstruction
methods proposed, which can be mainly categorized to active methods and passive
methods. The former ones use the assistant optical information for reconstruction,
such as coded patterns, time of flight and so on. By contrast, the passive methods
focus on leveraging the geometry information and image features to recover the 3D
information. In this thesis, we mainly discuss the passive methods.

Most traditional passive methods [117] for reconstructing the 3D scene are based on
the multi-view geometry theory. They utilize hand-crafted features, such as SIFT [88]
and ORB [108], to establish correspondences on consecutive frames or multiple views,
recovers the camera intrinsic and extrinsic parameters, and then uses the triangulation
to recover 3D information. With multi-view inputs, high-quality 3D reconstruction
has been achieved.

However, there are many scenarios where only a monocular image is available,
such as image editing, autonomous driving, and so on. In this thesis, we move for-
ward to study the 3D reconstruction from a single image input on in-the-wild scenes.
Previous geometry-based methods are not suited or applicable for this problem due to
the limited amount of geometric information they are able to extract from monocular
images. In recent years, the computer vision community has witnessed the continu-
ously improved state-of-the-art performance on various vision problems with the help
of deep-learning methods. They have surpassed traditional methods by large margins
across a range of historically difficult tasks. Therefore, we propose to employ a su-
pervised learning method capable of predicting depth, and other camera parameters
from monocular images to create accurate 3D scene reconstructions from real world
images. However, in order to adopt learning based methods, there are several prob-
lems that need to be solved: 1) how to enforce the constraint for the model to recover
high-quality depth? 2) how can the system work robustly in the wild? 3) how to
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recover the camera intrinsic parameters for the 3D reconstruction? 4) and can this
system recover accurate metric information?

1.1 Motivation

In recent years, many methods [149, 35, 82, 150, 160, 75] have been proposed to solve
the monocular depth estimation problem. They typically formulate the optimization
problem as either point-wise regression or classification. The overall loss is summed
over all pixels. However, we found that the reconstructed point cloud from the pre-
dicted depth is far from the ground truth 3D structure, despite their deceptively low
amounts of error. To improve the geometry accuracy, some methods propose to in-
corporate the local geometry constraint, such as the surface normal. The problem is
that many RGB-D datasets are captured by consumer-level sensors, such as Kinect
and RealSense, which introduce much noise in local regions. Such noisy data would
adversely affect the supervision. To solve these problems, we propose to explore the
global geometric constraint enforced on the 3D point cloud, which is more stable and
takes the long-range relations into account.

Most of the current methods mainly train and validate their methodologies on the
dataset with a specific scene, such as indoor or outdoor scenarios. As a result, these
specialised models are unable to generalise to diverse scenes. To solve this problem,
some methods propose to construct a large-scale and diverse dataset, and explore
the pair-wise ordinal relations for learning. However, only the relative depth can be
predicted and geometric information is lost. To ensure both good generalization and
high-quality 3D depth information, we seek to address these problems from 3 aspects.
We firstly propose to construct a diverse dataset, which has diverse scenes and is
constructed with various cameras and various camera poses. Compared with learning
relative depth or metric depth, we propose to learn the affine-invariant depth.

With the proposed learning objective and datasets, the affine-invariant depth can
be accurately and robustly predicted on diverse scenes. However, recovering a dense
3D scene reconstruction from an image still requires the challenges of depth shift
and focal length to be solved. Some works propose to formulate these as regres-
sion problems and predict them from the 2D image input. By contrast, we discover
that estimating these parameters from the point cloud is more robust, and results in
improved generalisation with unobserved scenes. Importantly, owing to the smaller
domain gap on point cloud than 2D images, we can train models on synthetic data.
Therefore, we employ a point cloud network to recover focal length and depth shift in
the second stage.

1.1.1 Contribution

The main contributions of this thesis include a set of algorithms for robustly recon-
structing accurate 3D scene shape from a single image input. They are listed as
follows.



1.2. Thesis Outline 5

• We propose a high-order geometric constraint enforced in the 3D space for the
monocular depth estimation. Such global geometry information is instantiated
with a simple yet effective concept termed virtual normal(VN). By enforcing a
loss defined on VNs, we demonstrate the importance of 3D geometry information
in depth estimation, and design a simple loss to exploit it. Most importantly,
we demonstrate that this method can reconstruct high-quality 3D scene point
clouds, from which other 3D geometry features can be directly recovered, such
as the surface normal.

• To solve the generalization issue of monocular depth estimation, We propose a
large-scale and high-diversity RGB-D dataset, DiverseDepth. It contains diverse
scenes, and is captured with various cameras in various camera poses.

• To solve the training issue on large scale and diverse datasets, we propose to
learn affine-invariant depth, which ensures both high generalization and high-
quality geometric shapes of scenes. Furthermore, we propose a multi-curriculum
learning method to boost the performance. Experiments on 8 zero-shot datasets
show our method outperforms previous methods noticeably.

• We propose a novel framework for in-the-wild monocular 3D scene shape esti-
mation. To our knowledge, this is the first method for this task, and the first
method to leverage 3D point cloud neural networks for improving estimation of
the structure of point clouds derived from depth maps.

• Furthermore, to improve the performance of the depth estimation, we propose
an image-wise normalized regression loss and a pair-wise normal regression loss.

1.2 Thesis Outline

The structure of this thesis is organized as follows.
In Chapter 2, we firstly review existing state-of-the-art monocular depth estima-

tion methods, current RGB-D datasets, some 3D reconstruction methods, and depth
completion methods. Also we review the point cloud networks in detail.

In Chapter 3, we propose a global geometric constraint in 3D space, termed
virtual normal loss. With the virtual normal loss, the monocular depth estimation
performance is boosted a lot. Importantly, the depth can reconstruct high-quality 3D
scene point clouds

In Chapter 4, to solve the generalization issue, we propose a large-scale and diverse
dataset, DiverseDepth, and propose to learn affine-invariant depth on it.

In Chapter 5, to solve the 3D scene reconstruction from a single image input,
we propose a staged method, which recovers the affine-invariant depth first and then
predicts the camera focal length and depth shift to do the reconstruction.

In Chapter 6, we propose to combine the single image and a sparse depth map to
recover the metric depth and do the metric reconstruction.
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In Chapter 7, the conclusion and the potential research directions are discussed.
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Chapter 2

Literature Review

Our method aims to solve the 3D reconstruction from a monocular image. In this
section, we reviewed most-related methods, including monocular depth estimation,
3D reconstruction, depth completion, RGBD datasets, and 3D point cloud networks.

2.1 Monocular Depth Prediction

Monocular depth prediction aims to predict pixel-wise depth from a single image,
which is important for many robotic and vision applications. It is an ill-posed problem
because multiple 3D scenes can be projected to the same 2D image. To solve this
problem, most of methods are data-driven. Based on their supervision methods, they
are categorised to supervised monocular depth estimation [149, 15, 159, 161] and
unsupervised/self-supervised depth estimation [39, 5, 73].

2.1.1 Supervised Monocular Depth Estimation.

Saxena et al. [113] are among the first ones proposing to predict depth from a sin-
gle image. They construct a Markov Random Field (MRF) model that incorporates
multi-scale local and global image features. Later, a few methods [114, 79] based on
the probabilistic model are proposed. When the powerful deep convolutional neural
network emerges and benefits various computer vision tasks, many CNN-based meth-
ods are also proposed. Eigen et al. [30, 29] propose the first multi-scale network for
dense prediction, including monocular depth prediction, surface normal estimation,
and semantic estimation. Liu et al. [80] proposes to combines the CNN and CRF
for depth estimation. Besides the study on the network architecture, many endeav-
ours [36, 161, 8, 75, 101, 27] have been done on leveraging supervisions to improve the
performance. Some works [161, 36, 75, 27] model the depth prediction as a classifica-
tion problem. Fu et al. [36] transfer the depth to multiple bins and propose a multiple
2-class classification loss, i.e. ordinal loss, to supervise the network. By contrast, some
works [75, 161, 9] model the depth estimation as a multi-class classification problem.
Furthermore, to boost the depth quality, some works [101] propose to combine the
depth estimation with other geometry features estimation together, such as surface
normal. Qi et al. [101] propose to jointly predict the surface normal and depth, which
can refine the depth map based on the constraints from the surface normal. Fei [32]
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proposed a semantically informed geometric loss while Yin et al. [146] introduced a
virtual normal loss to exploit the structure information.

All previous methods propose to learn the metric depth. The problem is that such
methods are difficult to generalize to diverse test scenes, mainly due to the lack of
sufficiently large-scale and high-quality training datasets. To improve generalization,
methods that learn the relative depth [77, 149, 150, 17, 15] are proposed, as relative
depth is much easier to obtain than metric depth. Chen et al. [17] construct the first
large-scale and highly diverse dataset for learning the relative depth. As they use
the ordinal relations and there is a large-scale dataset for training, their method can
produce a model with good generalization. To construct better quality training data,
Xian et al. [149, 150] propose to collect stereo images or videos and use optical flow
methods to obtain the inverse depth. Although learning relative depth can obtain a
robust model, the relative depth can only represent depth ordinal relations and lost
the geometry information, i.e. one point is farther or closer than another one. To
solve this problem, some works [104, 162, 159, 160] propose to learn affine-invariant
depth. Ranftl et al. [104] propose the scale-shift invariant loss to leverage the training
on multi-source data, which can achieve promising generalization on diverse scenes.
Yin et al. [162] propose a heterogeneous loss training strategy, which can achieve
state-of-the-art performance on multiple zero-shot testing datasets.

2.1.2 Unsupervised/Self-supervised Monocular Depth Estimation.

Apart from these supervised learning methods, some works [5, 169, 42, 39, 123] pro-
pose to solve the monocular depth estimation problem without sensor captured ground
truth depth but leveraging the training signal from consecutive temporal frames or
stereo videos. Zhou et al. [169] propose the first monocular self-supervised approach,
which trains a monocular depth estimation network along with a separate camera
pose estimation network from monoculr videos. They use an image alignment loss,
which is obtained by warping the source image to the neighboring frames with the
predicted depth and ego-motion, to supervise the network. To remove the non-rigid
scene motion that violates the rigid warping process, they propose to use an addi-
tional motion explanation mask to ignore specific regions. Yin et al. [163] propose
to decompose motion into rigid and non-rigid components, using depth and optical
flow to explain object motion. This can improve the flow estimation, but jointly
training both flow and depth cannot see more improvement. To close the gap with
fully-supervised methods, Godard et al. [43] propose to leverage the consistency signal
from consecutive frames and stereo views. Yang et al. [157] constrain the predicted
depth to be consistent with predicted surface normals, and [156] enforced edge con-
sistency. To improve the scale consistency between consecutive frames, Bian et al. [5]
propose the geometry consistency loss. Ranjan et al. [105] propose to solve multi-
ple low-level vision problems simultaneously, including depth, camera motion, optical
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flow, and moving objects segmentation, because such fundamental problems are cou-
pled together through geometric constraints. Furthermore, several works [21, 60, 170]
propose to leverage the geometric relations between consecutive frames.

2.2 RGB-D Datasets

Datasets [114, 41, 124, 25, 136] are significant for the advancement of data-driven
depth prediction methods. According to the quality of the ground truth depth, these
datasets can be summarized into two categories. Depth sensors are used to directly
collect high-quality RGB-D pairs, which can construct accurate metric depth dataset.
Make3D [114] is the first outdoor RGB-D dataset constructed for monocular depth
prediction study. KITTI [41] and NYUD [124] are captured by LIDAR on outdoor
streets and Kinect in indoor rooms. Larger-scale RGB-D datasets are also constructed,
such as ScanNet [25], Taskonomy [165], DIML [23], DIODE [136]. These datasets
usually only contain very limited scenes.

To improve the generalization of depth estimation methods on diverse scenes,
several large-scale and diverse datasets are constructed, but the depth is not of high
quality. Chen et al. [17] construct the largest RGB-D dataset, where the ground-truth
depth maps are manually annotated with only one pair of ordinal relations. Similarly,
Youtube3D [14] is also constructed to learn the relative depth but with more pairs
of ordinal relations. MegaDepth [77] employs structure from motion to construct the
depth supervision on the still and rigid scenes. To include more non-rigid and diverse
scenes, Xian et al. [149] and Wang et al. [137] employ optical flow methods to construct
datasets of relative depth. Chen et al. [15] propose the diverse OASIS dataset, which
includes both depth ordinal annotations and camera intrinsic parameters. Yin et
al. [160, 159] propose another large-scale and diverse RGB-D datasets, DiverseDepth.

2.3 Sparse Depth Completion

Depth completion aims to densify a sparse depth input. As the sparse depths captured
by different solutions have varying sparsity types, several methods are proposed to
solve these problems. Depth maps captured with low-cost LiDAR only have a few
hundreds or thousands of valid measurements per image. Several methods [22, 96, 21,
14, 155] propose to leverage the texture information to complete these types of sparsity
patterns. Besides such very sparse depth types, commodity-level RGB-D cameras
such as Kinect, RealSense, and Tango produce depth images that are semi-dense
but missing certain regions. This often happens due to objects with low reflective
properties and objects beyond the maximum supported distance. Several methods
treat this as a depth inpainting task and leverage smoothness priors [49], background
surface extrapolation [90], and surface normals [168]. These methods have shown
promising results, but they focus on only a single sparse depth type. In contrast,
we design a unified solution for all these depth sparsity patterns. Additionally, we
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propose to use a pretrained scale-shift-invariant depth prediction model as a scene
prior to improve the depth completion quality.

2.4 3D Reconstruction

A number of works have addressed reconstructing different types of objects from a
single image [3, 138, 148], such as humans [110, 111], cars, planes, tables, etc. The
main challenge is how to best recover objects details, and how to represent them
with limited memory. Pixel2Mesh [138] proposes to reconstruct the 3D shape from
a single image and express it in a triangular mesh. PIFu [110, 111] proposes an
memory-efficient implicit function to recover high-resolution surfaces, including un-
seen/occluded regions, of humans. However, all these methods rely on learning priors
specific to a certain object class or instance, typically from 3D supervision, and can
therefore not work for full scene reconstruction.

On the other hand, several works have proposed reconstructing 3D scene structure
from a single image. Saxena et al. [114] assume that the whole scene can be segmented
into several pieces, of which each one can be regarded as a small plane. They predict
the orientation and the location of the planes and stitch them together to represent
the scene. Other works propose to use image cues, such as shading [97] and contour
edges [61] for scene reconstruction. However, these approaches use hand-designed
priors and restrictive assumptions about the scene geometry. Our method is fully
data driven, and can be applied to a wide range of scenes.

2.5 3D Deep Learning Models

3D vision attracts increased attention recently because of wide applications in AR/VR,
autonomous driving, and so on. 3D data are usually in the format of 3D point cloud,
which is a set of (x, y, z) coordinates. How to represent the point cloud and extract
features from them are the main challenge. Many works [91, 99, 145, 24, 86] em-
ploy volumes to represent and process 3D data. Maturana et al. [91] proposed the
first voxelnet. Qi et al. [99] systematically analyze CNNs based upon volumetric rep-
resentations and CNNs based upon multi-view representations. They propose two
volumetric CNN network architectures that significantly improve volumetric CNNs
on 3D shape classification. To reduce the memory consumption of processing point
cloud, Wang et al. [140] incorporate the octree into volumetric CNNs. In 3D scene
segmentation problems, volumetric representation based methods [145, 24, 86] are
also widely applied.

Apart from volumetric representation, some works [76, 144, 100, 98] propose to
directly process unordered point cloud. Qi et al. [98] propose the first point cloud
network which takes advantage of the symmetric function to process point cloud.
Their following work, PointNet++ [100], increases the model capacity by stacking
PointNets hierarchically to leverage the nearest neighborhood information. Besides,
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some works [154, 76] propose to use the dynamically created convolution kernels to
extract neighborhood features instead of the symmetric function.

2.6 Curriculum learning.

For many applications, introducing concepts in ascending difficulty to the learner is
a common practice. Several works have demonstrated that curriculum learning [147,
46, 4] can boost the performance of deep learning methods. Weinshall et al. [147]
combine the transfer learning and curriculum learning methods to construct a better
curriculum, which can improve both the speed of convergence and the final accuracy.
Hacohen and Weinshall [46] propose a bootstrapping method to train the network by
self-tutoring. To train a robust depth model on noisy datasets, Yin et al. [160, 159]
construct an easy-to-hard curriculum to load data samples.
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Chapter 3

Geometric Constraints for
Accurate Monocular Depth
Prediction

3.1 Introduction

Monocular metric depth estimation aims to predict the metric distance between scene
objects and the camera from a single monocular image, which is a critical task for
understanding the 3D scene, such as recognizing a 3D object and parsing a 3D scene.
Most of current methods mainly focus on enforcing pixel-wise regression or classifica-
tion loss to supervise the network. By contrast, we propose to leverage the geometry
information.

In this chapter, we first investigate the local geometry constraint, such as surface
normal. To improve the geometry constraint’s robustness to noise, we propose a global
geometry constraint, i.e. virtual normal, to improve the performance of the monocular
depth estimation.

3.2 Background

Although the monocular depth prediction is an ill-posed problem because many 3D
scenes can be projected to the same 2D image, many deep convolutional neural net-
works (DCNN) based methods [29, 30, 36, 44, 68, 75, 115] have achieved impressive
results by using a large amount of labelled data, thus taking advantage of prior knowl-
edge in labelled data to solve the ambiguity.

These methods typically formulate the optimization problem as either point-wise
regression or classification. That is, with the i.i.d. assumption, the overall loss is
summing over all pixels. To improve the performance, some endeavours have been
made to employ other constraints besides the pixel-wise term. For example, a con-
tinuous conditional random field (CRF) [83] is used for depth prediction, which takes
pair-wise information into account. Other high-order geometric relations [32, 101] are
also exploited, such as designing a gravity constraint for local regions [32] or incor-
porating the depth-to-surface-normal mutual transformation inside the optimization
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Depth Surface NormalPoint Cloud

Figure 3.1. Example results of ground truth (the first row), our
method (the second row) and Hu et al. [53] (the third row). By en-
forcing the geometric constraints of virtual normals, our reconstructed
3D point cloud can represent better shape of sofa (see the left part)
and the recovered surface normal has much less errors (see green parts)
even though the absolute relative error (rel) of our predicted depth is

only slightly better than Hu et al. (0.108 vs. 0.115).

pipeline [101]. Note that, for the above methods, almost all the geometric constraints
are ‘local’ in the sense that they are extracted from a small neighborhood in either
2D or 3D. Surface normal is ‘local’ by nature as it is defined by the local tangent
plane. As the ground truth depth maps of most datasets are captured by consumer-
level sensors, such as the Kinect, depth values can fluctuate considerably. Such noisy
measurement would adversely affect the precision and subsequently the effectiveness
of those local constraints inevitably. Moreover, local constraints calculated over a
small neighborhood have not fully exploited the structure information of the scene
geometry that may be possibly used to boost the performance.

To address these limitations, here we propose a more stable geometric constraint
from a global perspective to take long-range relations into account for predicting
depth, termed virtual normal. A few previous methods already made use of 3D ge-
ometric information in depth estimation, almost all of which focus on using surface
normal. We instead reconstruct the 3D point cloud from the estimated depth map ex-
plicitly. In other words, we generate the 3D scene by lifting each RGB pixel in the
2D image to its corresponding 3D coordinate with the estimated depth map. This 3D
point cloud serves as an intermediate representation. With the reconstructed point
cloud, we can exploit many kinds of 3D geometry information, not limited to the sur-
face normal. Here we consider the long-range dependency in 3D space by randomly
sampling three non-colinear points with the large distance to form a virtual plane, of
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which the normal vector is the proposed virtual normal (VN). The direction diver-
gence between ground-truth and predicted VN can serve as a high-order 3D geometry
loss. Owing to the long-range sampling of points, the adverse impact caused by noises
in depth measurement is much alleviated compared to the computation of the surface
normal, making VN significantly more accurate. Moreover, with randomly sampling
we can obtain a large number of such constraints, encoding the global 3D geometric.
By converting estimated depth maps from images to 3D point cloud representations it
opens many possibilities of incorporating algorithms for 3D point cloud processing to
2D images and 2.5D depth processing. Here we show one instance of such possibilities.

By combining the high-order geometric supervision and the pixel-wise depth su-
pervision, our network can predict not only an accurate depth map but also the high-
quality 3D point cloud, subsequently other geometry information such as the surface
normal. It is worth noting that we do not use a new model or introduce network
branches for estimating the surface normal. Instead it is computed directly from the
reconstructed point cloud. The second row of Fig. 3.1 demonstrates an example of
our results. By contrast, although the previously state-of-the-art method [53] predicts
the depth with low errors, the reconstructed point cloud is far away from the original
shape (see, e.g., left part of ‘sofa’). The surface normal also contains many errors.
We are probably the first to achieve high-quality monocular depth and surface normal
prediction with a single network.

Experimental results on NYUD-v2 [124] and KITTI [41] datasets demonstrate
state-of-the-art performance of our method. Besides, when training with the lightweight
backbone, MobileNetV2 [112], our framework provides a better trade-off between
network parameters and accuracy. Our method outperforms other state-of-the-art
real-time systems by up to 29% with a comparable number of network parameters.
Furthermore, from the reconstructed point cloud, we directly calculate the surface nor-
mal, with a precision being on par with that of specific DCNN based surface normal
estimation methods.

In summary, our main contributions of this work are as follow.

• We demonstrate the effectiveness of enforcing a high-order geometric constraint
in the 3D space for the depth prediction task. Such global geometry informa-
tion is instantiated with a simple yet effective concept termed virtual normal
(VN). By enforcing a loss defined on VNs, we demonstrate the importance of
3D geometry information in depth estimation, and design a simple loss to exploit
it.

• Our method can reconstruct high-quality 3D scene point clouds, from which
other 3D geometry features can be calculated, such as the surface normal. In
essence, we show that for depth estimation, one should not consider the informa-
tion represented by depth only. Instead, converting depth into 3D point clouds
and exploiting 3D geometry are likely to improve many tasks including depth
estimation.
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• Experimental results on NYUD-V2 and KITTI illustrate that our method achieves
state-of-the-art performance.

Surface Normal

…...

Other 3D features

Input image Point Cloud

Supervision

Training

Predicted VN

Differentiable 

transformation B C
𝒏

A

GT depth

GT VN

Predict DepthNetwork

Backward

Figure 3.2. Illustration of the pipeline of our method. An encoder-
decoder network is employed to predict the depth, from which the
point cloud can be reconstructed. A pixel-wise depth supervision is
firstly enforced on the predicted depth, while a geometric supervision,
virtual normal constraint, is enforced in 3D space. With the well
trained model, other 3D features, such as the surface normal, can
be directly recovered from the reconstructed 3D point cloud in the

inference.

3.3 Method

Our approach resolves the monocular depth prediction and reconstructs the high-
quality scene 3D point cloud from the predicted depth at the same time. The pipeline
is illustrated in Fig. 3.2.

We take an RGB image Iin as the input of an encoder-decoder network and pre-
dict the depth map Dpred. From the Dpred, the 3D scene point cloud Ppred can be
reconstructed. The ground truth point cloud Pgt is reconstructed from Dgt.

We enforce two types of supervision for training the network. We firstly follow
standard monocular depth prediction methods to enforce pixel-wise depth supervision
over Dpred with Dgt. With the reconstructed point clouds, we then align the spatial
relationship between the Ppred and the Pgt using the proposed virtual normal.

When the network is well trained, we not only obtain accurate depth map but also
high-quality point clouds. From the reconstructed point clouds, other 3D features can
be directly calculated, such as the surface normal.

3.3.1 High-order Geometric Constraints

Surface Normal. The surface normal is an important ‘local’ feature for many point-
cloud based applications such as registration [109] and object detection [50, 45]. It
appears to be a promising 3D cue for improving depth prediction. One can apply
the angular difference between ground-truth and calculated surface normal to be a
geometric constraint. One major issue of this approach is, when computing surface
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Figure 3.3. Illustration of fitting point clouds to obtain the local
surface normal. The directions of the surface normals is fitted with
different sampling sizes on a real point cloud (a). Because of noise, the
surface normals vary significantly. (b) compares the angular difference
between surface normals computed with different sample sizes in Mean

Difference Error. The error can vary significantly.

normal from either a depth map or 3D point cloud, it is sensitive to noise. Moreover,
surface normal only considers short-range local information.

We follow [64] to calculate the surface normal. It assumes that local 3D points
locate in the same plane, of which the normal vector is the surface normal. In practice
ground-truth depth maps are usually captured by a consumer-level sensor with limited
precision, so depth maps are contaminated by noise. The reconstructed point clouds
in the local region can vary considerably due to noises as well as the size of local patch
for sampling (Fig. 3.3(a)).

We experiment on the NYUD-V2 dataset to test the robustness of the surface nor-
mal computation. Five different sampling sizes around the target pixel are employed
to sample points, which are used to calculate its surface normal. The sample area is
a = (2i + 1) · (2i + 1), i = 1, ..., 5. The Mean Difference Error (Mean) [29] between
calculated surface normals is evaluated. Errors are shown in Fig. 3.3(b). We can
learn that the surface normal varies significantly with different sampling sizes. For
example, the Mean between 3×3 and 11×11 is 22°. Such unstable surface normal neg-
atively affects its effectiveness for learning. Likewise, other 3D geometric constraints
demonstrating the ‘local’ relative relations also encounter this problem.
Virtual Normal. In order to enforce robust high-order geometric supervision in the
3D space, we propose the virtual normal (VN) to establish 3D geometric connections
between regions in a much larger range. The point cloud can be reconstructed from
the depth based on the pinhole camera model. For each pixel pi(ui, vi), the 3D location
Pi(xi, yi, zi) in the world coordinate can be obtained by the prospective projection.
We set the camera coordinate as the world coordinate. Then the 3D coordinate Pi is
denoted as follows:

zi = di, xi =
di · (ui − u0)

fx
, yi =

di(vi − v0)
fy

(3.1)
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where di is the depth. fx and fy are the focal length along the x and y coordinate
axis respectively. u0 and v0 are the 2D coordinate of the optical center.

We randomly sample N groups points from the depth map, with three points in
each group. The corresponding 3D points are S = {(PA, PB, PC)i|i = 0...N}. Three
points in a group are restricted to be non-colinear based on the restriction R1. ∠(·)
is the angle between two vectors.

R1 = {α ≥ ∠(
−−−→
PAPB,

−−−→
PAPC) ≥ β,

α ≥ ∠(
−−−→
PBPC ,

−−−→
PBPA) ≥ β|P ∈ S}

(3.2)

where α, β are hyper-parameters. In all experiments, we set α = 120°, β = 30°
In order to sample more long-range points, which have ambiguous relative locations

in 3D space, we perform long-range restriction R2 for each group in S.

R2 = {‖
−−−→
PkPm‖ > θ|k,m ∈ [A,B,C], P ∈ S} (3.3)

where θ = 0.6m in our experiments.
Therefore, three 3D points in each group can establish a plane. We compute the

normal vector of the plane to encode geometric relations, which can be written as

N = {ni =

−−−−→
PAiPBi ×

−−−−→
PAiPCi∥∥∥−−−−→PAiPBi ×
−−−−→
PAiPCi

∥∥∥ |
(PA, PB, PC)i ∈ S, i = 0...N}

(3.4)

where ni is the normal vector of the virtual plane i.
Robustness to Depth Noise. Compared with local surface normal, our virtual
normal is more robust to noise. In Fig. 3.4, we sample three 3D points with large
distance. PA and PB are assumed to locate on the XY plane, PC is on the Z axis.
When PC varies to PC ′, the direction of the virtual normal changes from n to n′. PC ′′

is the intersection point between plane PAPBPC ′ and Z axis. Because of restrictions
R1 and R2, the difference between n and n′ is usually very small, which is simple to
show:

∠(n,n′) =∠(
−−→
OPC ,

−−−→
OPC

′′) = arctan
‖
−−−−→
PCPC

′′‖
‖
−−→
OPC‖

≈ 0,

‖
−−−−→
PCPC

′′‖ � ‖
−−→
OPC‖

(3.5)

.
Furthermore, we conduct a simple experiment to verify the robustness of our

proposed virtual normal against data noise. We create an unit sphere and then add
Gaussian noise to simulate the ideal noise-free data and the real noisy data (see
Fig. 3.5a). We then sample 100K groups of points from the noisy surface and the
ideal one to compute the virtual normal respectively, while 100K points are sampled to
compute the surface normal as well. For the gaussian noise, we use different deviations
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Figure 3.4. Robustness of VN to depth noise.

to simulate different noise levels by varying deviation σ = [0.0002, ..., 0.01], and the
mean being µ = 0. The experimental results are illustrated in Fig. 3.5b. We can
learn that our proposed virtual normal is much more robust to the data noise than
the surface normal. Other local constraints are also sensitive to data noise.
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Figure 3.5. Robustness of virtual normal and surface normal against
data noise. (a) The ideal surface and noisy surface. (b) The Mean
Difference Error (Mean) is applied to evaluate the robustness of virtual
normal and surface normal against different noise level. Our proposed

virtual normal is more robust.

Most ‘local’ geometric constraints, such as the surface normal, actually enforcing
the first-order smoothness of the surface but are less useful for helping the depth map
prediction. In contrast, the proposed VN establishes long-range relations in the 3D
space. Compared with pairwise CRFs, VN encodes triplet based relations, thus being
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of high order.
Virtual Normal Loss. We can sample a large number of triplets and compute
corresponding VNs. With the sampled VNs, we compute the divergence as the Virtual
Normal Loss (VNL):

`V N =
1

N
(
N∑
i=0

‖npredi − ngti ‖1) (3.6)

where N is the number of valid sampling groups satisfying R1,R2. In our experiments,
we have employed online hard example mining.
Pixel-wise Depth Supervision. We also use a standard pixel-wise depth map
loss. We quantize the real-valued depth and formulate the depth prediction as a
classification problem instead of regression, and employ the cross-entropy loss. In
particular we follow [9] to use the weighted cross-entropy loss (WCEL), with the
weight being the information gain. See [9] for details.

To obtain the accurate depth map and recover high-quality 3D information, we
combine WCEL and VNL together to supervise the network output. The overall loss
is:

` = `WCE + λ`V N , (3.7)

where λ is a trade-off parameter and is set to 5 in all experiments to make the two
terms roughly of the same scale.

Note that the above overall loss function is differentiable. The gradient of the `V N
loss can be easily computed as Eq. (3.4) and Eq. (3.6) are both differentiable.

3.3.2 Network Architecture

An architecture overview of our model is illustrated in Fig.3.6. The network is mainly
composed of two parts, an encoder to establish features in different levels from Iin,
and a decoder to reconstruct the depth map. Inspired by [75], the decoder is composed
of several adaptive merging blocks (AMBs) to fuse features from different levels and
dilated residual blocks (DRB) to transform features. In order to improve the receptive
field of the decoder, we set the dilation rates of all 3 × 3 convolutions in DRB to 2
and insert an Astrous Spatial Pyramid Pooling (ASPP) module (dilation rate: 2,
4, 8) [12] between the encoder and the decoder. Furthermore, we establish 4 flip
connections from different levels of encoder blocks to the decoder to merge more low-
level features. The AMB will learn a merging parameter for adaptive merging. Apart
from the features at the highest level with 512 channels, the feature dimension of
other flips is 256. At last, a prediction module, a 3× 3 convolution and a softmax, is
utilized to transfer the features dimensions from 256 channels to 150 depth bins.

In the lightweight backbone network experiment, the backbone is replaced with
MobileNetV2. In order to further reduce parameters, the dimensions of four flip
connections are reduced to (128, 64, 64, 64). In the prediction module, the features
are transferred from 64 channels to 60 depth bins.
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Figure 3.6. Model architecture. The encoder-decoder network has
four flip connections to merge low-level features.

3.4 Experiments

In this section, we conduct several experiments to compare ours against state-of-the-
art methods. We evaluate our methods on two datasets, NYUD-V2 and KITTI.

3.4.1 Datasets

NYUD-V2. The NYUD-V2 dataset consists of 464 different indoor scenes, which are
further divided into 249 scenes for training and 215 for testing. We randomly sample
29K images from the training set to form NYUD-Large. Note that DORN uses the
whole training set, which is significantly larger than that what we use. Apart from
the whole dataset, there are officially annotated 1449 images (NYUD-Small), in which
795 images are split for training and others are for testing. In the ablation study, we
use the NYUD-Small data.
KITTI. The KITTI dataset contains over 93K outdoor images and depth maps with
the resolution around 1240 × 374. All images are captured on driving cars by stereo
cameras and a Lidar. We test on 697 images from 29 scenes split by Eigen et al.
[30], validate on 888 images, and train on about 23488 images from the remaining 32
scenes.
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3.4.2 Implementation Details

The ResNeXt-101 [152] (32 × 4d) model pre-trained on ImageNet [26] is used as our
backbone model. A polynomial decaying method with the base learning rate 0.0001
and the power of 0.9 are applied in SGD. The weight decay and the momentum are
set to 0.0005 and 0.9 respectively. The batch size is 8 in our experiments. The model
is trained for 10 epochs on NYUD-Large and KITTI, and is trained for 40 epochs on
NYUD-Small in the ablation study. We perform data augmentation on the training
samples by the following methods. For NYUD-V2, the RGB image and the depth map
are randomly resized with ratio [1, 0.92, 0.86, 0.8, 0.75, 0.7, 0.67], randomly flipped in
the horizon, and finally randomly cropped with the size 384×384 for NYUD-V2. The
similar process is applied to KITTI but resizing with the ratio [1, 1.1, 1.2, 1.3, 1.4, 1.5]

and cropping with 384 × 512. Note that the depth map should be scaled with the
corresponding resizing ratio.

3.4.3 Evaluation Metrics

We follow previous methods [68] to evaluate the performance of monocular depth
prediction quantitatively based on following metrics: mean absolute relative error
(rel), mean log10 error (log10), root mean squared error (rms) , root mean squared log
error (rms (log)) and the accuracy under threshold (δi < 1.25i, i = 1, 2, 3).

3.4.4 Comparison with State-of-the-art

In this section, we detail the comparison of our methods with state-of-the-art methods.
NYUD-V2. In this experiment, we compare with other state-of-the-art methods on
the NYUD-V2 dataset. Table 3.1 demonstrates that our proposed method outper-
forms other state-of-the-art methods across all evaluation metrics significantly. Com-
pare to DORN, we have improved the accuracy from 0.2% to 18% over all evaluation
metrics that they report.

In addition to the quantitative comparison, we demonstrate some visual results
between our method and the state-of-the-art DORN in Fig. 3.7. Clearly, the predicted
depth by the proposed method is much more accurate. The plane of ours is much
smoother and has fewer errors (see the wall regions colored with red in the 1st, 2nd,
and 3rd row). Furthermore, the last row in Fig. 3.7 manifests that our predicted depth
is more accurate in the complicated scene. We have fewer errors in shelf and desk
regions.
KITTI. In order to demonstrate that our proposed method can still reach the state-
of-the-art performance on outdoor scenes, we test our method on the KITTI dataset.
Results in Table 3.2 show that our method has outperformed all other methods on all
evaluation metrics except root mean square (rms) error. The rms error is only slightly
behind that of DORN. Note that for outdoor scenes, the rms (log) error, instead of
rms, is usually the metric of interest, in which ours is better.



3.4. Experiments 25

Table 3.1. Results on NYUD-V2. Our method outperforms other
state-of-the-art methods over all evaluation metrics.

Method rel log10 rms δ1 δ2 δ3
Lower is better Higher is better

Saxena et al.. [115] 0.349 - 1.214 0.447 0.745 0.897
Karsch et al.. [62] 0.349 0.131 1.21 - - -

Liu et al.. [84] 0.335 0.127 1.06 - - -
Ladicky et al.. [67] - - - 0.542 0.829 0.941

Li et al.. [72] 0.232 0.094 0.821 0.621 0.886 0.968
Roy et al.. [107] 0.187 0.078 0.744 - - -
Liu et al.. [83] 0.213 0.087 0.759 0.650 0.906 0.974

Wang et al.. [139] 0.220 0.094 0.745 0.605 0.890 0.970
Eigen et al.. [29] 0.158 - 0.641 0.769 0.950 0.988
Chakrabarti [10] 0.149 - 0.620 0.806 0.958 0.987

Li et al.. [74] 0.143 0.063 0.635 0.788 0.958 0.991
Laina et al.. [68] 0.127 0.055 0.573 0.811 0.953 0.988

DORN [36] 0.115 0.051 0.509 0.828 0.965 0.992
DenseDepth [1] 0.123 0.053 0.465 0.846 0.974 0.994

DSN [103] 0.132 0.056 0.429 0.834 0.959 0.987
Chen et al. [18] 0.111 0.048 0.514 0.878 0.977 0.994

Huynh et al. [56] 0.108 - 0.412 0.882 0.980 0.996

Ours (ResNet101) 0.112 0.051 0.465 0.859 0.970 0.993
Ours (ResNeXt101) 0.108 0.048 0.416 0.875 0.976 0.994

Table 3.2. Results on KITTI. Our method outperforms other meth-
ods over all evaluation metrics except rms.

Method δ1 δ2 δ3 rel rms rms (log)
Higher is better Lower is better

Make3D [115] 0.601 0.820 0.926 0.280 8.734 0.361
Eigen et al.. [30] 0.692 0.899 0.967 0.190 7.156 0.270
Liu et al.. [83] 0.647 0.882 0.961 0.114 4.935 0.206

Semi. [66] 0.862 0.960 0.986 0.113 4.621 0.189
Guo et al.. [44] 0.902 0.969 0.986 0.090 3.258 0.168

DORN [36] 0.932 0.984 0.994 0.072 2.727 0.120
DenseDepth [1] 0.886 0.965 0.986 0.093 4.170 0.171

DSN [103] 0.934 0.986 0.996 0.075 3.253 0.119

Ours 0.938 0.990 0.998 0.072 3.258 0.117

3.4.5 Ablation Studies

In this section, we conduct several ablation studies to analyze the details of our ap-
proach.
Effectiveness of VNL. In this study, in order to prove the effectiveness of the
proposed VNL we compare it with two types of pixel-wise depth map supervision,
a pair-wise geometric supervision, and a high-order geometric supervision: 1) the
ordinary cross-entropy loss (CEL); 2) the L1 loss (L1); 3) the surface normal loss
(SNL); 4) the pair-wise geometric loss (PL). We reconstruct the point cloud from the
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Image DORN Ours GT

Image DORN Ours GT

Figure 3.7. Examples of predicted depth maps by our method and
the state-of-the-art DORN on NYUD-V2. Color indicates the depth
(red is far, purple is close). Our predicted depth maps have fewer
errors in planes (see walls) and have high-quality details in complicated

scenes (see the desk and shelf in the last row)
.

Image w/o VNL with VNL GT

Figure 3.8. Examples of predicted depth on KITTI. Depth maps in
the red dashed boxes with sign, pedestrian and traffic lights are zoomed
in. One can see that with the help of virtual normal, predicted depth
maps in these ambiguous regions are considerably more accurate.

depth map and further recover the surface normal from the point cloud. The angular
discrepancy between the ground truth and recovered surface normal is defined as the
surface normal loss, which is a high-order geometric supervision in 3D space. The
pair-wise loss is the direction difference of two vectors in 3D, which are established
by randomly sampling paired points in ground-truth and predicted point cloud. The
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Table 3.3. Illustration of the effectiveness of VNL.

Metrics rel log10 rms δ1 δ2 δ3

Pixel-wise Depth Supervision
CEL 0.1456 0.061 0.617 0.8087 0.9559 0.9862

WCEL 0.1427 0.060 0.511 0.8117 0.9611 0.9895
WCEL+L1 0.1429 0.061 0.626 0.8098 0.9539 0.9858

Pixel-wise Depth Supervision + Geometric Supervision
WCEL+PL‡ 0.1380 0.059 0.504 0.8212 0.9643 0.9913

WCEL+PL+VNL 0.1341 0.056 0.485 0.8336 0.9671 0.9913
WCEL+SNL† 0.1406 0.059 0.599 0.8209 0.9602 0.9886

WCEL+VNL‡ (Ours) 0.1337 0.056 0.480 0.8323 0.9669 0.9920

† ‘Local’ geometric supervision in 3D.
‡ ‘Global’ geometric supervision in 3D.

loss function of PL is as follows:

`PL =
1

N

N∑
i=0

(1−
−−−−→
P ∗AiP

∗
Bi ·
−−−−→
PAiPBi∥∥∥−−−−→P ∗AiP

∗
Bi

∥∥∥ · ∥∥∥−−−−→PAiPBi

∥∥∥) (3.8)

where (P ∗A, P
∗
B)i and (PA, PB)i are paired points sampled from the ground truth and

the predicted point cloud respectively and N is the total number of pairs.
We also employ the long-range restriction R2 for the paired points. Therefore,

similar to VNL, PL can also be seen as a global geometric supervision in 3D space.
The experimental results are reported in Table. 3.3. WCEL is the baseline for all
following experiments.

Firstly, we analyze the effect of pixel-wise depth supervision for prediction perfor-
mance. As WCE employs a weight in the CE loss, its performance is slightly better
than that of CEL. However, when we enforce two pixel-wise supervision (WCEL+L1)
on the depth map, the performance cannot improve any more. Thus using two pixel-
wise loss terms does not help.

Secondly, we analyze the effectiveness of the supplementary 3D geometric con-
straint (PL, SNL, VNL). Compared with the baseline (WCEL), three supplementary
3D geometric constraints can promote the network performance with varying degrees.
Our proposed VNL combining with WCEL has the best performance, which has im-
proved the baseline performance by up to 8%.

Thirdly, we analyze the difference of three geometric constraints. As SNL can
only exploit geometric relations of homogeneous local regions, its performance is the
lowest among the three constraints over all evaluation metrics. Compared with SNL,
since PL constrains the global geometric relations, its performance is clearly better.
However, the performance of WCEL+PL is not as good as our proposed WCEL+VNL.
When we further add our VNL on top of WCEL+PL, the precision can further be
slightly improved and is comparable to WCEL+VNL. Therefore, although PL is a
global geometric constraint in 3D, the pair-wise constraint cannot encode as strong
geometry information as our proposed VNL.

At last, in order to further demonstrate the effectiveness of VNL, we analyze the
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Table 3.4. Performance on NYUD-V2 with MobileNetV2 backbone.
†Trained without VN. ‡Trained with VN.

Metrics CReaM [127] RF-LW[93] Ours-B† Ours-VN‡

δ1 0.704 0.790 0.814 0.829
δ2 0.917 0.955 0.947 0.956
δ3 0.977 0.990 0.972 0.980
rel 0.190 0.149 0.144 0.134
rms 0.687 0.565 0.502 0.485

rms (log) 0.251 0.205 0.201 0.185
params 1.5M 3.0M 2.7M 2.7M

results of network trained with and without VNL supervision on the KITTI dataset.
The visual comparison is shown in Fig. 3.8. One can see that VNL can improve the
performance of the network in ambiguous regions. For example, the sign (1st row),
the distant pedestrian (2nd row), and traffic light in the last row of the figure can
demonstrate the effectiveness of the proposed VNL.

In conclusion, the geometric constraints in the 3D space can significantly boost
the network performance. Moreover, the global and high-order constraints can enforce
stronger supervision than the ‘local’ and pair-wise ones in 3D space.
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Figure 3.9. Illustration of the impact of the samples size. The more
samples will promote the performance.

Impact of the Amount of Samples. Previously, we have proved the effectiveness
of VNL. Here the impact of the size of samples for VNL is discussed. We sample six
different sizes of point groups, 0K, 20K, 40K, 60K, and 80K and 100K, to establish
VNL. ‘0K’ means that the model is trained without VNL supervision. The rel error
is reported for evaluation. Fig. 3.9 demonstrates that ‘rel’ slumps by 5.6% with 20K
point groups to establish VNL. However, it only drops slightly when the samples for
VNL increase from 20K to 100K. Therefore, the performance saturates with more
samples, when samples reach a certain number in that the diversity of samples is
enough to construct the global geometric constraint.
Lightweight Backbone Network.

We train the network with the MobileNetV2 backbone to evaluate the effectiveness
of the proposed geometric constraint on the light network. We train it on the NYUD-
Large for 10 epochs. Results in Table 3.4 show that the proposed VNL can improve
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DORN Ours GT

Figure 3.10. Comparison of reconstructed point clouds from esti-
mated depth maps between DORN [36] and ours. We can see that
our point cloud results contain less noise and are closer to groud-truth

than that of DORN.

the performance by 1% - 8%. Comparing with previous state-of-the-art methods, we
have improved the accuracy by around 29% over all evaluation metrics and achieved
a better trade-off between parameters and the accuracy.

3.4.6 Recovering 3D Features from Estimated Depth

We have argued that, with geometric constraints in the 3D space, the network can
achieve more accurate depth and also obtain higher-quality 3D information. Here we
show the recovered 3D point cloud and the surface normal to support this.
3D Point Cloud. Firstly, we compare the reconstructed 3D point cloud from our
predicted depth and that of DORN. Fig. 3.10 demonstrate that the overall quality of
ours outperforms theirs significantly. Although our predicted depth is only slightly
better than theirs on evaluation metrics, the reconstructed wall (see the 2nd row in
3.10) of ours is much flatter and has fewer errors. The shape of the bed is more similar
to the ground truth. From the bird view, it is hard to recognize the bed shape of their
results. The point cloud in Fig. 3.1 also leads to a similar conclusion.
Surface Normal.

The surface normal is another important information to describe the geometry
of a scene. Normal prediction from the monocular image is also a long-lasting prob-
lem. Previous methods mainly design a separate network or decoder to estimate the
surface normal. Actually, the surface normal can be directly calculated from the 3D
point cloud. Therefore, the surface normal can also demonstrate the quality of the
predicted depth. We compare the calculated surface normal with previous state-of-
the-art methods and demonstrate the quantitative results in Table 3.5. The ground
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Image GT Ours

Figure 3.11. Recovered surface normal from 3D point cloud. Accord-
ing to the visual effect, the surface normal is in high-quality in planes
(1st row) and the complicated curved surface (2nd and last row).
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truth is obtained as described in [29]. We first compare our geometrically calculated
results with DCNN-based optimization methods. Although we do not optimize a sub-
model to achieve the surface normal, our results can outperform most of such methods
and even are the best on 30° metric.

Table 3.5. Evaluation of the surface normal on NYUD-V2.

Method Mean Median 11.2° 22.5° 30°
Lower is better Higher is better

Predicted Surface Normal from the Network
3DP [33] 33.0 28.3 18.8 40.7 52.4

Ladicky et al.. [166] 35.5 25.5 24.0 45.6 55.9
Fouhey et al.. [34] 35.2 17.9 40.5 54.1 58.9
Wang et al.. [142] 28.8 17.9 35.2 57.1 65.5
Eigen et al.. [29] 23.7 15.5 39.2 62.0 71.1

Calculated Surface Normal from the Point cloud
GT-GeoNet† [101] 36.8 32.1 15.0 34.5 46.7

DORN‡ [36] 36.6 31.1 15.7 36.5 49.4
Ours 24.6 17.9 34.1 60.7 71.7

† Cited from the original paper.
‡ Using authors’ released models.

Furthermore, we compare the surface normals directly computed from the recon-
structed point cloud with that of DORN [36] and GeoNet [101]. Note that we run the
released code and model of DORN to obtain depth maps and then calculate surface
normals from the depth, while the evaluation of GeoNet is cited from the original pa-
per. In Table 3.5, we can see that, with high-order geometric supervision, our method
outperforms DORN and GeoNet by a large margin, and even is close to Eigen method
which trains to output normals. It suggests that our method can lead the model to
learn the shape from images.

Apart from the quantitative comparison, the visual effect is shown in Fig. 3.11,
demonstrating that our directly calculated surface normals are not only accurate in
planes (the 1st row), but also are of higher quality in regions with sophisticated curved
surface (the 2nd and last row).

3.4.7 3D point cloud

In order to further show the quality of reconstructed point cloud from the predicted
depth, we randomly select 3 scenes from the testing part of NYUD-V2 and KITTI. 3
views are randomly selected to display the reconstructed point cloud. The results are
shown in Fig. 3.12.

3.5 Conclusion

In this paper, we have proposed to construct a high-order global geometric constraint
(VNL) in the 3D space for monocular depth prediction. In contrast to previous meth-
ods with only pixel-wise depth supervision in 2D space, our method cannot only obtain
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(a)
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Ours
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Figure 3.12. Reconstructed point clouds. Three scenes are randomly
selected from NYUD-V2 and KITTI. For the reconstructed point cloud
of each scene, 3 views are selected to demonstrate the point cloud. The
first column is the RGB image. The last 3 columns of are different
views of the reconstructed point for each scene. (a) Scene 1; (b) Scene

2; (c) Scene 3.
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the accurate depth maps but also recover high-quality 3D features, such as the point
cloud and the surface normal, eliminating necessities to optimize a new sub-model.
Compared with other 3D constrains, our proposed VNL is more robust to noise and
can encode strong global constraints. Experimental results on NYUD-V2 and KITTI
have proved the effectiveness of our method and the state-of-the-art performance.
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Chapter 4

Affine Invariant Depth Estimation

4.1 Introduction

In the previous chapter, we have demonstrated that the proposed global geometry
constraint, i.e. virtual normal loss, can significantly boost the monocular metric
depth estimation and improve the geometry quality of the predicted depth. However,
learning metric depth on a small dataset cannot generate a robust depth model to
generalize to in-the-wild scenes.

In this chapter, we aims to solve the generalization issue of monocular depth
estimation. We analyze existing learning metric depth and learning relative depth
methods in detail. Although current learning relative depth methods can produce a
robust model, the predicted relative depth can only represent relative depth relations,
i.e. one point is farther or closer than another one, but at the loss of geometry
information. To solve these problems, we propose a method to construct large-scale
and diverse RGBD dataset, and propose to learn affine-invariant depth on the dataset.

4.2 Background

Monocular depth estimation is a challenging problem. As there exists no easy way to
enforce geometric constraints to recover the depth from a still image, various data-
driven approaches are proposed to exploit comprehensive cues [36, 161, 25, 8].

Previous methods of depth estimation based on deep convolutional neural networks
(DCNN) have achieved outstanding performance on popular benchmarks [161, 36, 1].
They can be mainly summarized into two categories. (1) The first group enforces
the pixel-wise metric supervision to produce the accurate metric depth map typically
on some specific scenes, such as indoor environments, but in general does not work
well on diverse scenes. For example, the recent virtual normal method of [161] can
achieve state-of-the-art performances on various benchmarks with the training and
testing done on each benchmark separately. (2) The second group aims to address
the issue of generalization to multiple scene data by learning with relative depth such
that large-scale datasets of diverse scenes can be collected much easier. A typical
example is the depth-in-the-wild (DIW) dataset [17]. Such methods often explore the
pair-wise ordinal relations for learning and only the relative depth can be predicted.
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Figure 4.1. Qualitative comparison of depth and reconstructed 3D
point cloud between our method and that of the recent learning relative
depth method of Xian et al. [149]. The first row is the predicted depth
and reconstructed 3D point cloud from the depth of theirs, while the
second row is ours. The relative depth model fails to recover the 3D
geometric shape of the scene (see the distorted elephant and ground
area). Ours does much better. Note that this test image is sampled
from the DIW dataset, which does not overlap with our training data.

A clear drawback is that these models fail to recover the high-quality geometric 3D
shapes as only ordinal relations are used in learning. For example, the reconstructed
3D point cloud from the relative depth (first row in Figure 4.1) is completely distorted
and cannot represent the shape of the elephant.

In order to ensure both good generalization and high-quality 3D depth information,
there are two obstacles: (1) lacking diverse and high-quality training data; (2) an
appropriate learning objective function that is easy to optimize, yet preserving as
much geometric information as possible.

In this work, we seek to address these problems from three aspects: (1) con-
structing a large-scale dataset with diverse scenes, Diverse Scene Depth dataset (Di-
verseDepth), including both rigid and non-rigid contents in both indoor and outdoor
environments. With our proposed dataset construction method, such a dataset can
be relatively easy to expand. Existing datasets are either difficult to expand (metric
depth), or only annotated with weak geometric information (relative depth). Our
dataset strikes a balance between these. (2) enforcing the DCNN model to learn the
affine-invariant depth instead of a specific depth value or relative depth on the diverse
scales dataset; (3) proposing a multi-curriculum learning method for the effective
training on this complex dataset. Current available RGB-D datasets can be summa-
rized into two categories: (1) RGB-depth pairs captured by a depth sensor have high
precision, typically accommodating only few scenes as it can be very costly to acquire
a very large dataset of diverse scenes. For example, the KITTI dataset [41] is captured
with LIDAR on road scenes only, while the NYU dataset [124] only contains several
indoor rooms. (2) Images with much more diverse scenes are available online and
can be annotated with coarse depth with reasonable effort. The large-scale DIW [17]
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dataset is manually annotated with only one pair of ordinal depth relations for each
image. To construct our large and diverse dataset, we harvest stereoscopic videos and
images with diverse contents and use stereo matching methods to obtain depth maps.
The dataset contains both rigid and non-rigid foregrounds, such as people, animals,
and cars. Our DiverseDepth is more diverse than metric depth datasets, while it con-
tains more geometric information than existing relative depth datasets because depth
in our dataset is metric depth up to an affine transformation. We have sampled some
images from Taskonomy [165] and DIML [23] and added them into our dataset.

The commonly used learning objectives can be summarized into two categories:
(1) directly minimizing the pixel-wise divergence to the ground-truth metric depth [36,
30, 161]; (2) exploiting the uniformity of pair-wise ordinal relations [17, 149]. How-
ever, both two methods cannot well balance the high generalization and enriching
the model with abundant geometric information. In contrast, we reduce the dif-
ficulty of depth prediction by explicitly disentangling depth scales during training.
The model will ignore the depth scales and make the predicted depth invariant to the
affine transformation, (i.e., translation, scale). Several loss functions can satisfy the
requirement. For example, the surface normal and virtual normal loss [161] are affine-
invariant because they are based on normals. Besides, the scale-and-shift-invariant
loss (SSIL) [70] explicitly recovers the scaling and shifting gap between the predicted
and ground-truth depth. We combine a geometric constraint and SSIL to supervise
the model. The second row in Figure 4.1 shows the predicted affine-invariant depth
of a DIW image and the reconstructed 3D point cloud, which can clearly represent
the shape of the elephant and ground. Experiments on 8 zero-shot datasets show the
effectiveness of learning affine-invariant depth.

Furthermore, training the model on the large-scale and diverse dataset effectively
is also a problem. We propose a multi-curriculum learning method for training. Ha-
cohen and Weinshall [46] have proved that an easy-to-hard curriculum will not change
the global minimum of the optimization function but increase the learning speed and
improve the final performance on test data. Here, we separate the diverse learning
materials to different curriculums and introduce each curriculum with increasing dif-
ficulty to the network. Experiments show this method can significantly promote the
performance on various scenes.

In conclusion, our contributions are outlined as follows.

• We construct a large scale and high-diversity RGB-D dataset, DiverseDepth;

• We are the first to propose to learn affine-invariant depth on the diverse dataset,
which ensures both high generalization and high-quality geometric shapes of
scenes;

• We propose a multi-curriculum learning method to effectively train the model on
the large-scale and diverse dataset. Experiments on 8 zero-shot datasets show
our method outperforms previous methods noticeably.
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Table 4.1. Comparison with previous RGB-D datasets. Our dataset
features both diverse scenes and high-quality ground-truth depth.

Dataset Diversity Dense Accuracy Images
Captured by RGB-D sensor

NYU [124] Low X High 407K
KITTI [41] Low X High 93K
SUN-RGBD [126] Low X High 10K
ScanNet [25] Low X High 2.5M
Make3D [114] Low X High 534
Taskonomy [165] Low X High 4.5M
DIML [23] Low X High 2M
DIODE [135] Low X High 26K

Crawled online
DIW [17] High Low 496K
Youtube3D [14] High Low 794K
RedWeb [149] Medium X Medium 3.6K
WSVD [137] Medium X low 1.5M
MegaDepth [77] Medium X Medium 130K
Ours High X Medium 320K

4.3 Method

4.3.1 Diverse Scene Depth Dataset Construction

Dataset statistics. Table 4.1 compares the released popular RGB-D datasets. RGB-
D sensors can capture high-precision depth data, but they only contain limited scenes.
By contrast, crawling large-scale online images can promote scene diversity. Previous
datasets only have sparse ordinal depth annotations, such as DIW and Youtube3D.
Although RedWeb and MegaDepth advance the ground-truth depth quality, RedWeb
only has 3600 images and MegaDepth only contains static scenes.

Therefore, to feature diversity, quality, as well as data size, we construct a new
dataset with multiple data collection sources. Firstly, we collect large-scale online
stereo images and videos to construct foreground objects part, termed Part-fore, such
as plants, people and animals. Then, we sample some images from Taskonomy and
DIML to constitute the indoor and outdoor background part, termed Part-in and
Part-out.
Foreground part. The processes of Part-fore data construction is outlined as follows.

(1) Crawling online stereoscopic images and videos. We summarize three websites
for data collection: Flickr, 3DStreaming and YouTube. We firstly discard invalid
frames and images that are not left/right stereo contents by comparing the similarity
of left/right parts, i.e., removing low similarity frames. Then we manually inspect
outliers.

(2) Retrieving disparities from stereo materials, then reversing and scaling them
to obtain depths. As parameters of all stereo cameras are unknown, we cannot rectify
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Figure 4.2. Examples of the DiverseDepth dataset. Purple parts are
closer, while red regions are farther.

the stereo images, remove lens distortion, and align the epipolar line. Existing stereo
matching methods [51] based on comparing the local or semi-global features along
the epipolar line cannot obtain the disparity. Instead, we utilize the optical flow [57]
method to match the paired pixels in stereo samples and take the horizontal matching
as the disparity. The depth is obtained by reversing and scaling the disparity.

(3) Filtering depth maps. We find that many outliers and noises residing in depths
are mainly caused by large distortions, small baselines, and poor images features.
Here, we take 3 metrics to mask out such noises. Firstly, pixels with vertical disparities
larger than 5 are removed. Secondly, pixels with the left-right disparity difference
greater than 2 are removed. Furthermore, images with valid pixels less than 30% are
discarded. After these filtering processes, We totally collect more than 90K RGB-D
pairs for the Part-fore. Example images are shown in Figure 4.2.
Background part. In order to enrich the diverse background environments, we
sample 100K images from an indoor and an outdoor dataset respectively, i.e., Taskon-
omy [165] and DIML [23]. The Taskonomy samples constitute our indoor background
data, Part-in, while the DIML ones are the outdoor background part, Part-out.

Therefore, our DiverseDepth dataset has around 300K diverse RGB-D pairs, which
is composed of three different parts, i.e., Part-fore, Part-in and Part-out. There are
around 18K images for testing.

4.3.2 Affine-invariant Depth Prediction

The geometric model of the monocular depth estimation system is illustrated in Fig-
ure 4.3. The ground-truth object in the scene is A∗, and the real camera system is
O-XY Z (the black one in Figure 4.3). When learning the metric depth, the model
G(I, θ) may predict the object at location A. I is the input image. The learning
objective of such methods is to minimize the divergence between A and A∗, i.e.,
minθ |G(I, θ)− d∗|, where d∗ is the ground-truth depth and θ is the network parame-
ters. As such methods mainly train and test the model on the same benchmark, where
the camera system and the scale remain almost the same, the model can implicitly
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Figure 4.3. The geometric model of an imaging system. A∗ is the
ground-truth location for an object. A is the predicted location by
learning metric depth method, while A′ is the predicted location by

our learning affine-invariant depth method.

learn the camera system and produce accurate depth on the testing data [28]. The
typical loss functions for learning metric depth are illustrated in Table 4.2. However,
when training and testing on the diverse dataset, where the camera system and scale
vary, it is theoretically impossible for the model to accommodate multiple camera
parameters. The tractable approach is to feed camera parameters of different camera
systems to the network as part of the input in order to predict metric depth. This
requires the access to camera parameters, which are often unavailable when harvesting
online image data. Our experiments show failure cases of learning metric depth on
the diverse dataset (see Table 4.3, Table 4.6, and Figure 4.4).

Learning the relative depth reduces the difficulty of depth prediction from predict-
ing the accurate metric depth to the ordinal relations. With enough diverse training
data, this method can predict relative depth on diverse scenes, but it loses geometric
information of the scene, such as the geometric shape. For example, the reconstructed
3D point cloud from the relative depth in Figure 4.7 and Figure 4.1 cannot represent
the shape of the sofa and elephant respectively.

In this paper, we propose to learn the affine-invariant depth from the diverse
dataset. On the diverse dataset, we define a virtual camera system, O′-X ′Y ′Z ′ (the
green one in Figure 4.3), which has the same viewpoint as the real one but has the
different optical center location and the focal length. Therefore, there is an affine
transformation, i.e., translation T and scaling s, between the real camera system
O-XY Z and the virtual one O′-X ′Y ′Z ′. For the predicted depth under the virtual
camera system, it has to take an affine transformation to recover the metric depth
under the real camera system, i.e., PA = s · (PA′ + T ), where P = (x, y, d)T . The
learning objective is defined as follows.

L = min
θ
|K(G(I, θ))− d∗| (4.1)

where K(·) is the affine transformation to recover the scaling and translation. Through
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Table 4.2. Illustration of different loss functions

Loss Definition
Metric Depth Loss

MSE Lmse = 1
N

∑N
i=1 (di − d∗i )

2

Silog [30]
Lsi = 1

N

∑N
i=1 y

2
i − 1

N2 (
∑N

i=1 yi)
2

yi = log( did∗i
)

Relative Depth Loss

Ranking [149] Lrank =

{
log(1 + exp(di − dj)lij), lij = ±1

(di − dj)2, lij = 0

Affine-invariant Depth Loss

Scale-shift-invariant [70] Lssi = 1
2N

∑N
i=1(
−→
d>i h− d∗i )2

h = (
∑N

i=1

−→
di
−→
d>i )−1(

∑N
i=1

−→
did

∗
i ),
−→
di = (di, 1)>

Virtual normal [161] Lvn = 1
N (
∑N

i=0 ‖ni − n∗i ‖1)
n is the virtual normal

Surface normal [101] Lsn = 1
N (
∑N

i=0 ‖n′i − n′∗i ‖1)
n′ is the surface normal

explicitly defining a virtual camera system and disentangling the affine transformation
between the diverse real camera system and the virtual one, we simplify the objective
of monocular depth prediction. The predicted depth will be invariant to various
scales and translations. Therefore, it will be easier to generalize to diverse scenes by
learning affine-invariant depth than metric depth. Besides, such learning objective
can maintain more geometric information than that of learning relative depth.

In Table 4.2, several losses can disentangle the scaling and translation and enforce
the model to learn the affine-invariant depth. The virtual normal loss (VNL) and
surface normal loss [101, 161] are constructed based on the normals, which are essen-
tially invariable to scaling and translation. Furthermore, the scale-and-shift-invariant
loss (SSIL) [70] explicitly recovers the scaling and translation before minimizing the
divergence to ground truth. Therefore, we take the high-order geometric loss and the
SSIL to optimize the network. The overall loss function is illustrated as follows. λ is
to balance the two terms, where λ is set to 1 in our experiments.

` = Lvn(d, d∗) + λLssi(d, d
∗) (4.2)

4.3.3 Multi-curriculum Learning

Most existing methods uniformly sample a sequence of mini-batches [B0, ...,BM ] from
the whole dataset for training. However, as our DiverseDepth has a wide range of
scenes, experiments illustrate that such training paradigm cannot effectively optimize
the network. We propose a multi-curriculum learning method to solve this problem.
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Algorithm 1: multi-curriculum learning algorithm
Input : scoring function F , pacing function H, dataset X
Output: mini-batches sequence {Bi|i = 0 . . .M}.

1 train the model Gj on the data part Dj as the teacher
2 sort each data part Dj with ascending difficulty according to F , the ranked data is Cj

3 for k = 0 to K do
4 for i = 0 to M do
5 for j = 0 to P do
6 subset size skj = H(k, j)
7 subset Skj = Cj [0, . . . , skj ]
8 uniformly sample batch Bij from Skj

9 end
10 concatenate P batches sampled from different data parts together Bi = {Bij}Pj=0

11 append Bi to the mini-batches sequence
12 end
13 end

We sort the training data by the increasing difficulty and sample a series of mini-
batches that exhibit an increasing level of difficulty. Therefore, there are two problems
that should be solved: 1) how to construct the curriculum; 2) how to yield a sequence
of easy-to-hard mini-batches for the network. Pseudo-code for multi-curriculum algo-
rithm is shown in Algorithm 1.
Constructing the curriculum. Three parts of DiverseDepth, i.e., part-fore, part-
in and part-out, are termed as X = {Dj}Pj=0. Let Dj = {(xij , yij)|i = 0, ..., N}
represents the N data points of the part j, where xij denotes a single data, yij is
the corresponding label. Previous monocular depth estimation methods show that
training on limited scenes are easy to converge, so we train three models, Gj , separately
on 3 parts as teachers. The absolute relative error (Abs-Rel) is chosen as the scoring
function F(·) to evaluate the difficulty of each training sample. If F(Gj(xij), yij) >
F(Gj(x(i+1)j), y(i+1)j), then we define the data (xij , yij) is more difficult to learn.
Finally, we sort 3 parts according to the ascending Abs-Rel error and the ranked
datasets are Cj = {(xij , yij)|i = 0, ..., N}.
Mini-batch sampling. The pacing function H(·) determines a sequence of subsets
of the dataset so that the likelihood of the easier data will decrease in this sequence,
i.e. {S0j , . . . ,SKj} ⊆ Cj , where Skj represents the first H(k, j) elements of Cj . From
each subset Skj , a sequence of mini-batches {B0j , ...,BMj |j = 0, 1, 2} are uniformly
sampled. Here we utilize the stair-case function as the pacing function, which is
determined by the starting sampling percentage pj , the current step k, and the fixed
step length Io (the number of iterations in each step). In each step k, there are Io
iterations and the H(k, j) remains constant, thus the step k =

⌊
iter
Io

⌋
, where iter is

the iteration index. H(k, j) is defined as follows.

H(k, j) = min(pj · k, 1) ·Nj (4.3)

where Nj is the size of part Dj .
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4.4 Experiments

In order to demonstrate the generalization and effectiveness of our method, we test our
method quantitatively and qualitatively on several zero-shot datasets and compare it
with other state-of-the-art methods.
Experiment setup. We test on 8 zero-shot datasets to illustrate the performance and
generalization of our method, i.e., NYU [124], KITTI [41], DIW [17], ETH3D [118],
ScanNet [25], TUM-RGBD [129], DiverseDepth-H-Realsense, and DiverseDepth-H-
SIMU. The last two testing datasets are constructed by us to test the performance
on scenes with foreground people. We use two different RGB-D sensors, Realsense
and SIMU, to capture people in several indoor and outdoor scenes. DiverseDepth-H-
Realsense contains 2329 images, while DiverseDepth-H-SIMU has 8685 images. We
use the model used in [161] with the pre-trained ResNeXt-50 [152] backbone. The
SGD is utilized for optimization with the initial learning rate of 0.0005 for all layers.
The learning rate is decayed every 5K iterations with the ratio 0.9. The batch size
is set to 12. Note that we evenly sample images from three data parts to constitute
a batch. During the training, images are flipped horizontally, resized with the ratio
from 0.5 to 1.5, and cropped with the size of 385× 385. In the testing, we will resize,
pad, and crop the image to keep a similar aspect ratio.
Evaluation metrics. We mainly take the absolute relative error (Abs-Rel) for eval-
uation except DIW, which is evaluated with the Weighted Human Disagreement Rate
(WHDR) [149]. Besides, when evaluating the depth of foreground people, we follow
the approach in [78] to take scale-invariant root mean squared error (Si-RMS) and
Abs-Rel for evaluation. As our model can only predict the affine-invariant depth of
the scene, we explicitly scale and translate the depth to recover the metric depth when
evaluating the metric depth. The scaling and translation factors are obtained by the
least-squares method.

4.4.1 Comparison with State-of-the-art Methods
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Quantitative comparison on popular benchmarks. The quantitative compar-
ison is illustrated in Table 4.3. Apart from Chen et al. [17] and Xian et al. [149],
whose performance is retrieved by re-implementing the ranking loss and training with
our model, the performances of other methods are obtained by running their released
codes and models. For all methods, we scale and translate the depth before evalua-
tion. Those results whose models have been trained on the testing scene are marked
with an underline.

Firstly, from Table 4.3, we can see that previous state-of-the-art methods, which
enforce the model to learn accurate metric depth, cannot generalize well to other
scenes. For example, the well-trained models of Yin et al. [161] and Alhashim and
Wonka [1] cannot perform well on other zero-shot scenes.

Secondly, although learning the relative depth methods can predict high-quality
ordinal relations on the diverse DIW dataset, i.e., one point being closer or further
than another one, the discrepancy between the relative depth and the ground-truth
metric depth is very large, see Abs-Rel on other datasets. Such high Abs-Rel results in
these methods are not able to recover high-quality 3D shape of scenes, see Figure 4.1
and Figure 4.7.

By contrast, through enforcing the model to learn the affine-invariant depth and
constructing a high-quality diverse dataset for training, our method can predict high-
quality depths on various zero-shot scenes. Our method can outperform previous
methods by up to 70%. Noticeably, on NYU, our performance is even on par with ex-
isting state-of-the-art methods which have trained on NYU (ours 11.7% vs. Alhashim
12.3%).
Qualitative comparison on zero-shot datasets. Figure 4.4 illustrates the quali-
tative comparison on five zero-shot datasets. The transparent white masks denote the
method has trained the model on the corresponding dataset. We can see those learning
metric depth methods, Yin et al. [161] and Alhashim and Wonka [1], cannot work well
on unseen scenes, while learning relative depth methods, see Lasinger et al., cannot
recover high-quality depth map, especially for distant regions (see the marked regions
on KITTI, NYU, and ScanNet) and regions with high texture difference (see marked
head and colorful wall on DIW). On the DIW dataset, our method can predict more
accurate depth on diverse DIW scenes, such as the forest and sign. Furthermore,
on popular benchmarks, such as ScanNet, KITTI, and NYU, our method can also
produce more accurate depth maps.
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Table 4.4. The performance comparison of the foreground people
on three zero-shot datasets. Our method can predict more accurate

depth on foreground people over three datasets.

Method Training Si-hum Si-env Si-RMS Abs-Rel
Testing on TUM-RGBD

Li-I MC 0.294 0.334 0.318 0.204
Li-IFCM† MC 0.302 0.330 0.316 0.206
Li-IDCM† MC 0.293 0.238 0.272 0.147
Ours DiverseDepth 0.272 0.270 0.272 0.192

Testing on DiverseDepth-H-Realsense
Li-I MC 0.343 0.305 0.319 0.264
Ours DiverseDepth 0.262 0.241 0.261 0.186

Testing on DiverseDepth-H-SIMU
Li-I MC 0.373 0.466 0.419 0.391
Ours DiverseDepth 0.283 0.335 0.309 0.218

† Input the mask of people and depth of background to the model.

Comparison of people. ‘People’ is a significant foreground content for various
applications. To our best knowledge, Li et al. [78] are the first ones to focus on
depth estimation for people. To promote the performance, they have to input the
pre-computed depth of the background from two consecutive frames with structure
from motion [116] and the mask of people regions to the network, see Li-IFCM and Li-
IDCM in Table 4.4. Li-I denotes the method with a single image input for the network.
By contrast, our method can also predict the high-quality depth for people with a still
image. We make comparison on three datasets, i.e., TUM-RGBD, DiverseDepth-H-
Realsense, and DiverseDepth-H-SIMU.

In Table 4.4, Si-env and Si-hum denote the Si-RMS errors of the background and
people, respectively. On TUM-RGBD, our method outperforms three configurations
of Li et al. [78] on foreground people up to 10%. Our overall performance, Si-RMS, is
also much better. As Li-IDCM inputs the depth of the background, its Si-env error
is lower than ours.

DiverseDepth-H-Realsense and DiverseDepth-H-SIMU have more scenes than TUM-
RGBD. We compare our method with Li-I. It is clear that our method outperforms
theirs significantly over all metrics with a still image.

Furthermore, we randomly select several images for qualitative comparison (see
Figure 4.5). It is clear that Li-I cannot perform well on the bottom part of people,
distant people, and regions with significant texture difference, while our method can
predict much better depths on both people and the background.

4.4.2 Ablation Study

In this section, we carry out several experiments to analyze the effectiveness of the pro-
posed multi-curriculum learning method, the effectiveness of different loss functions
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Input GTOursLi-I

Input GTOursLi-I

Figure 4.5. Qualitative comparison of the foreground people. Our
method and Li et al. [78]-I have a single image input for the network.
Our method can predict better depth on people and the background

environments.

on the diverse data, the comparison of the reconstructed 3D point cloud among dif-
ferent methods, and the linear relations between the predicted affine-invariant depth
and GT.
Effectiveness of multi-curriculum learning. To demonstrate the effectiveness
of multi-curriculum learning method, we take three settings for the comparison: (1)
sampling a sequence of mini-batches uniformly for training, termed Baseline; (2) using
the reverse scoring function, i.e., F ′ = −F , thus the training samples are sorted in the
descending order on difficulty and the harder examples are sampled more than easier
ones, termed MCL-R; (3) using the proposed multi-curriculum learning method for
training, termed MCL.We make comparisons on 5 zero-shot datasets and our proposed
DiverseDepth dataset. In Table 4.5, it is clear that MCL outperforms the baseline
by a large margin over all testing datasets. Although MCL-R can also promote the
performance, it cannot achieve the comparable performance as MCL. Furthermore,
we demonstrate the validation error along the training in Figure 4.6. It is clear that
the validation error of MCL is always lower than the baseline and MCL-R over the
whole training process. Therefore, the MCL method with an easy-to-hard curriculum



4.4. Experiments 51

Table 4.5. The comparison of different training methods on 5 zero-
shot datasets and our DiverseDepth dataset. The proposed multi-
curriculum learning method outperforms the baseline noticeably, while

MCL-R can also promote the performance.

Method DIW† NYU† KITTI† ETH3D† ScanNet† DiverseDepth
WHDR Abs-Rel Abs-Rel WHDR

Baseline 14.5 11.7 17.9 26.1 11.2 26.0 16.4
MCL-R 15.0 11.8 15.8 24.7 11.0 24.4 15.9
MCL 14.3 11.7 12.6 22.5 10.4 20.6 15.0

† Testing on zero-shot datasets.

can effectively train the model on diverse datasets.
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Figure 4.6. Validation error during the training process. The valida-
tion error of the proposed multi-curriculum learning method is always

lower than that of the MCL-R and baseline.

Effects of different losses. In this section, we analyze the effectiveness of various
loss functions for depth estimation on diverse datasets, including virtual normal loss
(VNL), scale-shift-invariant loss (SSIL), Silog [30], Ranking, and MSE. We sample
10K images from each part of DiverseDepth separately for quick training then test
the performances on 5 zero-shot datasets. All the experiments take a multi-curriculum
learning method. In Table 4.6, the VNL and SSIL outperform others over five zero-
shot datasets significantly, which demonstrates the effectiveness of learning the affine-
invariant depth on diverse datasets. By contrast, as MSE loss enforces the network
to learn the accurate metric depth, it fails to generalize to unseen scenes, thus cannot
perform well on zero-shot datasets. Although Ranking can make the model predict
good relative depth on diverse DIW, Abs-Rel errors are very high on other datasets
because it cannot enrich model with any geometric information. By contrast, as Silog
considers the varying scale in the dataset, it performs a little better than Ranking
and MSE.
Comparison of the recovered 3D shape. In order to further demonstrate learning
affine-invariant depth can maintain the geometric information, we reconstruct the 3D
point cloud from the predicted depth of a random ScanNet image. We compare our
methods with Lasinger et al. [70] and Yin-NYU [161]. We take four viewpoints for
visual comparison, i.e., front, up, left, and right viewpoints. From Figure 4.7, it is
clear that our reconstructed point cloud can clearly represent the shape of the sofa
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Table 4.6. The effectiveness comparison of different losses on zero-
shot datasets. VNL and SSIL outperform others noticeably. By con-
trast, the model supervised by MSE fails to generalize to diverse scenes,
while Ranking can only enforce the model to learn the relative depth.
Although Silog considers the varying scale in the dataset, its perfor-

mance cannot equal VNL and SSIL.

Loss Testing on zero-shot datasets
DIW NYU KITTI ETH3D ScanNet

VNL+SSIL (Ours) 14.3 11.7 12.6 22.5 10.4
VNL 15.2 12.2 21.0 28.9 11.5
SSIL 17.5 16.5 16.3 26.8 15.6
Silog 19.6 20.8 30.8 29.4 17.6

Ranking 24.3 23.4 47.9 39.5 18.1
MSE 35.3 33.2 36.0 30.2 21.6

and the wall from four views, while the sofa shapes of the other two methods are
distorted noticeably and the wall is not flat.
Illustration of the affine transformation relation. To illustrate the affine trans-
formation between the predicted affine-invariant depth and the ground-truth metric
depth, we randomly select two images from KITTI and NYU respectively, and uni-
formly sample around 15K points from each image. The predicted depth has been
scaled and translated for visualization. In Figure 4.8, the red line is the ideal linear
relation, while the blue points are the sampled points. We can see the ground-truth
depth and the predicted depth have a roughly linear relation. Note that as the preci-
sion of the sensor declines with the increase of depth, as expected.
Test on in-the-wild Scenes. To demonstrate the robustness of our methods on
in-the-wild scenes, we test our predicted depths and reconstructed point cloud on
several in-the-wild scenes. We capture some high-resolution images by a mobile phone,
and the predicted affine-invariant depth results are shown in Fig. 4.9. We can see
that the depth maps are of high quality. Edges and occlusion boundaries are clear.
Furthermore, we collect several outdoor scenes to evaluate the quality of reconstructed
3D point clouds. Note that the focal length is provided for the reconstruction. Results
are illustrated in Fig. 4.10.

4.5 Conclusion

We have proposed methods to solve the generalization issue of monocular depth es-
timation, at the same time maintaining as much geometric information as possible.
Firstly, we construct a large-scale and highly diverse RGB-D dataset. Compared
with previous diverse datasets, which only have sparse depth ordinal annotations,
our dataset is annotated with dense and high-quality depth. Besides, we have pro-
posed methods to learn the affine-invariant depth on our DiverseDepth dataset, which
can ensure both good generalization and high-quality geometric shape reconstruction
from the depth. In order to enable learning affine-invariant depth, we propose the
high-order geometric loss, namely, virtual normal loss, which is more robust to noise
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Figure 4.7. Qualitative comparison of the reconstructed 3D point
cloud from the predicted depth of a ScanNet image. Our method can
clearly recover the shapes of the sofa and wall, while the shape of other

methods distort noticeably.
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Figure 4.8. Testing the linear relation between the ground-truth and
predicted depth. (a) Testing on KITTI. (b) Testing on NYU. Predicted
depth has been scaled and translated for visualization. Blue points
are the sampled points, while the red line is the ideal linear relation.
There is an approximately linear relation between the ground-truth

and predicted depth.
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and enables learning high-quality shapes from a single image. Furthermore, we pro-
pose a multi-curriculum learning method to train the model effectively on this diverse

RGB Predicted Depth RGB Predicted Depth

Figure 4.9. Testing on high-resolution images captured by a phone.

RGB Point Cloud (Left View) Point Cloud (Right View)

Figure 4.10. Reconstructing the 3D point cloud of some in-the-wild
scenes.
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dataset. Experiments on NYU and KITTI have demonstrated the effectiveness of vir-
tual normal loss for monocular depth estimation. Besides, experimental results on 8

unseen datasets have shown the usefulness of our dataset for learning affine-invariant
depth on diverse scenes.
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Chapter 5

3D Scene Reconstruction from a
Monocular Image

5.1 Introduction

In the last chapter, to solve the generalization problem of the monocular depth estima-
tion, we propose to learn the affine-invariant depth on large-scale and diverse RGBD
datasets. With the proposed curriculum learning training method, we can obtain a
robust depth prediction model.

In this chapter, we go a step further to solve the scene reconstruction from a single
image input. The camera intrinsic parameters estimation is indispensable for the
reconstruction. As large-scale paired image to focal length datasets are unavailable,
we propose to learn the focal length on synthetic 3D point cloud data. Furthermore,
an unknown shift resides in the predicted affine-invariant depth, which will cause the
reconstructed point cloud distortion. We propose to rectify such distortion and predict
focal length from the point cloud.

5.2 Background

3D scene reconstruction is a fundamental task in computer vision. The established ap-
proach to address this task is multi-view geometry [47], which reconstructs 3D scenes
based on feature-point correspondence with consecutive frames or multiple views.
In contrast, we aim to achieve dense 3D scene shape reconstruction from a single
in-the-wild image. Without multiple views available, we rely on monocular depth
estimation. However, as shown in Fig. 5.1, existing monocular depth estimation meth-
ods [149, 81, 161] alone are unable to faithfully recover an accurate 3D point cloud.
The key challenges are: 1) it is difficult to collect large-scale metric depth datasets
with diverse scenes, which are needed to achieve good monocular depth estimation
models; 2) alternatively, one can train models on large-scale relative depth datasets
which are much easier to collect. We discover that learning depth on such datasets
requires to estimate the depth shift and focal length in order to generate accurate 3D
scene shapes. This problem was almost not studied in the literature, and we attempt
to tackle this problem here.
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Recent works have shown great progress by training deep neural networks on
diverse in-the-wild data, e.g., web stereo images and stereo videos [17, 16, 104, 137,
149, 150, 160, 159]. Chen et al. [17] propose the first large-scale and in-the-wild
dataset, termed DIW. Each image only provides a pair of points and annotates their
depth relations, i.e., one is farther or closer than the other one. Xian et al. [149]
propose to collect diverse web stereo images and use optical flow for finding pixel
correspondence so as to create dense relative ground-truth depth because camera
parameters are unknown and differ for each pair of stereo images.

However, web stereo images and videos can only provide depth supervision up
to a scale and shift due to the unknown camera baselines and stereoscopic post-
processing [69]. Moreover, the diversity of the training data also poses challenges
for the model training, as training data captured by different cameras can exhibit
significantly different image priors for depth estimation [31].

As a result, state-of-the-art in-the-wild monocular depth estimation models use
various types of objective functions that are invariant to scale and shift to facilitate
training. While an unknown scale in depth does not cause scene shape distortion, as
it scales the 3D scene shape uniformly, an unknown depth shift does (see Sec. 5.3.1.
As shown in Fig. 5.1, the walls are not flat because of the unknown shift). In addition,
the camera focal length of a given image may not be accessible at test time, leading to
more distortion of the 3D scene shape (see the angle between two walls of “Recovered
shift” in Fig. 5.1). This scene shape distortion is a critical problem for downstream
tasks such as 3D view synthesis and 3D photography.

To address these challenges, we propose a novel two-stage monocular scene shape
estimation framework that consists of 1) a depth prediction module; and 2) a point
cloud reconstruction module. The depth prediction module is a convolutional network
trained on a mix of existing datasets that predicts depth maps up to a scale and shift.
The point cloud reconstruction module leverages point cloud encoder networks that
predict shift and focal length adjustment factors from an initial guess of the scene point
cloud reconstruction. A key observation that we make here is that, when operating
on point clouds derived from depth maps, and not on images themselves, we can train
models to learn 3D scene shapes using synthetic 3D data or data acquired by 3D laser
scanning devices. The domain gap is significantly less of an issue for point clouds
than that for images. We empirically show that the point cloud network generalizes
well to unseen datasets. Moreover, as two modules can be trained separately, we do
not need the paired “RGB-Point Cloud” training data.

To obtain a robust model, we propose to mix multiple sources of data for training,
including high-quality Lidar sensor data, medium-quality calibrated stereo data, and
low-quality web stereo data. Considering the quality difference, we propose to distin-
guish them and use heterogeneous losses instead of an uniform form. For example, the
low-quality data can only provide reliable depth ordinal relations, thus the ranking loss
[149, 150] is applied. Other data have more accurate depths, but cameras are various.
The training schedule on multiple heterogeneous data sources can have an impact on
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the final performance. We propose a simple yet effective normalized regression loss
for high-quality and medium-quality data. It transforms the depth data to a canoni-
cal scale-shift-invariant space for more robust training. Furthermore, to improve the
geometry quality of the depth, we propose a pair-wise normal regression loss, which
can account for both local and global geometry constraints. From high-quality data,
reliable local normal information and global plane relations can be extracted, while
other data can only provide co-plane information from semantics. Explicitly using
these relations can significantly improve the depth quality.

RGB / Depth          Distorted Point Cloud   Recovered shift       Recovered Shift & Focal Length    

Top View

Right View

Figure 5.1. 3D scene structure distortion of projected point clouds.
While the predicted depth map appears very good, the 3D scene shape
of the point cloud suffers from noticeable distortions due to an un-
known depth shift and focal length (2nd column). Our method recovers
these parameters using 3D point cloud information. With the recov-
ered depth shift, the wall and bed edges become straight. However,
the overall scene is stretched (3rd column). Finally, with recovered
focal length, an accurate 3D scene can be reconstructed (4th column).

To summarize, our main contributions are as follows.

• We propose a novel framework for in-the-wild monocular 3D scene shape esti-
mation. To our knowledge, this is the first method for this task, and the first
method to leverage 3D point cloud neural networks for improving estimation of
the structure of point clouds derived from depth maps.

• We propose an image-wise normalized regression loss and a pair-wise normal
regression loss for improving monocular depth estimation models trained on
mixed multi-source datasets.

Experiments show that our point cloud reconstruction method can recover accurate
3D shapes from single monocular images (up to scale). Also, for depth prediction,
our method achieves state-of-the-art results on zero-shot dataset transfer to 10 unseen
datasets.
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Figure 5.2. The overall pipeline of our method. During train-
ing, the depth prediction model (top left) and point cloud module (top
right) are trained separately on different sources of data. During in-
ference (bottom), the two networks are combined to predict depth d;
and the depth shift ∆d, the focal length f · αf using the predicted d,
which together enable an accurate scene shape reconstruction. Note
that we employ point cloud networks to predict shift and focal length

scaling factors separately.

5.3 Our Methods

Our two-stage pipeline for 3D shape estimation from single images is shown in Fig. 5.2.
It consists of a depth prediction module (DPM) and a point cloud module (PCM). The
two modules are trained separately on different data sources, and are then combined
together at inference time. The DPM takes an RGB image and outputs a depth map
[160] with unknown scale and shift in relation to the true metric depth map. The PCM
takes as input a distorted 3D point cloud that is computed using a predicted depth
map d and an initial estimation of the focal length f ,1 and outputs shift adjustments
to the depth map and focal length to improve the geometry of the reconstructed 3D
scene shape. We describe the details of these two modules next.

5.3.1 Point Cloud Module

We assume a pinhole camera model for the 3D point cloud reconstruction, which
means that the un-projection from 2D coordinates and depth to 3D points is:‘

x = u−u0
f d

y = v−v0
f d

z = d

(5.1)

where (u0, v0) is the camera optical center; f is the focal length, and d is the depth.
The 3D point cloud is reconstructed based on the function (x, y, z) = F(u0, v0, f, d),
see Eq. 5.1. The focal length affects the point cloud shape as it scales x and y

coordinates, but not z. Similarly, a shift d affects the x, y, and z coordinates non-
uniformly, which results in shape distortions.

For a human observer, these distortions are immediately recognizable when viewing
the point cloud at an oblique angle, although they cannot be observed by looking at

1This initial value does not need to very accurate.
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Figure 5.3. Illustration of the distorted 3D shape caused by incorrect
shift and focal length. A ground-truth depth map is projected in 3D,
which can create the ground truth point cloud (see the first row). A and
B annotate the walls. When the focal length is incorrectly estimated
(f > f∗ or f < f∗), we observe significant structural distortion, e.g.,
see the angle between two walls A and B (see the third column). Second
column: a shift (d∗+ ∆d or d∗−∆d) also causes the shape distortion,
see the roof. Note that different distortions are caused by the negative

or positive shift.

a depth map alone. In Fig. 5.3, we can see that a shift for the depth will cause planes
camber, while the focal length will change the angle between two planes (see the last
column).

As a result, we propose to directly analyze the point cloud to estimate the unknown
shift and focal length, instead of working with 2D images. We have tried a number
of network architectures that take unstructured 3D point clouds as input, and found
that the recent PVCNN [85] performs well for this task. Thus, we build our method
on the PVCNN architecture here.

During training, a perturbed input point cloud with incorrect shift and focal length
is synthesized by perturbing the known ground-truth depth shift and focal length. The
ground-truth depth d∗ is transformed by a shift ∆∗d drawn from U(−0.25, 0.8), and
the ground truth focal length f∗ is transformed by a scale α∗f drawn from U(0.6, 1.25)

to keep the focal length positive and non-zero.
When recovering the depth shift, the perturbed 3D point cloud F(u0, v0, f

∗, d∗ +

∆∗d) is given as input to the shift point cloud networkNd(·), trained with the objective:

L = min
θ
|Nd(F(u0, v0, f

∗, d∗ + ∆∗d), θ)−∆∗d| (5.2)
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where θ are network weights and f∗ is the true focal length.
Similarly, when recovering the focal length, the point cloud F(u0, v0, α

∗
ff
∗, d∗) is

fed to the focal length point cloud network Nf (·), trained with the objective:

L = min
θ

∣∣Nf (F(u0, v0, α
∗
ff
∗, d∗), θ)− α∗f

∣∣ (5.3)

During inference, the ground-truth depth is replaced with the predicted affine-
invariant depth d, which is normalized to [0, 1] prior to the 3D reconstruction. We use
an initial guess of focal length f , giving us the reconstructed point cloud F(u0, v0, f, d),
which is fed to Nd(·) and Nf (·) to predict the shift ∆d and focal length scaling factor
αf respectively. In our experiments, we simply use an initial focal length with a field
of view (FOV) of 60◦. We have also tried to employ a single network to predict both
the shift and the scaling factor, but have empirically found that two separate networks
can achieve a better performance.

5.3.2 Monocular Depth Prediction Network

Our monocular depth prediction network takes an RGB image Irgb as input and pro-
duces an affine-invariant depth map d. We train our depth prediction on multiple data
sources including high-quality LiDAR sensor data [165], and low-quality web stereo
data [104, 137, 150] (see Sec. 5.4). As these datasets have varied depth ranges and
web stereo datasets containing unknown depth scale and shift, we propose an image-
level normalized regression (ILNR) loss to address this issue. Moreover, we propose a
pair-wise normal regression (PWN) loss to exploit local geometry information.
Image-level normalized regression loss. Depth maps of different data sources
can have varied depth ranges. Normalization is a critical step to transform data with
variable ranges to a comparable range where large features no longer dominate smaller
features [125]. Therefore, we propose to normalize the data to make the model training
easier. Simple Min-Max normalization [38, 125] is sensitive to depth value outliers.
For example, a large value at a single pixel will affect the rest of the depth map after
the Min-Max normalization. We investigate more robust normalization methods and
propose a simple but effective image-level normalized regression loss for mixed-data
training.

Our image-level normalized regression loss transforms each ground-truth depth
map to a similar numerical range based on its individual statistics. To reduce the
effect of outliers and long-tail residuals, we combine tanh normalization [125] with a
trimmed Z-score normalization, after which we can simply apply a pixel-wise mean
average error (MAE) between the prediction and the normalized ground-truth depth
maps. The ILNR loss is formally defined as follows.

LILNR =
1

N

N∑
i

∣∣∣di − d∗i ∣∣∣+
∣∣tanh(di/100)− tanh(d

∗
i/100)

∣∣ (5.4)
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where d∗i = (d∗i−µtrim)/σtrim and µtrim and σtrim are the mean and the standard deviation
of a trimmed depth map which has the nearest and farthest 10% of pixels removed.
d is the predicted depth, and d∗ is the ground-truth depth map.

We have tested a number of other normalization methods such as Min-Max normal-
ization [125], Z-score normalization [37], and median absolute deviation normalization
(MAD) [125]. In our experiments, we observe that our proposed ILNR loss achieves
the best performance and generalization.
Pair-wise normal loss. Surface normals are an important geometric property, which
have been shown to be a complementary modality to depth [124]. Many methods
have been proposed to use normal constraints to improve the depth quality, such as
the virtual normal loss [161]. However, as the virtual normal only leverages global
structure, it may not help improve the local geometric quality, such as depth edges and
planes. Recently, Xian et al. [150] proposed a structure-guided ranking loss, which can
improve edge sharpness. Inspired by these methods, we follow their sampling method
but enforce the supervision in the surface normal space. Moreover, our samples include
not only edges but also planes. Our proposed pair-wise normal (PWN) loss can better
constrain both the global and local geometric relations.

The detailed sampling method is described here. The first step is to locate image
edges. We follow [161] to calculate the surface normal from the depth map with
the local least squares fitting method. The Sobel edge detector is applied to find
edges from the surface normal map and the input image. At each edge point, we
then sample pairs of points on both sides of the edge. The ground-truth normals
for these points are N∗ = {(n∗A,n∗B)i|i = 0, ..., n}, while the predicted normals are
N = {(nA,nB)i|i = 0, ..., n}. Before calculating the predicted surface normal, we
align the predicted depth and the ground-truth depth with a scale and shift factor,
which are retrieved by the least squares fitting [104]. To locate the object boundaries
and planes folders, where the normals changes significantly, we set the angle difference
of two normals greater than arccos(0.3). To balance the samples, we also get some
negative samples, where the angle difference is smaller than arccos(0.95) and they are
also detected as edges on the input image. The sample strategy is defined:

S1 = {n∗A · n∗B > 0.95,n∗A · n∗B < 0.3|(n∗A,n∗B)i ∈ N∗} (5.5)

To improve the quality of planes, we also sample points on the same plane and
enforce the co-plane supervisions on predictions. We employ different methods to
locate planes. For the high-quality Lidar data, Taskonomy [165], we locate planes
by finding regions with the same surface normal. For noisy data, DIML, we use [13]
to segment the roads, which we assume to be planar regions. Then we obtain the
predicted surface normal for the samples. Note that we have also tried to get the
virtual normal from samples and enforce the co-plane constraints, which has similar
performance to the surface normal constraints. In doing so, we sample 100K paired
points per training sample on average.
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The sampled points are {(Ai, Bi), i = 0, ..., N}. The PWN loss is:

LPWN =
1

N

N∑
i

|nAi · nBi − n∗Ai · n∗Bi| (5.6)

where n∗ denotes ground truth surface normals. Note that if points are on the same
plane, n∗Ai · n∗Bi = 1. As this loss accounts for both local and global geometries, we
find that it improves the overall reconstructed shape.

Finally, we also use a multi-scale gradient loss (MSG) [77] and structure-guided
ranking loss (SR) [150]. The MSG loss is as follows.

LMSG =
1

N

K∑
k=1

N∑
i=1

∣∣∣5k
xdi −5k

xd
∗
i

∣∣∣+
∣∣∣5k

ydi −5k
yd
∗
i

∣∣∣ (5.7)

where K is the number of scale, N is the number of valid samples.
The structure-guided ranking loss is as follows.

LSR =
1

N

N∑
i=0

{
log (1 + exp [−l (di0 − di1)]) ; l 6= 0

(di0 − di1)2 , l = 0,
(5.8)

where l =


+1, if d∗i0/d

∗
i1 ≥ 1 + τ ;

−1, if d∗i1/d
∗
i0 ≥ 1 + τ ;

0, otherwise.

. τ is a predefined threshold.

The training strategy for mixed datasets. We mix5 datasets to train the
depth model. Based on their depth quality, they are categorized to high-quality
data (Taskonomy [165] and 3d ken burns [95]), middle-quality data (DIML [63]), and
low-quality web-stereo data (Holopix50K [54] and HRWSI [150]).

For the low-quality web-stereo data, as their inverse depths dinv have unknown
scale and shift, i.e., dinv = s · d∗inv + ∆d_inv, the depth map (d = 1/dinv = 1/(s ·
d∗inv + ∆d_inv)) can only demonstrate the relative depth relations. Therefore, we only
enforce the structured-guided ranking loss on those data.

For the middle-quality data, such as DIML [63], we enforce the proposed image-
level normalized regression loss, multi-scale gradient loss and ranking loss. As depths
contain much noise in local regions (see Fig. 5.4), enforcing the pair-wise normal
regression loss on noisy edges will cause many artifacts. Therefore, we enforce the
pair-wise normal regression loss only on planar regions.

For the high-quality data, accurate edges and planes can be easily located. There-
fore, we enforce all losses on these data.

The overall loss functions for different datasets are reported in Table 5.1.
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RGB Surface Normal        Edges

Figure 5.4. Comparison of edges of high-quality data and middle-
quality data. The first row is taskonomy, while the second row is

DIML. Red arrows highlight artifacts on edges.

Table 5.1. Losses enforced for different datasets based on their depth
quality.

LSR LILNR
LPWN

(Edges)
LPWN

(Planes) LMSG

High-quality data X X X X X
Middle-quality data X X X X
Low-quality data X

5.3.3 Depth Completion

Depth completion is an important problem, which aims to produce accurate dense
metric depth maps from sparse or incomplete depth maps. Existing completion meth-
ods can be classified into two categories according to the input sparsity pattern: depth
inpainting methods that fill large holes [168, 120, 55], and sparse depth completion
methods that fill sparsely distributed depth measurements [22, 96, 153, 102, 21]. When
working on a specific sparsity pattern, e.g., on either NYU [124] or KITTI [132], recent
approaches [96, 22, 20, 102] such as NLSPN [96] can obtain impressive performance.
However, in real-world scenarios, the specific sparsity pattern may be unknown at
training time, as it is a function of hardware, software, as well as the configuration of
the scene itself.

Therefore, multiple models have to be trained to solve various sparse depth sit-
uations. Our proposed mix-data training strategy is also effective to improve the
generalization of depth completion model. During training, we synthetically create
the sparse depth input by sampling from the ground-truth depth. To improve the
generalization to different sparsity types, we create several different sparse depth pat-
terns, including uniform sampling [96], sampling points from feature points [19], and
randomly masking multiple continuous regions from the ground-truth depth. We
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Table 5.2. Overview of the test sets in our experiments.

Dataset # Img Scene Evaluation Supervision
Type Metric Type

NYU 654 Indoor AbsRel & δ1 Kinect
ScanNet 700 Indoor AbsRel & δ1 Kinect
2D-3D-S 12256 Indoor LSIV LiDAR

iBims-1 100 Indoor AbsRel &
εPE &εDBE

LiDAR

KITTI 652 Outdoor AbsRel & δ1 LiDAR
Sintel 641 Outdoor AbsRel & δ1 Synthetic
ETH3D 431 Outdoor AbsRel & δ1 LiDAR
YouTube3D 58054 In the Wild WHDR SfM, Ordinal pairs

OASIS 10000 In the Wild WHDR
& LSIV

User clicks,
Small patches with GT

DIODE 771
Indoor
& Outdoor

AbsRel &
δ1

LiDAR

TUM-RGBD 1815 Indoor AbsRel & SiLog Kinect

use the high-quality data and middle-quality data to train the model. Note that on
middle-quality data, we only enforce the pair-wise normal regression loss on planes.
The loss function is as follows.

L = L1 + LPWN + LSR, (5.9)

where L1 is the pixel-wise error.

5.4 Experiments

Datasets and implementation details. To train the PCM, we sample 100K
Kinect-captured depth maps from ScanNet, 114K LiDAR-captured depth maps from
Taskonomy, and 51K synthetic depth maps from the 3D Ken Burns paper [95]. We
train the network using SGD with a batch size of 40, an initial learning rate of 0.24,
and a learning rate decay of 0.1. For parameters specific to PVCNN, such as the voxel
size, we follow the original work [85].

To train the DPM, we sample 114K RGBD pairs from LiDAR-captured Taskonomy
[165], 51K synthetic RGBD pairs from the 3D Ken Burns paper [95], 121K RGBD pairs
from calibrated stereo DIML [63], 48K RGBD pairs from web-stereo Holopix50K [54],
and 20K web-stereo HRWSI [150] RGBD pairs. Note that for the ablation study about
the effectiveness of PWN and ILNR, we sample a smaller dataset which is composed of
12K images from Taskonomy, 12K images from DIML, and 12K images from HRWSI.
During training, 1000 images are withheld from all datasets as a validation set. We
use the depth prediction architecture proposed in Xian et al. [150], which consists
of a standard backbone for feature extraction (e.g., ResNet50 [48] or ResNeXt101
[152]), followed by a decoder, and train it using SGD with a batch size of 40, an initial
learning rate 0.02 for all layer, and a learning rate decay of 0.1. Images are resized to
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Table 5.3. Effectiveness of recovering the shift from 3D point clouds
with the PCM. Compared with the baseline, the AbsRel↓ is much

lower after recovering the depth shift over all test sets.

Method ETH3D NYU KITTI Sintel DIODE
AbsRel↓

Baseline 23.7 25.8 23.3 47.4 46.8
Recovered Shift 15.9 15.1 17.5 40.3 36.9
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Figure 5.5. Comparison of the recovered focal length on the 2D-3D-
S dataset. Left: our method outperforms Hold-Geoffroy et al. [52].
Right: we conduct an experiment on the effect of the initialization of
field of view (FOV). Our method remains robust across different initial

FOVs, with a slight degradation in quality beyond 25◦ and 65◦.

448×448, and flipped horizontally with a 50% chance. Following [160], we load data
from different datasets evenly for each batch.
Evaluation details. The accuracy of focal length prediction is evaluated on 2D-3D-
S [2] following [52]. Furthermore, to evaluate the accuracy of the reconstructed 3D
shape, we use the Locally Scale Invariant RMSE (LSIV) [16] metric on both OASIS
[16] and 2D-3D-S [2]. It is consistent with the previous work [16]. The OASIS [16]
dataset only has the ground-truth depth on some small regions, while 2D-3D-S has
the ground truth for the whole scene.

To evaluate the generalization of our proposed depth prediction method, we test
on 9 datasets which are unseen during training, including YouTube3D [14], OASIS
[16], NYU [124], KITTI [40], ScanNet [25], DIODE [135], ETH3D [118], Sintel [7], and
iBims-1 [65]. On OASIS and YouTube3D, we use the Weighted Human Disagreement
Rate (WHDR) [149] for evaluation. On other datasets, except for iBims-1, we evaluate
the absolute mean relative error (AbsRel↓) and the percentage of pixels with δ1 =

max( did∗i
,
d∗i
di

) < 1.25. We follow Ranftl et al. [104] and align the scale and shift before
evaluation.

To evaluate the geometric quality of the depth, i.e., the quality of edges and
planes, we follow [95, 150] and evaluate the depth boundary error [65] (εacc

DBE, ε
comp
DBE )

as well as the planarity error [65] (εplan
PE , εorie

PE ) on iBims-1. εplan
PE and εorie

PE evaluate the
flatness and orientation of reconstructed 3D planes compared to the ground truth 3D
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RGB  MiDaS Ours-Baseline  Ours   MiDaS Ours-Baseline  Ours 

Left    View Top    View

Figure 5.6. Qualitative comparison. We compare the reconstructed
3D shape of our method with several baselines. As MiDaS [104] does
not estimate the focal length, we use the focal length recovered from
[52] to convert the predicted depth to a point cloud. “Ours-Baseline”
does not recover the depth shift or focal length and uses an ortho-
graphic camera, while “Ours” recovers the shift and focal length. We
can see that our method better reconstructs the 3D shape, especially

at edges and planar regions (see arrows).

planes respectively, while εacc
DBE and εcomp

DBE measure the localization accuracy and the
sharpness of edges respectively. More details as well as a comparison of these test
datasets are summarized in Table 5.2

5.4.1 3D Shape Reconstruction

Shift recovery. To evaluate the effectiveness of our depth shift recovery, we perform
zero-shot evaluation on 5 datasets unseen during training. We recover a 3D point
cloud by unprojecting the predicted depth map, and then compute the depth shift
using our PCM. We then align the unknown scale [6, 43] of the original depth and
our shifted depth to the ground-truth, and evaluate both using the AbsRel↓ error.
The results are shown in Table 5.3, where we see that, on all test sets, the AbsRel↓
error is lower after recovering the shift. We also trained a standard 2D convolutional
neural network to predict the shift given an image composed of the un-projected
point coordinates, but this approach did not generalize well to samples from unseen
datasets.
Focal length recovery. To evaluate the accuracy of our recovered focal length,
we follow Hold-Geoffroy et al. [52] and compare on the 2D-3D-S dataset, which is
unseen during training for both methods. The model of [52] is trained on the in-the-
wild SUN360 [151] dataset. Results are illustrated in Fig. 5.5, where we can see that
our method demonstrates better generalization performance. Note that PVCNN is
very lightweight and only has 5.5M parameters, but shows promising a generalization
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Table 5.4. Quantitative evaluation of the reconstructed 3D shape
quality on OASIS and 2D-3D-S. Our method can achieve better per-
formance than previous methods. Compared with the orthographic
projection, our method using the pinhole camera model can obtain
better performance. DPM and PCM refers to our depth prediction

module and point cloud module, respectively.

Method OASIS 2D-3D-S
LSIV ↓ LSIV↓

Orthographic Camera Model
MegaDepth [77] 0.64 2.68
MiDaS [104] 0.63 2.65
Ours-DPM 0.63 2.65

Pinhole Camera Model
MegaDepth [77] + Hold-Geoffroy [52] 1.69 1.81
MiDaS [104] + Hold-Geoffroy [52] 1.60 0.94
MiDaS [104] + Ours-PCM 1.32 0.94
Ours 0.52 0.80

capability, which indicates that there is a much smaller domain gap between datasets
in the 3D point cloud space than in the image space where appearance variation can
be large.

Furthermore, we analyze the effect of different initial focal lengths during inference.
We set the initial field of view (FOV) from 20◦ to 70◦ and evaluate the accuracy of the
recovered focal length, Fig. 5.5 (right). The experimental results demonstrate that
our method is not particularly sensitive to different initial focal lengths.
Evaluation of 3D shape quality. Following OASIS [16], we use LSIV for the
quantitative comparison of recovered 3D shapes on the OASIS [16] dataset and the
2D-3D-S [2] dataset. OASIS only provides the ground truth point cloud on small
regions, while 2D-3D-S covers the whole 3D scene. Following OASIS [16], we evaluate
the reconstructed 3D shape with two different camera models, i.e., the orthographic
projection camera model [16] (infinite focal length) and the (more realistic) pinhole
camera model. As MiDaS [104] and MegaDepth [77] do not estimate the focal length,
we use the focal length recovered from Hold-Geoffroy [52] to convert the predicted
depth to a point cloud. We also evaluate a baseline using MiDaS instead of our
DPM with the focal length predicted by our PCM (“MiDaS + Ours-PCM”). From
Table 5.4 we can see that with an orthographic projection, our method (“Ours-DPM”)
performs roughly as well as existing state-of-the-art methods. However, for the pinhole
camera model our combined method significantly outperforms existing approaches.
Furthermore, comparing “MiDaS + Ours-PCM” and “MiDaS + Hold-Geoffroy”, we
note that our PCM is able to generalize to different depth prediction methods.

A qualitative comparison of the reconstructed 3D shape for in-the-wild scenes is
shown in Fig. 5.6. It demonstrates that our model can recover significantly more
accurate 3D scene shapes. For example, planar structures such as walls, floors, and
roads are much flatter in our reconstructed scenes, and the angles between surfaces
(e.g., walls) are also more realistic. Also, the shape of the car has less distortions.
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Figure 5.7. Qualitative comparisons with state-of-the-art methods,
including MegaDepth [77], Xian et al. [150], and MiDaS [104]. It shows
that our method can predict more accurate depths at far locations and
regions with complex details. In addition, we see that our method

generalizes better to in-the-wild scenes.
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Table 5.5. Quantitative comparison of the quality of depth bound-
aries (DBE) and planes (PE) on the iBims-1 dataset. We use † to
indicate when a method was trained on the small training subset.

Method iBims-1
εaccDBE ↓ εcomp

DBE ↓ εplan
PE ↓ εoriePE ↓ AbsRel↓↓

Xian [150] 7.72 9.68 5.00 44.77 0.301
MegaDepth [77] 4.09 8.28 7.04 33.03 0.20
MiDaS [104] 1.91 5.72 3.43 12.78 0.104
3D Ken Burns [95] 2.02 5.44 2.19 10.24 0.097

Ours† w/o PWN 2.05 6.10 3.91 13.47 0.106
Ours† 1.91 5.70 2.95 11.59 0.101
Ours Full 1.90 5.73 2.0 7.41 0.079

5.4.2 Monocular Depth Estimation

In this section, we conduct several experiments to demonstrate the effectiveness of
our depth prediction method, including a comparison with state-of-the-art methods, a
comparison of our proposed image-level normalized regression loss with other methods,
and an analysis of the effectiveness of our pair-wise normal regression loss.
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Table 5.7. Quantitative comparison of different losses on zero shot
generalization to 5 datasets unseen during training.

Method RedWeb NYU KITTI ScanNet DIODE
WHDR↓ AbsRel↓

SMSG [137] 19.1 15.6 16.3 13.7 36.5
SSMAE [104] 19.2 14.4 18.2 13.3 34.4

MinMax 19.1 15.0 17.1 13.3 46.1
MAD 18.8 14.8 17.4 12.5 34.6

ILNR 18.7 13.9 16.1 12.3 34.2

Comparison with state-of-the-art methods. In this comparison, we test on
datasets unseen during training. We compare with methods that have been shown
to best generalize to in-the-wild scenes. Their results are obtained by running the
publicly released codes. Each method is trained on its own proposed datasets. When
comparing the AbsRel↓ error, we follow Ranftl [104] to align the scale and shift before
the evaluation. The results are shown in the Table 5.6. Our method outperforms prior
works, and using a larger ResNeXt101 backbone further improves the results. Some
qualitative comparisons are shown in Fig. 5.7.
Pair-wise normal loss. To evaluate the quality of our full method and dataset on
edges and planes, we compare our depth model with previous state-of-the-art methods
on the iBims-1 dataset. In addition, we evaluate the effect of our proposed pair-wise
normal (PWN) loss through an ablation study. As training on our full dataset is
computationally demanding, we perform this ablation on the small training subset.
To do the quick comparison, the ResNet50 backbone model supervised with the PWN
(W PWN) or without the PWN (W/O PWN) is trained on the sampled small training
set. The results are shown in Table 5.5. We can see that our full method outperforms
prior work for this task. In addition, under the same settings, both edges and planes
are improved by adding the PWN loss. We further show a qualitative comparison of
depths and reconstructed point clouds in Fig. 5.8 and Fig. 5.9 respectively. We can
see that the edges in depths are more accurate and sharper than those without PWN
supervision, and the reconstructed point clouds have much less distortions.
Image-level normalized regression loss. To show the effectiveness of our pro-
posed image-level normalized regression (ILNR) loss, we compare it with the scale-
shift invariant loss (SSMAE) [104] and the scale-invariant multi-scale gradient loss
[137]. Each of these methods is trained on the small training subset to limit the com-
putational overhead, and comparisons are made to datasets that are unseen during
training. All models have been trained for 50 epochs, and we have verified that all
models fully converged by then. The quantitative comparison is shown in Table 5.7,
where we can see an improvement of ILNR over other scale and shift invariant losses.
Furthermore, we also analyze different options for normalization, including image-level
Min-Max (MinMax) normalization and image-level median absolute deviation (MAD)
normalization, and found that our proposed loss performs a bit better.
Comparison of depth prediction on people. Li et al. [78] propose the first work
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RGB       GT                W/o PWN W PWN

Figure 5.8. Qualitative comparison. Using the pair-wise normal loss
(PWN), we can see that depths have finer details on edges.

to solve the depth prediction of moving people problem. Apart from RGB image,
they propose to input the background depth which is obtained by the structure-from-
motion method and the mask of humans as the guidance (see Li-IFCM and Li-IDCM
in Table 5.8) to predict high quality depth of moving people. In comparison, our
method only takes a single RGB image. Following [78], we conduct the comparison on
the TUM-RGBD [128] dataset. The quantitative comparison illustrated in Table 5.8
shows that our method can achieve comparable performance with them. On humans,
our depth is more accurate than other methods. Moreover, the visual results are
illustrated in Fig. 5.10. We can see that our predicted depths have less artifacts and
sharper edges than Li et al. [78] and DiverseDepth [160].
Additional qualitative results on in-the-wild scenes. Fig. 5.11 demonstrate
more in-the-wild scenes examples. We can see that the predicted depths exhibit fine
details on edges. Furthermore, we show reconstructed point clouds.

5.4.3 Depth Completion
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RGB GT point cloud  W/o PWN W PWN

Figure 5.9. Qualitative comparison of reconstructed point clouds.
Using the pair-wise normal loss (PWN), we can see that edges and

planes are better reconstructed (see highlighted regions).

Table 5.8. Comparison of the foreground people on the TUM-RGBD
datasets. Our overall performance is comparable with previous meth-
ods, while our depths are more accurate on foreground people. Note

that [78] needs extra input such as the semantic human masks.

Method Si-hum↓ Si-env↓ Si-RMS↓ AbsRel↓
DeMoN [133] 0.360 0.302 0.866 0.220
Li-I [78] 0.294 0.334 0.318 0.204
Li-IFCM [78] 0.302 0.330 0.316 0.206
Li-IDCM [78] 0.293 0.238 0.272 0.147
DiverseDepth [160] 0.272 0.270 0.272 0.192

Ours 0.258 0.247 0.251 0.175
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RGB         GT    DiverseDepth Li et al .     Ours

Figure 5.10. Qualitative comparison on the TUM-RGBD dataset.
Following Li et al. [78], we compare the depth of moving people on

the TUM-RGBD dataset.

RGB Point clouds (different views)      RGB          Point clouds (different views) 

RGB Depth RGB Depth RGB Depth RGB Depth

Figure 5.11. Qualitative results on some in-the-wild scenes. The
reconstructed point clouds and depth maps of some in-the-wild scenes

are illustrated.
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Table 5.10. Quantitative comparison of our depth completion
method with state-of-the-art methods on NYU dataset. Our method
is on par with state-of-the-art methods, without training on the target

dataset.

Methods RMSE(m)↓ AbsRel↓ δ1 ↑ δ2 ↑ δ3 ↑
S2D [89] 0.230 0.044 97.1 99.4 99.8
S2D+SPN [87] 0.172 0.031 98.3 99.7 99.9
DepthCoeff [59] 0.118 0.013 99.4 99.9 -
CSPN [20] 0.117 0.016 99.2 99.9 100.0
CSPN++ [22] 0.116 - - - -
DeepLiDAR [102] 0.115 0.022 99.3 99.9 100.0
DepthNormal [153] 0.112 0.018 99.5 99.9 100.0
NLSP [96] 0.092 0.012 99.6 99.9 100.0
Ours 0.19 0.036 98.4 99.6 100

In this section, we conduct several experiments to report the effectiveness of our
training method for depth completion. To show the generalization of our method, we
conduct the zero-shot testing on a few benchmark datasets. Note that we only train
a single model to solve different sparse depth situations, while previous methods [96,
120] train different models for different sparse patterns.
Comparison with state-of-the-art depth completion methods. We test on
standard benchmarks, NYU [124] and Matterport3D [11]. Note that our models have
not been trained on these datasets. Two benchmarks have different types of sparse
types. On NYU, the sparse depth only have 500 valid pixels, while Matterport3D
provides the incomplete sensor-captured depth map.

Table 5.10 demonstrates results on NYU. Our method is on par with previous
methods. Table 5.11 shows the comparison on the Matterport3D dataset. Ours can
outperform previous methods on some metrics. Note that we do not fine tune our
model on the target Matterport3D dataset.

Moreover, we demonstrate some visual comparisons in Fig. 5.12. Although the
state-of-the-art method can achieve better quantitative performance than ours, our
method, supervised by the geometric loss, can reconstruct more accurate scene struc-
ture. It is clear that our reconstructed walls are flatter than [120].
Generalization to different sparse depth types. To demonstrate the robustness
of our methods to zero-shot test datasets and different sparse depth types, we create 4

sparse depth patterns and enclose 3 unseen datasets for evaluation. We compare our
methods to the state-of-the-art methods on NYUD and Matterport3D benchmarks,
i.e. NLSPN [96] and Senushkin et al. [120]. NLSPN method aims to complete the
depth with only hundreds of valid points, while Senushkin et al. [120] method design
to complete contiguous holes. Our created ’Uni-10K’ are same to the sparsity pattern
on NYU benchmark but have 10000 valid points. ‘Features’ employ the Fast corner
detectors to sample points from the GT depth to create the sparse depth input. ‘Lidar’
aims to simulate the Lidar sensor, which captures depth in a linear scanning pattern.
‘Incomplete’ pattern is similar to the sparsity pattern of Matterport3D benchmark,
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Right view

Top view

Top view

RGB GT Sparse depth Senushkin et al.         Ours Senushkin et al. Ours GT point cloud

Figure 5.12. Qualitative comparison of the depth and reconstructed
3D shape. Our completed metric depth has finer details. The recon-

structed 3D shape is more accurate than previous methods.

Table 5.11. Quantitative comparison of our depth completion
method with state-of-the-art methods on the Matterport3D dataset.
Note that we do not use any training data from the target Matter-
port3D dataset, while previous methods are trained on this dataset.

Our method is on par with previous methods.

Methods RMSE(m)↓ MAE(m)↓ δ1.05 ↑ δ1.1 ↑ δ1 ↑ δ2 ↑ δ3 ↑
Huang et al. [55] 1.092 0.342 66.1 75.0 85.0 91.1 93.6
Zhang et al. [168] 1.316 0.461 65.7 70.8 78.1 85.1 88.8
Gansbeke et al. [134] 1.161 0.395 54.2 65.7 79.9 88.7 92.7
Li et al. [71] 1.054 0.397 50.8 63.1 77.5 87.4 92.0
Senushkin et al. [120] 1.028 0.299 71.9 80.5 89.0 93.2 95.0
Ours 2.35 0.574 68.9 79.2 88.1 93.5 96.0

which has missing depth on multiple large coherent regions.
We can see that although NLSP [96] and Senushkin et al. [120] can achieve state-

of-the-art performance on NYU and Matterport3D dataset respectively, they cannot
generalize to different types of sparse depth and unseen datsets. By contrast, our
method can achieve comparable performance on different datasets. We conjunct taht
our mix-data training strategy can significantly improve the model’s robustness.

5.4.4 Applications

Monocular depth estimation can help many other tasks, such as image inpainting,
objects removal and so on. Here we show an example, using our predicted depth to
create 3D photo. Recently, several methods are proposed to synthesize a novel view
from a single image, which need the monocular depth information as the guidance.
We take the method of [122] to synthesize new views and the depth information is
from our method or MiDaS [104]. From the synthesized new views, we randomly
sample several views for comparison. Results are shown in Fig. 5.13. We can see that
results with our provided depth have much fewer artifacts, see the woman’s legs, the
desk, and the white chair.
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Ours

MiDaS

View 1            View 2     View 3

Figure 5.13. Comparison of synthesized new views with our depth
and that of MiDaS. We can see that new views of ours show less
artifacts and errors (see the woman’s legs, the desk, and the chair).

RGB Depth RGB Depth

Figure 5.14. Failure cases of the monocular depth prediction module.

5.4.5 Limitations

We have observed a few limitations of our method. Here we analyze some failure cases
of the depth prediction module and the point cloud module.
Failure cases of DPM. We show some typical failure cases of DPM in Fig. 5.14. 1)
Out of focus. This may be due to the fact that our training images are all-in-focus.
2) Paintings (or mirrors) can cause ambiguity to the network. 3) Cartoons. Since the
domain gap exists between cartoons and the real photos, the network does not work
well. We believe that the above problems can be largely solved with more training
data.
Failure cases of PCM. Our PCM cannot recover accurate focal length or depth
shift when the scene does not have enough geometric cues, e.g., when the whole image
is mostly a wall or a sky region. The accuracy of our method will also decrease
with images taken from uncommon view angles (e.g., top-down) or extreme focal
lengths. More diverse 3D training data may address these failure cases. In addition,
our method does not model the effect of radial distortion from the camera and thus
the reconstructed scene shape can be distorted in cases with severe radial distortion.
Studying how to recover the radial distortion parameters using our PCM can be an
interesting future direction.
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5.5 Conclusion

In summary, we have presented, to our knowledge, the first fully data driven method
that reconstructs 3D scene shapes from single monocular images. To recover the shift
and focal length for 3D reconstruction, we have proposed to use point cloud networks
trained on datasets with known global depth shifts and focal lengths. This approach
has demonstrated strong generalization capabilities, and we are under the impression
that it may be helpful for related depth and 3D reconstruction tasks. Our extensive
experiments verify the effectiveness of our scene shape reconstruction method and the
superior capability to generalize to unseen data.
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Chapter 6

Metric Scene Reconstruction With
Sparse Points

6.1 Introduction

In last chapters, our proposed geometric constraints, learning objective, and two-
stage reconstruction pipeline methods have solved the 3D scene reconstruction from
monocular images. However, the predicted depth and reconstructed shape are scale-
invariant. The metric information cannot be recovered.

In this chapter, we aim to recover the metric depth and do the metric reconstruc-
tion. As the single image input cannot provide enough metric information, we propose
to combine the single image and a sparse depth map.

6.2 Background

Accurate metric depth is important for many computer vision applications, in partic-
ular 3D perception [121, 143] and reconstruction [94, 92]. Typically, depth is obtained
by using direct range sensors such as LiDAR or Time-of-Flight (ToF) sensors included
on modern mobile phones, or multi-view stereo methods [118, 158]. However, neither
of these sources can provide dense depth from the perspective of the camera. For
example, LiDAR sensors capture depth in a linear scanning pattern, ToF sensors are
lower resolution and fail at specular or distant surfaces, and multi-view reconstruc-
tion methods [118, 158, 167] only provide confident depth at textured regions and are
range limited by the camera baseline (the iPhone rear stereo camera has a maximum
depth of 2.5 meters).

Existing algorithms that obtain dense depth from sparse depth inputs can be clas-
sified into two categories according to the input sparsity pattern: depth inpainting
methods that fill large holes [168, 120, 55], and sparse depth completion methods that
fill sparsely distributed depth measurements [22, 96, 153, 102, 21]. When working
on a specific sparsity pattern, e.g., on either NYU [124] or KITTI [132], recent ap-
proaches [96, 22, 20, 102, 58] such as NLSPN [96] can obtain impressive performance.
However, in real-world scenarios, the specific sparsity pattern may be unknown at
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RGB Sensor captured depth          Sensor point cloud Completed depth map      Completed point cloud

Figure 6.1. Our method fills in missing information in different types
of sparse depth maps. A single model can be used to complete depth
from a mobile phone Time-of-Flight sensor (top row), and a multi-view

stereo algorithm [118] (bottom row).

training time, as it is a function of hardware, software, as well as the configuration of
the scene itself.

In this paper, we revisit existing methods and analyze the gap between the perfor-
mance on the training setup and downstream applications, and we find that existing
depth completion methods suffer from the following key limitations. First, their meth-
ods work best on one specific sparsity pattern, while they poorly generalize to other
types of sparse depth (e.g., from Kinect depths to smart phone depths). Second,
they are sensitive to noise and outliers produced from the depth capture process. To
address these issues, we propose a simple yet effective method towards robust depth
completion.

Our method provides the following improvements. First, inspired by domain ran-
domization methods [131, 130, 164], we analyze the existing set of common sparsity
patterns and create a diverse set of synthetic sparsity patterns to train our model.
To improve the cross-domain generalization ability, we follow recent monocular depth
prediction methods [162, 104] and utilize a diverse training dataset which consist of
multiple depth sources. Furthermore, to make our method robust to noise, we leverage
the depth map predicted by a well-trained single image depth prediction method as a
data-driven scene prior. Such approaches learn a strong prior on diverse scenes [104],
but their predicted depths have unknown shift and scale due to the training data used
(stereo images with unknown baseline). By incorporating sparse metric depth cues
and a single image relative depth prior, our method is able to robustly produce a
dense metric depth map. It can also be run in a recurrent manner to further refine
the produced metric depth map.

We show that this simple approach improves upon the state of the art for depth
completion, especially under the zero-shot cross-dataset generalization setting where
the specific sparsity pattern is unknown during training. We also show that our
method is more robust to noisy sparse depth measurements.

In conclusion, our main contributions are as follows.
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Figure 6.2. Robustness analysis. We analyze the performance of
CSPN [22] (completion) and Senushkin et al. [120] (inpainting) in
terms of input point numbers/patterns (a, c) and outlier ratios (b,
d). CSPN is trained on NYU [124], and we evaluate it on both NYU
and ScanNet [25]. Senushkin et al. is trained and evaluated on Mat-

terport3D [11].

• We analyze existing depth completion methods in terms of generalization across
different scenes and robustness to noise.

• We propose a new method that incorporates a data driven single-image prior and
effective data augmentation techniques for domain-agnostic depth completion. To
the best of our knowledge, we are the first to target the cross-domain depth com-
pletion problem. We show that our method generalizes well to various types of
depth inputs, including those from special range sensors, mobile phones, and stereo
methods.

6.3 Analysis of Existing Methods

In this section, we evaluate two state-of-the-art depth completion methods in terms
of their performance with different sparsity patterns, dataset generalization, and ro-
bustness to noise. To do this, we perturb the sparsity pattern of the input depth in
various ways and add noise to it. We also evaluate methods on their zero-shot cross-
dataset generalization performance [104] (evaluating on a different dataset than the
models were trained on). We chose two methods trained on the NYU benchmark and
the Matterport3D benchmark for this analysis, CSPN [21] and Senushkin et al. [120].
The former is designed to complete very sparse depth with only hundreds of sparse
points, while the latter is designed to complete contiguous holes. We use the code and
the model weights provided by the authors for this evaluation.

For the CSPN [21] method that is trained on NYU, we vary the number of mea-
sured/input points from 500 to 20000. Senushkin et al. [120] is trained on Matter-
port3D with the task of completing holes of depth maps. We erode the valid depth
regions with different kernel sizes to control the number of valid points on Matter-
port3D. From Fig. 6.2 (a) and (c), we observe that their methods are sensitive to the
variation of the number of valid points. Besides, as outliers are unavoidable in many
applications, we also simulate depth noise by sampling 0% − 10% points from the
sparse depth and multiplying the original depth with a random factor from 0.1 − 2.
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Table 6.1. Robustness to different sparse depth patterns (AbsRel
Error).

Uniform (2500 points) Features (2500 points)
NYU ScanNet Matterport3D NYU ScanNet Matterport3D

CSPN [20] 0.011 0.02 0.279 0.019 0.138 0.519
Senushkin et al. [120] 0.773 0.621 0.695 0.769 0.608 0.667

(a) (b) (c) (d)

Figure 6.3. Visualization of sampled sparse depths. We simulate
three different patterns from the dense depth (a) to train models:
random uniform sampling (b), feature point based sampling (c), and

region-based sampling (d).

Fig. 6.2 (b) and (d) show that their performance decreases a lot with outliers in the in-
put. Furthermore, to evaluate the generalization to other datasets, we also test CSPN
on ScanNet (CSPN was trained on NYU). Fig. 6.2 shows the evaluation results.

Furthermore, we study the robustness to different sparse depth patterns. For both
methods, we input two additional kinds of sparse depth, i.e. uniform sparse depth
(Uniform) and the sparse depth whose valid points are detected by the FAST [106]
feature detector (Features). It shows that CSPN is sensitive to the point distribu-
tion, while Senushkin et al. [120] fails on other kinds of sparse depths. Results are
summarized in Tab. 6.1

6.4 Our Method

We now introduce our approach, which is designed to be robust to noise, applicable
to different types of sparse depth, and to generalize well to unseen datasets.

6.4.1 Model architecture.

Our depth completion model takes as input the RGB image, sparse depth, and a
guidance depth map, and it outputs a completed depth map. We use the ESANet-
R34-NBt1D network with the ResNet-34 backbone proposed by Seichter et al. [119]
for depth completion, and we use the affine-invariant depth predicted by the method
from Yin et al. [162] as the guidance depth map. We sample 36000 images from
Taskonomy [165], DIML [63], and TartainAir [141] as the training data.
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RGB    Colmap Sparse depth   Senushkin et al.   Ours       GT

Figure 6.4. Qualitative comparison for completing noisy sparse
depth. The noisy sparse depths are obtained by masking
COLMAP [117] depths. Our completed results have less outliers and

errors.

6.4.2 Training data generation.

As we cannot access enough data to cover the diverse sparsity patterns of all possible
downstream applications during training, we instead simulate a set of various spar-
sity patterns. This approach is motivated by domain randomization [131, 130, 164]
methods that train models on simulated data and show that the domain gap to real
data can be reduced by randomizing the rendering in the simulator.

We categorize the sparse depth patterns into three main classes, which are illus-
trated in Fig. 6.3. During training, we sample sparse points from the dense ground
truth depth and try to recover the dense depth map.

• Uniform. We sample uniformly distributed points, from hundreds to thousands of
points, to simulate the sparsity pattern from the low-resolution depths, e.g., those
captured by ToF sensors on mobile phones.

• Features. In order to simulate the sparsity pattern from structure-from-motion
and multi-view stereo methods, where high confidence depth values are produced
only at regions with distinct/matchable features, we apply the FAST [106] feature
detector that samples points on textured regions and particularly image corners.

• Holes. Commodity-grade depth sensors cannot capture depth on bright, trans-
parent, reflective and distant surfaces. Therefore, multiple large coherent regions
may be missing. We simulate this by 1) masking the depth in a random polygonal
region, 2) masking regions at a certain distance, or 3) masking the whole image
with the exception of a polygonal region.
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Depth Completion 
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Depth Completion 

Network

RGB    Sparse depth       Guidance map        Completed depth

Depth Completion 

Network

Figure 6.5. Our method takes an RGB image, sparse depth, and
guidance map as input, and it outputs dense depth. We can iterate
the network several times, replacing the guidance map with the output

of the previous iteration.

RGB Sparse depth         Senushkin et al.   Yin et al. Ours GT point cloud

Figure 6.6. Qualitative comparison of depth and reconstructed 3D
shape. Our completed metric depth has finer details and the recon-

structed 3D shape is more accurate than previous methods.

To improve the diversity of these patterns, we augment each type of sparse depth
by controlling the number of valid points, or dilating or eroding the valid regions with
different kernel sizes, and combining sparsity patterns together.

6.4.3 Improving the robustness to outliers.

Outliers and depth sensor noise are unavoidable in any depth acquisition method.
Most of previous methods only take an RGB image and a sparse depth as the input,
and they do not have any extra source of information with which it could distinguish
the outliers. However, our method leverages a data prior from the single image depth
network, which can help resolve incorrect constraints. In order to encourage the
network to learn this, we add outliers during training. Specifically, we randomly
sample several points and scale their depth by a random factor from 0.1-2.

6.4.4 Iterative refinement.

As our method takes a guidance map as input, we can naturally extend it to an
iterative refinement method, where we recursively feed the output of the network
back into itself as the guidance map and compute a subsequent inference pass. We
found that the method tends to converge in 3 iterations. Our framework is illustrated
in Fig. 6.5.
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Table 6.2. Depth completion results on the NYU dataset. Our
method (not trained on NYU) shows on par performance with state-

of-the-art methods that are trained on NYU.

Methods RMSE(m)↓ AbsRel↓ δ1 ↑ δ2 ↑ δ3 ↑
S2D [89] 0.230 0.044 97.1 99.4 99.8
S2D+SPN [87] 0.172 0.031 98.3 99.7 99.9
DepthCoeff [59] 0.118 0.013 99.4 99.9 -
CSPN [20] 0.117 0.016 99.2 99.9 100.0
CSPN++ [22] 0.116 - - - -
DeepLiDAR [102] 0.115 0.022 99.3 99.9 100.0
DepthNormal [153] 0.112 0.018 99.5 99.9 100.0
NLSP [96] 0.092 0.012 99.6 99.9 100.0
MiDaS [104](Guidance) 0.513 0.110 88.6 98.1 99.6
Yin et al. [162](Guidance) 0.402 0.090 91.3 98.0 99.5
Ours-baseline 0.210 0.036 98.4 99.6 99.9
Ours-W MiDaS [104] 0.199 0.024 98.6 99.6 99.9
Ours-W Yin et al. [162] 0.183 0.022 98.7 99.7 99.9

Table 6.3. Depth completion results on the Matterport3D dataset.
Our method (not trained on Matterport3D) is comparable with state-

of-the-art methods that are trained on Matterport3D.

Methods RMSE(m)↓ MAE(m)↓ δ1.05 ↑ δ1.1 ↑ δ1 ↑ δ2 ↑ δ3 ↑
Huang et al. [55] 1.092 0.342 66.1 75.0 85.0 91.1 93.6
Zhang et al. [168] 1.316 0.461 65.7 70.8 78.1 85.1 88.8
Senushkin et al. [120] 1.028 0.299 71.9 80.5 89.0 93.2 95.0

Yin et al. [162](Guidance) 2.06 1.13 17.9 29.8 50.7 72.3 83.4
MiDaS [104] (Guidance) 3.45 2.01 13.2 21.8 37.5 54.8 66.4
Ours-baseline 2.35 0.574 68.9 79.2 88.1 93.5 96.0
Ours-W MiDaS [104] 1.49 0.448 67.8 76.3 85.0 91.0 94.5
Ours-W Yin et al. [162] 1.03 0.320 71.2 79.0 87.1 93.1 96.0

6.5 Experiments

In this section, we conduct several experiments to demonstrate the effectiveness of
our approach. We evaluate the robustness of our method to noisy sparse depth, the
generalization to different sparse depth patterns on zero-shot testing data, and the ef-
fectiveness of recurrent refinement. We include a baseline method (Ours-baseline) that
trains a model without the guidance image, that is, directly predicting the complete
depth from RGB and sparse depth input.

6.5.1 Comparison with State-of-the-art Depth Completion Methods

Quantitative comparisons with current state-of-the-art methods on the NYU [124] and
the Matterport3D [11] benchmark are summarized in Tab. 6.2 and Tab. 6.3. Note that
our model has not been trained on these two datasets. Although these two benchmarks
have two different sparse depth types, we use a single model for evaluation on both
of them. On NYU, we can see that our method can achieve performance on par with
previous methods. We can achieve comparable performance with previous methods,
and better accuracy than the baseline. Comparing with our baseline (Ours-baseline),
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Figure 6.7. Qualitative completion results on the DIODE [135]
dataset. Note that none of the methods is trained on this dataset.
We compare our method with Senushkin et al. [120] and NLSP [96]

using 3 different unseen sparsity patterns.

using a pretrained guidance map shows improved performance. When compared to
Yin [162], which is our input guidance map, we see that even with only 500 sparse
points, the performance is improved significantly. Furthermore, we analyze the effect
of different guidance map inputs. We employ two monocular depth estimation meth-
ods to create the guidance map, i.e. MiDaS [104] and Yin et al. [162]. Note that
‘Ours-W MiDaS’ only takes the MiDaS depth as the input during test. We find that
they both work well as the guidance map generator in our system. As depths from
Yin et al. [162] are employed as the guidance map during training, taking their depth
can achieve better results in test.

Moreover, the qualitative comparison on Matterport3D is illustrated in Fig. 6.6.
Although Senushkin et al. [120] can achieve better accuracy than ours (it was trained
on the same data), we find that our reconstructed scene structure is better. Yin et
al. [162] is the single image depth map with a predicted focal length and shift. Al-
though their reconstructed structure distorts in some regions (see the regions high-
lighted by red arrows), our completion network can rectify it by leveraging the sparse
depth input.

6.5.2 Generalization

To evaluate the generalization to zero-shot testing data and different sparse depth
types, we compare our methods with current state-of-the-art methods on 3 different
datasets with 3 different sparse depth patterns. We simulate 3 new sparse depth types:
1) Unpaired FOV. We mask 25% region around 4 borders of the ground truth depth.
2) Sparse ToF. We simulate Huawei ToF sensor to sample the depth from the ground
truth every 3 pixels horizontally and vertically. 3) No Distant. We mask the most
50% distant regions. Note that all these simulated patterns have not be utilized in
our training.
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Figure 6.8. Completion results on 16 scenes sampled from
NYU [124]. The input depth is noisy, which is generated using

COLMAP [117].

Results are summarized in Tab. 6.4. We can find that although NLSP [96] and
Senushkin et al. [120] can achieve state-of-the-art performance on NYU and Mat-
terport3D respectively, they cannot generalize to different types of sparse depth and
other datasets. We conjecture that it is because they are trained on one type only. By
contrast, our method can achieve comparable performance on different datasets. Fur-
thermore, comparing to our baseline method, using the guidance map can consistently
improve the performance over all datasets and sparse depth types. The quantitative
comparison of completing 3 different patterns on the DIODE dataset is demonstrated
in Fig. 6.7.
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6.5.3 Completing Noisy Depths

In order to obtain real world noisy data, we use COLMAP [117] to densely reconstruct
a scene. We sample 16 scenes from NYU with over 4000 images, and we use Yin et
al. [162] to mask the most noisy regions from the COLMAP depths.

As the noisy sparse depth pattern most resemble the ‘Holes’ type, we compare
to Senushkin et al. [120]. Quantitative results are illustrated in Fig. 6.8. We can
see that our method consistently performs the best on all test scenes. Furthermore,
comparing with the baseline (no guidance map), our approach is more robust to noise
(see ‘library_0006’ and ‘living_room_0058’). Moreover, the qualitative comparisons
are illustrated in Fig. 6.4. We can see that our completed depths have much less
outliers and noise (see the wall).

6.5.4 Effectiveness of Recurrent Refinement

In this section, we demonstrate the effectiveness of our proposed iterative refinement.
We recursively replace the guidance map with the previous stage output as the current
stage guidance map. The quantitative evaluation is summarized in Tab. 6.5. ‘W
refine’ feeds inputs in the original resolution and recursively refines outputs, while
‘W/o refine’ means that we don’t employ the recursive refinement. We can see that
our proposed refinement method can improve the depth accuracy and edges quality
slightly (see the comparison on iBims-1). Furthermore, the qualitative results are
shown in Fig. 6.9, in which we can see for example that the fine scale structure, such
as the branches of the tree, are improved after several iterations.
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Figure 6.9. Qualitative results of the proposed iterative refinement.

6.5.5 Completing Mobile Phone Sensor Depth

Many smartphones have been equipped with cheap 3D sensors. To evaluate the ro-
bustness of our completion method for noisy phone-captured depths, we test on 3

different phones, i.e. iPhone 12, Huawei Mate 30, and Google Pixel 3. In each case,
the acquired depths are different. iPhone uses stereo matching method to obtain the
depth, which is normalized to 0−255 and saved as the inverse depth. Huawei provides
a low-resolution dense depth, i.e. 180×240 pixels, which is captured by a ToF sensor.
Pixel uses the dual-pixel sensor, which has a very small baseline, to capture the depth.
For the Pixel captured depth, we apply the provided confidence map to filter the most
noisy regions and only rely on confidence depth values. The qualitative comparison is
illustrated in Fig. 6.10. We can see that our completed depth has much less outliers
than current methods.

6.5.6 Ablation of Synthetic Sparsity Patterns

This study aims to investigate the effectiveness of different simulated sparsity patterns.
We remove one of the proposed patterns during training and evaluate them on 3

zero-shot datasets with different patterns. On NYU and ScanNet, we simulate the
pattern ‘Sparse ToF’ and ‘Unpaired FOV’, while we use the provided sparse depth
on Matterport3D. All models have been trained with the same number of epochs,
and identical parameters other than the sparsity patterns. Results are summarized
in Tab. 6.6. We observe that when missing the simulated sparse depth pattern, the
performance on the most-related testing data will decrease. For example, the model
trained without the ‘Holes’ pattern has worse performance than others on ScanNet and
Matterport3D. Therefore, our proposed sparse depth generation method can improve
the cross-domain generalization.

6.6 Limitations

We have observed a few limitations of our method. Here we analyze some failure cases.
Our method takes as input a depth map from the monocular depth estimation model
as the guidance. Although rare, when the guidance depth map has significant errors,
it will inevitably have adverse effects on the depth completion. Furthermore, although
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Table 6.6. Effects of different simulated sparsity patterns. The model
is trained on the simulated patterns except the one specified by ‘W/o‘

and evaluated on zero-shot datasets.

AbsRel % ↓
NYU
(Sparse ToF)

ScanNet
(Unpaired FOV)

Matterport3D
(Original pattern)

W/o Features 0.036 0.047 0.122
W/o Uniform 0.021 0.044 0.121
W/o Holes 0.012 0.12 0.165
Ours-Full 0.013 0.028 0.120

our method is robust to outliers and noises, the completion quality will decrease if
over 50% of sparse depths are outliers.

6.7 Conclusion

In this paper, we proposed a simple system for depth completion. Our method lever-
ages a single image depth prior and allows for dense metric scene reconstruction when
sparse depth sensors are available. Our approach generates results that are valid over
a variety of sensor types and is robust to the presence of sensor noise. Our method is
also able to refine the details of the completed depth map through an iterative pro-
cess. Depth completion systems like ours have applications in mobile phones which
are increasingly commonly being shipped with sparse depth capture devices.
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Figure 6.10. Completion of the phone-captured depths. Our method
is more robust to different depth sensors than previous state-of-the-art

methods.
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Chapter 7

Conclusion and Future Directions

7.1 Conclusion

In this thesis, we propose a novel method to solve the problem of 3D reconstruction
from a single in-the-wild image.

In Chapter 3, we propose a high-order geometric constraint for accurate monoc-
ular depth estimation, which not only boosts the depth accuracy significantly but
also ensures high-quality 3D reconstruction from the depth. Although previous meth-
ods using the pixel-wise regression or classification loss can achieve high accuracy on
depth, the reconstructed 3D point cloud from depth is far away from the original
shape. To handle this challenge, we lift the depth to the 3D space and propose a
global geometric constraint, termed virtual normal loss. Compared with other local
geometric constraint, our method is more robust to noise.

In Chapter 4, we aim to solve the generalization issue of monocular depth estima-
tion. Current learning metric depth methods can only work well on a specific scene,
while learning relative depth methods cannot recover high-quality 3D shapes. To ad-
dress this problem, we construct a large-scale and diverse dataset, and then propose
to learn the affine-invariant depth on it. Our method ensures both high generalization
and high-quality geometric shapes of scenes.

In Chapter 5, we propose a novel framework to solve the 3D reconstruction from
a single image. In previous chapters, our proposed methods have solved the robust
depth estimation on diverse scenes. To reconstruct the point cloud from depth, the
depth shift and camera focal length should be recovered. We propose to use point
cloud networks trained on datasets with known global depth shifts and focal lengths
to predict them. Combined with the depth estimation stage, the 3D shape can be
recovered from the single image. Our approach has demonstrated strong generalization
capabilities on diverse scenes.

In Chapter 6, we propose a depth completion method to robustly recover metric
depth. When the sparse depth is available from depth sensors, our method leverages a
single image depth prior and allows for dense metric scene reconstruction. Compared
with current state-of-the-art methods, our approach is more robust to a variety of
sensor types and depth noise.
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7.2 Future Directions

In this thesis, my proposed methods can solve the problem of recovering the 3D scene
shape from a single in-the-wild image. Then I have started to think about how to
obtain dense 3D reconstruction from a video or sparse views. Previous SLAM-based
methods can only do the very sparse reconstruction on some feature points. And
dynamic objects in the views will be ignored. How to densely reconstruct all of them
from a free video will be the next challenge in the community. I hope my methods
can serve as a strong scene shape prior for the video scene reconstruction.
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