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Abstract: Folate is a dietary micronutrient essential to one-carbon metabolism. The World Health
Organisation recommends folic acid (FA) supplementation pre-conception and in early pregnancy
to reduce the risk of fetal neural tube defects (NTDs). Subsequently, many countries (~92) have
mandatory FA fortification policies, as well as recommendations for periconceptional FA supplemen-
tation. Mandatory fortification initiatives have been largely successful in reducing the incidence of
NTDs. However, humans have limited capacity to incorporate FA into the one-carbon metabolic
pathway, resulting in the increasingly ubiquitous presence of circulating unmetabolised folic acid
(uFA). Excess FA intake has emerged as a risk factor in gestational diabetes mellitus (GDM). Several
other one-carbon metabolism components (vitamin B12, homocysteine and choline-derived betaine)
are also closely entwined with GDM risk, suggesting a role for one-carbon metabolism in GDM
pathogenesis. There is growing evidence from in vitro and animal studies suggesting a role for excess
FA in dysregulation of one-carbon metabolism. Specifically, high levels of FA reduce methylenete-
trahydrofolate reductase (MTHFR) activity, dysregulate the balance of thymidylate synthase (TS) and
methionine synthase (MTR) activity, and elevate homocysteine. High homocysteine is associated with
increased oxidative stress and trophoblast apoptosis and reduced human chorionic gonadotrophin
(hCG) secretion and pancreatic β-cell function. While the relationship between high FA, perturbed
one-carbon metabolism and GDM pathogenesis is not yet fully understood, here we summarise
the current state of knowledge. Given rising rates of GDM, now estimated to be 14% globally, and
widespread FA food fortification, further research is urgently needed to elucidate the mechanisms
which underpin GDM pathogenesis.

Keywords: folate; vitamin B12; homocysteine; choline; betaine; gestational diabetes mellitus;
one-carbon metabolism

1. Introduction

Gestational diabetes mellitus (GDM) is defined as glucose intolerance and subsequent
hyperglycaemia diagnosed during pregnancy that is typically resolved post-delivery of
the neonate [1]. Over the past two decades, the incidence of GDM has increased globally.
In Australia, the incidence of GDM has risen dramatically, tripling from 5% in 2008–2009
to 16% in 2017–2018 [2]. Across the same time frame, the incidence of type 2 diabetes
mellitus (T2DM) has remained constant (4.1% in 2008 compared to 4.4% in 2018 [3]),
suggesting specific pregnancy adaptations contribute to development of glucose intolerance
and subsequent hyperglycaemia. Considering multiple immediate and long-term health
consequences to the mother and the baby, there is urgent need to identify factors that are
driving the GDM rise, not just in Australia but globally. Over the past decade evidence is
mounting on the association between GDM with high intake of folic acid (FA) and high
circulating folate during pregnancy. Despite an increasing trend towards higher serum
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folate levels [4–6] and increasing evidence to suggest an association with GDM [7–16], the
mechanistic link between excess folic acid intake and GDM development is unknown. This
review will summarise the current knowledge on high FA intake and high circulating folate,
the consequences for function of the one-carbon metabolic pathway and the implications
for GDM pathogenesis.

2. Gestational Diabetes Mellitus (GDM): Health Significance

The risk of adverse perinatal and long-term events associated with GDM complicated
pregnancies are well documented for both the mother and her baby. Perinatally this
includes increased risk of maternal hypertension, preeclampsia, birth injury and caesarean
section [17,18]. Long-term maternal health implications associated with having a GDM-
complicated pregnancy include increased risk of developing metabolic syndrome [19–21],
T2DM [22], and cardiovascular disease [23,24], specifically elevated blood pressure, serum
triglycerides, and blood glucose, detected as early as 1 year post-partum [25].

In utero exposure to hyperglycaemia and GDM is associated with increased health
risks for the baby, including preterm birth, macrosomia, large for gestational age, shoulder
dystocia, neonatal respiratory complications and hypoglycaemia [17,18]. There is also
increasing concern in the role of GDM exposure in utero on metabolic programming of
the fetus, increasing risk of long-term metabolic dysfunction. A meta-analysis (3 studies,
n = 4421) demonstrated that in utero exposure to GDM increased risk of metabolic syndrome
in offspring (RR 2.07, 95% CI: 1.26–3.42) [21]. Another meta-analysis of 24 studies found
offspring of GDM-complicated pregnancies had increased risk of markers of cardiovascular
disease in childhood, including elevated systolic blood pressure, BMI and elevated fasting
blood glucose [26]. In utero exposure to GDM-complicated pregnancy is also a risk factor for
development of childhood diabetes (p < 0.001) [27]. Further, maternal glucose concentration
during pregnancy had a significant inverse relationship with insulin sensitivity, and a
positive relationship with static β-cell response in children aged 5–10 years [28]. A study of
adults who were exposed to in utero hyperglycaemia found reduced insulin sensitivity and
secretion (p < 0.005) [29]. There is increasing evidence that in utero exposure to GDM has
long-term metabolic [21,29] and cardiovascular [26] effects on offspring health in later life.

Thus, the adverse maternal and neonatal outcomes associated with GDM are well
known but the underlying mechanisms contributing to GDM, are less well understood.

3. Gestational Diabetes Mellitus: Risk Factors and the Role of Folic Acid in
GDM Aetiology

In Australia, the incidence of GDM has tripled since 2008. Largely the dramatic rise
in GDM has been attributed to changes in known maternal risk factors and diagnostic
criteria. However, known GDM risk factors, such as maternal age [30], body mass index
(BMI) [31] and ethnicity [32], fail to completely explain the rise in GDM incidence in
Australia. Advanced maternal age (≥35 years) is a well-known risk factor for GDM [30].
However, the proportion of women giving birth aged ≥35 remained stable from 2008
(22.9% of women giving birth) until 2016 (22.8%), [33] by which time the incidence of
GDM had increased to 13.8% [2]. BMI is also a well-established risk factor for GDM, but
BMI alone also fails to explain this dramatic rise [31]. While overall BMI is increasing,
modest trends are observed amongst women who gave birth. In 2012, 26.5% and 20.7%
of women giving birth were overweight or obese, respectively, rising to 26.8% and 21.8%
in 2018 [34]. Unfortunately, collection of uniform maternal BMI national data began in
2012, and therefore no pre-FA fortification data exist. It is possible that the modest rise in
maternal BMI may contribute to GDM incidence, but it is not likely to explain the three-
fold increase observed over the past 12 years. Similarly, the change in diagnostic criteria
with the adoption of the International Association of Diabetes in Pregnancy Study Groups
guidelines from 2014, also fails to account for the increase, given GDM cases had already
more than doubled by 2014 (12%) and have continued to rise since [2,35]. Population
ethnicity, maternal age, BMI and changing diagnostic criteria likely contribute to rising
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GDM, but even combined are unlikely to explain a three-fold increase in GDM across the
past decade. Interestingly, the rise in GDM closely follows the introduction of mandatory
FA food fortification in Australia, implemented in 2009, suggesting a potential mechanistic
role of FA in GDM pathogenesis.

3.1. High FA and GDM Risk

Emerging evidence increasingly links high FA intake with GDM (Table 1). A 2016
prospective cohort study (n = 1938) found an increased risk of GDM associated with daily
FA supplementation in the first trimester (aOR: 2.25 95% CI: 1.35–3.76) noting an additive
effect of pre-pregnancy BMI ≥ 25 kg/m2 on further increasing GDM risk (OR: 5.63 95%
CI: 2.77–11.46) [7]. More recently, the Shanghai Preconception Cohort Study found FA
supplementation increased GDM risk (aOR: 1.73 95% CI: 1.19–2.53, p = 0.004) [8]. The
authors further showed that RBC folate exceeding 600 ng/mL (1360 nmol/L) is asso-
ciated with an increased GDM risk (aOR: 1.58 95% CI: 1.03–2.41, p = 0.033). Duration
of FA supplementation has also been implicated with GDM. FA supplementation for
≥3 months prior to pregnancy is associated with an increased risk of GDM, compared
to supplementation < 3 months (aRR: 1.72 95% CI: 1.17–2.53, p < 0.01) [9] and <2 months
(aOR: 3.45 95% CI: 1.01–11.8, p < 0.05) [10].

Table 1. Summary of research on the relationship between folate and GDM.

Authors Study
Country

Pregnancy Status
(n) Weeks’ Gestation Measure Results

Zhu et al., 2016 [7] China Non-GDM (1689) vs.
GDM (249) <12 FA

supplementation
aOR: 2.25 95% CI:

1.35–3.76

Cheng et al.,
2019 [9] China Non-GDM (853) vs.

GDM (97)
≥3 months

pre-conception
FA

supplementation
aRR: 1.72 95% CI:
1.17–2.53, p < 0.01

Huang et al.,
2019 [10] China Non-GDM (293) vs.

GDM (33) 16–18 FA
supplementation

aOR: 3.45 95% CI:
1.01–11.8, p < 0.05

Chen et al., 2021 [8] China
Non-GDM (878) vs.

GDM (180) 9–13

FA
supplementation

aOR: 1.73 95% CI:
1.19–2.53, p = 0.004

RBC Folate aOR: 1.58 95% CI:
1.03–2.41, p = 0.033

Xie et al., 2019 [11] China Uncomplicated
(1890) vs. GDM (392) 19–24 RBC folate

RR per 1-SD increase:
1.16 95% CI 1.03–1.30,

p = 0.012

Liu et al., 2020 [12] China Non-GDM (299) vs.
GDM (67 <12 RBC Folate aOR: 2.473 95% CI:

1.013–6.037, p = 0.047

Li et al., 2019 [14] China Uncomplicated (316)
vs. GDM (90) 24–28 Serum folate OR: 1.98 95% CI:

1.00–3.90, p = 0.049

Saravanan et al.,
2021 [15] UK Uncomplicated

(3702) vs. GDM (526) 12.5 ± 1.4 Serum folate aRR: 1.11 95% CI:
1.036–1.182, p = 0.002

Jankovic-
Karasoulos et al.,

2021 [16]

Australia
and New
Zealand

Uncomplicated (111)
vs. GDM (33) 15 ± 1 Serum folate

mean ± SD (nmol/L):
31.9 ± 11.2 vs.

37.6 ± 8.0, p = 0.007)
aOR: 1.22 (0.93–1.59),

p = 0.149

Higher red blood cell (RBC) folate was detected in GDM pregnancies (n = 392) com-
pared to controls (n = 1890) in the second trimester across each quintile (p trend = 0.012) [11].
This is consistent with a 2021 study of pregnant women that found RBC folate prior to
12 week’s gestation was indicative of increased GDM risk (aOR: 2.473 95% CI: 1.013–6.037,
p = 0.047) [12]. Similarly, a study of women between 24–28 weeks’ (n = 406) found increased
serum folate was positively associated with increased GDM risk (OR 1.98 95% CI: 1.00–3.90,
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p = 0.049) [14]. Concordantly, a prospective study (n = 4746) found increased serum folate
prior to 16 weeks’ gestation was associated with an 11% higher relative risk of GDM after
adjusting for confounding variables (aRR: 1.11 95% CI: 1.036–1.182, p = 0.002) [15]. A nested
case–control cohort similarly found that maternal serum folate levels at 15 weeks’ gesta-
tion were higher in women who developed GDM (n = 33, mean ± SD: 37.6 ± 8 nmol/L)
compared to uncomplicated pregnancies (n = 111, 31.9 ± 11.2, p = 0.007) but statistical
significance was lost after adjusting for maternal age, BMI and smoking status [16].

Collectively, there is increasing evidence for a role for FA in GDM epidemiology. To
understand how changes to maternal FA intake and circulating folate can contribute to
GDM it is imperative to understand the role of folate and its synthetic derivative FA in
pregnancy health.

3.2. High FA and Metabolic Dysfunction

The mechanistic relationship between high FA and GDM risk is poorly elucidated.
A growing body of research suggests high FA exposure in utero may program metabolic
function in offspring, though the maternal effects are less well studied. In human stud-
ies, higher maternal folate has also been associated with insulin resistance [36,37], and
adiposity [37] in offspring. This is consistent with findings from murine models, which
suggest maternal FA intake is associated with adverse metabolic outcomes in the offspring,
specifically adipocyte morphology [38], glucose intolerance and insulin resistance [39], and
impaired insulin synthesis and fat metabolism [40]. The underlying molecular pathways
for altered adiposity and increased insulin resistance due to high FA are currently un-
clear, although altered DNA methylation, upregulation of lipogenesis pathway genes and
downregulation of glucose transporter 4 (GLUT4) in adipose and muscle tissues have been
implicated by these studies. Other studies have also found maternal high fat and high folate
diets interact to exacerbate disturbed lipid metabolism [41,42] and insulin signalling [42] in
offspring. There is significant evidence for a role of high FA in metabolic programming
in the offspring but a role in maternal metabolism is yet to be demonstrated. One study
assessed metabolic function in a study of male Sprague Dawley rats fed either high fat
diet or low-fat diet with either excess FA (7.5 mg FA/kg) or control FA (0.75 mg/kg) for
12 weeks [43]. In high fat-treated rats, excess FA resulted in increased adipocyte size and
induction of several lipogenic genes in adipose tissue and impaired glucose tolerance [43].
Interestingly, in low fat diet-treated mice, excess FA did not alter body weight or com-
position, nor glucose tolerance [43]. Theoretically, high FA may have adverse maternal
metabolic effects, either in isolation or in combination with a high fat diet. A potential
relationship between concomitant high fat and high FA diets has significant implications
in pregnancy health, particularly in explaining a causal relationship with GDM. However,
further research is needed.

3.3. High FA and β-Cell Dysfunction

High FA has been shown to alter β-cell function via the folate receptor α (FOLRα)
signalling [44,45]. One study reports that an optimal dose of FA (0.1 µM) promotes differ-
entiation of porcine pancreatic stem cells into insulin-secreting cells, as well as increasing
cell viability and proliferative capacity. However, the highest FA dose (1 µM) reduced cell
viability and proliferation compared to the optimal dose [44]. The authors propose the
mechanism of FA action in porcine pancreatic stem cells occurs via FA-FOLRα binding.
Interestingly, FOLRα expression was also upregulated in response to 0.1 µM FA and down-
regulated in response to 1 µM treatment. This research suggests a mechanistic role for high
dose FA in β-cell dysfunction in a mammalian model. However, further research is needed
to confirm conservation to human models, specifically with reference to the adaptive β-cell
response that is necessary for pregnancy [46] and implicated in GDM pathogenesis [47,48].
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4. Folate and One-Carbon Metabolism in Pregnancy

Folate is a dietary micronutrient essential to one-carbon metabolism, a universal
process comprised of multiple interconnected pathways; specifically, the folate cycle, the
methionine cycle, and the trans-sulphuration pathway (Figure 1) [49,50]. One-carbon
metabolism is critical for the biosynthesis of purines, thymidylate and re-methylation
homocysteine to methionine. Homocysteine is a proinflammatory amino acid and high
levels can be detrimental to health, including pregnancy [51]. Thus, perturbations to one-
carbon metabolism can impact maternal and neonatal health [52–55]. Humans require
dietary folate to maintain different functional aspects of the one-carbon metabolic pathway,
whether in the form of non-synthetic folates, obtained from food such as dark leafy greens,
eggs, and liver or acquired from FA, a synthetic form, obtained from fortified foods or
supplements [56,57]. Unlike non-synthetic folate, FA requires reduction via dihydrofolate
reductase (DHFR) to dihydrofolate (DHF) and sequentially tetrahydrofolate (THF) [58].
THF is then interconverted to intermediate metabolites 10-formylTHF, 5,10-methenylTHF
and 5,10-methyleneTHF, before incorporation into the folate cycle as the most reduced
folate form 5-methylTHF [59]. Expression of one-carbon metabolic enzymes is shown in
all human adult tissues suggesting that all tissues should be able to generate de novo one-
carbon units. Folates carrying one-carbon units do not freely transport across intracellular
membranes. Thus, a complete set of one-carbon enzymes exist in both the mitochondria
and the cytosol to synthesize 5,10-methylene-THF in both compartments. It is believed
that the one-carbon metabolic pathway is localized in the mitochondria to uncouple this
pathway from glycolysis [60,61].

Physiologically, folate has essential functions in growth, differentiation and repair,
and thus adequate supply is highly critical during fetal and placental development [62,63].
The human newborn has been estimated to have grown from one to 1.25 × 1012 cells
during gestation with an additional 0.25 × 1012 cells in the umbilical cord, placenta and
fetal membranes [64,65]. Folate plays critical physiological roles in pregnancy to support
uterine and placental growth and development, sustained cell division necessary for fetal
growth, and specifically in prevention of neural tube defects (NTDs) [66–68]. Further,
preconception folic acid intake has also been positively associated with fetal growth and
reduced risk for small-for-gestational-age (SGA) [69] and reduced risk of spontaneous
preterm birth (sPTB) [70]. There is also some evidence for a modest protective effect of
folic acid supplementation in preeclampsia risk [71]. In pregnancy, folate requirements
increase 5- to 10-fold, to accommodate the needs of the growing feto-placental unit, as well
as increasing maternal metabolic demands [66]. Currently, guidelines recommend 400 µg
daily FA intake to prevent NTDs [72]. As dietary folate is often inadequate [73], many
countries (~92) have mandatory FA food fortification policies, as well as recommendations
of periconceptional FA supplementation [74].

Mandatory FA food interventions have significantly reduced folate deficiency and the
occurrence of neural tube defects, most recently reviewed by Wilson & O’Connor (2021) [75].
Indeed, in countries with FA food fortification and FA supplementation guidelines for
pregnancy, folate excess is more common than folate deficiency. A systematic review
confirms that in the context of mandatory FA fortification, most women preconception,
and through pregnancy, are exceeding the upper tolerable limit (~1000 µg/d) [76]. While
direct consequences of nutrient deficiencies have been well documented [77–79], the effects
of excess FA intake are less well elucidated and are more likely to have direct effects on
one-carbon metabolism and ultimately complicated and indirect effects on maternal and
fetal health, and pregnancy outcome.
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tase (DHFR) to dihydrofolate (DHF) and sequentially tetrahydrofolate (THF) [58]. THF is intercon-
verted to intermediate metabolites 10-formyltetrahydrofolate (10-formylTHF), 5,10-methenyltetra-
hydrofolate (5,10-methenylTHF and 5,10-methylenetetrahydrofolate (5,10-methyleneTHF), Methyl-
enetetrahydrofolate dehydrogenase (MTHFD1) regulates conversion of THF. After conversion of 
THF to 5,10-methyleneTHF), a substrate of methylenetetrahydrofolate reductase (MTHFR), 5,10-
methyleneTHF can be used in the conversion of deoxyuridine monophosphate (dUMP) to deoxy-
thymidine monophosphate (dTMP) via thymidylate synthase (TS). Alternatively, MTFHR converts 
5,10-methyleneTHF to 5-methylTHF. 5-methylTHF is used for homocysteine re-methylation to me-
thionine and is reliant on vitamin B12 (B12)-dependent methionine synthase (MTR). Methionine is 
converted to S-adenosylmethionine (SAM), a methyl donor in methylation reactions, and sequen-
tially to S-adenosylhomocysteine (SAH), a substrate of homocysteine re-methylation. Alternatively, 
betaine derived from choline catalysed by choline dehydrogenase (CHD), can be used as a methyl 
donor in homocysteine re-methylation in a folate-independent manner. After donating a methyl 
group, betaine becomes dimethylglycine (DMG) Adapted from [16]. 

5. High FA Intake and Unmetabolized FA (uFA) 
High intake of FA is known to increase circulating unmetabolized FA (uFA), and this 
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has been detected in the serum in non-pregnant [6] and pregnant [80] populations, umbil-
ical cord blood [81–83], neonatal plasma [84], and in breast milk [85–87]. uFA has also 
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Accumulation of uFA itself may be detrimental, though there is limited research re-
garding the adverse effects of circulating uFA in pregnancy. Studies of allergic disease 
[89] and neurodevelopment [90], have found no adverse effects associated with uFA. 
However, some research indicates that higher maternal folate is associated with insulin 
resistance [36,37] and adiposity [37] in offspring. A direct role for circulating uFA in im-
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Figure 1. Overview of one-carbon metabolism. Folic acid (FA) is reduced via dihydrofolate reductase
(DHFR) to dihydrofolate (DHF) and sequentially tetrahydrofolate (THF) [58]. THF is interconverted to
intermediate metabolites 10-formyltetrahydrofolate (10-formylTHF), 5,10-methenyltetrahydrofolate
(5,10-methenylTHF and 5,10-methylenetetrahydrofolate (5,10-methyleneTHF), Methylenetetrahy-
drofolate dehydrogenase (MTHFD1) regulates conversion of THF. After conversion of THF to 5,10-
methyleneTHF), a substrate of methylenetetrahydrofolate reductase (MTHFR), 5,10-methyleneTHF
can be used in the conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine
monophosphate (dTMP) via thymidylate synthase (TS). Alternatively, MTFHR converts 5,10-
methyleneTHF to 5-methylTHF. 5-methylTHF is used for homocysteine re-methylation to methionine
and is reliant on vitamin B12 (B12)-dependent methionine synthase (MTR). Methionine is converted
to S-adenosylmethionine (SAM), a methyl donor in methylation reactions, and sequentially to S-
adenosylhomocysteine (SAH), a substrate of homocysteine re-methylation. Alternatively, betaine
derived from choline catalysed by choline dehydrogenase (CHD), can be used as a methyl donor
in homocysteine re-methylation in a folate-independent manner. After donating a methyl group,
betaine becomes dimethylglycine (DMG) Adapted from [16].

5. High FA Intake and Unmetabolized FA (uFA)

High intake of FA is known to increase circulating unmetabolized FA (uFA), and this
is becoming increasingly prevalent, particularly in the context of food fortification. uFA has
been detected in the serum in non-pregnant [6] and pregnant [80] populations, umbilical
cord blood [81–83], neonatal plasma [84], and in breast milk [85–87]. uFA has also been
detected in maternal and neonatal plasma [88], serum [82] and umbilical cord blood [82] in
a voluntary fortified population.

Accumulation of uFA itself may be detrimental, though there is limited research regard-
ing the adverse effects of circulating uFA in pregnancy. Studies of allergic disease [89] and
neurodevelopment [90], have found no adverse effects associated with uFA. However, some
research indicates that higher maternal folate is associated with insulin resistance [36,37]
and adiposity [37] in offspring. A direct role for circulating uFA in impairing maternal
metabolism or in GDM pathogenesis remains to be elucidated. While there is growing
evidence for the presence of uFA, the extent to which maternal uFA may be harmful is not
well established, nor has a relationship between uFA and pregnancy outcome, including
GDM, been described.
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The presence of circulating uFA is largely attributed to excess intake, limited enzyme
metabolic capacity and a low saturation threshold [91,92]. Understanding the relationship
of uFA and one-carbon metabolism remains a significant area for future research, particu-
larly considering the increasing prevalence of uFA, and mounting evidence to suggest a
relationship between high FA and GDM.

6. Effects of Excess FA on the Players in the 1C-Metabolism Pathway
6.1. Excess FA Saturates Limited DHFR Capacity

The human gastrointestinal tract can efficiently convert non-synthetic folates to
5-methyltetrahydrofolate (5-methylTHF), the active form for methylation pathways, but
has a reduced capacity to convert FA [91,93]. Unlike naturally occurring folate, which
is converted to THF without requiring the action of DHFR, FA is inactive until DHFR
action reduces it sequentially to DHF and then activated THF in a two-step enzymatic
process (Figure 2) [94]. DHFR activity in humans is limited and variable [5]. Oral doses
of 260–280 µg FA are sufficient to result in unmetabolized circulating FA (uFA) due to
saturated DHFR capacity [95]. Mandatory fortification initiatives and periconceptional
FA supplementation have resulted in high FA intake exceeding the upper tolerable limit
(~1000 µg/d), and thus, high circulating folate levels in pregnancy [96].
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Figure 2. Folic Acid Metabolism. Folic acid (FA) requires reduction by dihydrofolate reductase
(DHFR) to dihydrofolate (DHF) and sequentially tetrahydrofolate (THF). THF is then converted to
5,10-methyleneTHF and 5-methylTHF, dependent on methylenetetrahydrofolate dehydrogenase 1
(MTHDF1) and methylenetetrahydrofolate reductase (MTHFR) function.

6.2. Excess FA Reduces MTHFR Protein, Causing a Pseudo-MTHFR Deficiency

After conversion of FA to THF, THF is converted by the methylenetetrahydrofolate
reductase (MTHFR) enzyme to 5-methylTHF (Figures 1 and 2), the bioavailable form that
acts as an essential co-substrate in homocysteine re-methylation. MTHFR is therefore
essential in regulating folate bioavailability.

In murine studies, high dietary FA has been shown to induce MTHFR dysfunction.
Dietary FA exceeding recommendations (2 mg/kg mouse chow [97]) by 10-fold (10x-FA,
20 mg FA/kg mouse chow), reduced MTHFR protein in the maternal liver (p < 0.05) [98].
Furthermore, dietary FA exceeding recommendation five-fold (5x-FA, 10 mg FA/kg) re-
duced MTHFR protein [99,100] and activity [100] in the maternal liver, effectively inducing
a pseudo-MTHFR deficiency. In addition to FA, DHF has also been characterised as an
inhibitor of MTHFR activity in vitro studies [101]. An important caveat is species-specific
differences in folate metabolism. Specifically, hepatic DHFR is significantly lower in hu-
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mans compared to other animals [93,102]. The metabolic rate of DHFR activity in human
liver is proposed to be 56 times slower than rat liver [93]. Thus, limited conclusions can be
drawn from animal studies. Evidence for MTHFR-deficiency in response to excess FA is
well established in mouse models. A pseudo-MTHFR syndrome stemming from excess
intake, in the absence of MTHFR polymorphisms, has been documented clinically [103].
Whether this is widely applicable to pregnant women, and its biological significance, is not
yet established.

6.3. FA Reduces Methionine Synthase (MTR) Activity and Favours the Thymidylate Synthase
(TS) Cycle

Paradoxically, FA excess has been implicated in inhibition of folate-dependent path-
ways, particularly the methionine synthase (MTR) cycle [104,105], instead promoting
thymidylate synthase (TS) cycle activity [104]. MTR activity, required for homocysteine
re-methylation, is dependent on adequate vitamin B12 availability. The active form of folate,
5-methylTHF, is converted from 5,10-methyleneTHF, however, 5,10-methyleneTHF can
alternatively be used as a one-carbon donor in the conversion of deoxyuridine monophos-
phate (dUMP) to deoxythymidine monophosphate (dTMP) via thymidylate synthase
(Figure 1) with key functions in pyrimidine biosynthesis. In a study of Caenorhabditis
elegans (C. elegans), 100 mM synthetic FA decreased methylenetetrahydrofolate reductase
(mthf-1) and methionine synthase (metr-1) mRNA but increased thymidylate synthase
mRNA [104]. An earlier study of C. elegans also demonstrated reduced enzymatic activity
of methionine synthase by ~40% and reduced expression of methionine synthase reductase
(mtrr-1) and mthf-1 mRNA in high-FA conditions (8.8 µmol/plate) [105]. Taken together,
there is emerging evidence that conditions of excess FA favour TS metabolism, facilitating
DNA synthesis and cellular growth, at the expense of MTR, effectively reducing MTR
action required to support methylation processes [104,105]. Given a secondary action of
TS activity is DHF generation, this may further potentiate DHFR saturation induced by
increased FA intake

The implications of these perturbations to the one-carbon metabolic pathway are not
yet known. An important caveat is that this research is limited to C. elegans and has not
been assessed in in vivo in humans, ex vivo in tissue, nor in placental cell lines. Favouring
TS activity at the expense of cobalamin-dependent MTR activity due to excess FA, becomes
increasingly of interest considering a proposed high folate/low B12 interaction in GDM
pathogenesis. Whether this phenomenon occurs in the human placenta and whether this
may contribute to pregnancy complications, is an interesting area for future research.

6.4. Dietary FA Alters Choline and Betaine Metabolism

Disruption of folate metabolism results in use of choline-derived betaine, an alterna-
tive methyl donor in methionine synthesis as described above (Figure 1) [106]. This process
works in a folate-independent manner to facilitate generation of S-adenosylmethionine
(SAM), the universal methyl donor [107]. Following methylation of DNA and other
molecules, SAM is converted to S-adenosylhomocysteine (SAH). Therefore, decreases
in SAM:SAH ratio indicate reduced methylation potential, whereas reductions in betaine
concentrations suggest alternate utilisation as a methionine cycle methyl donor. In a
murine study dietary FA exceeding the recommended dietary FA by five-fold, decreased
maternal plasma betaine (p = 0.043) and increased SAM (p = 0.009) but reduced placental
SAM:SAH (p = 0.039) and SAM (p = 0.021) with the latter further exacerbated in male-
bearing pregnancies (p = 0.006) [100]. This study suggests that high FA may disrupt the
maternal methionine pathway, but further research is needed to validate this finding. The
consequences of disrupting this pathway, particularly in early gestation hypomethylated
placenta, for pregnancy health and outcome, including GDM pathogenesis, need to be
established. [108]. In the context of human pregnancy this may promote placental and fetal
growth and perturb spatio-temporal methylation of DNA and other molecules important
in key developmental steps.
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7. Association between One-Carbon Metabolism Players and GDM
7.1. High FA and Low Vitamin B12 Are Associated with Increased GDM Risk

Beyond adequate folate intake, one-carbon metabolism is also dependent on adequate
supply of vitamin B12. Vitamin B12, or cobalamin, is a water-soluble B-vitamin that is an
essential cofactor in one-carbon metabolism, and is largely obtained from animal products,
making vegetarianism a risk factor for its deficiency [109,110]. There is growing evidence
suggesting a role for vitamin B12 insufficiency in GDM development, either in isolation or
in conjunction with excess FA intake, summarised in Table 2 [14,15,111–114]. In a UK-based
retrospective case–control study (n = 344), women with B12 deficiency (<150 pmol/L) in
2nd and 3rd trimesters had an increased likelihood of GDM diagnosis compared to B12-
replete women (aOR: 2.59 95% CI: 1.35–4.98, p = 0.004), after adjustment for serum folate,
age, parity, smoking status, and ethnicity. Interestingly, folate level did not differ between
GDM and non-GDM pregnancies but only folate deficiency, not excess, was reported [115].
The relationship between vitamin B12 deficiency and GDM diagnosis was still present, but
attenuated, after adjustment for maternal BMI (aOR: 2.05, 95% CI: 1.03–4.10, p = 0.04).

Table 2. Summary of research on the relationship between circulating vitamin B12 and GDM.

Authors Study
Country Pregnancy Status (n) Weeks’ Gestation Measure Results

Sukumar et al.,
2016 [115] UK

B12-deficient < 150
pmol/L (90) vs.

B12-replete > 150
pmol/L (254)

26.9 ± 5.3 WHO 1999 GDM
criteria

OR: 2.59 95% CI
1.35–4.98, p = 0.004.
aOR: 2.05, 95% CI:
1.03–4.10, p = 0.04

Saravan et al.,
2021 [15] UK

B12-deficient < 220
pmol/L (1790) vs.
B12-replete > 220

pmol/L (2530)

12.5 ± 1.4 IADPSG-GDM aRR: 1.383, 95% CI
1.157–1.652, p = 0.0004

Uncomplicated (3687) vs.
GDM (633) 12.5 ± 1.4

Serum B12 aRR: 0.856, 95% CI:
0.786–0.933, p = 0.0004

B12 tertile 1 +
folate tertile 3

aRR: 1.742 95% CI:
1.226–2.437, p = 0.003

Li et al., 2019 [14] China

Uncomplicated (110) vs.
GDM (27) 24–28 Serum folate:B12

ratio 26.67–41.03
aOR: 1.53 95% CI:

0.79–2.97, p = 0.211

Uncomplicated (93) vs.
GDM (43) 24–28 Serum folate:B12

ratio ≥ 41.03
aOR: 3.08 95% CI:

1.63–5.83, p = 0.001

Lai et al.,
2018 [112]

Singapore

Folate Tertile 1 (Ref)
(193) vs. Folate Tertile

2 (164)
26–28 WHO 1999 GDM

criteria
aOR: 1.94 95% CI:

1.04–3.62, p = 0.036

Folate Tertile 1 (Ref)
(193) vs. Folate Tertile

3 (156)
26–28 WHO 1999 GDM

criteria
aOR: 1.97 95% CI:

1.05–3.68, p = 0.034

Krishnaveni
et al., 2009 [111] India

Folate ≤ 21.3 nmol/L
(129) vs. Folate >

21.3–45.4 nmol/L (114)
and Folate > 45.4

nmol/L (91)

30
GDM Carpenter–
Coustan criteria

[116]

5.4%, 10.5%, 10.9%
(Tertile 1, 2, and 3,

respectively), p = 0.04

WHO, World Health Organisation; IADPSG, International Association of the Diabetes and Pregnancy Study
Groups; GDM, gestational diabetes mellitus; aOR, adjusted odds ratio; CI, confidence interval aRR, adjusted
risk ratio.

Similarly, a prospective cohort study, found an inverse relationship between vitamin
B12 and GDM risk (aOR: 0.856; 95% CI 0.786–0.933; p = 0.0004) although this was mediated
in part by BMI [15]. Vitamin B12 deficiency (<220 pmol/L in serum) also increased GDM
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risk (aRR: 1.383, 95% CI: 1.157–1.652, p = 0.0004). However, low vitamin B12/high fo-
late was associated with the greatest increase in GDM risk (aRR: 1.742 95% CI: 1.226–2.437,
p = 0.003) [15]. Interestingly, high folate remained associated with increased risk of GDM
after adjustment for vitamin B12 status (aRR 1.11 95% CI: 1.036–1.182, p = 0.002) [15].
Similarly, a prospective study at 26 weeks’ gestation (n = 913) found the greatest risk of
GDM was associated with B12 insufficiency (<150 pmol/L) paired with high folate lev-
els (OR: 1.97 95.3831% CI: 1.05–3.68) [112]. A cross-sectional study of women (n = 406,
24–28 weeks’ gestation) found higher folate:B12 ratio was associated with increased GDM
risk (OR: 3.08 95% CI: 1.63–5.83) [14]. A small study of vitamin B12-deficient women at
30 weeks’ gestation (n = 29) found GDM incidence increased across folate tertiles after
adjustment (5.4% (n = 7), 10.5% (n = 12), 10.9% (n = 10), from lowest to highest tertile,
p = 0.04) [111]. Given vitamin B12 is an essential cofactor in one-carbon metabolism, and
the increasing evidence for a role of folate in GDM pathogenesis, it is unsurprising there is
also a role for vitamin B12 deficiency in GDM. This is potentially concerning given only
food fortification with FA, but not vitamin B12, is mandatory in many countries, especially
in the context of widespread vegetarianism, for example in India. The mechanism by which
high folate and low vitamin B12 interact to confer GDM risk requires further research. One
possible explanation could be the shift from methionine to folate pathways which favour
DNA synthesis over methylation and epigenetic programming, leading to not only altered
gene expression but increased homocysteine and associated systemic inflammation and
insulin resistance.

7.2. Circulating Homocysteine Is Elevated in GDM-Complicated Pregnancies

Homocysteine is a proinflammatory, methionine-derived amino acid, essential in
one-carbon metabolism [117]. Homocysteine can undergo transulphuration or can be
re-methylated to methionine for cellular methylation assuming sufficient folate is avail-
able [117]. The state of increased inflammation, such as that associated with hyperhomo-
cysteinemia, is associated with increased insulin resistance [118]. Homocysteine can impair
the translocation of certain glucose transporters to the plasma membrane reducing systemic
glucose uptake. Thus, high FA intake which can result in impaired methionine cycle activ-
ity mimicking folate deficiency, as mentioned above, can lead to hyperhomocysteinemia,
increased insulin resistance and reduced glucose uptake.

A systematic review and meta-analysis (12 studies, GDM n = 712, control n = 1277)
indicates homocysteine is significantly elevated in women with GDM-complicated preg-
nancies, compared to healthy controls (Standard mean difference (SMD) = 0.55; 95% CI:
0.25–0.85, p = 0.0003) [119]. Interestingly, two studies stratified participants into three
groups: normoglycemic (normal response to 1 h glucose challenge, no oral glucose toler-
ance test (oGTT) follow-up), glucose intolerant (a positive response to 1 h glucose challenge
but normal oGTT results) and GDM [120,121]. Of note, each study had slightly different
thresholds for oGTT follow-up, Tarim et al. required 1 h-post challenge blood glucose
exceeding >7.5 nmol/L, and Guven et al. required blood glucose exceeding 7.8 nmol/L.
Tarim et al. found homocysteine was elevated in women with glucose intolerance and with
diagnosed GDM (p < 0.001) compared to women with a normoglycemic pregnancy [120].
Guven et al. found a significant (p < 0.01) increase in serum homocysteine between women
with GDM-complicated pregnancies and normoglycemic pregnancy, but no statistically
significant differences between any other group [121]. Interestingly, neither study observed
differences in serum vitamin B12 nor folate. Several studies which did not stratify for
glucose intolerance have also observed increased serum homocysteine in women with
GDM-complicated pregnancies compared to non-GDM pregnancies [122–126].

Conversely, several studies have found no difference in homocysteine concentrations
in women with GDM-complicated pregnancies compared to controls. Idzior-Waluś et al.
noted no difference in serum homocysteine between women with GDM-complicated preg-
nancies (n = 44, 8 ± 2.0 µmol/L) and non-GDM pregnancies (n = 17, 7.4 ± 1.1 µmol/L)
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between 26 and 32 weeks’ gestation [127]. However, all patients were recruited from
an outpatient diabetic clinic, and had all been referred based on positive response to
50 g glucose load; thus, there is likely to be some degree of glucose intolerance within
the non-GDM group. Similarly, in a prospective study of pregnant women between
24–28 weeks’ gestation, serum homocysteine did not differ between GDM-complicated
pregnancies (n = 60, 7.41 µmol/L ± 2.61) and uncomplicated controls (n = 19,
8.02 µmol/L ± 2.27) [113]. It is important to note that neither of these studies stratified for
glucose intolerance below the threshold for GDM diagnosis, both have very few non-GDM
controls, and show homocysteine levels that are higher than is characteristic of non-diabetic
pregnancy at a similar gestation [128]. Interestingly, one study at ~34 weeks’ gestation,
found reduced total plasma homocysteine in women with glucose intolerance (n = 18,
5.0 µmol/L ± 1.7) compared to normoglycemic women (n = 190, 6.6 ± 2.0, p = 0.024), but
no difference between GDM-complicated (n = 17, 6.8 ± 2.7) and normoglycemic preg-
nancies. The authors note that all women with GDM were treated with a low glycaemic
diet, which is likely to explain this observation [129]. Similarly, Akturk et al. found no
differences in homocysteine levels in late pregnancy (32–39 weeks’), though all women
diagnosed with GDM (n = 54, according to American Diabetes Association criteria, at
24–28 weeks’ gestation [130]) were treated following GDM diagnosis (n = 48 diet only,
n = 6 diet and insulin) [131].

Together, these studies (Summarised in Table 3) suggest that homocysteine levels
are elevated in GDM-complicated pregnancies in mid-late gestation. Furthermore, two
studies which found no differences in homocysteine in late pregnancy also involve treat-
ment, suggesting elevated circulating homocysteine in GDM are modifiable [129,131].
Predominantly, these studies assess homocysteine in the second and third trimester of
pregnancy, after GDM onset, making it difficult to assess causation between homocys-
teine and GDM pathogenesis. Only one study measured fasting serum homocysteine
in early gestation (8–12 weeks’ gestation), finding no difference in homocysteine levels
between normoglycemic (n = 83, 14.41 ± 7.98 µmol/L) and GDM-complicated pregnancies
(n = 7, 15.66 ± 7.61, p = 0.6312) [132]. However, the low statistical power of this study and
very high homocysteine levels of this cohort, mean that limited conclusions can be drawn.
The high homocysteine levels in this cohort may be somewhat explained by widespread
vegetarianism and associated vitamin B12 deficiency, which is common in the study country,
India [133]. However, the authors do not provide patient data to confirm this speculation.
Furthermore, vitamin B12 and folate status that are known to influence homocysteine were
not assessed. It remains unclear whether homocysteine contributes to GDM aetiology or
is a consequence of hyperglycaemia. In addition, whether elevated homocysteine reflects
perturbation of other one-carbon metabolites or whether high folate and high homocysteine
act independently in GDM pathophysiology remain unknown. Further research in early
pregnancy is needed to elucidate the nature of the homocysteine-GDM relationship.

There are several mechanisms by which high homocysteine may contribute to GDM:
Via pancreatic β-cells: Pancreatic β-cells secrete insulin to maintain glucose homeosta-

sis [134]. During pregnancy, there is an adaptive increase in β-cell mass to increase insulin
release, accommodating the increased insulin resistance of pregnancy [46,48,135]. Insuffi-
cient β-cell adaptation is associated with hyperglycaemia and GDM diagnosis [136,137].
In vitro, homocysteine has been shown to inhibit glucose-induced insulin secretion by
β-cells in a dose-dependent manner at moderate (5.6 mM, p < 0.001) and stimulatory
(16.7 mM, p < 0.001) glucose concentrations [138,139]. Serum homocysteine was inversely
associated with several parameters of pancreatic islet β-cell function, in T2DM patients but
a similar effect in GDM has not yet been characterised [140]. Further research is needed
to clarify the relationship between elevated homocysteine and β-cell function in GDM
pathogenesis.
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Table 3. Summary of research on the relationship between circulating homocysteine and GDM.

Authors Study
Country Pregnancy Status (n) Weeks’

Gestation Hcy Measure Results

Tarim et al.,
2004 [120] Turkey

Normoglycemic ≤ 7.5 nmol/L,
1 h-50 g glucose (210) vs.

glucose intolerant, >7.5 nmol/L
glucose challenge, normal oGTT

(66) vs. GDM (28)

24–28 Plasma
8 h fasting

Mean ± SD (µmol/L)
Group 1: 4.80 ± 0.98
Group 2: 5.51 ± 1.08
Group 3: 5.70 ± 0.90

(p < 0.001)

Guven et al.,
2006 [121] Turkey

Normoglycemic ≤ 7.8 nmol/L,
1 h-50 g glucose (147) vs.

glucose intolerant > 7.8 nmol/L
glucose challenge, normal oGTT

(46) vs. GDM (30)

24–28 Serum

Mean ± SD (µmol/L)
Group 1: 7.4 ± 1.6
Group 2: 8.1 ± 2.5
Group 3: 9.0 ± 3.1,

p < 0.01

Seghieri et al.,
2003 [122] Italy Non-GDM (78) vs. GDM (15) 24–28 Serum

Mean ± SD (µmol/L)
Control: 4.45 ± 1.52
GDM: 5.88 ± 2.26,

p = 0.003

Tarim et al.,
2006 [123] Turkey Non-GDM (40) vs. GDM (30) 24–28 Plasma

Mean ± SD (µmol/L)
Control: 5.03 ± 0.91
GDM: 5.96 ± 1.70

p = 0.027

Davari-Tanha et al.,
2008 [124] Iran Non-GDM (40) vs. GDM (40) 24–28 Plasma 8 h

fasting

Mean ± SD (µmol/L)
Control: 5.05 ± 1.1

GDM: 7.8 ± 1.6
p < 0.0001

Atay et al.,
2014 [125] NS Uncomplicated (38) vs. GDM

(37) 24–28 Serum 12 h
fasting

Mean ± SD mmol/l)
Control: 5.91 ± 3.87
GDM: 9.57 ± 4.46

p < 0.001

Deng et al.,
2020 [126] China Non-GDM (350) vs. GDM (346) 24–28 Plasma

Mean ± SD (µmol/L)
Control: 6.17 ± 1.29
GDM: 6.61 ± 1.32

p = 0.001

Idzior-Waluś et al.,
2008 [127] Poland Non-GDM (17) vs. GDM (44) 26–32 Serum

Mean ± SD (µmol/L)
Control: 7.4 ± 1.1

GDM 8 ± 2.0
NS

Radzicka et al.,
2019 [113] Poland Uncomplicated (19) vs.

GDM (60) 24–28 Serum
Mean ± IQR (µmol/L)

Control: 8.02 ± 2.27
GDM: 7.41 ± 2.61 (NS)

López-Quesada
et al., 2005 [129] Spain

Normoglycemic ≤ 7.8 nmol/L,
1 h-50 g glucose (190) vs.

Glucose intolerant (18) > 7.8
nmol/L glucose challenge,
normal oGTT vs. GDM (17)

34 Plasma fasting

Median ± SD
(µmol/L)

Group 1: 6.6 ± 2.0
Group 2: 5.0 ± 1.7
Group 3 6.8 ± 2.7

Akturk et al.,
2010 [131] Turkey Normoglycemic (69) vs.

GDM (54) 32–39 Plasma

Mean ± SEM
(µmol/L)

Control: 5.62 ± 0.34
GDM: 5.20 ± 0.30

Mascarenhas et al.
2014 [132] India Normoglycemic (83) vs.

GDM (7) 8–12 Serum overnight
fasting

Mean (µmol/L)
Control: 14.41 ± 7.98

GDM: 15.66 ± 7.61
p = 0.6312

oGTT, oral glucose tolerance test; GDM, gestational diabetes mellitus; NS, not stated; SD, standard deviation; IQR,
interquartile range; SEM, standard error of mean.
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Via the placenta to induce oxidative stress: Within the placenta, oxidative stress is
necessary for angiogenesis, immunoregulation and vasoactivity [141]. However, an imbal-
ance of reactive oxygen species and antioxidant activity can result in elevated oxidative
stress and lipid peroxidation, and subsequent cellular damage [142,143]. The role of homo-
cysteine as a pro-oxidant is well-established [144–147], as is the role of oxidative stress in
insulin resistance [118,148] and disruption of insulin signalling [149,150].

In C. elegans, malondialdehyde (MDA), a marker of lipid peroxidation, and hydro-
gen peroxide (H2O2), an activator of oxidative stress, were increased after high dose-FA
induced elevated homocysteine [105]. Other research indicates that supraphysiological
FA can exacerbate lipid peroxidation in oxidative stress conditions [151]. In BeWo cells
(choriocarcinoma cell line) oxidative stress was induced with tert-butylhydroperoxide
(TBH) treatment under deficient (1 nM), physiological (20 nM) and supraphysiological
(2.3 µM) FA treatment. The latter increased MDA content compared to physiological FA,
both in response to 100 µM and 300 µM TBH treatment [151]. However, the interaction
between FA, homocysteine and oxidative stress requires further research. Both oxidative
stress [152–155] and lipid peroxidation [156,157] markers, have been shown to be associated
with pregnancies complicated by GDM. In addition, there may also be a role for excess FA
in inducing or exacerbating existing oxidative stress, either through elevated homocysteine
or an alternate pathway. Further research is warranted to elucidate the mechanisms by
which elevated homocysteine, oxidative stress, and potentially uFA contribute to GDM
pathogenesis.

Via the placenta to induce apoptosis: Homocysteine can also cause placental dys-
function by promoting cellular apoptosis. In vitro homocysteine treatment can induce
trophoblast apoptosis in primary human placental trophoblasts (36 weeks’ gestation) [158].
Interestingly, a follow-up study found that treatment with FA (20 nmol/L, a plasma con-
centration considered healthy), alleviated homocysteine-induced apoptosis [159]. Similarly,
in primary cultured human trophoblasts collected at term, homocysteine-thiolactone, a
homocysteine oxidation product, induced apoptosis in a dose-dependent manner [160]. In
contrast, treatment with folate (10 µmol/L, representing a supraphysiological dose) did
not alleviate homocysteine-induced apoptosis

Despite some evidence that homocysteine induces trophoblast apoptosis, a role for
apoptosis in GDM remains controversial. There is both evidence for an increased [161,162]
and decreased [163] trophoblast apoptotic index in placentae from GDM-complicated
pregnancies, compared to those from uncomplicated pregnancies. Further research to
definitively demonstrate the role of trophoblast apoptosis in GDM is needed, with an
emphasis on potential effects of homocysteine and FA.

Via dysregulated hCG secretion: A fourth mechanism by which high homocysteine
levels may contribute to GDM is through altering hormone profiles, specifically human
chorionic gonadotrophin (hCG). hCG is a hormone produced by placental syncytiotro-
phoblasts and is critical to pregnancy maintenance [164]. A systematic review and meta-
analysis concluded that first trimester β-hCG is reduced in women subsequently diagnosed
with GDM, compared to women who remain normoglycemic [165]. In placental explants
collected from uncomplicated pregnancies, in vitro homocysteine treatment significantly
reduced hCG secretion at 20, 40 and 80 µmol/L (50–80% reduction, p < 0.004) [158]. Sim-
ilarly, in placental villous trophoblasts, isolated from uncomplicated term placentae, a
43% reduction of hCG secretion under 20µmol/L homocysteine treatment (p < 0.02) was
observed. FA treatment (40 nmol/L) was able to restore hCG secretion (p < 0.05) [159],
though the effects of excess FA was not evaluated. Ahmed et al., observed no differences in
hCG secretion in placental explants nor in BeWo villous cytotrophoblast, under FA defi-
cient (2 ng/mL), physiological (20 ng/mL), elevated (200 ng/mL) and supraphysiological
(2000 ng/mL) conditions [166]. This suggests FA may not directly alter trophoblastic hCG
secretion, instead its’ action may be mediated through elevating homocysteine. A caveat
of the existing work is the use of term rather than early gestation placentae, which makes
it difficult to ascertain a causal relationship in GDM pathogenesis. Current knowledge
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indicates that homocysteine reduces hCG secretion and reduced hCG has been previously
implicated in GDM-complicated pregnancies [165]. Further research is needed to clarify
whether elevated homocysteine contributes to GDM pathophysiology or is just an indicator
of perturbed one-carbon metabolism.

7.3. Interactions between Excess Folate, Vitamin B12, Homocysteine and Risk for GDM

Given folate, vitamin B12 and homocysteine have all been previously implicated in
GDM risk, and each is necessary for one-carbon metabolic function, the complex interplay
of these metabolites becomes increasingly relevant. Remethylation of homocysteine to
methionine occurs via cobalamin-dependent enzyme MTR, with 5-methylTHF as a neces-
sary cofactor in MTR activity [53]. Given Vitamin B12 is essential in 5-methylTHF uptake,
insufficient B12 can result in folate becoming trapped in this form [56,167]. Thus, the
methionine pathway is both highly dependent on adequate folate availability and B12
uptake, as well as MTR action [56,105]. Generally, homocysteine has an inverse relation-
ship with folate, with elevated homocysteine is considered to be a sensitive marker of
folate deficiency [168,169]. Given both high homocysteine and high FA are associated with
GDM [11,13–16] it is plausible the homocysteine remethylation pathway is perturbed in
both deficient and high FA conditions, but the nature of this relationship requires further
investigation. Some evidence suggests excess FA may directly induce elevated homocys-
teine. In both BeWo and JEG3 human choriocarcinoma cell lines, increased homocysteine
was observed under supraphysiological FA (2000 ng/mL) conditions compared to normal
physiological (20 ng/mL) treatment [170]. High dose FA supplementation in C. elegans has
been shown to induce high homocysteine [105]. However, there is limited in vivo human
research to verify the effect of supraphysiological FA and further investigation is required.

Evidence suggests the FA-homocysteine relationship may be mediated through vi-
tamin B12 deficiency. In a study of healthy adults, homocysteine concentrations only
decreased across increasing serum folate categories when vitamin B12 was >148 pmol/L
(p < 0.001), and this was not observed when vitamin B12 was <148 pmol/L [171]. Beyond
the vitamin B12-folate interaction observed clinically, there is also in vitro evidence that
vitamin B12 sufficiency is necessary to reduce elevated homocysteine levels. In BeWo and
JEG3 choriocarcinoma cell lines, treatment with various forms of vitamin B12, including
cobalamin and combined methylcobalamin (MeCBl) and adenosylcobalamin (AdCbl), low-
ered homocysteine levels, which were elevated by supraphysiological FA treatment [170].
This suggests that rather than a direct role of high FA intake in perturbing homocysteine
remethylation, vitamin B12 instead acts as the limiting factor. However, FA may have a
direct, concomitant role in interfering with vitamin B12-dependent metabolism through
reduced MTR action [104,105], which is exacerbated in cases where vitamin B12 is already
limited.

7.4. Choline-Derived Betaine Is Associated with Decreased GDM Risk

Choline is an essential nutrient, that can be synthesized endogenously in the human
liver but obtaining additional dietary choline from sources such as red meat, poultry, fish,
eggs and soybeans, is necessary to achieve adequate levels in circulation [172]. Dietary
choline can be either water-soluble, which is metabolized in the liver, or lipid-soluble and
transported through the lymphatic system. While choline acts in multiple pathways, in
one-carbon metabolism choline is converted to betaine for DNA methylation, phospholipid
synthesis and fetal neurodevelopment [173].

When folate or vitamin B12 supply are limited, choline-derived betaine is used as
a methyl donor for homocysteine re-methylation and global methylation processes [174]
(Figure 1). The role of choline and betaine in GDM development has been understudied, a
summary of existing research is provided in Table 4. Two studies report a protective role
of maternal betaine in GDM [175,176]. In a prospective cohort study (n = 486), maternal
plasma betaine (≤200 nmol/mL) in early pregnancy (median: 10 weeks’ gestation, IQR:
9–11) was associated with increased GDM risk (OR: 5.00 95% CI: 2.76–9.07) [175]. Similarly,
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in a cohort study of dichorionic twin pregnancies (n = 187), plasma betaine had an inverse
relationship with GDM risk (p trend = 0.015) [176].

Table 4. Summary of research on the relationship between betaine and GDM.

Authors Study
Country Pregnancy Status (n) Weeks’

Gestation Measure Results

Huo et al.,
2019 [175] China

Uncomplicated (243) vs.
GDM (243)

Median: 10
(IQR: 9–11) Serum betaine

Mean (IQR) (nmol/mL)
Control: 290.4

(244.2–378.8) GDM: 229.7
(195.6–279.9), p < 0.0001

Betaine ≤ 200 nmol/mL (90) vs.
Betaine > 200 nmol/mL (396)

Median: 10
(IQR: 9–11)

GDM (WHO
2013 criteria)

OR: 5.00 95% CI: 2.76–9.07,
p < 0.0001

aOR: 4.88 95% CI
2.51–9.50, p < 0.0001

Gong et al.,
2021 [176] China

Betaine Tertile 1 (62) vs.
Betaine Tertile 2 (63) vs.

Betaine Tertile 3 (62)
5.4–11.4 IADPSG-GDM aRR: 0.41 (95% CI: 0.19–

0.86, p-trend = 0.015

Barzilay et al.,
2018 [177] Canada

Uncomplicated (296) vs.
GDM (18) 12–16 Plasma betaine

Mean ± SD (µmol/L):
13.4 ± 4.1 vs. 12.1 ± 2.4,

p = 0.15

Uncomplicated (278) vs.
GDM (16) 37–42 Plasma betaine

Mean ± SD (µmol/L):
10.4 ± 2.8 vs. 10.3 ± 2.2,

p = 0.92

Uncomplicated (252) vs.
GDM (14) 28–42 Cord blood

plasma betaine

Mean ± SD (µmol/L):
21.2 ± 4.7 vs. 18.5 ± 3.9,

p = 0.02

GDM, gestational diabetes mellitus; IQR, interquartile range; WHO, World Health Organisation; aOR, adjusted
odds ratio; CI, confidence interval; IADPSG, International Association of the Diabetes and Pregnancy Study
Groups; aRR, adjusted risk ratio; SD, standard deviation; RBC, red blood cell.

Conversely, one study found no association between maternal circulating betaine and
GDM risk [177]. However, plasma betaine was decreased in cord blood of neonates of GDM-
complicated pregnancies (18.5 ± 3.9 µmol/L) compared to uncomplicated (21.2 ± 4.7 µmol/L,
p = 0.02). Given there were no differences in maternal betaine observed, the authors
proposed that GDM may alter the transfer of betaine to the fetus and/or that women
with a GDM-complicated pregnancy utilise betaine for maternal metabolism, resulting in
depleted neonatal cord concentrations [177]. Collectively, there is emerging evidence that
choline-derived betaine may play a protective role in GDM risk. Further research is needed
to determine the relationship of choline and betaine in GDM pathogenesis, particularly
with reference to other one-carbon metabolites.

While it has been established that choline can modulate important markers of placental
function [178], the mechanism by which insufficient choline can increase GDM risk is
not well understood. The oxidation of choline to betaine occurs in the mitochondria,
and is catalysed by choline dehydrogenase (CHD) which, based on animal studies, is
presumed to be located on the inner mitochondrial membrane [179].The necessity of
effective mitochondria in betaine conversion suggests perturbed mitochondrial function
may be the mechanistic link. Reduced mitochondria content [180] and alterations to
placental mitochondrial dynamics and metabolism, specifically increased mitochondrial
fusion [181], have been observed in the placenta of GDM-complicated pregnancies. Further,
Abbade et al. propose hyperinsulinemia mediates the observed mitochondrial dysfunction
using JEG-3 cells as an in vitro model. The relationship between mitochondrial function and
GDM needs further clarification to establish whether mitochondrial modifications underpin
GDM pathogenesis, or are a consequence of the GDM state, specifically the accompanying
hyperinsulinemia. Further establishing the interplay between choline-betaine conversion
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in the pathway is also of significant interest, given the proposed protective role of choline
in GDM pathology.

8. Conclusions

Several one-carbon metabolites have been implicated in risk for GDM. Specifically, in-
creasing concentrations of circulating folate [7,11,14–16] and homocysteine [113,120–122,127],
and decreasing vitamin B12 [14,15,111,112,115] and betaine [175–177] associate with in-
creased GDM risk. Excess intake of FA has emerged as a key risk factor in GDM devel-
opment. While the mechanism is largely unknown, some research suggests high FA may
have a direct effect on pancreatic β-cell signalling [44,45]. There is growing evidence that
dysregulation of several aspects of the one-carbon metabolic pathway may be at play (Sum-
marised in Figure 3). Proposed interactions include a limited capacity to incorporate excess
FA into the one-carbon metabolic pathway which can affect downstream transcription and
methylation events, perturbations to the function and activity of one-carbon metabolism
enzymes, notably MTR, TS and MTHFR. Alternatively, the relationship between excess FA
and GDM risk may not be mediated by one-carbon metabolism and may instead result
from direct adverse effects of circulating uFA which appears in circulation in response to
saturated DHFR capacity. However, this is not well-established in the literature. Currently,
the role of excess FA in dysregulation of aspects of one-carbon metabolism relies largely on
limited in vitro research warranting further studies. Nevertheless, one-carbon metabolism
is closely entwined with GDM risk. Given rising rates of GDM around the world and
very widespread global FA food fortification, in the absence of vitamin B12 fortification,
further research is urgently needed to elucidate the mechanisms by which perturbations of
one-carbon metabolism, including high circulating uFA, contribute to GDM pathogenesis.
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