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Abstract: Strategies that mitigate the negative effects of vineyard exposure to smoke on wine compo-
sition and sensory properties are needed to address the recurring incidence of bushfires in or near
wine regions. Recent research demonstrated the potential for post-harvest ozonation of moderately
smoke-exposed grapes to reduce both the concentration of smoke taint marker compounds (i.e.,
volatile phenols and their glycosides) and the perceived intensity of smoke taint in wine, depending
on the dose and duration of ozone treatment. The current study further evaluated the efficacy of
ozonation as a method for the amelioration of smoke taint in wine by comparing the chemical and
sensory consequences of post-harvest ozonation (at 1 ppm for 24 h) of Cabernet Sauvignon grapes
following grapevine exposure to dense smoke, i.e., ozone treatment of more heavily tainted grapes.
Ozonation again yielded significant reductions in the concentration of free and glycosylated volatile
phenols—up to 25% and 30%, respectively. However, although the intensities of smoke-related sen-
sory attributes were generally lower in wines made with smoke-exposed grapes that were ozonated
(compared to wines made with smoke-exposed grapes that were not ozonated), the results were not
statistically significant. This suggests that the efficacy of ozone treatment depends on the extent to
which grapes have been tainted by smoke.

Keywords: Cabernet Sauvignon; descriptive analysis; glycoconjugates; guaiacol; mitigation; ozone;
syringol; volatile phenols

1. Introduction

Globally, the occurrence of bushfires in or near prominent wine regions is increas-
ing due to warmer and drier environmental conditions that are attributable to climate
change [1–3]. This is particularly concerning for grape and wine producers because
grapevine exposure to smoke can adversely affect grape and wine composition [4–9],
in some instances leading to a perceptible taint characterized by smoky, medicinal, drying,
and/or ashy characters [4,8,10]. The intensity of “smoke taint” in wine depends on the
timing and duration of smoke exposure [11,12], as well as smoke density [13], i.e., factors
that influence the extent to which smoke-derived volatile compounds can be adsorbed
by grapes. These volatiles include phenols, such as guaiacol, o-, m-, and p-cresol, and
syringol, which are found in smoke as a consequence of the thermal degradation of lignin
that occurs when plant material is burned [14]. Volatile phenols have also been found in
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smoke-affected grapes and wines made from smoke-affected grapes [4–13,15]. As such,
they have become useful markers for the detection and/or quantification of smoke taint.
However, several studies have demonstrated that following grapevine exposure to smoke,
volatile phenols accumulate in leaves and fruit in glycosylated forms [13,16–20]. Glyco-
sylation of volatile phenols by glucosyltransferase enzymes increases their solubility and
stability, and likely occurs to mitigate any toxic effects or risk of cellular damage [21].
Volatile phenol glycosides are odorless, but during fermentation, they can be metabo-
lized by yeast and enzymes to release volatile phenols [4,7,8,20], which can then impart
smoke-related sensory attributes in wine. A significant pool of volatile phenol glycosides
typically remains in wines made from smoke-affected grapes [7,8,13,18,20] and may also
contribute to the sensory perception of smoke taint through in-mouth hydrolysis by sali-
vary enzymes [22]. Analytical methods have therefore been developed to quantify volatile
phenol glycosides [17,18,20,23,24], so they can also be used as markers of smoke taint.

Researchers have quantified volatile phenols (in free and glycosylated forms) to eval-
uate the efficacy of methods that mitigate or ameliorate the impacts of grapevine smoke
exposure. To date, there has been limited success with strategies that aim to reduce either
the uptake of smoke in the vineyard [13,19,25,26] or the extraction of smoke taint com-
pounds from grapes during winemaking [27]. Thus, for now, the most effective remediation
strategies involve removal of smoke volatiles from tainted wine using adsorbent materials,
such as activated carbon, which can either be added directly to wine [28] or used in com-
bination with nanofiltration [29]. However, recent research has shown that post-harvest
ozone (O3) treatment of smoke-exposed grapes can also reduce the concentration of volatile
phenols (and their glycosides) in wine and the sensory perception of smoke taint [30,31].

Ozonation is often employed in food and beverage production as a sanitizing agent,
but is known to stimulate biological responses, such as the biosynthesis of phenolic
compounds, in different fruits and vegetables [32] and, specifically, in wine and table
grapes [33,34]. In various crops, including grapes, the oxidation potential of O3 has been
exploited to reduce the concentration of pesticide residues [35,36], to extend shelf life, [37],
to control microbial growth [38,39], or to enhance polyphenol and/or volatile concentra-
tions [40–42], albeit the outcome of O3 treatment can depend on the duration of exposure,
the dose rate, and the method of application. When moderately smoke-affected Merlot
grapes were exposed to 3 ppm of O3 for 12 h (post-harvest), no significant differences were
observed in the volatile phenol or volatile phenol glycoside concentrations of the resulting
wines [31]. However, a small but significant reduction in free and glycosylated volatile
phenol concentrations was observed following post-harvest ozonation of grapes at 1 ppm
for 24 h, and most importantly, the intensity of smoke-related wine sensory attributes was
significantly diminished [31]. The current study aimed to further evaluate the efficacy of
post-harvest ozonation as a method for amelioration of smoke taint in wine. It builds on
previous research by comparing the chemical and sensory outcomes of O3 treatment of
smoke-affected grapes from a different cultivar (i.e., Cabernet Sauvignon) and following
exposure to dense smoke (i.e., more heavily tainted grapes).

2. Materials and Methods
2.1. Smoke Exposure of Grapevines

Cabernet Sauvignon grapevines (Vitis vinifera L.) grown in a vineyard on the University
of Adelaide’s Waite Campus (in Urrbrae, SA, Australia, 34◦58′ S, 138◦38′ E) were exposed
to smoke for 1 h (at ~7 days post-veraison) during the 2018/2019 growing season. Smoke
treatments were applied to six adjacent vines (three vines at a time) using a purpose-
built smoke tent (2.0 m × 6.0 m × 2.5 m) and commercial smokers, which have been
described previously [13,31]; barley straw (~5 kg in total) was burned throughout the
treatment to maintain smoke production. Control (unsmoked) vines were separated from
the smoke-exposed vines by at least one panel of buffer vines. The vineyard management
was previously reported [13], but, briefly: vines were planted in 1998 in north–south-
aligned rows on their own roots and were trained to a bilateral cordon with a vertical
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shoot-positioned trellis system; they were hand-pruned (two nodes per spur) and drip
irrigated (twice per week between fruit set and harvest).

2.2. Post-Harvest Ozonation of Grapes

Fruit (~12 kg per treatment) was handpicked from the control and smoke-exposed
grapevines when maturity sampling indicated that the total soluble solids (TSSs) were 21◦

Brix (approximately four weeks after smoke exposure), as determined with an Atago digital
refractometer (Tokyo, Japan). Control and smoke-exposed grapes were then randomly
divided into six fruit parcels (~2 kg each). Three parcels each of control and smoke-exposed
fruit (arranged as a single layer of bunches) were treated with 1 ppm of gaseous O3
(produced with an A series ozone generator, P.C. di Pompeo Catelli SRL, Uggiate-Trevano,
Italy) for 24 h in a 4 ◦C cold room—hereafter, “control + O3” and “smoke + O3” treatments,
respectively. The dose and duration of ozonation were determined according to conditions
employed in previous studies involving ozonation of wine grapes [30,34,40]. The three
remaining parcels of control and smoke-exposed fruit were also stored in the 4 ◦C cold room
for 24 h, but without ozonation—hereafter, “control” and “smoke” treatments, respectively.
Following ozonation, fruit parcels were utilized in small-scale winemaking, with the three
fruit replicates from each treatment becoming wine replicates.

2.3. Small-Scale Winemaking

Grape bunches (~2 kg per replicate, per treatment) were destemmed and crushed
by hand, after which 50 mg/kg of sulfur dioxide was added to the resulting must (as
an 8% solution of potassium metabisulfite). The must pH was then adjusted to 3.5 with
the addition of tartaric acid before addition of 100 mg/L of diammonium phosphate and
inoculation with 150 mg/L of PDM yeast (Maurivin, AB Biotek, Sydney, NSW, Australia).
Musts were fermented on skins at ambient temperature (~24 ◦C) for seven days, during
which time the cap was plunged twice per day. When the wines approached dryness
(i.e., at ~2 g/L of residual sugar), they were pressed, and fermentation continued at ambient
temperature (~24 ◦C) until residual sugars were <1 g/L (determined enzymatically using a
glucose/fructose test kit; Vintessential Laboratories Pty. Ltd., Dromana, VIC, Australia).
Wines were then racked from gross lees and cold stabilized at 0 ◦C for 4 weeks before being
bottled in 375 mL glass bottles with screw-cap closures. Prior to bottling, wine pH and free
SO2 were adjusted to 3.5 and 20 mg/L, respectively (again via addition of tartaric acid and
potassium metabisulfite), and samples were collected for chemical analysis. Wines were
cellared (at 15 ◦C) for two months prior to sensory analysis.

2.4. Chemical Analysis of Wine

Chemical analyses were performed on wine replicates from each experimental treat-
ment. Wine pH and titratable acidity (TA, expressed as g/L of tartaric acid) were measured
using a Mettler Toledo T50 autotitrator coupled to a Mettler Toledo InMotion Flex autosam-
pler (Port Melbourne, VIC, Australia). Ethanol content (as % alcohol by volume, abv) was
measured with an alcolyzer (Anton Paar, Graz, Austria). Wine color density and hue were
measured with an Infinite® 200 PRO spectrophotometer (Tecan, Männedorf, Switzerland)
using the modified Somers color assay [43].

The concentrations of volatile phenols (guaiacol, 4-methylguaiacol, o-, m-, and p-cresol,
syringol, and 4-methylsyringol) were measured in wine by the Australian Wine Research
Institute’s Commercial Services laboratory, using gas chromatography–mass spectrometry
and stable isotope dilution analysis (SIDA) methods reported previously [6,44]. The prepa-
ration of isotopically labeled standards (d3-guaiacol, d3-4-methylguaiacol, d7-o-cresol, and
d3-syringol), method validation, and instrument operating conditions are provided in these
publications. The limit of quantitation for volatile phenols was 1–2 µg/L. The concentra-
tions of volatile phenol glycosides were measured in wine (as syringol glucose–glucoside
(gentiobioside) equivalents) using previously reported liquid chromatography–tandem
mass spectrometry and SIDA methods [6,24]. Again, the preparation of the isotopically
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labeled standard (d3-syringol gentiobioside), method validation, and instrument operating
conditions are provided in these publications. The limit of quantitation for volatile phenol
glycosides was 1 µg/L.

2.5. Sensory Analysis of Wine

Wine sensory profiles were determined by descriptive analysis (DA) [45] with a panel
of 15 judges (10 female and 5 male, aged 25 to 53 years) comprising staff and students
from the University of Adelaide and the Australian Wine Research Institute. Panelists were
recruited based on their availability and prior involvement in DA of smoke-tainted wines;
nine panelists had >10 years of experience in sensory analysis of smoke-tainted wines.

The panel evaluated 18 attributes generated in previous smoke taint studies, e.g., [8,46,47],
comprising: fruit, smoke, cold ash, earthy, burnt rubber, and medicinal aromas; fruit, smoky,
and medicinal flavors; ashy, woody, drying, and metallic aftertastes; bitterness, acidity,
hotness, astringency, and body. Sensory assessments were performed in individual sensory
booths under controlled environmental conditions (i.e., ventilation, lighting, and a constant
temperature of 22–23 ◦C). Aliquots (30 mL) of the 12 wines were served in covered, 3-digit
coded stemmed wine glasses, presented monadically using a randomized presentation
order (across panelists). To minimize sensory fatigue, 1 min breaks were enforced between
samples, with a 3 min break enforced after four samples. Distilled water and plain crackers
were provided to panelists as palate cleansers. Panelists were asked to rate the intensity of
sensory attributes using unstructured line scales, with “low” and “high” anchors placed
at 10% and 90% of the scale, respectively. Data were acquired with the RedJade software
(Redwood Shores, CA, USA).

2.6. Statistical Analysis

Chemical data were analyzed with one-way analysis of variance (ANOVA) using
GenStat (19th Edition, VSN International Limited, Herts, UK). Mean comparisons were
performed with the least significant difference (LSD) multiple comparison test at p < 0.05.
Sensory data were analyzed with two-way ANOVA, with the judges treated as a random
effect and the samples as a fixed effect, by using SenPAQ (version 5.01, Qi Statistics,
Reading, UK) and XLSTAT (version 2018.1.1, Addinsoft, New York, NY, USA). Again, mean
comparisons were performed with the LSD multiple comparison test at p < 0.05.

3. Results and Discussion
3.1. Influence of Post-Harvest Ozonation on Wine Composition

The compositional consequences of grapevine exposure to smoke and post-harvest
ozonation of grapes were determined by comparing the volatile phenol and volatile phenol
glycoside concentrations of finished wines (Table 1 and Table S1). Guaiacol and syringol
were the only volatile phenols detected in the control wines (at 1 and ~2 µg/L, respec-
tively), along with low levels of volatile phenol glycosides (i.e., ≤13.4 µg/L); ozonation
of the control grapes had no significant effect on the free or glycosylated volatile phenol
concentrations of the control wines. In contrast, the concentrations of volatile phenols and
their glycosides were elevated in wines made from smoke-exposed grapes, and ozonation
of smoke-exposed grapes did significantly affect the concentrations of many of the smoke
taint marker compounds measured (Table 1 and Table S1).

Guaiacol and o- and m-cresols were the most abundant smoke-derived volatile phenols
detected in free (aglycone) forms (at up to 30 and 8.3 µg/L, respectively), while guaiacol
and syringol were the most abundant glycosylated volatile phenols (at up to 340 and
614 µg/L, respectively). The relative abundance of these compounds in wines made from
smoke-exposed grapes was consistent with previous research [8,13,31,48], but importantly,
the concentrations detected confirmed that a high degree of smoke taint was achieved, as
intended, i.e., the volatile phenol and/or volatile phenol glycoside concentrations were
comparable to levels reported for wines made from grapes exposed to dense smoke [13] or
wines deemed to be heavily smoke tainted by sensory analysis [8,13].
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Table 1. Concentrations (µg/L) of volatile phenols and volatile phenol glycosides in Cabernet Sauvignon wines made with
control or smoke-exposed grapes, with or without post-harvest ozone treatment (1 ppm for 24 h).

Control Control + O3 Smoke Smoke + O3 p

guaiacol tr 1.0 ± 1.0 c 30 ± 4.5 a 23 ± 1.5 b <0.001
4-methylguaiacol nd nd 4.3 ± 0.6 a 3.3 ± 0.6 b <0.001

o-cresol nd nd 8.3 ± 1.5 7.0 ± 0.01 ns
m-cresol nd nd 8.3 ± 1.5 7.0 ± 0.01 ns
p-cresol nd nd 4.0 ± 0.01 4.0 ± 0.01 ns
syringol 2.3 ± 0.6 c 2.0 ± 0.01 c 6.3 ± 0.6 a 5.3 ± 0.6 b <0.001

4-methylsyringol nd nd nd nd –

guaiacol glycosides 9.8 ± 0.9 c 10.3 ± 1.8 c 340 ± 22.7 a 258 ± 15 b <0.001
4-methylguaiacol glycosides 2.9 ± 0.4 c 2.3 ± 0.4 c 79 ± 2.4 a 62 ± 1.2 b <0.001

phenol glycosides 3.0 ± 0.2 c 3.4 ± 0.7 c 111 ± 2.4 a 98 ± 2.1 b <0.001
cresol glycosides 4.3 ± 0.1 c 4.3 ± 0.9 c 117 ± 4.9 a 100 ± 3.3 b <0.001

syringol glycosides 12.2 ± 0.7 c 13.4 ± 0.6 c 614 ± 5.1 a 473 ± 15 b <0.001
4-methylsyringol glycosides tr tr 38 ± 1.2 a 26 ± 0.6 b <0.001

Data are means from three replicates (n = 3) ± standard deviation; nd = not detected (<0.5 µg/L); tr = trace (0.5–1 µg/L). Different letters
(within rows) indicate statistical significance (p = 0.05, one-way ANOVA); ns = not significant. Volatile phenol glycosides measured as
syringol glucose–glucoside equivalents.

Ozonation of smoke-exposed grapes resulted in wines with significantly lower con-
centrations of guaiacol, 4-methylguaiacol, and syringol (i.e., ~16–23% decreases, Table 1)
and most of the volatile phenol glycosides that were measured (i.e., ~12–31% decreases,
Table S1), the exceptions being guaiacol glucose–glucoside and phenol glucoside, for which
the concentrations did not significantly change. These results further demonstrate that
post-harvest ozonation of grapes can mitigate the compositional effects of grapevine smoke
exposure. However, where grapes are heavily tainted by smoke (as in the current study), a
substantial proportion of smoke taint marker compounds remain in the resulting wine and
might therefore still impart perceivable smoke characters.

Some small but statistically significant differences in basic chemistry measurements
were also observed amongst the wines (Table 2). There were no differences in pH, but the
control wine made from grapes without O3 treatment had a significantly higher TA than
other wines. This wine also had a significantly higher alcohol content; however, differences
in alcohol content were not considered to be a consequence of either ozonation or smoke
exposure. Grapevine exposure to smoke can affect sugar accumulation in grapes, but has
only been observed where vines were repeatedly exposed to smoke during a single growing
season [11]. The differences in TA and alcohol were instead attributed to variation in fruit
maturity arising from phenological differences amongst vines, as reported in an earlier
study [13] that was based in the same vineyard. Previous research has demonstrated that
ozonation of grapes can affect the anthocyanin concentrations of juice [49] and wine [40].
In the current study, the color density of the control wine was significantly higher and
its color hue was significantly lower than those observed for other wines (Table 2). The
potential for differences in wine color to influence sensory analysis was therefore addressed
by presenting wines to the DA panel monadically (i.e., one at a time).

Table 2. Basic chemistry of Cabernet Sauvignon wines made with control or smoke-exposed grapes, with or without
post-harvest ozone treatment (1 ppm for 24 h).

Control Control + O3 Smoke Smoke + O3 p

pH 3.65 ± 0.09 3.71 ± 0.01 3.63 ± 0.04 3.62 ± 0.05 ns
TA (g/L) 7.3 ± 0.2 a 6.9 ± 0.06 b 6.9 ± 0.17 b 6.9 ± 0.16 b 0.011

alcohol (% abv) 11.9 ± 0.05 a 11.3 ± 0.07 b 10.8 ± 0.05 b 10.5 ± 0.04 b <0.001
wine color density (au) 4.9 ± 0.36 a 4.2 ± 0.18 b 4.1 ± 0.09 b 4.0 ± 0.06 b 0.002

wine color hue 0.79 ± 0.01 b 0.85 ± 0.01 a 0.87 ± 0.01 a 0.85 ± 0.01 a <0.001

Data are means from three replicates (n = 3) ± standard deviation. Different letters (within rows) indicate statistical significance (p = 0.05,
one-way ANOVA).
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3.2. Influence of Post-Harvest Ozonation on Wine Sensory Profiles

The sensory profiles of wines made from control or smoke-exposed grapes and with
or without ozonation (1 ppm for 24 h) are shown in Figure 1. The DA panel did not
perceive any significant differences between the two control wines (i.e., due to ozonation).
These wines both exhibited fruit aromas and flavors, and there were no apparent smoky
or ashy characters (ratings for smoke-related attributes were low, i.e., ≤1.8, Table S2); a
drying aftertaste was perceived (Figure 1, Table S2), but was rated similarly in all wines
and was therefore not considered to reflect either smoke exposure or O3 treatment. In
contrast, the wines made with smoke-exposed grapes exhibited diminished fruit aromas
and flavors, as well as perceivable smoke, cold ash, burnt rubber, and medicinal aromas,
smoky and medicinal flavors, and an ashy aftertaste (Figure 1, Table S2), i.e., sensory
attributes indicative of smoke taint [4,8,10,13].
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Figure 1. Sensory profiles of Cabernet Sauvignon wines made with control or smoke-exposed grapes,
with or without post-harvest ozone treatment (1 ppm for 24 h). A = aroma; F = flavor; AT = aftertaste.
Data are mean ratings from three wine replicates, each evaluated by 15 judges; * indicates statistical
significance (p = 0.05, two-way ANOVA).

The mean intensity ratings given to smoke-related sensory attributes—smoke and
cold ash aromas, smoky and medicinal flavors, and ashy aftertaste, in particular—were
generally lower for wines made from smoke-exposed grapes that were treated with O3
post-harvest than for wines made from smoke-exposed grapes that were not ozonated
(Figure 1, Table S2). However, these ratings were not statistically significant. Whereas
post-harvest ozonation of moderately smoke-affected Merlot grapes (at 1 ppm for 24 h)
significantly improved wine sensory properties—i.e., fruit characters were enhanced and
smoke attributes diminished [31]—the Cabernet Sauvignon grapes treated in the current
study were more heavily tainted (due to exposure to dense smoke achieved by deliberately
burning more fuel). As such, despite achieving a significant reduction in free and glyco-
sylated volatile phenol concentrations using the same O3 treatment (i.e., 1 ppm for 24 h;
Table 1), the resulting wine still exhibited a perceptible taint (Figure 1). This suggests that
the efficacy of O3 treatment depends on the degree to which grapes are tainted by smoke
and that ozonation might only be suitable for amelioration of grapes with low to moderate
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levels of smoke taint. Where smoke exposure occurs immediately prior to harvest, ozone
treatment might still offer an effective approach to the remediation of smoke taint, given
that volatile phenols appear to be more susceptible to the effects of ozonation than their
glycosides [31].

4. Conclusions

Smoke taint will remain a challenge for grapegrowers and wine producers while
bushfires continue to occur in or near wine regions during the annual growing season.
As such, strategies are needed to mitigate or ameliorate the impacts of grapevine smoke
exposure. Post-harvest ozonation can be employed to remediate smoke-exposed grapes,
but findings from the current study suggest that the efficacy of O3 treatment might be
limited according to how heavily grapes are tainted by smoke. Ozonation might therefore
be effective for the remediation of grapes with low to moderate levels of taint, but in the
case of more heavily tainted grapes, the resulting wine might still exhibit a perceivable
taint and require further amelioration using methods that remove smoke taint marker
compounds from wine (e.g., nanofiltration and/or adsorbents, such as activated carbon).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/beverages7030044/s1, Table S1: Concentrations (µg/L) of volatile phenol glycosides in wines
made with control or smoke-exposed grapes, with or without post-harvest ozone treatment (1 ppm
for 24 h), Table S2: Mean intensity ratings for sensory attributes of wines made with control or
smoke-exposed grapes, with or without post-harvest ozone treatment (1 ppm for 24 h).
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