
Explainable Reinforcement Learning via Rule

Extraction in Complex Visual Environments

Anthony Manchin

December 29, 2022

Thesis submitted for the degree of

Doctor of Philosophy

in

Computer Science

at The University of Adelaide

Faculty of Engineering, Computer and Mathematical Sciences

School of Computer Science

Abstract

Deep neural networks have allowed for significant advances within the field of re-

inforcement learning and autonomous agents. However, in contrast to traditional

approaches such as expert systems and hand-crafted control systems, deep neural

networks introduce a large amount of ambiguity regarding the decision making

of an autonomous agent. Understanding the decision-making process of any

autonomous agent is crucial for applications where trusted autonomy is not only

paramount, but required before an agent can be deployed. In this thesis, we focus

on the following problems of explainability and rule extraction from autonomous

agents. 1) How does the neural network architecture impact the performance and

the explainability of an agent trained using reinforcement learning. 2) Can rules

be defined and extracted from observations of an autonomous agent trained using

reinforcement learning. 3) Can complex rules be derived from multiple partial

observations of an autonomous agents.

For the first problem we investigate the common neural network architectures

used in reinforcement learning and how attention mechanisms have been used to

improve performance in prior works. We devise a novel spatial temporal attention-

based approach that allows the agent to learn where it should focus its attention

in contrast to previous works which favoured constraining networks with guided

attention mechanisms.

For the second problem we propose a formal definition of a rule for trajectories

iii

iv

consisting of state and action pairs. We show that under this definition, rules are

extractable using unsupervised learning techniques. Additionally, we investigate

the impact of neural network design on an autonomous agent’s ability to learn

rules.

For the third problem we introduce a novel method for multi-sequence-to-

sequence based tasks that require visual induction and translation. This method

allows us to observe multiple partial visual observations of an agent and extract

the over-arching rule set that defines the agent’s behaviour. We also show that this

method is robust with respect to noisy signals.

Declaration

I certify that this work contains no material which has been accepted for the award
of any other degree or diploma in my name, in any university or other tertiary
institution and, to the best of my knowledge and belief, contains no material
previously published or written by another person, except where due reference
has been made in the text. In addition, I certify that no part of this work will, in
the future, be used in a submission in my name, for any other degree or diploma
in any university or other tertiary institution without the prior approval of the
University of Adelaide and where applicable, any partner institution responsible
for the joint-award of this degree.

I acknowledge that copyright of published works contained within this thesis
resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available
on the web, via the University’s digital research repository, the Library Search
and also through web search engines, unless permission has been granted by the
University to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision
of an Australian Government Research Training Program Scholarship.

Signed:

Date: 27/7/2022

v

vi

Preface

This thesis was written at the School of Computer Science, The University of Ade-

laide. The main parts of the thesis are based on the following published/submitted

papers in which I am the primary author:

1. A. Manchin, E. Abbasnejad, and A. van den Hengel, “Reinforcement learning

with attention that works: A self-supervised approach,” In Proceedings of the

International Conference on Neural Information Processing 2019, pp. 223–230.

2. A. Manchin, J. Sherrah, Q. Wu, A. van den Hengel, ”Noise Robust Visual

Program Synthesis”; Submitted to IEEE/CVF Conference on Computer

Vision and Pattern Recognition 2022, under review.

vii

Dedication

I dedicate this thesis to my Father.

viii

Acknowledgements

Firstly, I would like to thank my supervisors, Professor Anton van den Hengel

and Dr. Anthony Dick. During my study I feel I have enjoyed a level of academic

freedom not often afforded to other students. The level of trust they placed upon

me, and the ability to collaborate so broadly with other researchers has meant a

great deal to me during my PhD. Many of the unique and enriching experiences I

have had the pleasure of enjoying over the last few years have stemmed directly

from this trust. Add to this the support and guidance that was offered when

needed, and I am truly grateful.

I would also like to single out Dr. Ehsan Abbasnejad. Your support through-

out my PhD, whether we were actively collaborating or not, has been greatly

appreciated. I’m sure many people have heard me vent my frustrations over the

years, however, not many have done so with a smile on their face and honest

discussions on the topics. Your guidance and encouragement during the first

twelve months of my PhD helped me to develop the skills that have allowed me

to get here today. Thank you.

I have also had the pleasure of making many great friends here in Adelaide.

I would especially like to thank Thomas Rowntree, Rafael Felix, and Michele

Sasdelli for making me feel welcome from the moment I arrived. If I were to

name everyone that has made my PhD memorable, I would surely miss someone.

I think this is a wonderful reflection on the quality of people AIML attracts, so I

ix

x

will simply say this. It has been a pleasure working and making friends with so

many wonderful people at AIML, and thank you all.

I would like to thank my family for all their support and encouragement

throughout the years. In particular, I would like to thank my father Paul Manchin.

Your constant encouragement and support in everything I have ever decided to do

has given me the confidence and ultimately the ability to tackle any challenge. I

could never thank you enough for the guidance and inspiration you have provided

me over the years, which has lead me to where I am today, so thank you.

Lastly, I would like to thank my fiancé Priscilla Jack. Your unwavering love

and support has meant the world to me, and I only stand here now as I have

you by my side. While this PhD journey has been longer and harder in many

ways than we first imagined, we have made it together. Words cannot express my

gratitude for all you have done, for all your patience, for all your love. From the

bottom of my heart, thank you.

Table of Contents

Abstract . iii

Declaration . v

Preface . vii

Dedication .viii

Acknowledgements ix

Contents . xi

Chapter 1 . Introduction . 1

1.1 Overview . 1

1.2 Motivations . 6

1.3 Contributions . 9

1.4 Notation . 10

xi

xii Table of Contents

1.5 Outline . 11

Chapter 2 . Literature Review . 17

2.1 Deep Reinforcement Learning . 17

2.2 Attention based Reinforcement Learning 20

2.3 Neural Network Rule Extraction . 23

2.4 Visual Program Synthesis . 26

Chapter 3 . Reinforcement Learning with Attention that Works: A Self-

Supervised Approach . 34

3.1 Introduction . 37

3.2 Related Work . 39

3.2.1 Reinforcement Learning Network Design in Video Games . 39

3.2.2 Attention in Reinforcement Learning 40

3.3 Methods . 43

3.3.1 Markov Decision Process Formulation 43

3.3.2 Policy Optimisation . 44

3.3.3 Non-Local Neural Networks 45

3.3.4 Network Architecture . 46

3.4 Experiments . 48

3.4.1 Validation Methodology . 48

3.4.2 Performance results . 49

3.5 Conclusions and Future Work . 52

Chapter 4 . Unsupervised rule discovery with autonomous agents in vi-

sually complex environments . 57

4.1 Introduction . 59

4.2 Related Work . 62

Table of Contents xiii

4.2.1 Policy Summarisation . 62

4.2.2 Rule Extraction . 64

4.3 Methods . 65

4.3.1 Visual Evaluation . 65

4.3.2 Rule Definition and Extraction 67

4.4 Experiments . 68

4.4.1 Environments . 68

4.4.2 Model Architecture . 70

4.4.3 Results . 71

4.5 Conclusion and Future Work . 80

Chapter 5 . Deep Inductive Reasoning for Video to Program Translation. . 85

5.1 Introduction . 88

5.2 Literature Review . 91

5.2.1 Program Induction . 92

5.2.2 Intrinsic Motivation . 92

5.2.3 Program Synthesis . 93

5.3 Method . 94

5.3.1 Program Generation . 94

5.3.2 VT4 Model . 97

5.4 Experiments . 102

5.4.1 Dataset and Metrics . 102

5.4.2 Overall Performance . 104

5.4.3 Noise Ablation Study . 106

5.5 Conclusions and Future Work . 107

Chapter 6 . Conclusion and Future Directions.114

6.1 Summary of the Contributions . 114

xiv Table of Contents

6.2 Limitations and Future Directions 116

6.2.1 Explainable Reinforcement Learning 116

6.2.2 Program Synthesis . 117

6.2.3 Explainable Reinforcement Learning Via Program Synthesis 118

6.2.4 Final Remarks . 118

List of Tables

3.1 Experiment Results . 51

3.2 Direct comparison between baseline PPO and SAN. Clearly demon-

strating that our proposed method is capable of improving perfor-

mance in 50% of tested environments. 51

5.1 An exact comparison of our results compared to the results of pre-

viously published works. 104

5.2 Exact and Alias program accuracy’s for varying levels of perception

noise. 107

xv

List of Figures

1.1 A diagram of the Agent-Environment feedback loop for reinforce-

ment learning. 2

1.2 A diagram of a Markov Decision Process 3

1.3 A collage of screenshots from 25 Atari environments available

through the Arcade Learning Environment 4

3.1 A diagram of the convolutional neural network with embedded

self-attention . 46

3.2 Experiment Results . 50

4.1 Baseline action and state trajectory plots for Demon Attack 72

4.2 Our approach action and state trajectory plots for Demon Attack . 72

4.3 Baseline action and state trajectory plots for MsPacman 73

4.4 Our approach action and state trajectory plots for MsPacman 73

4.5 Example of temporal attention . 76

4.6 Example of multiple points of foci 77

4.7 Examples of disappearing enemies in MsPacman 78

4.8 Attention map comparison between baseline and our method . . . 79

5.1 An illustration of the task of visual program synthesis on the game

’Genshin Impact’ . 89

xvi

List of Figures xvii

5.2 A Domain specific language program example from the Vizdoom

environment. Examples of all component types are present. 97

5.3 A complete diagram of the VT4 architecture showing the semantic

encoder and the program generator modules 98

5.4 A diagram of the Program Generator Module 100

5.5 A comparison of the ground truth program and a synthesised pro-

gram from our VT4 model. 105

5.6 A plot comparing our results with prior works 105

5.7 A plot showing the impact of perception noise on our method . . . 107

xviii List of Figures

CHAPTER 1
Introduction

In this chapter we provide an overview and motivation for the work presented

in this thesis. We then summarise our key contributions and conclude with an

outline for the layout of this thesis.

1.1 Overview

The field of Reinforcement Learning (RL) focuses on the science of autonomous

agent decision making. The challenge it seeks to solve is to produce an agent

that is capable of self-learning via its own experiences to maximise some form

of reward. Like other subfields of machine learning, reinforcement learning is

characterised by the learning problem, not the learning model [Sutton and Barto,

2018]. A reinforcement learning problem requires an agent, an environment,

and a goal, and any method that can solve this problem may be considered a

reinforcement learning method. By design, a reinforcement learning problem

provides a framework which allows goal-directed learning tasks to be numerically

optimised via computational approaches. This framework defines the interactions

between a learning agent and its environment through the concepts of states,

1

2 Chapter 1. Introduction

Figure 1.1: A diagram of the Agent-Environment feedback loop for reinforcement
learning.

actions, and rewards. An agent is free to interact with the environment through

select actions and receives from the environment a representation of the state along

with a reward signal. A depiction of this framework is shown in Figure 1.1.

An important aspect of this framework is that it allows for problems to be

modelled as a Markov Decision Processes [Markov, 1957] if the task satisfies the

Markov property. The condition of which is met if the next state from the envi-

ronment is only dependent on the current state (and action of the agent) and is

independent of all previous states. A full derivation is provided in section 3.3,

while Figure 1.2 illustrates the process. Many real-world problems from various

fields can be represented as a Markov Decision Process including robotics, finance,

manufacturing, and primary production. However, given the requirement of

agent-environment interaction, studying these problems directly is often imprac-

tical. Instead, researchers often turn to various games as a stand-in as they can

easily be modelled as a Markov Decision Process.

An early example of a successful reinforcement learning agent was that of

1.1. Overview 3

Figure 1.2: A diagram of a Markov Decision Process

TD-Gammon [Tesauro, 1995], which at the time of its release was able to challenge

the top human players in the world at the game of backgammon. However, the

success of TD-Gammon was largely due to human crafted domain-dependent

features that allowed for accurate value function estimates. This approach of hand

crafting features to represent the state of the environment was unable to produce

the same level of results across other games such as Checkers, Chess, or Go.

In 2012 the Arcade Learning Environment (ALE) was released as both a chal-

lenge problem and a platform for evaluating domain-independent reinforcement

learning agents [Bellemare et al., 2013]. Built on top of an open-source Atari

2600 emulator, ALE presents researchers with access to hundreds of game en-

vironments. The sheer diversity of games and complexity of the image-based

state representations largely prohibits hand crafting inputs and poses a significant

challenge for researchers.

In 2013 [Mnih et al., 2013] proposed Deep Q-Network (DQN) as a solution

for ALE. It was the first reinforcement learning algorithm to successfully perform

across multiple environments without adjustments to either the model architec-

4 Chapter 1. Introduction

Figure 1.3: A collage of screenshots from 25 Atari environments available through
the Arcade Learning Environment

ture or learning algorithm. DQN combined deep learning with Q-learning by

using convolutional neural networks [Lecun et al., 1998] to approximate the value

function. Originally applied to seven games, it was able to outperform all pre-

vious approaches in six environments and achieve superhuman results on three.

Further experiments on a larger set of 49 environments [Mnih et al., 2015] showed

that DQN was able to perform at or above human level in 29 environments and

outperform all previous approach in 44. This achievement has since inspired many

breakthroughs in deep reinforcement learning research, upon which ALE has been

a vital and robust proving ground.

A popular area of focus for reinforcement learning research has always been

that of the learning algorithm. Many new algorithms of recent years have been

empirically validated using ALE. These algorithms can be split into two types:

on-policy and off-policy. The distinguishing feature between these two types is

that on-policy methods estimate the value of, and optimise a policy whilst using

1.1. Overview 5

it to control an agent, while an off-policy method separates these two functions.

In an off-policy setting, the policy that is used to generate the behaviour of the

agent may be completely unrelated to the policy that is evaluated and improved.

As DQN is an off-policy method, extensions to this algorithm have either taken

advantage of the separation of functions [Schaul et al., 2015, Wang et al., 2015],

or sought to address known limitations [van Hasselt et al., 2015, Fortunato et al.,

2018]. These extensions were unified by [Hessel et al., 2017] which showed that

they could all be applied simultaneously and lead to significant improvements in

performance.

Deep neural networks have also been successfully combined with on-policy

methods and validated with ALE. By adopting the same neural network ar-

chitecture as originally used by [Mnih et al., 2015] various actor-critic based

methods have achieved state-of-the-art results in numerous studies [Mnih et al.,

2016, Haarnoja et al., 2018]. These methods involve using an actor to select an

action, while feedback from a critic is used to update the actor’s policy. Whilst

separate networks can be used for both the actor and the critic, it is common prac-

tise to use a single shared network with two different heads. However, on-policy

methods often experience slow sample rates due to the requirement to sample

from the policy directly. This can also lead to high variance and instability during

parameter updates. Methods such as trust-region policy updates [Wang et al.,

2016, Schulman et al., 2015] are a common way to address the instability issue,

although they do not offer any benefit with respect to training time. Addressing

both issues [Schulman et al., 2017] proposed Proximal Policy Optimisation which

alternates between generating experience and optimising a ‘surrogate’ objective

function. We refer the reader to section 3.3 for a full derivation.

As a result of this success, applications of these algorithms into real world

6 Chapter 1. Introduction

scenarios have been increasing in recent years. Driverless cars for example, is one

area in which reinforcement learning is heavily being researched. However, the

combination of unstructured state representations and the application of deep

neural networks within reinforcement learning has largely come at the cost of the

explainability of the agent. The outputs of deep neural networks can be difficult

to explain, and the more complex or convoluted the network, the more difficult

the task. This presents major problems in situations where the explanation of the

decision is just as important as the decision itself.

1.2 Motivations

For reinforcement learning models to be widely adopted, the arising issues sur-

rounding the explainability of their decision making needs to be addressed. This

lack of transparency has been the cause of much debate around driverless cars and

other areas where trusted autonomy is essential. An ethical thought experiment

(often referred to as the Trolley Problem [Foot, 1967] regarding what actions a

driver should take in different scenarios is often raised as a part of the wider

discussion on driverless cars. The significance of this cannot be disparaged as

legislation in many countries is increasingly focusing on assigning responsibility to

the manufacturers or engineers for the outcomes of automated processes. Systems

that are unable to explain their decisions may find themselves at risk of being in

breach of these laws.

One approach to providing explainability for neural networks is to define

its behaviour as a set of rules. While researchers have sought to extract rules

from simple neural networks [Sato and Tsukimoto, 2001], and recently some deep

neural networks [Zilke et al., 2016], a very limited amount of work has been done

1.2. Motivations 7

to extract rules from, and explain, deep convolutional neural networks used in a

reinforcement learning setting. This problem is a lot harder to solve as it requires

considering additional factors that models which operate in static environments

do not need to address. Specifically, recently successful on-policy reinforcement

learning approaches utilise a value function that attempts to predict how good

or ’valuable’ the current state is to be in. As this value function is commonly

approximated by the same convolutional neural network that is used for the

policy, understanding the reasoning behind the decisions of the agent is difficult.

For example, in a shared network setup, when an agent decides to go ’left’, it

is currently impossible to determine if it is doing so because it believes it will

receive an immediate reward, or if it believes that by doing so it will increase the

probability of some future reward. This makes the extraction of semantic reward-

linked rule extraction an ill-posed problem. For this reason, we are interested

in defining relationships between states and actions (not state-action pairs and

rewards). This allows us to focus on what the policy does in practise, as opposed to

what the policy may be trying to achieve. As such, we consider the architecture of

the policy fundamental to both the performance of the model and its explainability.

We set out to shed light on the topic of explainable reinforcement learning and

rule extraction in complex visual environments.

Whilst policies consisting of convolutional and fully connected layers have

achieved great results, they effectively separate the tasks of learning local connec-

tivity and global connectivity between the different layers. However, the ability

to relate various spatial features with others regardless of position in both time

and space, is often critical for many tasks. For this reason, we find the separation

of duties counter intuitive. If the relationship between spatial features is just as

important as the features themselves, would it not be better to learn these embed-

8 Chapter 1. Introduction

dings simultaneously? This question motivates us to explore recently proposed

neural architectures known as Transformer (also known as Attention) networks.

These networks learn mappings between a query and key-value pairs [Vaswani

et al., 2017] and have recently been shown to improve spatial-temporal reasoning

in action detection tasks [Wang et al., 2018]. With recent advances in computing

capabilities, neural architectures that were previously infeasible are quickly be-

coming viable options. This allows us to propose policy networks that incorporate

global connectivity in the convolutional layers via global attention mechanisms,

as opposed to only the fully connected layers. We believe this improved ability

to learn global-relational embeddings throughout the network should result in

not only better performance of a trained agent, but also more distinguishable

mappings between states and actions. This directly relates to our desired goal of

producing more explainable DRL agents.

Furthermore, as we believe rules are a constrained definition of a mapping

between states and actions, it should be possible to produce a general definition

for a rule in terms that are agnostic to the agent or the environment. A generalised

rule definition such as this has the potential to form the basis for improved explain-

ability for any autonomous system. If this is indeed the case, then we should also

be able to leverage the global connectivity of attention-based networks to extract

rules sets that define other types of autonomous systems by simply observing their

behaviour. This motivates us to also explore the problem of rule extraction from

other types of autonomous systems operating in visually complex environments.

1.3. Contributions 9

1.3 Contributions

In this thesis we present several different contributions to the field of explainability

for autonomous agents as outlined below.

• We investigate the impact of the neural network architecture on autonomous

agents trained using state-of-the-art reinforcement learning techniques. Here

we are able to make a novel contribution regarding the integration of self-

attention mechanisms with convolutional networks for the purpose of im-

proving global connectedness throughout the embedding space for spatio-

temporal reasoning in deep reinforcement learning agents. We explore the

impact of various designs across multiple visually complex environments

and are able to show that not only does our contribution improve the explain-

ability of an agent through improved rule extraction, but it also provides an

increase in sample efficiency and overall performance.

• We propose a novel method of defining and extracting rules from autonomous

agents wherein one does not have access to a ground-truth mapping from

inputs to outputs. In particular, we show that it is not sufficient to simply

consider the relationships between single state-action instances when ex-

tracting or defining the rules learnt by an autonomous agent. Instead, one

must consider a trajectory of state-action pairs over a period of time.

• We propose a multi-sequence-to-sequence based approach for generating

executable programs from multiple demonstrations of an autonomous agent

following deterministic policies in visually complex environments. This

work focuses on extracting a structured rule set wherein no single series of

observations of the agent contains all the relevant information to achieve

10 Chapter 1. Introduction

the task. Our approach utilises the creation of a visual language paired with

transformer based networks which achieves significant improvements in

the explainability of the agent over prior state-of-the-art methods through

improved rule extraction, while drastically simplifying the model in the

process.

1.4 Notation

Here we introduce a summary of the notation used in this thesis.

t discrete time step

T final time

st state at t

at action at t

rt reward at t

S set of all states

A set of all possible actions

P state transition probability matrix

R expected reward function

π policy (decision making rule, program)

θ vector of parameters

πθ policy guided by parameter vector θ

πθ(at|st) probability of taking action a in state s at time step t under policy πθ

δt temporal-difference error at t

γ discount-rate parameter

λ smoothing parameter

τ sequence of vectors

1.5. Outline 11

T set of sequences τ

T set of all sets of sequences T

ψ integer tokens

Ψ set of all integer tokens

µ boolean value

1.5 Outline

In this section we outline the structure of this thesis.

In Chapter 1 we present an overview, motivations, and contributions provided

by this thesis.

In Chapter 2 we provide a literature review of previously published works in

the field of Explainable Reinforcement Learning, and the related fields of Rule

Extraction and Program Synthesis.

In Chapter 3 we propose a novel combination of spatio-temporal self-attention

with deep reinforcement learning. We evaluate our contribution in a suite of

visually complex and dynamic environments against prior state-of-the-art models.

We show our model is able to exceed prior works and achieve new state-of-the-art.

In Chapter 4 we introduce a formal definition for ’rules’ as learnt by deep

reinforcement learning agents (especially those operating in visually complex

environments). We provide a straight forward methodology for discovery and

extraction of rules under our proposed definition. Additionally, we study the

impact of our previously proposed self-attention integration has with respect to

rule discovery.

In Chapter 5 we propose a multi-sequence-to-sequence approach for program

synthesis from a diverse set of visual observations. We explore the challenges

12 Chapter 1. Introduction

involved with specification generation when dealing with a visual domain, and

propose a novel solution that learns to simultaneously summarise and translate

visual information into an executable program. Additionally, we provide a noise

ablation study to stress test our framework and show that it is highly robust to

noisy perceptions.

In Chapter 6 we conclude the contributions within this thesis and discuss

future works.

Bibliography

[Bellemare et al., 2013] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

(2013). The arcade learning environment: An evaluation platform for general

agents. Journal of Artificial Intelligence Research, 47:253–279.

[Foot, 1967] Foot, P. (1967). The problem of abortion and the doctrine of the double

effect. Oxford Review, 5:5–15.

[Fortunato et al., 2018] Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel,

M., Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin, O.,

Blundell, C., and Legg, S. (2018). Noisy networks for exploration. In International

Conference on Learning Representations.

[Haarnoja et al., 2018] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).

Soft actor-critic: Off-policy maximum entropy deep reinforcement learning

with a stochastic actor. In Dy, J. G. and Krause, A., editors, ICML, volume 80 of

Proceedings of Machine Learning Research, pages 1856–1865. PMLR.

[Hessel et al., 2017] Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostro-

vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and Silver, D. (2017).

Rainbow: Combining improvements in deep reinforcement learning. cite

arxiv:1710.02298Comment: Under review as a conference paper at AAAI 2018.

13

14 Bibliography

[Lecun et al., 1998] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).

Gradient-based learning applied to document recognition. Proceedings of the

IEEE, 86(11):2278–2324.

[Markov, 1957] Markov, A. A. (1957). Theory of algorithms. Journal of Symbolic

Logic, 22(1):77–79.

[Mnih et al., 2016] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T.,

Harley, T., Silver, D., and Kavukcuoglu, K. (2016). Asynchronous methods

for deep reinforcement learning. In Balcan, M. F. and Weinberger, K. Q., editors,

Proceedings of The 33rd International Conference on Machine Learning, volume 48 of

Proceedings of Machine Learning Research, pages 1928–1937, New York, New York,

USA. PMLR.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,

I., Wierstra, D., and Riedmiller, M. (2013). Playing atari with deep reinforcement

learning. cite arxiv:1312.5602Comment: NIPS Deep Learning Workshop 2013.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,

J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,

G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,

Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control through

deep reinforcement learning. Nature, 518(7540):529–533.

[Sato and Tsukimoto, 2001] Sato, M. and Tsukimoto, H. (2001). Rule extraction

from neural networks via decision tree induction. In IJCNN’01. International

Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222), volume 3,

pages 1870–1875 vol.3.

Bibliography 15

[Schaul et al., 2015] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015).

Prioritized experience replay. cite arxiv:1511.05952Comment: Published at

ICLR 2016.

[Schulman et al., 2015] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,

P. (2015). Trust region policy optimization. In Bach, F. and Blei, D., editors,

Proceedings of the 32nd International Conference on Machine Learning, volume 37 of

Proceedings of Machine Learning Research, pages 1889–1897, Lille, France. PMLR.

[Schulman et al., 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,

and Klimov, O. (2017). Proximal policy optimization algorithms. CoRR,

abs/1707.06347.

[Sutton and Barto, 2018] Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learn-

ing: An Introduction. The MIT Press, second edition.

[Tesauro, 1995] Tesauro, G. (1995). Temporal difference learning and td-gammon.

Commun. ACM, 38(3):58–68.

[van Hasselt et al., 2015] van Hasselt, H., Guez, A., and Silver, D. (2015). Deep

reinforcement learning with double q-learning. cite arxiv:1509.06461Comment:

AAAI 2016.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need.

In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,

S., and Garnett, R., editors, Advances in Neural Information Processing Systems,

volume 30. Curran Associates, Inc.

16 Bibliography

[Wang et al., 2018] Wang, X., Girshick, R., Gupta, A., and He, K. (2018). Non-local

neural networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7794–7803.

[Wang et al., 2016] Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,

Kavukcuoglu, K., and de Freitas, N. (2016). Sample efficient actor-critic with

experience replay. CoRR, abs/1611.01224.

[Wang et al., 2015] Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M.,

and de Freitas, N. (2015). Dueling network architectures for deep reinforcement

learning. cite arxiv:1511.06581Comment: 15 pages, 5 figures, and 5 tables.

[Zilke et al., 2016] Zilke, J. R., Loza Mencı́a, E., and Janssen, F. (2016). Deepred –

rule extraction from deep neural networks. In Calders, T., Ceci, M., and Malerba,

D., editors, Discovery Science, pages 457–473, Cham. Springer International

Publishing.

CHAPTER 2
Literature Review

In this chapter we first review the literature around attention incorporated neural

network policy designs for reinforcement learning. We then describe and highlight

the gaps in current research with respect to neural network rule extraction and

program synthesis from visual stimuli.

2.1 Deep Reinforcement Learning

The Arcade Learning Environment poses a significant challenge for reinforce-

ment learning agents. The unstructured state representation consisting of video

frames and the requirement for the learning algorithm and architecture to remain

unchanged across a diverse set of games largely prevents previously popular

techniques of hand-crafting domain specific input features. This combination

of challenges, along with technical advances and increases in GPU computing

capabilities [Krizhevsky et al., 2012] lead to the development of the modern era of

deep reinforcement learning.

The first algorithm able to outperform human baselines across a range of games

within ALE was DQN [Mnih et al., 2013]. The approach combined deep convo-

17

18 Chapter 2. Literature Review

lutional neural networks with Q-learning [Watkins and Dayan, 1992] to learn a

policy solely on video input. Although shallow neural networks had been used

previously to estimate the value function in model-free reinforcement learning

algorithms such as TD-Gammon [Tesauro, 1995], attempts to replicate its success

across different domains had been unsuccessful. DQN differed from TD-Gammon

in several ways. Firstly, DQN approximated the action-value function Q(s, a)

while TD-Gammon approximated the state value function V(s). Secondly, TD-

Gammon learnt in an on-policy manner directly from self-play games, while DQN

takes an off-policy approach which allows for previous transitions to be randomly

resampled using an experience replay mechanism [Lin, 1992]. This resampling

smooths the training distribution across many previous behaviours and had pre-

viously only been combined with Q-learning while using low-dimensional state

representations by [Lin, 1992]. The deep convolutional neural network architec-

ture used in the seminal work by [Mnih et al., 2013] took as input a stack of the

four previous timesteps so that temporal information would be included in the

state representation. This architecture along with the process of stacking videos

frames became standard practice for papers that expanded DQN, along with other

reinforcement learning algorithms that were applied to ALE.

Other reinforcement learning approaches were also successfully combined

with deep convolutional neural networks and empirically evaluated using ALE.

Using the same base neural network architecture as proposed by [Mnih et al.,

2013], and [Mnih et al., 2016] was able to demonstrate that on-policy actor-critic

methods (a type of policy gradient method) could also surpass human baselines.

Asynchronous Advantage Actor-Critic (A3C) maintains both a policy πθ(at|st)

(actor) and an estimate of the value function Vθ(st) (critic) with both functions

making use of the same base network parameters in practice, with a softmax

2.1. Deep Reinforcement Learning 19

output used for the action policy and a linear output used for the value function.

The critic learns to estimate the value of a state based on the expected sum of

discounted future rewards. The error of this prediction, known as the Advantage,

is then used to guide the policy towards selecting actions that lead to better

states. Additionally, [Mnih et al., 2016] were able to incorporate the entropy of

the policy into the objective function as originally proposed by [Williams and

Peng, 1991] to increase exploration and discourage premature convergence to

suboptimal deterministic policies. Empirical results showed that when using the

model architecture originally proposed by [Mnih et al., 2013] A3C was comparable

to many similarly trained DQN based networks. However, the addition of a Long

Short-Term Memory (LSTM) component to the network resulted in superior results

across the majority of environments. Furthermore [Mnih et al., 2016] highlight the

significance of architecture improvements and the possibility for future work in

this area.

One drawback to optimising policy gradient methods is the requirement to

sample transitions directly from the policy. This results in slow training times

as taking multiple optimisation steps from the same trajectory often leads to

divergence. To address this [Schulman et al., 2017] proposed Proximal Policy

Optimisation (PPO) which allows for multiple parameter updates to be taken

from the same trajectory. Sharing some similarities with Trust Region Policy

Optimisation (TRPO) [Schulman et al., 2015], PPO optimises a surrogate objective.

The advantage of this is it allows for pessimistic bound to be taken between a

clipped and an unclipped objective. A detailed derivation is given in section 3.3.

The final objective is further augmented to include the loss for the value function

for actor-critic models, along with an entropy bonus to encourage exploration

of the state space. Empirical results from experiments in ALE showed that PPO

20 Chapter 2. Literature Review

implemented with the same architecture as proposed by [Mnih et al., 2013] can

match that of other policy gradient methods whilst achieving a higher sample

efficiency.

While the significance of these improvements across various reinforcement

learning algorithms cannot be overstated, the goal of ALE was not to diminish the

importance of the learning architecture. Many augmentations that have allowed

for improvements in the field of deep reinforcement learning such as experience

replay [Lin, 1992], conservative policy optimisation [Kakade and Langford, 2002],

and entropy bonuses [Williams and Peng, 1991] had been shown to work with

shallow neural networks in constrained domains. The success of a reinforcement

learning agent, regardless of its learning algorithm, is bound by its ability to

accurately estimate some form of value function. TD-Gammon was successful

because its neural network architecture was able to learn useful relations from the

state representations supplied. Similarly, the above discussed learning algorithms

have been able to perform well in ALE due the ability of convolutional neural

networks to learn useful embeddings from unstructured visual inputs. Despite

scope for improvement in this area being correctly identified by [Mnih et al., 2016],

this area of research has received less attention than the former in recent years.

2.2 Attention based Reinforcement Learning

One promising direction for improving the neural network architecture for deep

reinforcement learning agents is to incorporate attention mechanisms. Proposed

by [Vaswani et al., 2017], attention mechanisms learn mappings between queries

and key-values which allows for global or local relations to be learnt. Although

originally developed for use with recurrent neural networks in machine translation

2.2. Attention based Reinforcement Learning 21

tasks, attention mechanisms can be applied in conjunction with convolutional

neural networks.

An early combination of attention mechanisms with reinforcement learning

was proposed by [Sorokin et al., 2015], which studied the effects of adding both

soft and hard attention to a neural network policy. The difference between soft

and hard attention is that soft attention calculates the context vector as a weighted

sum of its inputs, while hard attention uses an ’attention score’ to select a single

input for the context vector. Sorokin et al. tested their approach on a network

that consisted of a convolutional network that was paired with a recurrent neural

network (RNN). The RNN allowed them to use just a single image as input into

the CNN, as it would be responsible for encoding and remembering the relevant

temporal and dynamic information of the state. The attention module received

spatial information from the CNN and temporal information from the RNN. De-

spite testing both soft and hard attention integration’s, Sorokin et al. only achieved

increased performance on two out of five evaluated ALE domains. Additionally,

the separation of spatial and temporal information makes the network harder to

understand as the temporal information is encoded in latent space and therefore

unable to be visualised.

While investigating navigation policies, [Choi et al., 2017] also proposed com-

bining attention mechanisms with reinforcement learning. Their approach em-

ployed a Multi-focus Attention Network which used multiple parallel attention

modules. This worked by segmenting the input, with each parallel attention

layer attending to a different segment. To evaluate this framework the authors

developed a custom synthetic grid-world environment and testing their model

against a standard implementation of DQN. By decomposing the input into partial

states, their model was able to compute multiple parallel attention heads. With

22 Chapter 2. Literature Review

this approach they showed a 20% increase on sample efficiency over the baseline.

However, the segmentation of the input was only possible due to the carefully

constructed environment in which their idea was evaluated on. It is unclear that

the same methodology could be applied in environments that involve complex

visual inputs.

Taking inspiration from the way humans play games, [Zhang et al., 2018]

proposed an attention-guided imitation learning framework. A dataset was cre-

ated depicting where humans would look when playing a game before a model

was trained to replicate these ’gaze heat maps’. The input would then be aug-

mented with this additional information before being passed into a DQN model.

While this method of attention fundamentally differs from soft and hard attention

mechanisms, it is still worth noting. During evaluation Zhang et al. were able

to show that their method was able to strongly outperform Imitation learning

models across a total of eight environments. When compared to a standard DQN

model, their approach significantly under performed in four out of eight environ-

ments, achieved similar performance in two other environments, and surpassed

the baseline only twice.

Also inspired by the way humans perceive their environments, [Yuezhang

et al., 2018] proposed an approach to construct attention maps based on the optical

flow between sequential frames. The approach was based upon the Broadbent

filter model [Broadbent, 1958] and combined the calculated attention map with the

output of the last convolutional layer in the policy’s network. Evaluated on a toy

problem referred to as ‘Catch’ by the authors an agent was required to learn how

to catch a falling ball. In this setting the addition of optical flow attention provided

no benefit over the baseline DQN model. In a second variation, noise was added

to the background to obfuscate the position of the ball as it fell. This increased

2.3. Neural Network Rule Extraction 23

the significance of the optical flow attention map in the model and resulted in

improved performance over the baseline. Evaluations on four domains from ALE

were unable to demonstrate significant improvements in either performance or

sample efficiency.

From evaluating these works we can identify commonalities and gaps that have

not been addressed. A familiar theme is the use of guided attention mechanisms

which actively enforce preconceived human notions of importance on the policies.

Second is the heavy use of local attention mechanisms. Our proposed contributions

in Chapter 3 address these limitations integrating a non-local (global) form of

self-attention that is not bound or directed by human input.

2.3 Neural Network Rule Extraction

Neural network rule extraction methods can be divided into three main categories:

pedagogical, decompositional, and eclectic. Pedagogical rule extraction is gen-

erally model-agnostic and treats the neural network as a black-box. The goal of

pedagogical rule extraction is to define a set of rules that maps the input of a neural

network to its output by approximating its global function. A popular approach to

this is Validity Interval Analysis (VI-Analysis) [Thrun, 1995]. VI-Analysis seeks to

determine intervals for input features which trigger changes in the activations of a

neural networks output layer. The found intervals are then converted to rules in

the form of ’if x then y’. Thrun demonstrates his algorithm by extracting rules from

a neural network representing the XOR problem, and an example of a continuous

robot arm.

Another popular pedagogical approach known as Sampling generally involves

creating an artificial training set, which is then used to feed a rule-based learning

24 Chapter 2. Literature Review

algorithm to generate rules that mimic the original neural networks behaviour. In

particular, [Craven and Shavlik, 1996] proposed the algorithm Trepan, which seeks

split points in the training data to separate instances of different classes. Although

similar to the C4.5 algorithm [Quinlan, 1993], it includes additional M-of-N style

split points, an ability to sample deeper points in the tree, and instead of following

a depth-first strategy it uses a best-first tree expansions strategy instead. More

recently, [Sethi et al., 2012] proposed KDRuleEx which bears similarities to Trepan.

However, unlike the work of [Craven and Shavlik, 1996], new training examples

are produced using a genetic algorithm which results in a decision table before

being transformed into if-then rules.

The last type of pedagogical rule extraction method we wish to highlight

here is the algorithm known as RxREN which was proposed by [Augasta and

Kathirvalavakumar, 2012]. The algorithm works in two stages. The first stage is

pruning neurons which prove to be insignificant to a classification decision. The

second stage then uses the ranges discovered in stage one to determine rules for

each classification and refines these rules through the process of rule pruning and

updation.

In contrast to pedagogical approaches, decompositional methods extract rules

from neural networks at the neuron level. Typically, rules are extracted for each

neuron in a network before aggregation techniques are used to form a composite

rule base that describes the neural network as a whole [Andrews et al., 1995].

Examples of this include [Fu, 1994] and [Tsukimoto, 2000] who both present

layer-by-layer decompositional algorithms that extract if-else rules for every single

neuron in a network. More recently [Zilke et al., 2016] proposed the algorithm

DeepRED, an extension of the CRED algorithm [Sato and Tsukimoto, 2001], which

itself is an extension of the C4.5 algorithm. The DeepRED algorithm starts by

2.3. Neural Network Rule Extraction 25

using the C4.5 algorithm to create decision trees for all the split points on the

activations of the last hidden layer in a neural network. After this they refer to the

next hidden layer in the network and so on and so forth until they have generated

a rule sets that describe each layer by their respective preceding layer. After this is

completed, they then merge all the rule sets into a single rule set that can describe

the relationship between inputs and the output classifications.

Eclectic approaches incorporate both decompositional and pedagogical ele-

ments to extract rules. Early work in this area was performed by [Tickle et al., 1994]

who proposed the Decision Detection (DEDEC) algorithm. This algorithm worked

in two steps. First it would identify the dependencies between the inputs and

outputs of a neural network according to the node activations. Second, it would

learn a symbolic representation in a pedagogical manner. This approach of first

identifying characteristics of the network before learning a symbolic representation

was influential on other eclectic methods that followed.

An example is Rule Extraction from Artificial Neural Networks (REANN)

proposed by [Kamruzzaman and Islam, 2010]. Their approach included first

adding, then subtracting nodes from a network based upon the performance

during training. Once the network was pruned to a simplified state, the activation

values of hidden nodes were discretised via a heuristic clustering algorithm. This

then allowed for ’if-else’ style rules to be extracted by clustering activation’s

based on the classification outputs and the decision boundaries that separate

them. Another is Hierarchical and Eclectic Rule Extraction via Tree Induction

and Combination (HERETIC) [Iqbal, 2011]. This approach utilised steep sigmoid

activation functions to approximate a step function. The purpose of this was so that

each activation would essentially be binary allowing for a simple discretisation

process. From here the authors use the C4.5 algorithm [Quinlan, 1993] to generate

26 Chapter 2. Literature Review

the decision tree before using the espresso logic minimisation algorithm [Brayton

et al., 1984] to produce simplified rules in a disjunctive normal form.

While there may be significant differences between the three different ideologi-

cal approaches, the above works all share common traits. First, they all operate

on simple neural networks with at most a few hidden layers. Second, the inputs

to these neural networks only consist of 1D structured feature arrays. Our work

differs by focusing on extracting rules from more complex neural networks which

include convolutional layers and attention mechanisms. Our inputs are also multi-

dimensional unstructured arrays in the form of multiple RGB images which makes

feature level decompositional approaches impractical. The methods we propose in

Chapter 4 are to the best of the authors knowledge not only novel, but also the first

work aimed at extracting rules from complex deep neural networks that utilise

unstructured RGB inputs for the purpose of learning a policy via reinforcement

learning.

2.4 Visual Program Synthesis

The field of Visual Program Synthesis is relatively new, with the first problem in

this area being proposed by [Sun et al., 2018]. Having concluded that the body

of published research focused on traditional Program Synthesis is not applicable

to situations where the derivation of specifications is required from visual obser-

vations, Sun et al. proposed a dataset addressing this. Specifically, state-action

trajectories of autonomous agents with deterministic policies were generated and

collected. The policies consisted of program constructed from a domain specific

language (DSL). We find this to be an interesting problem and an extension of our

previous work in the following way. To extract the rules from observations of an

2.4. Visual Program Synthesis 27

agent, a correlation between states and actions is required to be learnt. Also, as

the underlying programs were non-trivial, a model would need to piece together

multiple observations to extract these rules. In many ways, this is an extension of

our own rule extraction from state-action correlations.

Along with the dataset Sun et al. proposed a LSTM based encoder-decoder

network. The network would first process each demonstration (trajectory of states)

creating a unique embedding for each one. Then, the model would condense

these embeddings into a single compact vector representation via a combination

of average pooling and a relation network [Santoro et al., 2017]. While this ap-

proach set a respectful baseline on this new problem, its summarisation module

was computationally expensive. This is something that Duan et al. noticed and

addressed with their model ’Watch Reason Code’ [Duan et al., 2019]. By replacing

the summariser proposed by Sun et al. with a deviation-pooling method, Duan

et al. were able to reduce the computational complexity, and therefore training

time, while achieving similar results. Additionally, they included a multi-pass

decoder which increased the accuracy of their model. However, it is reasonable to

suspect that had this multi-pass decoder been applied to the model of Sun et al., it

too would have received a slight increase in performance.

Dang-Nhu [Dang-Nhu, 2020] took a different approach to this problem. Instead

of using a LSTM encoder-decoder, Dang-Nhu uses a CNN with a perception head

and an action head to generate the specifications for a rule-based synthesizer. As

rule-base solvers are very sensitive to even small amounts of input noise [Devlin

et al., 2017], Dang-Nhu proposed using a dynamic filtering method to ignore

demonstrations based upon the level of confidence of the CNN’s predictions. With

this Dang-Nhu was able to surpass the performance of the previous works of Sun et

al. and Duan et al.. The approaches of Sun et al. and Duan et al., differ significantly

28 Chapter 2. Literature Review

compared to the approach of Dang-Nhu and it is in this difference that we reveal a

gap in the current literature. Sun et al. and Duan et al. both compress the problem

via summarisation to a single sequence-to-sequence problem, while Dang-Nhu’s

method requires summarisation via a dynamic filtering due to inherent noise

sensitivity. The question then becomes, can we create a model that is able to

learn this summarisation whilst simultaneously being robust to noisy inputs? This

question inspired our work in Chapter 5 where we propose a framework that treats

the problem as a multi-sequence-to-sequence task and is capable of simultaneous

summarisation and translation while being robust to noisy inputs.

Bibliography

[Andrews et al., 1995] Andrews, R., Diederich, J., and Tickle, A. B. (1995). Survey

and critique of techniques for extracting rules from trained artificial neural

networks. Knowledge-based systems, 8(6):373–389.

[Augasta and Kathirvalavakumar, 2012] Augasta, M. G. and Kathirvalavakumar,

T. (2012). Reverse engineering the neural networks for rule extraction in classifi-

cation problems. Neural processing letters, 35(2):131–150.

[Brayton et al., 1984] Brayton, R. K., Hachtel, G. D., McMullen, C., and

Sangiovanni-Vincentelli, A. (1984). Logic minimization algorithms for VLSI synthe-

sis, volume 2. Springer Science & Business Media.

[Broadbent, 1958] Broadbent, D. E. (1958). Perception and communication.

[Choi et al., 2017] Choi, J., Lee, B.-J., and Zhang, B.-T. (2017). Multi-focus attention

network for efficient deep reinforcement learning. ArXiv, abs/1712.04603.

[Craven and Shavlik, 1996] Craven, M. and Shavlik, J. (1996). Extracting tree-

structured representations of trained networks. In Touretzky, D., Mozer, M. C.,

and Hasselmo, M., editors, Advances in Neural Information Processing Systems,

volume 8. MIT Press.

[Dang-Nhu, 2020] Dang-Nhu, R. (2020). Plans: Robust program learning from

neurally inferred specifications. ArXiv, abs/2006.03312.

29

30 Bibliography

[Devlin et al., 2017] Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., rahman Mo-

hamed, A., and Kohli, P. (2017). Robustfill: Neural program learning under

noisy i/o. In ICML.

[Duan et al., 2019] Duan, X., Wu, Q., Gan, C., Zhang, Y., Huang, W., van den

Hengel, A., and Zhu, W. (2019). Watch, reason and code: Learning to represent

videos using program. In Proceedings of the 27th ACM International Conference

on Multimedia, MM ’19, page 1543–1551, New York, NY, USA. Association for

Computing Machinery.

[Fu, 1994] Fu, L. (1994). Rule generation from neural networks. IEEE Transactions

on Systems, Man, and Cybernetics, 24(8):1114–1124.

[Iqbal, 2011] Iqbal, R. A. (2011). Eclectic extraction of propositional rules from

neural networks.

[Kakade and Langford, 2002] Kakade, S. and Langford, J. (2002). Approximately

optimal approximate reinforcement learning. In Proceedings of the Nineteenth

International Conference on Machine Learning, ICML ’02, page 267–274, San Fran-

cisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Kamruzzaman and Islam, 2010] Kamruzzaman, S. M. and Islam, M. M. (2010).

Extraction of symbolic rules from artificial neural networks. CoRR,

abs/1009.4570.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).

Imagenet classification with deep convolutional neural networks. In Proceedings

of the 25th International Conference on Neural Information Processing Systems -

Volume 1, NIPS’12, page 1097–1105, Red Hook, NY, USA. Curran Associates Inc.

Bibliography 31

[Lin, 1992] Lin, L.-J. (1992). Reinforcement Learning for Robots Using Neural Networks.

PhD thesis, USA. UMI Order No. GAX93-22750.

[Mnih et al., 2016] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T.,

Harley, T., Silver, D., and Kavukcuoglu, K. (2016). Asynchronous methods

for deep reinforcement learning. In Balcan, M. F. and Weinberger, K. Q., editors,

Proceedings of The 33rd International Conference on Machine Learning, volume 48 of

Proceedings of Machine Learning Research, pages 1928–1937, New York, New York,

USA. PMLR.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,

I., Wierstra, D., and Riedmiller, M. (2013). Playing atari with deep reinforcement

learning. cite arxiv:1312.5602Comment: NIPS Deep Learning Workshop 2013.

[Quinlan, 1993] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

[Santoro et al., 2017] Santoro, A., Raposo, D., Barrett, D. G. T., Malinowski, M.,

Pascanu, R., Battaglia, P. W., and Lillicrap, T. P. (2017). A simple neural network

module for relational reasoning. In NIPS.

[Sato and Tsukimoto, 2001] Sato, M. and Tsukimoto, H. (2001). Rule extraction

from neural networks via decision tree induction. In IJCNN’01. International

Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222), volume 3,

pages 1870–1875. IEEE.

[Schulman et al., 2015] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,

P. (2015). Trust region policy optimization. In Bach, F. and Blei, D., editors,

Proceedings of the 32nd International Conference on Machine Learning, volume 37 of

Proceedings of Machine Learning Research, pages 1889–1897, Lille, France. PMLR.

32 Bibliography

[Schulman et al., 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,

and Klimov, O. (2017). Proximal policy optimization algorithms. CoRR,

abs/1707.06347.

[Sethi et al., 2012] Sethi, K. K., Mishra, D. K., and Mishra, B. (2012). Kdruleex: A

novel approach for enhancing user comprehensibility using rule extraction. In

2012 Third International Conference on Intelligent Systems Modelling and Simulation,

pages 55–60.

[Sorokin et al., 2015] Sorokin, I., Seleznev, A., Pavlov, M., Fedorov, A., and Ignat-

eva, A. (2015). Deep attention recurrent q-network. ArXiv, abs/1512.01693.

[Sun et al., 2018] Sun, S.-H., Noh, H., Somasundaram, S., and Lim, J. (2018). Neu-

ral program synthesis from diverse demonstration videos. In Dy, J. and Krause,

A., editors, Proceedings of the 35th International Conference on Machine Learning,

volume 80 of Proceedings of Machine Learning Research, pages 4790–4799. PMLR.

[Tesauro, 1995] Tesauro, G. (1995). Temporal difference learning and td-gammon.

Commun. ACM, 38(3):58–68.

[Thrun, 1995] Thrun, S. (1995). Extracting rules from artificial neural networks

with distributed representations. In Tesauro, G., Touretzky, D., and Leen, T.,

editors, Advances in Neural Information Processing Systems (NIPS) 7, Cambridge,

MA. MIT Press.

[Tickle et al., 1994] Tickle, A. B., Orlowski, M., and Diederich, J. (1994). Dedec:

decision detection by rule extraction from neural networks. QUT NRC.

[Tsukimoto, 2000] Tsukimoto, H. (2000). Extracting rules from trained neural

networks. IEEE Transactions on Neural networks, 11(2):377–389.

Bibliography 33

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need.

In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,

S., and Garnett, R., editors, Advances in Neural Information Processing Systems,

volume 30. Curran Associates, Inc.

[Watkins and Dayan, 1992] Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning.

Machine Learning, 8(3):279–292.

[Williams and Peng, 1991] Williams, R. J. and Peng, J. (1991). Function optimiza-

tion using connectionist reinforcement learning algorithms. Connection Science,

3:241–268.

[Yuezhang et al., 2018] Yuezhang, L., Zhang, R., and Ballard, D. H. (2018). An

initial attempt of combining visual selective attention with deep reinforcement

learning. ArXiv, abs/1811.04407.

[Zhang et al., 2018] Zhang, R., Liu, Z., Zhang, L., Whritner, J. A., Muller, K. S.,

Hayhoe, M. M., and Ballard, D. H. (2018). Agil: Learning attention from human

for visuomotor tasks. In ECCV.

[Zilke et al., 2016] Zilke, J. R., Loza Mencı́a, E., and Janssen, F. (2016). Deepred –

rule extraction from deep neural networks. In Calders, T., Ceci, M., and Malerba,

D., editors, Discovery Science, pages 457–473, Cham. Springer International

Publishing.

CHAPTER 3
Reinforcement Learning with Attention that

Works: A Self-Supervised Approach

The work contained in this chapter has been published as the following paper:

Manchin A., Abbasnejad E., van den Hengel A. (2019) Reinforcement Learning

with Attention that Works: A Self-Supervised Approach. In: Gedeon T., Wong K.,

Lee M. (eds) Neural Information Processing. ICONIP 2019. Communications in

Computer and Information Science, vol 1143. Springer, Cham.

34

36
Chapter 3. Reinforcement Learning with Attention that Works: A Self-Supervised

Approach

Abstract

Attention models have had a significant positive impact on deep learning

across a range of tasks. However, previous attempts at integrating attention with

reinforcement learning have failed to produce significant improvements. Unlike

the selective attention models used in previous attempts, which constrain the

attention via preconceived notions of importance, our implementation utilises the

Markovian properties inherent in the state input. We propose the first combination

of self-attention and reinforcement learning that is capable of producing significant

improvements, including new state of the art results in the Arcade Learning

Environment.

3.1. Introduction 37

3.1 Introduction

Research on reinforcement learning has seen accelerating advances in the past

decade. In particular, methods for deep RL have made tremendous progress

since the seminal work of [Mnih et al., 2015] on Deep Q-Networks. A number

of different approaches have progressed the state of the art on simulated tasks

- in particular in the Arcade Learning Environment [Bellemare et al., 2013] - to,

or above that of human players. The major focus of attention of many of these

methods is the learning and optimization of the policies. However, one thing

that all these approaches have in common is that they process the raw input data

through a convolutional neural network.

Regardless of the chosen policy optimisation method, the underlying neural

network is responsible for interpreting and encoding useful representations of

the input state. While significant efforts have focused on methods for policy

optimisation, the techniques for encoding the observations have received less

attention. While many methods thus use generic, off-the-shelf CNN architectures,

we instead focus on this as the main subject of study.

Taking inspiration from other areas of deep learning, we investigate the benefits

of incorporating self-attention into the underlying network architecture. Attention

models have been applied with remarkable success to complex visual tasks such

as video and scene understanding [Han, 2018, Shi et al., 2018, Fang et al., 2018],

natural language understanding (including machine translation) [Bahdanau et al.,

2014, Zhao and Zhang, 2018], and generative models using generative adversarial

networks (GANs) [Xu et al., 2017, Kastaniotis et al., 2018]. Although previous

attempts to integrate attention with RL have been made, these attempts have

largely used hand-crafted features as inputs to the attention model [Yuezhang

38
Chapter 3. Reinforcement Learning with Attention that Works: A Self-Supervised

Approach

et al., 2018, Zhang et al., 2018]. Although the spatial and temporal information

contained within the state input (when using stacked frames) is sufficient to satisfy

the Markov principle, the hand crafted features often chosen by these approaches

do not satisfy the Markov principle.

For this reason we observe the work from [Wang et al., 2017], and their goal

of improved attention through space, time, and space-time by combining self-

attention with non-local filtering methods. The benefit of self-attention is the ability

to compute representations of an input sequence by relating different positions of

the input sequence. Their implementation achieves state of the art results on the

Kinetics [Kay et al., 2017] and Charades [Sigurdsson et al., 2016] datasets. However,

the datasets they considered are large-scale video classification problems where

the changes in the input from time to time are minimal. In addition, the neural

network is in a passive environment that does not require interaction. None the

less, these challenges require spatial and temporal reasoning abilities that would

be very useful for a reinforcement learning agent to possess. Taking inspiration

from this work, we capitalise on the Markovian principle of the state input and

propose a novel implementation of self-attention within the classical convolutional

neural network architecture, as used by [Mnih et al., 2015]. The contributions of

our paper are as follows.

• We provide a spatio-temporal self-attention mechanism for reinforcement

learning and demonstrate that the network architecture has significant bene-

fits in learning a good policy

• We present state-of-the-art results in the Arcade Learning Environment

[Bellemare et al., 2013]. Our approach significantly outperforms the baseline

across a number of environments where the agent has to attend to multiple

opponents and anticipate their movements in time.

3.2. Related Work 39

3.2 Related Work

3.2.1 Reinforcement Learning Network Design in Video Games

Current state-of-the-art approaches for reinforcement learning agents evaluated in

the Arcade Learning Environment (ALE) are built on top of the original network

architecture proposed by [Mnih et al., 2015]. Alterations to this underlying net-

work architecture have included the implementation of recurrent neural networks

(RNN). [Hausknecht and Stone, 2015] proposed replacing the fully connected

layer, following the output of the last convolutional layer of the network with an

LSTM. This allowed for a single frame input to be used, as opposed to sequentially

stacked frames, with the LSTM integrating temporal information. [Oh et al., 2016]

also proposed using recurrent networks with their Recurrent Memory Q-Network

(FRMQN). This memory-based approach used a mechanism based on soft atten-

tion to help read from memory and was evaluated with respect to solving mazes

in Minecraft (a flexible 3D world). In comparison to [Hausknecht and Stone, 2015]

and [Oh et al., 2016] we utilise sequentially stacked frames as input and augment

the network with an attention model which is able to demonstrate improved

temporal reasoning.

Having also noticed the heavy reliance on convolutional neural networks for

reinforcement learning agents within ALE, [Wang et al., 2015] proposed a new

neural network architecture specifically for model free learning. The architecture

(known as Dueling DQN), still utilised the convolutional neural network as origi-

nally proposed by [Mnih et al., 2013], however, instead of a single sequence of fully

connected layers after the convolutional layers, Dueling DQN used two sequences.

This allowed for the advantage and value functions estimates to be separated

40
Chapter 3. Reinforcement Learning with Attention that Works: A Self-Supervised

Approach

before being combined to produce a single output Q-function. The novelty of this

architecture proved to be useful in situations where the value of a given action is

either of little or great importance. An example of this is the environment Enduro,

where the choice of action only matters when the agent needs to avoid a collision.

The separation of the advantage and value functions allows the value stream to

learn to pay attention to the road, while the advantage stream learns to only pay

attention when there are cars immediately in front of the agent.

3.2.2 Attention in Reinforcement Learning

[Sorokin et al., 2015] studied the effects of adding both ‘soft’ and ‘hard’ attention

mechanisms to a CNN-LSTM network trained using DQN. In this approach the

authors inserted the attention mechanism in between the CNN and the LSTM. The

attention mechanism consists of two fully connected layers followed by a softmax

activation and takes as input the flattened output of the final convolutional layer

and the previous hidden state of the LSTM in order to compute a context vector.

When trained in a soft manner, the attention mechanism outputs the context vector

as a weighted sum of its input vectors which correspond to the features extracted

by the CNN for different image regions. When trained in a hard manner, the

attention mechanism only samples a single feature location at each time step. The

selection of this location requires the inclusion of an additional attention policy

πg which is trained using the algorithm REINFORCE [Sutton et al., 2000]. As the

attention policy decides which features should be focused upon, training both the

attention policy and the underlying CNN simultaneously would likely lead to

either divergence or extremely long training times. To counter this [Sorokin et al.,

2015] preinitialised the underlying CNN with weights obtained from training

an agent using the soft attention approach. Testing in five different ALE games

3.2. Related Work 41

revealed that the soft attention implementation outperformed both the baseline

and the hard implementation in two and five games respectively. Although this

approach indicated some potential performance improvements under certain con-

ditions, experiments were limited with results showing no systematic performance

increases. In contrast, our work explores a different form of self-attention, and we

demonstrate significant benefits in both performance and interpretability for the

resulting policy.

[Choi et al., 2017] also proposed combining attention with reinforcement learn-

ing for navigation purposes. This approach employed a Multi-focus Attention

Network (MANet) which used multiple parallel attention modules. This worked

by first segmenting the input into K partial states which were then passed through

a CNN. The outputs for each partial state was then passed through parallel atten-

tion layers which is trained using a soft approach. To prevent multiple attention

layers attending to the same partial states, the authors explore two regularisation

methods, entropy and distance. The entropy and distance terms were defined as

Re = λe ×∑n ||An × log An|| and Rd = λ× exp(−∑n m(An − Am)2) respectively

and were added to the loss function. The authors designed two custom game

environments to evaluate their proposed methodology. The first containing a

single agent task and the second consisting of multiple agent cooperation. The

reasoning for the second task is that the input segmentation into partial states

could also be used to allow a network to learn how to pass important information

between multiple agents in a cooperative setting. In both settings MANet was

able to outperform the baselines with improved sample efficiency.

[Zhang et al., 2018] proposed Attention Guided Imitation Learning (AGIL)

framework with the main idea being to train an agent to attend to the input in

the same fashion a human would. To achieve this, a gaze network is first trained

42
Chapter 3. Reinforcement Learning with Attention that Works: A Self-Supervised

Approach

in a supervised manner from human gaze data. The network consists of three

parallel channels which are made of convolutional and deconvolutional layers.

Each channel takes a different input with the first being four sequentially stacked

frames (images), the second takes the optical flow information, and the last channel

is fed a saliency map computed using the Itti-Koch model [Itti et al., 1998]. The

outputs from these channels are averaged together before a softmax is applied

to predict the gaze locations. After this network is trained, it is used to augment

the input that is fed to the agents policy. The agents policy architecture includes

two parallel convolutional channels, the outputs of which are then averaged

together and passed through a fully connected layer to predict an action. The first

convolutional channel takes as input the processed frames from the environment,

while the second convolutional channel takes as input the input frames augmented

with the output from the gaze network. The results showed that this inclusion

of a human gaze attention network was able to outperform standard imitation

learning in eight different games from ALE.

More recently [Yuezhang et al., 2018] proposed a model based upon the Broad-

bent filter model [Broadbent, 1958]. This approach uses the optical flow calculated

between two frames to construct an attention map, which was then combined

with the output of the last convolutional layer in their network. The authors

evaluated their network on a toy problem named ’Catch’, originally inspired

by [Mnih et al., 2014], a modified version of the problem, and four games from

ALE. The modified version of Catch involved adding artifacts to the background

that closely resembled the falling square in the game. This made relying on the

spatial information provided by the single frame input difficult. In this setting the

additional optical flow information proved to be useful to the agent, resulting in

improved performance over the baseline model. Testing in ALE was unable to

3.3. Methods 43

produce similar improvements which is likely a result of the stacked frames used

as input allow the network to learn important optical flow information directly.

3.3 Methods

3.3.1 Markov Decision Process Formulation

A Markov Decision Process formally describes a fully observable environment for

reinforcement learning, and is defined by the tuple (S ,A,P ,R) where,

• S is a set of states

• A is a set of action

• P is a state transition matrix, where P a
s,s′ = P(St+1 = s′|St = s, At = a)

• R is a reward function, whereR(s) = E(Rt+1|St = s, At = a)

Critically, this formulation is reliant upon the validity of the Markov Property

which states that the probability of the next state is dependent only upon the

current state, and independent from previous states.

The ultimate goal, given a MDP, is to derive a policy π which will maximise

the cumulative discounted reward from the environment.

E[∑ γtR(st, st+1)] (3.1)

Where γ is a hyper-parameter between 0 and 1 which discounts future rewards.

This encourages behaviour that is more likely to exploit immediate reward as

future rewards are often less certain.

44
Chapter 3. Reinforcement Learning with Attention that Works: A Self-Supervised

Approach

3.3.2 Policy Optimisation

We use an Actor-Critic network architecture, optimised by Proximal Policy Opti-

misation (PPO) [Schulman et al., 2017] to train our agents over traditional DQN

baselines due to its wall clock training time and improved general performance. In

particular we utilise the open-source implementation OpenAI Baselines [Dhariwal

et al., 2017].

The objective function used is defined by,

LCLIP+VF+S
t (θ) = E[LCLIP

t (θ)− c1LVF
t (θ) + c2S[πθ](st)] (3.2)

where,

• c1 is the value function coefficient

• c2 is the entropy coefficient

• S is the entropy bonus

• LCLIP
t (θ) is the policy loss

• LVF
t (θ) is the value function loss

The value function loss LVF
t (θ) is defined as the squared-error loss (Vθ(st)−

Vtarg
t)2, while the policy loss LCLIP

t (θ) is given by,

LCLIP
t (θ) = E[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (3.3)

Where rt(θ) is the probability ratio given by,

rt(θ) =
πθ(at|st)

πθold(at|st)
(3.4)

3.3. Methods 45

and Ât is a truncated version of the generalised advantage estimation, which

when λ = 1 :

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1 (3.5)

where,

δt = rt + γV(st+1)−V(st) (3.6)

A full derivation can be found in [Schulman et al., 2017]

3.3.3 Non-Local Neural Networks

The variant of self-attention used in our experiments was first proposed by [Wang

et al., 2017] as a flexible building block for use with convolutional neural networks.

In particular, the generic non-local operation can be defined as,

yi =
1

C(x) ∑
j

F(xi, xj)G(xj) (3.7)

This formulation allows for a response to be computed for an output position,

indexed by i, across all possible positions, indexed by j. The output position itself

can be in space, time, or spacetime while x is the input signal (e.g. image, video,

sequence) and y is the output signal. F is a pairwise function, which calculates

a relationship between i and all j, while a representation of the input signal at

position j is computed by the function G. This response can be normalised by the

factor C(x) which in practise is equal to the number of positions in x.

Unlike a fully connected layer which uses learnt weights to compute a response,

a non-local operation uses the relationship between different locations to compute

46
Chapter 3. Reinforcement Learning with Attention that Works: A Self-Supervised

Approach

So
ftm

ax

Self-Attention

Figure 3.1: Overview of the proposed architecture. We introduce a self-attention
module within the CNN used to process the input observations. The resulting
policy benefits significantly from the capability of selective attention over space
and time.

a response. Additionally, a non-local block can support variable sized inputs,

whilst maintaining the input size in the output. A diagram of the non-local block

implemented as self-attention can be seen in fig.3.1.

3.3.4 Network Architecture

We build upon the common practice of using a convolutional neural network to

encode input observations into a state representation. Our main contribution is

to incorporate the above described self-attention mechanism over space and time

to better equip an agent with spatial and temporal reasoning. We specifically

describe the implementation of self-attention used in our approach (see Fig.3.1), as

originally proposed by [Wang et al., 2017]. The self-attention mechanism operates

as follows. F1, F2, and G1 are all 1× 1 convolutions. The outputs of F1 and F2 are

matrix multiplied together before passing through a So f tmax activation, which

is then matrix multiplied by the output from G1. This is then passed through Y

which is also a 1× 1 convolution, before being added back into the original input.

We specifically describe six instantiations of our general approach. Owing to

the empirical nature of current research in deep learning, we conducted a thorough

3.3. Methods 47

exploration of possible implementations of self-attention. Different domains have

previously shown to be better addressed with different, sometimes conflicting

implementation choices [Yuezhang et al., 2018, Sorokin et al., 2015, Choi et al.,

2017]. It is important to consider the spatial and temporal dimensions of the data,

and maintain the possibility of attending to different parts of the input across the

layers of the network. Our six proposed instantiations are described as follows

(see Fig.3.1).

• Self-Attending Network (SAN): Self-attention between convolutional layers

’H1’ and ’H2’. This approach focuses on how attention interacts with the

input in the lowest level of the network.

• Strong Self-Attending Network (SSAN): Multiplying the output of the last

convolutional layer in the self-attention component (’Y’) by a factor of two

(thereby increasing the influence of attention on the network).

• Self-Attending Double Network (SADN): Self-attention between convolu-

tional layers ’H1’ and ’H2’, ’H2’ and ’H3’. Since the higher-level layers

learn the semantics and higher-level abstractions, we intend to evaluate how

attention changes the performance when applied to these layers.

• Strong Self-Attending Double Network (SSADN): Multiplying the outputs

for both self-attention components by a factor of two.

• Pure Self-Attending Network (PSAN): Passing only the output of the self-

attention forward, removing the addition of the previous convolutional layer

output. This approach investigates the performance of the agent when only

the ’pure’ sequence representations learnt by the self-attention component

are passed forward in the network.

48
Chapter 3. Reinforcement Learning with Attention that Works: A Self-Supervised

Approach

• Pure Self-Attending Double Network (PSADN): Self-attention between con-

volutional layers ’H1’ and ’H2’, ’H2’ and ’H3’, while passing only the output

of the self-attention forward.

3.4 Experiments

3.4.1 Validation Methodology

Implementation

The Arcade Learning Environment is a well-established baseline which allows us

to critically evaluate the effects of our proposed architecture modifications. We

use Proximal Policy Optimisation [Schulman et al., 2017] to train our agents over

traditional DQN baselines due to its wall clock training time and improved general

performance. In the interest of comparability, the open-source implementation

from OpenAI ’Baselines’ was utilised [Dhariwal et al., 2017]. In order to objectively

identify the effects of the additional attention model, the standards set by [Mnih

et al., 2015] were followed. This included pre-processing of the input image from

a single 210x160 RGB image to a stack of four 84x84 grey-scale images. ’No-Op’

starts were also used which prevents the agent from taking an action at the start of

each game for a random number (maximum thirty) of time-steps.

Performance evaluation

In order to evaluate our agents, we randomly seed each different architecture for a

total of three times across ten different Atari games. In terms of standard training

times for bench marking, [Mnih et al., 2015] [Schulman et al., 2017] [Hausknecht

and Stone, 2015] [Horgan et al., 2018] show variations between 40M to 16B+

3.4. Experiments 49

frames. We train each model for a total of 40M time-steps, which is equivalent

to 160M frames. This is in line with the evaluation methodology as presented

by [Fortunato et al., 2017]. Performance is evaluated by the maximal score achieved

(after averaging) during training.

3.4.2 Performance results

By integrating attention into the underlying neural network, new state of the

art results for Demon Attack were achieved. In fact, all but one implementation

was able to significantly improve against the baseline, along with surpassing

the previous state of the art results for Demon Attack. Additionally, SAN was

able to produce significant improvements in both Asterix and MsPacman. Im-

pressively SAN is able to surpass the previously highest score reported using a

policy gradient method for Demon Attack, MsPacman, Bowling, Freeway and

Frostbite [Fortunato et al., 2017, Wu et al., 2017].

Table 3.1 shows the maximal score after averaging over three random seeds

during training for 40M time-steps. From this we can observe that integrating

self-attention, in one form or another, led to an increase in performance across

60% of environments tested. Table 3.2 also shows our proposed network, SAN,

improved results in 50% of environments when directly compared to the baseline

PPO agent. While Fig. 3.2 shows the training curves for each network across all ten

environments. This allows us to visually see the increased sample efficiency self-

attention provides in environments such as Demon Attack, MsPacman, Asterix,

and Frostbite.

Although single implementations of attention such as SAN and SSAN were

able to achieve higher rewards across more environments then other ’double’ im-

plementations, it is clear in Fig. 3.2 and Table 3.1 that SADN is able to outperform

50
Chapter 3. Reinforcement Learning with Attention that Works: A Self-Supervised

Approach

Figure 3.2: Learning curves of all variants compared to the baseline on all ten
environments tested. Agents are trained for a total of 40M timesteps, with results
averaged over three random seeds. Here we can see the clear advantage of self-
attention is able to provide with respect to sample efficiency.

SAN in Demon Attack, Frostbite, and Bowling. This provides support for the idea

that attention in general is beneficial to the network.

3.4. Experiments 51

PPO SAN SSAN SADN SSADN PSAN PSADN
MsPacman 3342.15 4217.3 3351.4 2638.3 2681.5 3118.6 2252.36
Tutankham 254.57 211.04 211.14 212.07 208.15 211.60 205
Freeway 33.48 33.93 33.58 29.66 27.73 30.21 31.87
Atlantis 3.45M 3.27M 3.39M 3.09M 2.96m 3.12M 2.58M
Krull 9102 9136 9535 8912 9191 9171 6668
Demon Attack 222650 315727 294359 329837 311438 307539 5510
Bowling 66.33 55.21 60.99 57.52 35 47.49 26.26
Frostbite 2503 1481 1552 3554 1426 1036 3173
Asterix 10121 13556 11069 13253 9815 6461 3106
Breakout 398.10 353.47 388.89 345.07 354.81 376.45 147.81

Table 3.1: Maximal score achieved by each implementation, averaged over three
random seeds and trained for 40M time-steps. These results clearly demonstrate
the improved performance of multiple self-attention variants.

Environment PPO SAN

MsPacman 3342.15 4217.3

Tutankham 254.57 211.04

Freeway 33.48 33.93

Atlantis 3445922 3272823

Krull 9102 9136

Demon Attack 222650 315727

Bowling 66.33 55.21

Frostbite 2503 1481

Asterix 10121 13556

Breakout 398.10 353.47

Table 3.2: Direct comparison between baseline PPO and SAN. Clearly demonstrat-
ing that our proposed method is capable of improving performance in 50% of
tested environments.

52
Chapter 3. Reinforcement Learning with Attention that Works: A Self-Supervised

Approach

3.5 Conclusions and Future Work

We evaluate the benefit of incorporating self-attention into the underlying neural

network architecture with direct access to the spatial and temporal information

from the state input. We directly compare this approach to the classic architecture

first proposed by [Mnih et al., 2015]. Our results clearly indicate that the addition

of attention to the network is beneficial, and lead to significant improvements

in sample efficiency across 60% of tested environments. Of particular note is

the performance in the environment Demon Attack, where the addition of self-

attention resulted in state-of-the-art results, far exceeding the previous reported

benchmark.

Future work will seek to further investigate why attention was more bene-

ficial in some environments compared to others, along with further testing of

the proposed architecture with different optimisation techniques, including DQN

methods.

Bibliography

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural ma-

chine translation by jointly learning to align and translate. CoRR, abs/1409.0473.

[Bellemare et al., 2013] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

(2013). The arcade learning environment: An evaluation platform for general

agents. Journal of Artificial Intelligence Research, 47:253–279.

[Broadbent, 1958] Broadbent, D. E. (1958). Perception and communication.

[Choi et al., 2017] Choi, J., Lee, B., and Zhang, B. (2017). Multi-focus attention

network for efficient deep reinforcement learning. CoRR, abs/1712.04603.

[Dhariwal et al., 2017] Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,

M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and Zhokhov, P. (2017). Openai

baselines. https://github.com/openai/baselines.

[Fang et al., 2018] Fang, S., Xie, H., Zha, Z.-J., Sun, N., Tan, J., and Zhang, Y. (2018).

Attention and language ensemble for scene text recognition with convolutional

sequence modeling. In Proceedings of the 26th ACM International Conference on

Multimedia, MM ’18, pages 248–256, New York, NY, USA. ACM.

[Fortunato et al., 2017] Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I.,

Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin, O., Blundell, C., and

Legg, S. (2017). Noisy networks for exploration. CoRR, abs/1706.10295.

53

https://github.com/openai/baselines

54 Bibliography

[Han, 2018] Han, Y. (2018). Explore multi-step reasoning in video question an-

swering. In Proceedings of the 1st Workshop and Challenge on Comprehensive Video

Understanding in the Wild, CoVieW’18, pages 5–5, New York, NY, USA. ACM.

[Hausknecht and Stone, 2015] Hausknecht, M. J. and Stone, P. (2015). Deep recur-

rent q-learning for partially observable mdps. CoRR, abs/1507.06527.

[Horgan et al., 2018] Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel,

M., van Hasselt, H., and Silver, D. (2018). Distributed prioritized experience

replay. CoRR, abs/1803.00933.

[Itti et al., 1998] Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based

visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 20(11):1254–1259.

[Kastaniotis et al., 2018] Kastaniotis, D., Ntinou, I., Tsourounis, D., Economou, G.,

and Fotopoulos, S. (2018). Attention-aware generative adversarial networks

(ata-gans). CoRR, abs/1802.09070.

[Kay et al., 2017] Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vi-

jayanarasimhan, S., Viola, F., Green, T., Back, T., Natsev, P., Suleyman, M.,

and Zisserman, A. (2017). The kinetics human action video dataset. CoRR,

abs/1705.06950.

[Mnih et al., 2014] Mnih, V., Heess, N., Graves, A., and Kavukcuoglu, K. (2014).

Recurrent models of visual attention. CoRR, abs/1406.6247.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,

I., Wierstra, D., and Riedmiller, M. (2013). Playing atari with deep reinforcement

learning. cite arxiv:1312.5602Comment: NIPS Deep Learning Workshop 2013.

Bibliography 55

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,

J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,

G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,

Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control through

deep reinforcement learning. Nature, 518(7540):529–533.

[Oh et al., 2016] Oh, J., Chockalingam, V., Singh, S. P., and Lee, H. (2016). Control

of memory, active perception, and action in minecraft. CoRR, abs/1605.09128.

[Schulman et al., 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,

and Klimov, O. (2017). Proximal policy optimization algorithms. CoRR,

abs/1707.06347.

[Shi et al., 2018] Shi, J., Zhang, H., and Li, J. (2018). Explainable and explicit visual

reasoning over scene graphs. CoRR, abs/1812.01855.

[Sigurdsson et al., 2016] Sigurdsson, G. A., Varol, G., Wang, X., Farhadi, A.,

Laptev, I., and Gupta, A. (2016). Hollywood in homes: Crowdsourcing data

collection for activity understanding. CoRR, abs/1604.01753.

[Sorokin et al., 2015] Sorokin, I., Seleznev, A., Pavlov, M., Fedorov, A., and Ignat-

eva, A. (2015). Deep attention recurrent q-network. CoRR, abs/1512.01693.

[Sutton et al., 2000] Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,

Y. (2000). Policy gradient methods for reinforcement learning with function

approximation. In Advances in neural information processing systems, pages 1057–

1063.

[Wang et al., 2017] Wang, X., Girshick, R. B., Gupta, A., and He, K. (2017). Non-

local neural networks. CoRR, abs/1711.07971.

56 Bibliography

[Wang et al., 2015] Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M.,

and de Freitas, N. (2015). Dueling network architectures for deep reinforcement

learning. cite arxiv:1511.06581Comment: 15 pages, 5 figures, and 5 tables.

[Wu et al., 2017] Wu, Y., Mansimov, E., Grosse, R. B., Liao, S., and Ba, J. (2017).

Scalable trust-region method for deep reinforcement learning using kronecker-

factored approximation. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,

H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural

Information Processing Systems 30, pages 5279–5288. Curran Associates, Inc.

[Xu et al., 2017] Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., and

He, X. (2017). Attngan: Fine-grained text to image generation with attentional

generative adversarial networks. CoRR, abs/1711.10485.

[Yuezhang et al., 2018] Yuezhang, L., Zhang, R., and Ballard, D. H. (2018). An

initial attempt of combining visual selective attention with deep reinforcement

learning. CoRR, abs/1811.04407.

[Zhang et al., 2018] Zhang, R., Liu, Z., Zhang, L., Whritner, J. A., Muller, K. S.,

Hayhoe, M. M., and Ballard, D. H. (2018). AGIL: learning attention from human

for visuomotor tasks. CoRR, abs/1806.03960.

[Zhao and Zhang, 2018] Zhao, S. and Zhang, Z. (2018). Attention-via-attention

neural machine translation.

CHAPTER 4
Unsupervised rule discovery with

autonomous agents in visually complex

environments

The work contained in the chapter is based upon work that was partially spon-

sored by an industry partner, wherein publication has not been pursued as a result

of the sponsorship.

57

58
Chapter 4. Unsupervised rule discovery with autonomous agents in visually complex

environments

Abstract

While modern deep reinforcement learning has produced outstanding im-

provements over previous handcrafted agents in many fields, this has largely

come at the cost of explainability. This has created areas of concern around the

deployment of these algorithms, especially in fields which require an explanation

in conjunction with a decision. In this chapter we propose a novel approach to

extending the explainability of a deep reinforcement learning agent via state-action

trajectory clustering for rule extraction. Our approach is post hoc model agnostic

(pedagogic), and does not require the pre-existence of semantic labels. We evaluate

our formulation in visually complex environments from the Atari gaming suite

whilst simultaneously evaluating the impact of incorporating attention mecha-

nisms with the underlying neural policy. Through these experiments we can show

that not only are we able to detect the existence of rules without semantic labels

with our approach, but that the incorporation of attention mechanisms with the

convolutional layers of the network lead to improve rule discovery. Finally, we

extend our analysis by performing a visual inspection of the underlying policies

’focal attention’ by extending the Grad-CAM technique to work in a reinforcement

learning setting.

4.1. Introduction 59

4.1 Introduction

Explainability in artificial intelligence, or XAI as it is also known, is a growing

area of interest to many researchers. This is largely due to the ever-increasing

proliferation of deep learning techniques powering modern AI models. Unlike

traditional AI methods that were largely interpretable, deep learning models can

be much more difficult to interpret. Additionally, it is a lot easier to explain a small

or shallow model, than it is to explain a deep model. An example of this can be

demonstrated by considering a PID controller. We can model a PID controller as

a single layer neural network that has three neurons and is hand tuned (without

back-propagation). The controller is tuned such that the first neuron interacts with

the input signal (generally this is an error reading at time t) in a ’Proportional’

manner, the second in a manner which relates the signal and the time together,

’Integral’, and the third relates the change in signal over time, the ’Derivative’. A

model such as this is both simple and easily explainable from both a mathematical

level, and a semantic level. We can describe how the model works with a high-level

explanation confidently, whilst being mathematically assured that the outputs

of our hidden layer of neurons can only impact one single output neuron in a

manner that is both deterministic and completely defined. One may consider

this (albeit slightly stretched) hypothetical neural network PID model as a highly

interpretable and explainable AI model.

The question now becomes, what happens when we use back-propagation to

tune the model, and instead of one hidden layer we have one hundred? Addition-

ally, our hidden neurons are now made up of weights and biases (w + b), instead

of coefficients (kp, ki, kd). Our inputs too are more complicated, instead of a single

numerical value we have a multi-dimensional array of values. The problem very

60
Chapter 4. Unsupervised rule discovery with autonomous agents in visually complex

environments

quickly becomes infinitely large, as an adjustment to even a single input feature

may create large changes in a models output due to the flow on effects of different

activation’s in the network as a result of the changed input. This point in particular

has driven an entire field of research known as ’Adversarial Machine Learning’,

where researchers have investigated the resistance of popular deep learning mod-

els to single feature attacks. [Huang et al., 2011, Kurakin et al., 2016, Su et al., 2019].

From this we can also clearly see that even if we derive mathematical bounds for

each hidden neuron in a relatively constrained multi-layer neural network and

define which combinations of input features trigger positive activation’s, the vast

degree of interconnectedness of a deep neural network is just too complicated to

entirely grasp for a human at this level.

While XAI researchers have been devising methods to explain deep learning

models with varying approaches that tend to range from intrinsic model specific,

to post-hoc model agnostic methods [Vilone and Longo, 2020], the explainability

of reinforcement learning agents (with neural network policies) has received little

to no attention. Explainability of reinforcement learning, or XRL, contains all the

problems associated with XAI and then some. Unlike a standard object detector

or classifier which has been trained with ground truth labels and has no ability

to interact with its input, a RL agent must learn about its environment without

the guidance of an oracle signal, and its decisions often directly impact its future

inputs. Furthermore, the RL policy is optimised in a manner that is conditioned

upon the validity of the Markov assumption [Markov, 1957]. When an object

classifier identifies a dog in an image, one may conclude that this decision is due

to the combination of detected latent features. However, when a RL agent takes a

particular action, it may not be clear as to why it has decided to choose this action.

While it is true that the the output has been triggered by a combination of latent

4.1. Introduction 61

space features and activation’s, the reason of why is not so easy to answer. Is it

because the agent believes it will receive an immediate reward from this action? Or

is it because the agents value function believes that by doing so it will increase the

probability of receiving some future discounted reward? Additionally, what can

we tell about the agents understanding of the environment? For example, when

humans learn new skills or tasks, we build rule sets to govern how we should

apply these skills or accomplish these tasks. Does an RL agent also build a rule

set? And if so, what does this look like, and how can we tell?

To begin the process of understanding or explaining a RL agent, we believe

it is vital to be able to answer these types of questions. In this paper we focus

on investigating and answering the question of whether a RL agent is able to

learn rules which it can then apply in order to gain an advantage or receive

rewards from an environment with. Additionally, we investigate the impact recent

breakthroughs in RL architecture design impact rule discovery and provide a

visual analysis of how this impacts feature attention maps.

The contributions of this chapter are as follows.

• We provide a formal definition for the classification of learnt rules by au-

tonomous agents trained using deep reinforcement learning in visually

complex environments. Additionally, we demonstrate the existence and

application of such rules in trained polices.

• We provide an analysis of current state-of-the-art policy design choices that

implement attention mechanisms for reinforcement learning with respect to

rule discovery. We show that the addition of attention mechanisms with a

neural network policy results in increased rule discovery.

• We provide visualisation of a policies feature attention map that sheds new

62
Chapter 4. Unsupervised rule discovery with autonomous agents in visually complex

environments

light on the policy learnt by an agent when equipped with non-local neu-

ral networks (attention mechanisms). This provides evidence of temporal

attention and improved spatial awareness in networks that incorporate a

self-attention mechanism over policies that do not.

4.2 Related Work

The two closest fields of work to our own would be policy summarisation, and

rule extraction. We provide a summary and comparison of related works from

these fields below.

4.2.1 Policy Summarisation

Policy summarisation methods seek to develop frameworks that can explain a

deep reinforcement learning (DRL) agent via a high-level explanation (typically

natural language). These frameworks are similar to the pedagogical rule extraction-

based approaches in that they generally seek to link the inputs to the model with

the outputs, while allowing for the internal neural network to be treated as a

black-box. However, unlike pedagogical rule extraction, they do not necessarily

seek to extract provable logical conditions such as ”if else” scenarios.

[Fukuchi et al., 2017] proposed the Instruction-based Behaviour Explanation

model (IBE). This model consists of two main parts. The first part learns a mapping

from (st, at) −→ st+1, while the second part takes a signal provided by a human

expert and learns a mapping from ∆st −→ m, where m is an explanation as pro-

vided by a human expert. Although this approach is technically post-hoc model

agnostic, due to the requirement that a human expert provide an explanation

and subsequent mapping for state transitions, the scalability of this approach is

4.2. Related Work 63

limited. Additionally, the highly constrained environment that this methodology

was evaluated upon (Lunar Lander [Brockman et al., 2016]) resulted in the human

expert providing a total of only three explanations. These consisted of ”Fall to the

left”, ”Fall straight down”, and ”Fall to the right”.

In a similar vein, [Hayes and Shah, 2017] proposed a framework that could

be used for both DRL and hard coded robots. The framework was designed to

increase the level of transparency regarding a robot’s behaviour in collaborative set-

tings. A user could issue a natural language query to receive a natural language re-

sponse that would explain the behaviour of the policy in question. Their approach

was designed to facilitate the operational goals outlined in [Vessey, 1985]. Their pro-

posed solution consisted of a composition of functions ” f = Compose summary ◦

Summarize attributes ◦Resolve states ◦ Identi f y question” [Hayes and Shah, 2017].

By using communicable predicates to associate states and actions with natural

language descriptors, they were then able to train a model via a Markov decision

process to model the domain and policy of the agent.

[Verma et al., 2018] proposed a framework called ”Programmatically Inter-

pretable Reinforcement Learning” (PIRL). This framework involves first training a

Deep Reinforcement Learning (DRL) agent to act as a guide for their ”Neurally

Directed Program Synthesis” algorithm as it searches for a programmatic policy

that can approximate the behaviour of the DRL agent. While the outcomes of this

approach were able to produce a policy, which was intrinsically more interpretable,

they were not able to match the level of performance of the guiding DRL agent.

Additionally, this approach requires a high level of knowledge about the environ-

ment and action space of the agent to craft a domain specific language capable of

bounding all possible interactions between the agent and the environment.

64
Chapter 4. Unsupervised rule discovery with autonomous agents in visually complex

environments

4.2.2 Rule Extraction

Pedagogical rule extraction is similar to that of policy summarisation in that it

aims to develop a mapping from input to output while treating the network in

between as a black box. However, pedagogical rule extraction methods attempt

to define ”if else” style relationships between the inputs and outputs. Works

published in this area have largely focused on relatively simple (generally single

layer) neural networks. An example of this is input-to-output through ’if-else’

mapping is Validity Interval Analysis (VI-Analysis) [Thrun, 1995], which seeks

to determine the interval ranges within input data which result in the same

output. These intervals form the bounding conditions for the discovered rules.

The idea of splitting rules according to discovered intervals in training data was

also used by [Craven and Shavlik, 1996] and [Augasta and Kathirvalavakumar,

2012]. However, practical applications of these approaches are severely limited

to networks that take as input simple structured data, and in their current forms

could not be applied to areas involving computer vision.

A decompositional approach to extracting rules from neural networks generally

works by evaluating the activation points at the neuron level of the network. Until

recently a lot of work in this field focused on simple, single layer neural networks

[Sato and Tsukimoto, 2001, Quinlan, 1993]. The first to extend this idea to a deep

neural network was [Zilke et al., 2016], who built upon the ideas proposed by [Sato

and Tsukimoto, 2001]. Their model, which they named DeepRED, used the C4.5

algorithm to extract decision trees for each class output of a network, before

processing every hidden layer in a descending order. Once rules are extracted for

each layer of the network, they are then merged together to form a rule set that

describes the relationship between input and output as it passes through each

4.3. Methods 65

hidden layer.

The first known work combining these two styles of approach was the Decision

Detection algorithm which was proposed by [Tickle et al., 1994]. It would first

identify dependencies between the inputs and outputs according to the neuron

activations within the network, before learning a symbolic representation in a

pedagogical manner. A similar model was also proposed by [Kamruzzaman

and Islam, 2010], which also identified dependencies between inputs and outputs

before generating pedagogical style rules. In particular, the authors proposed steep

sigmoid activation functions that in practice approximated step functions whilst

maintaining differentiable properties. This allowed for a simplified discretisation

process upon which ’if-else’ rules could be extracted.

While these approaches have all made significant contributions to the challenge

of extracting rules from a neural network, they all become impractical when

applied to the deep neural networks commonly in use today. Additionally, the

requirement for a simple and generally structured input is a very prohibitive factor

to applying these within computer vision scenario.

4.3 Methods

In this section we outline the visualisation techniques along with our proposed

definition for rule extraction. We train the reinforcement learning agents using the

same methodology and optimisation techniques as outlined in 3.3.

4.3.1 Visual Evaluation

As we are interested in developing more explainable deep reinforcement learning

agents, the ability to visualise what aspects of the inputs the agent is using to

66
Chapter 4. Unsupervised rule discovery with autonomous agents in visually complex

environments

make a decision is also important. We first considered the visualisation technique

proposed by [Greydanus et al., 2017] which involves blurring a part of the input

and evaluating the effect on policy performance in order to determine attention

at that location. However, as this would be computationally exhaustive to imple-

ment with a sequential series of input frames stacked together, we implement a

Grad-cam [Selvaraju et al., 2016] inspired approach similar to [Weitkamp et al.,

2019]. We produce action-discriminative activation maps using the gradients

back-propagated with respect to the chosen action. Global average pooling is

performed over the gradients to determine the neuron importance weights, αa
k of

action a, for the last activation layer k in our network.

αa
k =

global average pooling︷ ︸︸ ︷
1
Z ∑

i
∑

j

∂ha

∂LK
ij︸︷︷︸

gradients

(4.1)

Where ha is the score for action a prior to the softmax. The gradients are then

element-wise multiplied by the forward pass activation’s of the final activation

layer Lk before passing through a ReLU activation, revealing La, the weighted

action activation map.

La = ReLU(
K

∑
k=1

αa
kLk) (4.2)

This activation map is then bilinearly extrapolated to the size of the input frame

and overlaid producing accurate indications of visual attention with respect to

decision making.

4.3. Methods 67

4.3.2 Rule Definition and Extraction

While many previous works have set about defining a rule as a natural language

conditional argument in static classification settings, we believe that this merely

provides a semantic label for a rule in a reinforcement learning setting. Due to the

temporal dimension involved with reinforcement learning, an agent must learn

that its actions at time t in state st directly effect the probabilities of st+1. From this

we can see that if we look at this from the perspective of an ”if else” point of view,

we would be essentially saying that if this state, then take this action. However,

our current state is the result of our previous action, which itself was predicated

on our previous state. As we can see, in a dynamic temporal environment what we

are defining as a rule is a set of consistently correlated state-action pair trajectories

that lead to a desirable outcome. We can define this as,

Rule = Corr(τs, τa) (4.3)

Where τs and τa are a trajectory of states and actions respectively. This defi-

nition allows us to evaluate the emergence of learnt rules in a DRL agent, which

operates in visually complex environments. This was previously unattainable

with prior methodologies, in part due to their abstraction of a rule to a semantic

label.

While we have modelled this problem so far as a fully observable Markov

Decision Process, the reality is slightly different. A DRL agent that is fed a stack

of images as its input needs to learn where to look both spatially and temporally

to extract the information that is known as the ’state’. As there is currently no

way to accurately know if an agent has processed this information sufficiently to

extract all the information that describes the entire ’state’ of the environment, the

68
Chapter 4. Unsupervised rule discovery with autonomous agents in visually complex

environments

more accurate description here is that the agent processes the input to produce

an observation of the state. As a result, two similar inputs may lead the agent to

encode two very different observations, depending upon where the agent attends

to the input. For this reason, we take the final layer before the logit layer as our

observation of the state and use that in our analysis.

To evaluate the existence of learnt rules we sample observation and action

trajectories of length m from a trained DRL agent and use k-means clustering on

each independently to detect similarities over time. By using the elbow method,

we are able to determine the number of clusters for our observations and then

use the same number for our action clusters. We then use t-SNE dimensionality

reduction on the observations to reduce them from 512 dimensions to two. This

allows us to visualise the clusters found via our k-means clustering. In order

to determine a correlation between the observations and actions we label each

observation trajectory according to the cluster it has been assigned, and label each

corresponding action trajectory with the same colour. This approach allows us to

see not only how similar different observation trajectories are to each other, but

also how similar their corresponding action trajectories are as well.

4.4 Experiments

4.4.1 Environments

We evaluate our approach in the Arcade Learning Environment [Bellemare et al.,

2013], a purpose-built suite of discrete-time environments for bench-marking

reinforcement learning algorithms. Specifically, we test our theory in two distinct

environments. The first being ’Demon Attack’, which involves a high level of

stochastic behaviour from enemy agents in the environment. The second is ’Ms

4.4. Experiments 69

Pacman’, which contrary to the first environment contains enemies that operate

in a much more deterministic manner. We observe the accepted standards set

by [Mnih et al., 2015] with respect to processing of the observations obtained from

the selected environments, which we detail below.

Pre-processing

As the environments are discrete-time, a new observation is only returned after

an action (decided by π(st)) is taken by the agent. The observation in question is

a 210x160 pixel RGB image of the environment. This observation is processed to

represent the state of the environment by the following process.

• The observation is cropped from 210x160 to 84x84 pixels

• The observation is then converted from RGB to Gray-scale

• If this is the first observation from the environment, it is copied four times

and stacked together to create an input tensor of size 84x84x4

• After four time-steps (for which the previously chosen action is repeated), a

new observation is returned, cropped, converted, and stacked on the end of

tensor. The oldest observation is removed from the tensor, maintaining the

84x84x4 shape.

As the Arcade Learning Environment is an emulator for interfacing with emu-

lated Atari 2600 games, it is important to consider the memory limits of the original

system. In particular, games would often alternate the display of certain features

on and off, which although not discernible to the human eye, is discernible to a

time-discrete agent and can potentially create a partially observable environment.

In order to minimise this from happening, when returning a new observation

70
Chapter 4. Unsupervised rule discovery with autonomous agents in visually complex

environments

(Ot), it is compared with the previous observation (Ot−1), with the observation

containing the maximum amount of information chosen as the observation to

return.

4.4.2 Model Architecture

We test our definition and theory of a rule on two different model architectures.

The first being the standard architecture as originally proposed by [Mnih et al.,

2015]. This architecture consists of a total of three convolutional layers followed by

a few fully connected layers. As we are using an Actor-Critic model our network

has an Actor head and a Critic head. The second architecture we test is the Self-

Attending Network (SAN) as proposed by [Manchin et al., 2019]. The SAN model

incorporates a form of self-attention known as a non-local neural network [Wang

et al., 2017] between the first two convolutional layers of the model.

As shown in figure 3.1, the input (consisting of four grayscale observations

sequentially stacked together) are fed into a convolutional layer H1. The output of

H1 is then feed into the self-attention mechanism where,

• F1, F2, and G1 are 1x1 convolutional layers with half the number of filters as

H1.

• The outputs of F1 and F2 are matrix multiplied together before passing

through a So f tmax activation.

• This output is then matrix multiplied with the output of G1.

• Y1 is a 1x1 convolutional layer with the same number of filters as H1

• The output is added back into the original output of H1 before passing into

H2.

4.4. Experiments 71

The output then passes through the convolutional layers H2 and H3 respec-

tively, before being flattened and passed through fully connected layers.

4.4.3 Results

Rule Extraction

Having defined a rule previously in equation 4.3 as the consistent correlation

between a trajectory of states and actions, we can now set about searching for the

existence of these rules. Firstly, we gather state and action recordings from each

DRL agent in their respective environments. From there we can create the state

and action trajectories by concatenating a total of ten timesteps together. K-means

clustering was then performed over the state trajectories to obtain the labels. The

state trajectories and the action trajectories were then plotted using t-SNE, with

both plots coloured according to the labels from the K-means clustering of the

states. With this approach, and under this definition of a rule, the existence of such

a rule would be evident if clear clusters are apparent and share the same label

across both state and action trajectory plots.

From these plots (figures 4.1, 4.2, 4.3, and 4.4) we are able to observe a few

interesting patterns. Firstly, both DRL agents in the Ms Pacman environment

appeared to have been able to learn tighter more constrained rules than the agents

operating in the Demon Attack environment. We believe this may be due to

the difference in nature of both environments, specifically the level of stochastic

behaviour displayed by the respective enemies. However, it is interesting to note

that the state trajectories from the Demon Attack environment appear to form

tighter clusters than that of the state trajectories from the Ms Pacman environment.

Again, we believe this is due to the nature of each environment. In Demon Attack,

72
Chapter 4. Unsupervised rule discovery with autonomous agents in visually complex

environments

Figure 4.1: t-SNE plot of Demon Attack state trajectories (left), and action trajec-
tories (right) trained using the baseline approach (PPO). Labelled according to
k-means clustering performed on state trajectories.

Figure 4.2: t-SNE plot of Demon Attack state trajectories (left), and action trajecto-
ries (right) trained using with self-attention (SAN). Labelled according to k-means
clustering performed on state trajectories.

4.4. Experiments 73

Figure 4.3: t-SNE plot of MsPacman state trajectories (left), and action trajectories
(right) trained using the baseline approach (PPO). Labelled according to k-means
clustering performed on state trajectories.

Figure 4.4: t-SNE plot of MsPacman state trajectories (left), and action trajectories
(right) trained using with self-attention (SAN). Labelled according to k-means
clustering performed on state trajectories.

74
Chapter 4. Unsupervised rule discovery with autonomous agents in visually complex

environments

as the agent progresses through the game it encounters new types of enemies.

However, in Ms Pacman the enemies remain constant throughout. Additionally,

no trained agent on Ms Pacman was ever able to complete the first two levels,

which meant that the agents never encountered the change in level design that

occurs on level three.

Now we investigate the impact of architecture design by comparing the results

of a standard implementation (PPO) with the SAN model for each environment.

Looking at figures 4.1 and 4.2 it is clear that the SAN model was able to distinguish

clearer differences between states as it progressed through the game. However,

both action trajectory plots appear quite noisy. We believe that this is due to the

fact that although the enemies are changing in appearance as the game progresses,

the strategy required to kill these enemies changes only slightly.

With respect to the Ms Pacman environment, we are able to identify clear corre-

lations between state and action trajectories for both the standard PPO model and

the SAN model. This is observable via the correlated state and action trajectories

in figures 4.3 and 4.4. While both methods do ultimately learn rules which we are

able to observe, the SAN model produces a more clearly defined set, in comparison

to the standard PPO model.

Visual Analysis

By comparing the visualisation results of the baseline PPO agent against the SAN

implementation, a number of insights were produced. These insights include an

increased ability to track and attend to multiple targets, a better understanding of

spatial information from the state input, and temporal attention in situations of

partial visibility being displayed by the SAN agent and not seen in the baseline.

Additionally, these situations of partial visibility change the underlying structure

4.4. Experiments 75

of the problem from a Fully Observable Markov Decision Process (FOMDP), to

a Partially Observable Markov Decision Process (POMDP). This significantly

increase the difficulty of the problem the agent is trying to solve.

Figure 4.8a shows the baseline PPO agent paying a very small amount of

attention to its surrounding area. While Figure 4.8b shows the SAN agent demon-

strating attention of its nearby surroundings. It is also clear that the SAN agent is

attending to the other side of the map, where enemies can possibly appear from.

This level of spatial understanding was common for the SAN agent, however, was

not observed from the baseline agent. Agents trained with SAN also show a higher

level of ability when it comes to tracking multiple enemies or points of interest.

Figure 4.6 shows the ability of agents trained using SAN to focus on multiple

enemies in different environments. This is crucial for any agent to succeed, as was

illustrated by [Greydanus et al., 2017] who showed examples of agents failing to

attend to nearby enemies resulting in poor performance.

Referring to Figure 4.5, which shows a sequential time series of four frames, it

can be seen that the enemy located in the center bottom of the map is only visible

in frames (b) and (c). However, in frame (d) the agent attends to the spot where

the enemy was last visible. As the agent has all four of the frames as input it can

see the enemy in that location, just not on that frame. This is a trait that was only

observed in agents trained using self-attention and is the first visualisations of

temporal attention of a RL agent. Importantly the ability to ’look through time’ for

information is a big advantage in situations of partial observability.

It should be noted that the missing enemies in MsPacman were a surprise to the

authors. No other game tested showed any sign of missing information yet was a

clear and consistent problem in MsPacman. Best practices were followed with all

implementations using the standard ’MaxandSkip’ environment wrapper, unal-

76
Chapter 4. Unsupervised rule discovery with autonomous agents in visually complex

environments

(a) (b)

(c) (d)

Figure 4.5: Here we can see that the agent is able to attend to multiple targets along
with using temporal information to compensate for the missing enemy in the most
recent frame. The attention also appears to bounce around, as the agent constantly
searches the map. As the agent only has temporal information relating to four
time steps, this is reasonable behaviour. The hard focus in the top corner is likely
related to the fact that the ’super candy’ appears in this spot, and like the enemies
displays a blinking pattern. As the collecting of this reward has particular benefits
to the agent it is not surprising to find the agent attending to this spot. Areas
attended to by the agent for decision making are shown by adding the information
from the activation map to the red channel of the image. This appears as either
red or cyan and allows for the information in these areas to remain visible to the
reader.

4.4. Experiments 77

(a) (b)

(c) (d)

Figure 4.6: Examples of a trained SAN agent focusing on multiple enemies in
different environments. a,b) Demon Attack. c,d) MsPacman. Areas attended to
by the agent for decision making are shown by adding the information from the
activation map to the red channel of the image. This appears as either red or cyan,
and allows for the information in these areas to remain visible to the reader.

78
Chapter 4. Unsupervised rule discovery with autonomous agents in visually complex

environments

(a) (b)

(c) (d)

Figure 4.7: Examples of disappearing enemies in MsPacman. Enemies are located
in the bottom right corner and appear sporadic. This clearly demonstrates the
input constitutes a POMDP Areas attended to by the agent for decision making
are shown by adding the information from the activation map to the red channel
of the image. This appears as either red or cyan and allows for the information in
these areas to remain visible to the reader.

4.4. Experiments 79

(a) PPO (b) SAN

Figure 4.8: a) Baseline PPO agent failing to attend to areas of potential interest.
b) SAN agent attending to nearby pathways, along with demonstrating spatial
awareness by attending to the potential entry point on the other side of the map.
This awareness was commonly seen in agents with self-attention. Areas attended
to by the agent for decision making are shown by adding the information from
the activation map to the red channel of the image. This appears as either red or
cyan and allows for the information in these areas to remain visible to the reader.

tered as supplied from OpenAI ’baselines’ [Dhariwal et al., 2017]. This wrapper is

designed to ensure the environment conforms as a FOMDP, however it is clear that

in this instance the environment is a POMDP. As Atari 2600 games have a tendency

to display blinking sprites, due to the memory availabilities of technology at the

time, the ’MaxandSkip’ environment wrapper essentially compares two frames,

separated by a single time step, and choose the one with the most information.

However, it would appear that in the case of MsPacman, different enemies are

blinking on and off during different frames. This would appear to result in the

environment wrapper choosing the best of a bad situation.

Interestingly MsPacman is one of the few environments left where reinforce-

ment learning has not yielded an agent capable of surpassing the average human

level of performance. It is possible that this is due to the POMDP nature of the

environment. Observations towards this can be seen in Fig. 4.7 where enemies

80
Chapter 4. Unsupervised rule discovery with autonomous agents in visually complex

environments

appear to jump sporadically but are in fact different enemies blinking on and off

at different frames. We also observed scenarios where enemies disappeared for a

total of eight frames prior to the agent making contact, resulting in the death of

the agent. As the agent only takes in a history of four frames, it was impossible for

the agent, even with temporal attention to avoid this situation.

4.5 Conclusion and Future Work

The problem of extracting rules from simple neural networks has been studied

from a pedagogical, decompositional, and eclectic viewpoint. However, study into

deep neural networks, and even more specifically, deep reinforcement learning

agents has been limited or non-existent. In this chapter we proposed a mathe-

matical definition for a rule that transcends the semantics of a natural language

label often employed to describe rules. We evaluate our definition by evaluating it

against DRL agents across multiple visually complex environments, something

previously not possible with prior definition and methods. Additionally, we

test and show that DRL agents that incorporate attention mechanisms into their

underlying network architecture can learn more defined rule sets.

The results from these experiments reveal interesting questions for future work

to answer. In particular, although our method was able to determine the existence

of learnt rules, it is not able to convert them into an explainable natural language

form. While previous work in this area has involved obtaining human provided

labels for such things, an interesting question would be if an explanation could be

provided without a human in the loop.

Bibliography

[Augasta and Kathirvalavakumar, 2012] Augasta, M. G. and Kathirvalavakumar,

T. (2012). Reverse engineering the neural networks for rule extraction in classifi-

cation problems. Neural processing letters, 35(2):131–150.

[Bellemare et al., 2013] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

(2013). The arcade learning environment: An evaluation platform for general

agents. Journal of Artificial Intelligence Research, 47:253–279.

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

Schulman, J., Tang, J., and Zaremba, W. (2016). Openai gym. arXiv preprint

arXiv:1606.01540.

[Craven and Shavlik, 1996] Craven, M. and Shavlik, J. (1996). Extracting tree-

structured representations of trained networks. In Touretzky, D., Mozer, M. C.,

and Hasselmo, M., editors, Advances in Neural Information Processing Systems,

volume 8. MIT Press.

[Dhariwal et al., 2017] Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,

M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and Zhokhov, P. (2017). Openai

baselines. https://github.com/openai/baselines.

81

https://github.com/openai/baselines

82 Bibliography

[Fukuchi et al., 2017] Fukuchi, Y., Osawa, M., Yamakawa, H., and Imai, M. (2017).

Autonomous self-explanation of behavior for interactive reinforcement learning

agents. Proceedings of the 5th International Conference on Human Agent Interaction.

[Greydanus et al., 2017] Greydanus, S., Koul, A., Dodge, J., and Fern, A. (2017).

Visualizing and understanding atari agents. CoRR, abs/1711.00138.

[Hayes and Shah, 2017] Hayes, B. and Shah, J. A. (2017). Improving robot con-

troller transparency through autonomous policy explanation. In 2017 12th

ACM/IEEE International Conference on Human-Robot Interaction (HRI, pages 303–

312.

[Huang et al., 2011] Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., and

Tygar, J. D. (2011). Adversarial machine learning. In Proceedings of the 4th ACM

workshop on Security and artificial intelligence, pages 43–58.

[Kamruzzaman and Islam, 2010] Kamruzzaman, S. M. and Islam, M. M. (2010).

Extraction of symbolic rules from artificial neural networks. CoRR,

abs/1009.4570.

[Kurakin et al., 2016] Kurakin, A., Goodfellow, I., and Bengio, S. (2016). Adver-

sarial machine learning at scale. arXiv preprint arXiv:1611.01236.

[Manchin et al., 2019] Manchin, A., Abbasnejad, E., and van den Hengel, A. (2019).

Reinforcement learning with attention that works: A self-supervised approach.

In Gedeon, T., Wong, K. W., and Lee, M., editors, Neural Information Processing,

pages 223–230, Cham. Springer International Publishing.

[Markov, 1957] Markov, A. A. (1957). Theory of algorithms. Journal of Symbolic

Logic, 22(1):77–79.

Bibliography 83

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,

J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,

G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,

Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control through

deep reinforcement learning. Nature, 518(7540):529–533.

[Quinlan, 1993] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

[Sato and Tsukimoto, 2001] Sato, M. and Tsukimoto, H. (2001). Rule extraction

from neural networks via decision tree induction. In IJCNN’01. International

Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222), volume 3,

pages 1870–1875 vol.3.

[Selvaraju et al., 2016] Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M.,

Parikh, D., and Batra, D. (2016). Grad-cam: Why did you say that? vi-

sual explanations from deep networks via gradient-based localization. CoRR,

abs/1610.02391.

[Su et al., 2019] Su, J., Vargas, D. V., and Sakurai, K. (2019). One pixel attack for

fooling deep neural networks. IEEE Transactions on Evolutionary Computation,

23(5):828–841.

[Thrun, 1995] Thrun, S. (1995). Extracting rules from artificial neural networks

with distributed representations. In Tesauro, G., Touretzky, D., and Leen, T.,

editors, Advances in Neural Information Processing Systems (NIPS) 7, Cambridge,

MA. MIT Press.

[Tickle et al., 1994] Tickle, A. B., Orlowski, M., and Diederich, J. (1994). Dedec:

decision detection by rule extraction from neural networks. QUT NRC.

84 Bibliography

[Verma et al., 2018] Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri, S.

(2018). Programmatically interpretable reinforcement learning. In ICML, pages

5052–5061.

[Vessey, 1985] Vessey, I. (1985). Expertise in debugging computer programs: A

process analysis. Int. J. Man Mach. Stud., 23:459–494.

[Vilone and Longo, 2020] Vilone, G. and Longo, L. (2020). Explainable artificial

intelligence: a systematic review. arXiv preprint arXiv:2006.00093.

[Wang et al., 2017] Wang, X., Girshick, R. B., Gupta, A., and He, K. (2017). Non-

local neural networks. CoRR, abs/1711.07971.

[Weitkamp et al., 2019] Weitkamp, L., van der Pol, E., and Akata, Z. (2019). Vi-

sual rationalizations in deep reinforcement learning for atari games. CoRR,

abs/1902.00566.

[Zilke et al., 2016] Zilke, J. R., Loza Mencı́a, E., and Janssen, F. (2016). Deepred –

rule extraction from deep neural networks. In Calders, T., Ceci, M., and Malerba,

D., editors, Discovery Science, pages 457–473, Cham. Springer International

Publishing.

CHAPTER 5
Deep Inductive Reasoning for Video to

Program Translation

The work contained in this chapter is in submission as the following paper:

Manchin, A., Sherrah, J., Wu, Q., Van den Hengel, A., Deep Inductive Reason-

ing for Video to Program. In Submission CVPR2022

85

Statement of Authorship
Title of Paper

Publication Status Published Accepted for Publication

Submitted for Publication
Unpublished and Unsubmitted w ork w ritten in
manuscript style

Publication Details

Principal Author

Name of Principal Author (Candidate)

Contribution to the Paper

Overall percentage (%)

Certification: This paper reports on original research I conducted during the period of my Higher Degree by
Research candidature and is not subject to any obligations or contractual agreements with a
third party that would constrain its inclusion in this thesis. I am the primary author of this paper.

Date

Co-Author Contributions
By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

Name of Co-Author

Contribution to the Paper

Date

Name of Co-Author

Contribution to the Paper

Date

Please cut and paste additional co-author panels here as required. uththththorororor ppppananananels here as required.

226

Program Generation from Diverse Video Demonstrations

X

Anthony Manchin

- Development of the main idea of the paper
- Implementing and conducting the experiments
- Writing and revising of the paper

80%

Jamie Sherrah

Qi Wu

- Help with the development of the idea
- Help writing, revision, and discussions

- Help with the development of the idea and discussions

20 Jul 2022

20 July 2022

Manchin, A., Sherrah, J., Wu, Q., Van den Hengel, A., Deep Inductive
Reasoning for Video to Program. In Submission BMVC2022

Anton van den Hengel

- Discussions regrading the ideas and revisions

26 Jul 2022

87

Abstract

The ability to use inductive reasoning to extract general rules from multiple

observations is a vital indicator of intelligence. As humans, we use this ability to

not only interpret the world around us, but also to predict the outcomes of the

various interactions we experience. Generalising over multiple observations is a

task that has historically presented difficulties for machines to grasp, especially

when requiring computer vision. In this paper, we propose a model that can

extract general rules from video demonstrations by simultaneously performing

summarisation and translation. Our approach differs from prior works by framing

the problem as a multi-sequence-to-sequence task, wherein summarisation is learnt

by the model. This allows our model to utilise edge cases that would otherwise be

suppressed or discarded by traditional summarisation techniques. Additionally,

we show that our approach can handle noisy specifications without the need for

additional filtering methods. We evaluate our model by synthesising programs

from video demonstrations in the Vizdoom environment achieving state-of-the-art

results with an increase of 11.75% program accuracy on prior works.

88 Chapter 5. Deep Inductive Reasoning for Video to Program Translation

5.1 Introduction

Inductive reasoning involves using logic to extract general rules from multiple

observations and is a skill that is widely viewed as an indicator of intelligence.

Humans (and many species of animals) are known to possess the ability to ob-

serve demonstrations and subsequently use inductive reasoning to acquire new

knowledge and skills without requiring explicit instruction. An example of this

behaviour would be children learning to play video games, wherein one is able to

observe another player, and learn the rules of the game without having to play the

game themselves.

Additionally, children are also able to abstract and generalise information they

have induced from one video game and apply that same logical rule set to a

completely different virtual domain. An example of this may be that someone

observes that a red cross symbol indicates a health related bonus in one game,

and subsequently uses that information to infer that similar symbols in a different

game are also related to player health. Implying general rules from complex

observations however has proven to be a difficult task for machines. In-fact until

recently, very little work had been published on extracting general rules from

a diverse range of visual observations. Advances in both computer vision and

machine learning techniques however are changing this.

To help excel the study of inductive reasoning with artificial intelligent sys-

tems we seek to create a model that can generate executable code by inferring

the specifications from multiple visual demonstrations. The goal of creating a

model capable of generating executable code has long been a dream of artificial

intelligence researchers [Waldinger and Lee, 1969, Gulwani, 2011]. However, until

recently research has primarily focused on the generation of code, given the desired

5.1. Introduction 89

Figure 5.1: An illustration of the task of visual program synthesis on the game
’Genshin Impact’. Humans can infer a general rule set from simply observing
examples of game play. The task of visual program synthesis involves training
a machine that can synthesis a program that correctly captures a rule set simply
from watching visual demonstrations of agent.

specifications [Jha et al., 2010, Alur et al., 2013]. However, the problem becomes

much more difficult when the model is also required to infer the specifications

for itself. This task, originally proposed by [Sun et al., 2018], presents a unique

challenge as it requires a model to accurately detect the relevant semantics of a

demonstration, understand the relationships between demonstrations, define a

set of specifications that captures this information, and finally generate a program

that satisfies these specifications.

Previous approaches [Sun et al., 2018, Duan et al., 2019] have considered fram-

ing this as a sequence-to-sequence task and have utilised the once popular recur-

rent neural network architecture of long short term memory units as the backbone

of their models. However, these approaches were restricted by the limitations

of these recurrent based models to handle long sequences. This limiting factor

resulted in both [Sun et al., 2018, Duan et al., 2019] using summarised latent space

representations, which undoubtedly limited their models ability to completely

90 Chapter 5. Deep Inductive Reasoning for Video to Program Translation

capture the entire specification constraints. Meanwhile [Dang-Nhu, 2020] sought

to use a rule-based solver to generate the desired code, which receives its spec-

ifications from a neural model. As rule-based solvers are very susceptible to

noise, [Dang-Nhu, 2020] proposed using a dynamic filtering method to de-noise

specifications.

To address these limitations, we propose ’video-to-text transfer transformer’

(VT4). Taking inspiration from the works of [Raffel et al., 2019,Sun et al., 2019a] we

leverage the ability of attention based transformer networks to handle long and

disjointed sequences, removing the need to summarise features. Specifically, we

formulate a ’visual language’ which encapsulates the relevant semantic informa-

tion from each demonstration. We then simultaneously feed all the demonstrations

(represented in a visual language) into our encoder-decoder transformer network

which learns to summarise and translate the demonstrations into an executable

program. Additionally we show that our approach is able to handle noisy spec-

ifications without the need for additional filtering methods. We evaluate our

model in a partially observable virtual environment (Vizdoom) [Kempka et al.,

2016] and demonstrate that our approach is able achieve state-of-the-art results

by out-performing previous summarisation and rule-based approaches. We ob-

serve a relative increase of 15.45% and 11.75% over summarisation and rule-based

approaches respectively.

Contributions

• We present video-to-text transfer transformer for the task of executable

program generation from video demonstrations. Addressing the limitations

of previous summarisation and rule-based approaches, VT4 can generate

programs from a long, disjointed set of demonstrations without the need for

5.2. Literature Review 91

a summarised representation of the average demonstration.

• We evaluate the effects of noisy specifications on program accuracy and

show that our model is robust to significant levels of erroneous detections.

State-of-the-art results were achieved with a 10% error rate for perception

primitives. Significantly out-performing previous rule-based models which

strongly rely on dynamic filter for noise reduction.

• We evaluate our model’s ability to generate programs from partially ob-

servable, visually complex demonstrations. We achieve increases of 9% and

11.75% for exact and aliased program accuracy relative to previous state-of-

the-art. This translates to absolute increases of 5.3% and 7.7% respectively

and represents the largest single increase in performance on this task to date.

5.2 Literature Review

The task of video understanding [Lin et al., 2019, Wu et al., 2019] can be viewed as

a subset task of program generation from video demonstrations (PGfVD). As with

PGfVD, the understanding of videos requires the ability to extract and understand

the correlations between events and features. This is often achieved through

models that can perform tasks such as action and perception recognition [Kay

et al., 2017]. However, unlike PGfVD, video understanding aims to describe what

has been observed in a single demonstration, not why something has happened.

For the most part, this is a straightforward translation task that can benefit from a

large amount of acceptable ambiguity [Dong et al., 2019]. This is largely because for

the task of video translation, multiple captions may be appropriate and considered

semantically correct. However, for the task of PGfVD, the video demonstration

may only display a single component of the overall rule set that one is trying to

92 Chapter 5. Deep Inductive Reasoning for Video to Program Translation

learn. Additionally, the task of PGfVD has much lower levels of ambiguity, as

slight changes to a program can result in greatly different outcomes.

5.2.1 Program Induction

The task of extracting algorithmic representations from observations is known as

program induction. Various works have contributed to this field with a diverse

set of approaches aimed at solving this problem. [Graves et al., 2014, Kaiser and

Sutskever, 2016, Kurach et al., 2016] use memory based approaches such as Turing

machines while [Ling et al., 2017] adopt end-to-end networks to solve and explain

algebraic word problems. However, in contrast to these approaches, we aim to

generate a fully defined executable program in a domain specific language.

5.2.2 Intrinsic Motivation

The study of intrinsic motivation, or sometimes known as curiosity, in the field of

reinforcement learning can also be seen as related work. The goal of intrinsic moti-

vation is for an agent to learn about the environment in such a way as to actively

seek out new and novel scenarios to explore. To do this the agent attempts to learn

a mapping from states to actions in order to predict the novelty of taking certain

actions at different states. Works from [Burda et al., 2018a, Burda et al., 2018b]

have shown that learning this mapping can be beneficial to the performance of an

agent, and its ability to generalise over multiple domains. These results would

infer that intrinsic motivation helps the policy to learn general rules regarding the

dynamics of the environment, or simple cause and effect relationships.

5.2. Literature Review 93

5.2.3 Program Synthesis

The aim of program synthesis is to generate a program that captures the under-

lying logic of given examples. Typically, this task has restricted the programs to

simple domain specific languages and has involved producing an abstract syn-

tax tree. Examples of this work include [Parisotto et al., 2016], who proposed

using Recursive-Reverse-Recursive neural networks (R3NN) for string transfor-

mation. Other work has paired neural models with search algorithms and rule

based solvers [Balog et al., 2016, Dang-Nhu, 2020]. Additionally reinforcement

learning has also been investigated as a possible way to solve the task of program

synthesis [Bunel et al., 2018, Simmons-Edler et al., 2018].

However, most of the work in this field does not consider the task of synthe-

sising programs from visual observations. [Sun et al., 2018] identified this and

proposed the task of generating a program from observing a diverse range of

visual demonstrations. To achieve this goal [Sun et al., 2018] proposed using

a sequence-to-sequence LSTM model. Their model consisted of convolutional

neural network which fed an LSTM network encoded video frames. [Sun et al.,

2018] introduced a combination of average pooling and a relational network to

summarise the encoded demonstrations, which were subsequently passed to a

LSTM decoder. [Duan et al., 2019] aimed to improve the computational efficiency

of [Sun et al., 2018] approach by introducing a deviation-pooling summariser to

replace the relation network. Additionally, [Duan et al., 2019] proposed using

multiple decoding layers to refine the accuracy of the generated program which

ultimately resulted in a slight improvement in performance.

[Dang-Nhu, 2020] took a different approach to this problem, proposing a

hybrid model which combined a neural network to extract specifications and

94 Chapter 5. Deep Inductive Reasoning for Video to Program Translation

a rule-based solver to generate the program. In particular, [Dang-Nhu, 2020]

proposed using a convolutional neural network to encode the video frames, and

two different decoder layers to predict the perceptions and actions observed in the

videos. [Dang-Nhu, 2020] correctly identifies the sensitivity of rule-based solvers

to input specification noise [Devlin et al., 2017], and proposed a dynamic filtering

method to ignore certain demonstrations based on the confidence level of the

neural networks predictions. The inclusion of a dynamic filter allowed [Dang-Nhu,

2020] to surpass the performance of previous LSTM based program generators.

5.3 Method

This section first presents a formal definition for the task of generating programs

from video demonstrations, as originally proposed by [Sun et al., 2018], before

describing the proposed VT4 model, and our contributions in detail.

5.3.1 Program Generation

The goal of generating a program given k video demonstration can be considered

a multi-sequence-to-sequence task. A domain specific language (DSL) is used to

define a program which consists of perception primitives, action primitives and

control flow statements. Action and perception primitives define the way an agent

can interact with and perceive the environment respectively. The control flow

statements of the DSL language include while loops, repeat and if/else statements,

and simple logic operations.

5.3. Method 95

Program

A program π is defined as a deterministic function, which given an input of state

s ∈ S at time t, returns an action a ∈ A.

π(st) = at (5.1)

For this task we limit the parameters of the program to a vectorised DSL, which

we denote as θ ∈ Θ. The parameters are what would typically be referred to as

the ’code’ of the program.

Demonstrations

A demonstration is defined as a sequence of state-action pairs sampled from π(θ)

τ = ((s1, a1), (s2, a2), ..., (sT, aT)) (5.2)

However, there is no guarantee that any particular demonstration generated

by an agent following a program π(θ) will provide examples of all control flow

statements present in π(θ). If we consider the case where an agent following

π(θ) (see Figure 5.2) does not encounter a state wherein the perception primitive

’HellKnight’ is True, there is no way to induce the existence of that control flow

statement from that demonstration. Therefore it is necessary to observe a set of

demonstrations T = (τ1, τ2, ..., τk) where T ⊂ T that contains transition examples

of all control flow statements in π(θ).

Perceptions

Given the conditional structure of the DSL used to define the parameters θ for

program π, we employ the use of perception primitives to simplify the high dimen-

96 Chapter 5. Deep Inductive Reasoning for Video to Program Translation

sionality of states s ∈ S . Each perception primitive µ is given as a Boolean value,

with q possible perception primitives. This allows for a high level representation

of the state to be given by the vector s = (µ1, µ2, ..., µq).

Actions

For an agent interacting in discrete time steps with a deterministic environment

of previously defined states s ∈ S , we can define a finite set of possible actions

A. This allows us to model the deterministic transition between states as P :

S ×A → S . In our case we only have one possible action per transition, and as

such we can represent an action primitive as a one hot tensor of length m, where

m is equal to the total number of possible actions.

Visual Language

Having defined both perception and action primitives, we can use these to define

a visual language of semantic tokens ψ ∈ Ψ with a deterministic function F(x, y)

such that,

ψt = F(st, at) (5.3)

This approach of tokenizing high level semantic information for ease of use

with transformer models has been shown to be very effective by [Sun et al., 2019b].

With this we can also substitute our transition tokens into equation 5.2 giving,

τ = (ψ1, ψ2, ...ψT) (5.4)

5.3. Method 97

def run(): 1111 Control flow statements
 while isTargetDemon: 222 Percept primitives
 moveForward() 333 Action primitives
 if isTargetRevenant:
 moveRight()
 else:
 if isTargetHellKnight:
 shoot()
 else:
 moveLeft()

Figure 5.2: A Domain specific language program example from the Vizdoom
environment. Examples of all component types are present.

Supervision Signals

We abide by the constraints originally proposed by [Sun et al., 2018] and assume

that action and perception labels are absent during testing. However, we form

the same conclusion as [Sun et al., 2018, Duan et al., 2019, Dang-Nhu, 2020] that

during training the action and perception signals are required for the model to

learn how to generate the I/O specifications of the program.

5.3.2 VT4 Model

Our VT4 model can be separated into two main sections; i) the semantic encoder

and ii) the program generator network. Figure 5.3 gives an overview of the VT4

model. We approach this problem of generating an executable program from video

demonstrations as a combined translation and summarisation task. In contrast

to previous approaches which simplify the problem to a straight sequence-to-

sequence task, (by creating a summarised expression of the multiple demonstra-

tions) our approach frames the problem as the multi-sequence-to-sequence task

98 Chapter 5. Deep Inductive Reasoning for Video to Program Translation

CNN

CNN Tokenizer

Tokenizer

Decoder

SYNTHESISED
PROGRAM
def run():

while isTarget HellKnight:
moveLeft()

if not isTarget Revenant:
moveRight()

else:
shoot()

Inputs Semantic Encoder Program Generator Outputs

Figure 5.3: A complete diagram of the VT4 architecture showing the semantic
encoder and the program generator modules. The semantic encoder takes as
input raw videos and processes them into a visual language of semantic tokens.
These tokens are then passed to the program generator which learns to extract the
underlying rule set from the demonstrations and generate a program accordingly.

that it is. This eliminates the inherent probability of information loss associated

with summarising multiple diverse demonstrations.

Semantic Encoder

The Semantic Encoder itself can be separated into two parts: a neural module

and a tokenizer. The neural module is a multi-layer convolutional neural network

(CNN) which learns to detect the perception primitives present in each frame, and

the actions taken between frames. In theory this module could contain one CNN

with two different output heads, each predicting either the actions or perceptions.

For the sake of simplicity this is how we present our model in figure 5.3 However,

in practise we use two distinct networks for each task. This choice was made

purely to simplify the process of altering the perception prediction accuracy for

the noise-ablation study. The action prediction network consists of a five-layer

convolutional neural network with two fully connected layers, and is trained

from scratch. The perception prediction network utilises a pre-trained Efficientnet

5.3. Method 99

model [Tan and Le, 2019].

Given a set of video demonstrations V = {vi}k
i=1, we desire the corresponding

perceptions p and actions a sequences for each demonstration. This is a straight

forward problem which is modelled as;

pi,j = MLP(CNN(vi,j)) (5.5)

ai,j = MLP(CNN(vi,j), CNN(vi,j+1)) (5.6)

Where i and j refer to the ith demonstration and jth frame. While it is possible to

predict all the observable perceptions from a single frame vi,j with purely spatial

information, this is not the case for predicting actions. To predict the action taken

at any time t temporal information in the form of a minimum of two frames is

required. Thus, we concatenated sequential frames together as shown in equation

5.6 for action prediction.

Having now obtained the predicted actions ai,j and perceptions pi,j for each

frame of every video, we are able to use these to create semantic tokens which

completely encapsulates all the required information from each frame. We achieve

this by passing our predictions through the second part of the semantic encoder

which we refer to as a tokenizer. The tokenizer itself is a deterministic function

that takes as input the predicted action and perceptions of each frame individually.

ψi,j = F(pi,j, ai,j) (5.7)

As described in section 5.3.1, our perception prediction is a multiclass predic-

tion problem given as pi,j = (µ1, µ2, ..., µq), while our action prediction returns

a single class prediction. Our tokenizer first concatenates our predictions into a

100 Chapter 5. Deep Inductive Reasoning for Video to Program Translation

Transformer Layers

[start] ... [sep] ... [end]

E[start] ... E[sep] ... E[end]E[V1,1] E[V1,2] E[Vk,l]

[start]

E[start]

def

Step t=0

Transformer Layers

[start] ... [sep] ... [end]

E[start] ... E[sep] ... E[end]E[V1,1] E[V1,2] E[Vk,l]

[start]

E[start]

run()

Step t=1

[def]

E[def]

Inputs Outputs Inputs Outputs

Figure 5.4: The Program Generator Module. The program generator consists of an
encoder-decoder transformer network which receives as input the visual language
tokens from the semantic encoder. The network iteratively decodes the program
in a sequential fashion.

single tensor pa, before calculating the finite sum of a basic power series.

ψi,j =
n

∑
n=0

pan × 2n (5.8)

Our demonstrations are now encoded into a sequence of semantic tokens which

encapsulates all the semantic information derived from the original video frames.

While prior works have decided to summarise the multiple demonstrations

into a single average representation, we choose not to pursue this path. Instead, we

pass every tokenised demonstrations into our program generator network as a set

of disjoint sequences. This approach of creating ’visual words’ [Sun et al., 2019b]

allows us to take inspiration from the field of natural language processing and

concatenate our demonstrations together separating the different demonstrations

with special tokens. V = (< start >, ψ1,1, ψ1,2..., ψ1,l < sep >, ..., ψk,l,< end >)

5.3. Method 101

Program Generator Network

Due to the wide success of Transformer based architectures [Vaswani et al., 2017]

in various settings such as machine translation [Wang et al., 2019, Ahmed et al.,

2017], natural language processing [Raffel et al., 2019,Devlin et al., 2018], and even

more recently image classification [Dosovitskiy et al., 2020], we hypothesis that

they should also be highly effective for the task of program generation. As such

our program generator is an encoder-decoder transformer network. By utilising

the insights of [Sun et al., 2019b] and converting our inputs into a visual language,

we can leverage pre-trained language models. We choose to leverage a pre-trained

’Text-to-Text Transfer Transformer’ (T5) network as proposed by [Raffel et al.,

2019].

The T5 model is particularly well suited to our task as it specifically (as the

name suggests) casts all tasks as a text-to-text task. Due to this we can leverage

pre-trained features from upstream natural language tasks such as summarisation

and translation. The T5 implementation closely follows the originally proposed

architecture of [Vaswani et al., 2017]. The encoder consists of a stack of ’blocks’,

wherein each block is comprised of a self-attention, layer normalisation, and a

feed-forward network. The decoder has a similar structure, except that it includes

an additional standard attention mechanism. This standard attention mechanism

is applied after the self-attention layer and attends to the output from the encoder.

Figure 5.4 gives a high level overview of generative sequence of the transformer

network, while for full details we refer the reader to [Raffel et al., 2019] and

[Vaswani et al., 2017] respectively.

102 Chapter 5. Deep Inductive Reasoning for Video to Program Translation

5.4 Experiments

In this section we present the experimental evaluation of our model. We include

an overview of the dataset and metrics used for this evaluation. We then go on to

discuss the results of our experiments along with providing a noise-ablation study

to evaluate our model’s ability to handle noisy inputs.

5.4.1 Dataset and Metrics

Dataset

We evaluate our model with the Vizdoom Program Dataset [Sun et al., 2018] which

has the following structure. For every program label there exists multiple video

demonstrations of an agent following said program in the deterministic virtual

environment known as Vizdoom [Kempka et al., 2016]. For every demonstration

(of length T), there exists action and perception labels of lengths T − 1 and T

respectively. We conform with the previously established convention set by [Sun

et al., 2018] and utilise a total of twenty-five demonstrations per program during

testing and training. We also adhere to the assumption that action and perception

labels are only available during training, and that at test time we only have access

to the video demonstrations of the agent. The dataset contains 80,000 programs

for training, and 8,000 programs for testing.

Metrics

As the problem of verifying that two programs are in fact equal is an intractable

problem, we evaluate the accuracy of our model by comparing the synthesised

parameters θ̂ with the instantiated parameters of the ground truth program θ∗. In

5.4. Experiments 103

particular we evaluate the exact accuracy and the aliased accuracy. We break with the

previous naming convention of these accuracy measures (originally established

by [Sun et al., 2018] as sequence and program accuracy) for the sake of clarity.

Exact Accuracy

We consider a program to be an exact match if, and only if, the synthesised

parameters θ̂ is an exact match to that of the instantiated ground truth parameters

θ∗. This is formally expressed as,

Accexact =
1
N

N

∑
n=1

1exact(θ̂, θ∗) (5.9)

Aliased Accuracy

While the exact accuracy is a simplistic measure of the performance of our model,

it does not account for the ambiguity of the program space. Take for example two

different yet semantically identical pieces of code; repeat(2) : (move())

and move() move(). Here it is obvious that both pieces of code are semantically

identical, however they would not be counted as the same given the definition

of exact accuracy. As identified by [Sun et al., 2018], it is possible to exploit

the simplistic syntax of our DSL and enumerate multiple variations of the code

following a set of defined rules. Examples of this include decomposing control

flow statements such as if/else statements, and unfolding repeat statements. With

this we can formally express our accuracy as

Accalias =
1
N

N

∑
n=1

1alias(θ̂, θ∗) (5.10)

104 Chapter 5. Deep Inductive Reasoning for Video to Program Translation

Model Exact Aliased
demo2program [Sun et al., 2018] 53.2 62.5
watch-reason-code [Duan et al., 2019] 55.8 63.4
PLANS (dynamic) [Dang-Nhu, 2020] 58.8 ±0.6 65.5 ±0.6
VT4 (ours) 64.1 73.2

Table 5.1: An exact comparison of our results compared to the results of previously
published works.

5.4.2 Overall Performance

We display the results of our evaluation on the Vizdoom benchmark in table 5.1.

We obtain the values for the baselines from prior published works, and report best

obtained performance. We strictly adhere to the experimental settings originally

proposed by [Sun et al., 2018] to provide a fair comparison. Our VT4 model

significantly improves on the exact and aliased program accuracy of the prior

state-of-the-art with relative 9% and 11.75% increases and 5.3% and 7.7% absolute

increases respectively. These results provide clear evidence of the capabilities of

our model to simultaneously perform summarisation and translation of disjointed

sequences. These results also provide empirical evidence to support the use of

visual languages to describe the semantics of complex scenes for tasks requiring

translation. Additionally, we observe the expected result of higher accuracy for

aliased programs compared to exact programs as consistently observed across all

prior works. We also investigate claims by [Duan et al., 2019] and [Dang-Nhu,

2020] that the original algorithms used by [Sun et al., 2018] fails to recognise

all semantically identical programs. In particular are cases such as the example

shown in figure 5.5. While we find these claims to be accurate, we report our

results using the same metrics to keep our comparison fair. However, we strongly

agree with [Dang-Nhu, 2020] on the need to improve this metric in future work.

5.4. Experiments 105

GROUND TRUTH
def run():
 while isTarget Hellnight:
 moveLeft()
 if isTarget Revenat:
 shoot()
 else:
 moveRight()

SYNTHESISED PROGRAM
def run():
 while isTarget Hellnight:
 moveLeft()
 If not isTarget Revenat:
 moveRight()
 else:
 shoot()

Figure 5.5: A comparison of the ground truth program and a synthesised program
from our VT4 model. While these two programs are semantically equal, the
algorithm used by [Sun et al., 2018] considers these as different. To keep evaluation
fair we report results using the same base code wherein this situation is considered
a ’failure’ case.

Figure 5.6: A plot demonstrating that our model is able to achieve an Exact
Accuracy comparable to previous approaches Aliased Accuracy, while significantly
out performing on the latter.

106 Chapter 5. Deep Inductive Reasoning for Video to Program Translation

5.4.3 Noise Ablation Study

While our model is clearly capable of inductive reasoning over multiple demonstra-

tions, we consider the implication of noise with respect to its ability to accurately

generate programs. Previous approaches that utilise rule-based solvers [Dang-

Nhu, 2020] have been highly sensitive to noise. In-fact, even with high levels of

perception accuracy the PLANS model required dynamic filtering. This indicates

that even the slightest amount noise in the input causes the PLANS model to

underperform.

To test our model’s ability to deal with noise in its input we devise a noise abla-

tion study. By separately predicting the actions and perceptions with two distinct

networks we can vary the accuracy of the perception predictions independently

of the actions. Our semantic encoder in this setup has independent action and

perception encoders. Our action encoder easily obtains an accuracy of 98% with a

simple five layer convolutional neural network (as described in section 5.3.2). We

train a perception encoder with the same architecture which achieves an accuracy

of 79.9%. We then utilise a pre-trained object detection network (efficientnet [Tan

and Le, 2019]) to improve this result. This time our prediction encoder achieves

an accuracy of 90.2%. Our approach to utilise predicted perception primitives

and actions to generate a visual language allows us to evaluate a ’perfect case’

scenario. As we have access to ground-truth labels for these perception primitives

and actions, we can use these directly to generate our visual language tokens.

Doing so artificially creates a scenario in which our model has effectively no input

noise (excluding noise from mislabelled data).

Our results from this study are presented in table 5.2. These results clearly

show our models capacity to not only reason over multiple demonstrations, but to

5.5. Conclusions and Future Work 107

Perception Noise Exact Alias
0% 66.0 75.1
10% 64.1 73.2
20% 62.7 71.6

Table 5.2: Exact and Alias program accuracy’s for varying levels of perception
noise.

Figure 5.7: A plot showing the impact of perception noise on our method. We com-
pare the results against previously reported accuracy metrics, clearly showing that
even with high levels of perception noise (20%) our method is able to outperform
prior state-of-art results.

handle contradictory or noisy signals. In contrast to rule-based solvers, which as

shown by [Dang-Nhu, 2020] are strongly reliant on pre-defined filtering heuristics,

our VT4 model is able to learn its own heuristics. These results also show that our

model was able to exceed the previous state-of-the-art while enduring a 20% error

rate in perception predictions.

5.5 Conclusions and Future Work

The task of synthesising a program from multiple visual demonstrations involves

solving many different tasks. These include learning spatial-temporal relationship

108 Chapter 5. Deep Inductive Reasoning for Video to Program Translation

from visually complex inputs and successfully translating these into a logical

sequence in a different domain. Previous attempts at solving this problem have

relied upon summarised representations of the spatial-temporal relationships and

have been highly sensitive to input noise. In this paper we propose a video-to-text

transfer transformer network that is able to perform multi-sequence-to-sequence

translation without requiring summarised spatial-temporal embeddings. Our

method is also highly robust to input noise, which is a problem that caused

significant challenges for previous methods. On top of this, we achieve the largest

increase in performance to date on this task.

Future work in this area will aim to investigate aspects of our approach that

could be improved. These include researching methods for streamlining the visual

language model, including end-to-end techniques. Additionally, another area for

potential research would be to expand this work into areas and datasets that do

not contain curated labels. Examples of this may include reinforcement learning

agents trained in visually complex domains or driverless cars.

Bibliography

[Ahmed et al., 2017] Ahmed, K., Keskar, N. S., and Socher, R. (2017). Weighted

transformer network for machine translation. CoRR, abs/1711.02132.

[Alur et al., 2013] Alur, R., Bodik, R., Juniwal, G., Martin, M. M. K., Raghothaman,

M., Seshia, S. A., Singh, R., Solar-Lezama, A., Torlak, E., and Udupa, A. (2013).

Syntax-guided synthesis. In 2013 Formal Methods in Computer-Aided Design,

pages 1–8.

[Balog et al., 2016] Balog, M., Gaunt, A., Brockschmidt, M., Nowozin, S., and

Tarlow, D. (2016). Deepcoder: Learning to write programs.

[Bunel et al., 2018] Bunel, R., Hausknecht, M. J., Devlin, J., Singh, R., and Kohli, P.

(2018). Leveraging grammar and reinforcement learning for neural program

synthesis. CoRR, abs/1805.04276.

[Burda et al., 2018a] Burda, Y., Edwards, H., Pathak, D., Storkey, A. J., Darrell, T.,

and Efros, A. A. (2018a). Large-scale study of curiosity-driven learning. CoRR,

abs/1808.04355.

[Burda et al., 2018b] Burda, Y., Edwards, H., Storkey, A. J., and Klimov, O. (2018b).

Exploration by random network distillation. CoRR, abs/1810.12894.

[Dang-Nhu, 2020] Dang-Nhu, R. (2020). Plans: Robust program learning from

neurally inferred specifications. ArXiv, abs/2006.03312.

109

110 Bibliography

[Devlin et al., 2018] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT:

pre-training of deep bidirectional transformers for language understanding.

CoRR, abs/1810.04805.

[Devlin et al., 2017] Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,

A.-r., and Kohli, P. (2017). Robustfill: Neural program learning under noisy i/o.

In Proceedings of the 34th International Conference on Machine Learning - Volume 70,

ICML’17, page 990–998. JMLR.org.

[Dong et al., 2019] Dong, J., Gao, K., Chen, X., Guo, J., Cao, J., and Zhang, Y. (2019).

Not all words are equal: Video-specific information loss for video captioning.

CoRR, abs/1901.00097.

[Dosovitskiy et al., 2020] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,

D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly,

S., Uszkoreit, J., and Houlsby, N. (2020). An image is worth 16x16 words:

Transformers for image recognition at scale.

[Duan et al., 2019] Duan, X., Wu, Q., Gan, C., Zhang, Y., Huang, W., van den

Hengel, A., and Zhu, W. (2019). Watch, reason and code: Learning to represent

videos using program. In Proceedings of the 27th ACM International Conference

on Multimedia, MM ’19, page 1543–1551, New York, NY, USA. Association for

Computing Machinery.

[Graves et al., 2014] Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing

machines. CoRR, abs/1410.5401.

[Gulwani, 2011] Gulwani, S. (2011). Automating string processing in spreadsheets

using input-output examples. SIGPLAN Not., 46(1):317–330.

Bibliography 111

[Jha et al., 2010] Jha, S., Gulwani, S., Seshia, S. A., and Tiwari, A. (2010). Oracle-

guided component-based program synthesis. ICSE ’10, page 215–224, New

York, NY, USA. Association for Computing Machinery.

[Kaiser and Sutskever, 2016] Kaiser, L. and Sutskever, I. (2016). Neural gpus learn

algorithms. In Bengio, Y. and LeCun, Y., editors, 4th International Conference

on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,

Conference Track Proceedings.

[Kay et al., 2017] Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vi-

jayanarasimhan, S., Viola, F., Green, T., Back, T., Natsev, P., Suleyman, M.,

and Zisserman, A. (2017). The kinetics human action video dataset. CoRR,

abs/1705.06950.

[Kempka et al., 2016] Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and

Jaskowski, W. (2016). Vizdoom: A doom-based AI research platform for visual

reinforcement learning. CoRR, abs/1605.02097.

[Kurach et al., 2016] Kurach, K., Andrychowicz, M., and Sutskever, I. (2016). Neu-

ral random-access machines. In Bengio, Y. and LeCun, Y., editors, 4th Interna-

tional Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,

May 2-4, 2016, Conference Track Proceedings.

[Lin et al., 2019] Lin, J., Gan, C., and Han, S. (2019). Tsm: Temporal shift module

for efficient video understanding. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV).

[Ling et al., 2017] Ling, W., Yogatama, D., Dyer, C., and Blunsom, P. (2017). Pro-

gram induction by rationale generation: Learning to solve and explain algebraic

word problems. CoRR, abs/1705.04146.

112 Bibliography

[Parisotto et al., 2016] Parisotto, E., Mohamed, A., Singh, R., Li, L., Zhou, D., and

Kohli, P. (2016). Neuro-symbolic program synthesis. CoRR, abs/1611.01855.

[Raffel et al., 2019] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena,

M., Zhou, Y., Li, W., and Liu, P. J. (2019). Exploring the limits of transfer learning

with a unified text-to-text transformer. CoRR, abs/1910.10683.

[Simmons-Edler et al., 2018] Simmons-Edler, R., Miltner, A., and Seung, H. S.

(2018). Program synthesis through reinforcement learning guided tree search.

CoRR, abs/1806.02932.

[Sun et al., 2019a] Sun, C., Myers, A., Vondrick, C., Murphy, K., and Schmid,

C. (2019a). Videobert: A joint model for video and language representation

learning. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV),

pages 7463–7472.

[Sun et al., 2019b] Sun, C., Myers, A., Vondrick, C., Murphy, K., and Schmid,

C. (2019b). Videobert: A joint model for video and language representation

learning. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV),

pages 7463–7472.

[Sun et al., 2018] Sun, S.-H., Noh, H., Somasundaram, S., and Lim, J. (2018). Neu-

ral program synthesis from diverse demonstration videos. In Dy, J. and Krause,

A., editors, Proceedings of the 35th International Conference on Machine Learning,

volume 80 of Proceedings of Machine Learning Research, pages 4790–4799. PMLR.

[Tan and Le, 2019] Tan, M. and Le, Q. (2019). EfficientNet: Rethinking model

scaling for convolutional neural networks. In Chaudhuri, K. and Salakhutdinov,

R., editors, Proceedings of the 36th International Conference on Machine Learning,

volume 97 of Proceedings of Machine Learning Research, pages 6105–6114. PMLR.

Bibliography 113

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, u., and Polosukhin, I. (2017). Attention is all you need.

In Proceedings of the 31st International Conference on Neural Information Processing

Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA. Curran Associates Inc.

[Waldinger and Lee, 1969] Waldinger, R. J. and Lee, R. C. T. (1969). Prow: A step

toward automatic program writing. In Proceedings of the 1st International Joint

Conference on Artificial Intelligence, IJCAI’69, page 241–252, San Francisco, CA,

USA. Morgan Kaufmann Publishers Inc.

[Wang et al., 2019] Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D. F., and Chao,

L. S. (2019). Learning deep transformer models for machine translation. CoRR,

abs/1906.01787.

[Wu et al., 2019] Wu, C.-Y., Feichtenhofer, C., Fan, H., He, K., Krahenbuhl, P., and

Girshick, R. (2019). Long-term feature banks for detailed video understand-

ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR).

CHAPTER 6
Conclusion and Future Directions

In this thesis, we investigated the explainability of deep reinforcement learning

and other autonomous agents via rule extraction, and the impact that self-attention

mechanisms have on a policy with respect to learning rules in a visually complex

environment. In this chapter, we will summarise the key contributions of our

research and discuss the future direction for this research.

6.1 Summary of the Contributions

In Chapter 3, We describe the benefit of incorporating spatio-temporal self-attention

into the underlying neural network architecture of a deep reinforcement learning

agent. We evaluate our architecture in various forms across a visually complex

suite of environments, while directly comparing our approach to the classic ar-

chitecture first proposed by [Mnih et al., 2015]. Our results clearly indicate that

the addition of attention to the network is beneficial, and lead to significant im-

provements in sample efficiency across 60% of tested environments. Of note is

the performance in the environment Demon Attack, where the addition of self-

attention resulted in state-of-the-art results, far exceeding the previous reported

114

6.1. Summary of the Contributions 115

benchmark.

In chapter 4, we proposed a mathematical definition for a rule that transcends

the semantics of natural language labels which are often employed to describe

rules. We evaluate our definition by evaluating it against deep reinforcement learn-

ing agents across multiple visually complex environments, something previously

not possible with prior definition and methods. Additionally, we test and show

that deep reinforcement learning agents that incorporate attention mechanisms

into their underlying network architecture can learn more defined rule sets.

in Chapter 5 we describe the challenge of synthesising a program from obser-

vations of an autonomous agent. We highlight the shortcomings of prior works

which focus heavily on summarising state information or are alternatively highly

sensitive to noise in their self-obtained specifications. We successfully overcome

both issues with our novel multi-sequence-to-sequence approach that learns to

summarise and translate simultaneously. Our proposed model is also highly

robust to noisy inputs. Not only does it achieve significant improvements over

prior state-of-the-art results, but our ablations study was also able to show that it

can do so with high levels of noise in its perception predictions.

Overall, this thesis focuses on the explainability of deep reinforcement learning

and other autonomous agents. To achieve this, the work presented focuses on

revealing the importance of the underlying architecture of a deep reinforcement

learning model while proposing novel designs capable of outperforming the

traditional approaches. We then propose a novel and mathematical inspired

definition for rule extraction and investigate the impact that spatio-temporal self-

attention mechanisms have on a policy’s ability to learn rules in visually complex

environments. From there, we extend our focus to extracting entire executable

programs from a diverse range of visual observation produced by autonomous

116 Chapter 6. Conclusion and Future Directions

agents. Wherein one must not just extract a single rule, but instead an entire set of

coherent and logical rules that are highly interpretable. As a result of this work,

we believe this thesis delivers numerous novel ideas and insights into the fields of

explainable reinforcement learning, rule extraction, and program synthesis alike.

6.2 Limitations and Future Directions

Although this thesis has made several considerable contributions to the fields of

explainable reinforcement learning via deep convolutional neural network rule ex-

traction, and program synthesis, we acknowledge that there are still open problems

in these fields, and future directions of research as a result of our contributions.

6.2.1 Explainable Reinforcement Learning

In Chapter 3, we introduce a novel spatio-temporal self-attention architecture

for deep reinforcement learning agents. In Chapter 4, we defined and extracted

learnt rules from trained policies that correlate state and action trajectories. While

it is the first work of its kind (as far as the author is aware) to map visually

complex, temporally, and unstructured input to a policy into rules dependent

upon its actions, one issue with our approach is that it does not provide an easily

interpretable output (such as a natural language expression). Our method only

allows for the existence of rules to be discovered, not for them to be explained in a

manner that would make sense to a common person. While we believe that our

contributions are a big step in the right direction for explainable reinforcement

learning, future work should investigate how to explain rules once they have been

discovered. We propose that future work could investigate the correlated state

action trajectories while possibly incorporating natural language models that are

6.2. Limitations and Future Directions 117

able to link detections to actions during these periods.

Secondly, although we demonstrate and highlight the importance of neural

network architecture in both Chapter 3 and 4, our approach to rule extraction is

pedagogical in nature. While we can verify through our experiments (Chapter

3) and rule extraction model (Chapter 4) that our additions of spatio-temporal

self-attention to a policy’s neural network are beneficial, a decompositional or

eclectic based approach to rule extraction or rule explanation may shed more light

onto why these additions are so beneficial. For example, future work may focus on

investigating the validity intervals of activations between state-action trajectories

that are classified as rules, and those that are not. This may shed light on why

many agents seem to fail after a certain point in a game, even though there appears

to be no real shift in the dynamics, enemies, or objectives of the agent.

6.2.2 Program Synthesis

In Chapter 5, we explore the problem of program generation given a diverse range

of video demonstrations. This is a unique and difficult task as it centers around

the intersection of multiple domains including explainability, rule extraction, and

program synthesis. Our proposed multi-sequence-to-sequence approach was

able to achieve significant performance increases over prior works however, our

model does have some limitations. One is the intermediary generation of a visual

language that creates semantic represents of the state-action pairs generated by the

agent and observed in the video demonstrations. Due to the way we generate this

language, we are unable to train our model completely end-to-end. Although this

does not cause any problems given the relatively constrained visual perception

space of the test environment (VizDoom), our method may have limits on its

scalability in more complex domains. To address this limitation future work

118 Chapter 6. Conclusion and Future Directions

would involve developing an end-to-end model where the latent space features of

the perception model are used in place of the simplified visual language employed

in our approach.

6.2.3 Explainable Reinforcement Learning Via Program Synthe-

sis

A potential area forward for our research would be in the unification of our

contributions into a framework that can observe a deep reinforcement learning

agent (operating in a visually complex environment) and subsequently output a

completely interpretable natural language program. The program itself should

be derived from the correlations between state-action trajectories, and as such it

could even identify when it does not know what to do. The potential for this line

of research has come about as a direct result of the contributions made within

this thesis. As far as the author is aware, there is currently no one working on

this problem, and for that matter, limited research on the extraction of rules from

agents that operate in visually complex domains.

6.2.4 Final Remarks

Despite the limitations and potential areas of future research discussed above,

this thesis has provided significant contributions to the fields of Explainable

Reinforcement Learning and Program Synthesis. The empirical results achieved

by our proposed models in Chapters 3 and 5 were able to achieve state-of-the-art

results at the time of their publication. While our contributions in Chapter 4 not

only shed new light on the impact that spatio-temporal self-attention mechanism

have on a policy’s ability to interpret its input, but also provide a definition for

6.2. Limitations and Future Directions 119

rules learnt by deep reinforcement learning agents. To the best of the authors

knowledge, this problem has so far been overlooked, and the proposed definition

has the potential to open the field to further research.

Bibliography

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,

J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,

G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,

Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control through

deep reinforcement learning. Nature, 518(7540):529–533.

120

	Abstract
	Declaration
	Preface
	Dedication
	Acknowledgements
	Contents
	Introduction
	Overview
	Motivations
	Contributions
	Notation
	Outline

	Literature Review
	Deep Reinforcement Learning
	Attention based Reinforcement Learning
	Neural Network Rule Extraction
	Visual Program Synthesis

	Reinforcement Learning with Attention that Works: A Self-Supervised Approach
	Introduction
	Related Work
	Reinforcement Learning Network Design in Video Games
	Attention in Reinforcement Learning

	Methods
	Markov Decision Process Formulation
	Policy Optimisation
	Non-Local Neural Networks
	Network Architecture

	Experiments
	Validation Methodology
	Performance results

	Conclusions and Future Work

	Unsupervised rule discovery with autonomous agents in visually complex environments
	Introduction
	Related Work
	Policy Summarisation
	Rule Extraction

	Methods
	Visual Evaluation
	Rule Definition and Extraction

	Experiments
	Environments
	Model Architecture
	Results

	Conclusion and Future Work

	Deep Inductive Reasoning for Video to Program Translation
	Introduction
	Literature Review
	Program Induction
	Intrinsic Motivation
	Program Synthesis

	Method
	Program Generation
	VT4 Model

	Experiments
	Dataset and Metrics
	Overall Performance
	Noise Ablation Study

	Conclusions and Future Work

	Conclusion and Future Directions
	Summary of the Contributions
	Limitations and Future Directions
	Explainable Reinforcement Learning
	Program Synthesis
	Explainable Reinforcement Learning Via Program Synthesis
	Final Remarks

