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We present a simultaneous extraction of the moments of F2 and FL structure functions of the proton for a
range of photon virtuality,Q2. This is achieved by computing the forward Compton amplitude on the lattice
utilizing the second-order Feynman-Hellmann theorem. Our calculations are performed on configurations
with two different lattice spacings and volumes, all at the SUð3Þ symmetric point. We find the moments of
F2 and FL in good agreement with experiment. Power corrections turn out to be significant. This is the first
time the Q2 dependence of the lowest moment of F2 has been quantified.
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I. INTRODUCTION

Nucleon structure functions are encoded by the differ-
ential cross sections for inclusive electron-proton scatter-
ing. In terms of the partonic structure of the nucleon, the
deep inelastic cross sections are dominated by the trans-
verse structure function, F2, which hence provides the
primary constraint on the parton distributions. On the other
hand, the longitudinal structure function, FL, provides
important information on the QCD structure of the proton.
With a perturbatively small and calculable leading-twist
component [1], FL offers a direct measure of higher-twist
effects [2]. It also offers sensitivity to the low-x gluon
distribution [3].
Although the small nature of the longitudinal structure

function makes it more challenging to isolate, measure-
ments by HERA [4] and Jefferson Lab [5,6] have enabled a
direct extraction of several low moments of FL across a
range of Q2 [7]. The results reveal a tension with global

PDF fits [8–10] at lower Q2 that might indicate
non-negligible higher-twist effects or an increased high-x
gluon distribution [7]. It is therefore highly desirable to
be able to provide first-principles theoretical predictions
regarding FL, preferably at intermediate Q2 values
where the nonperturbative effects become significant.
Furthermore, an improved theoretical constraint on power
corrections in the structure functions generally could be
particularly beneficial in global PDF analyses [10–18].
Lattice QCD simulations of the structure functions

conventionally utilize the operator product expansion
(OPE) approach. Lattice simulations have been successful
in computing the twist-2 contributions, however the higher-
twist terms mix with those of lower-twist which gives rise
to complications in the renormalization procedure [19].
This setback has limited lattice QCD to investigations of
the leading-twist contributions [20,21], with fewer works
on twist-3 contributions [22–24].
In this work, we present a simultaneous extraction of the

low moments of the nucleon structure functions F2 and FL
from the forward Compton amplitude calculated on the
lattice. This approach circumvents the operator mixing
issues since the amplitude accounts for the mixing and
renormalization and contains all twist contributions.
Previous successful calculations of the Compton amplitude,
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leading to a determination of the moments of the nucleon
structure function F1, have been reported in [25,26], and
recently extended to off-forward kinematics [27].

II. COMPTON AMPLITUDE AND MOMENTS
OF STRUCTURE FUNCTIONS

In order to access the structure functions, we consider the
unpolarized forward Compton tensor,

Tμνðp;qÞ ¼
�
−gμν þ

qμqν
q2

�
F 1ðω;Q2Þ þ P̂μP̂ν

p · q
F 2ðω;Q2Þ;

ð1Þ

where q (p) is the momentum of the virtual photon
(nucleon), P̂μ ≡ pμ − ðp · qÞqμ=q2, ω ¼ ð2p · qÞ=Q2, and
Q2 ¼ −q2. The Lorentz invariant Compton structure func-
tions F 1;2 are related to the physical structure functions F1;2

via the optical theorem, ImF 1;2ðω;Q2Þ¼2πF1;2ðx;Q2Þ.
Making use of analyticity, crossing symmetry, and the
optical theorem, the Compton structure functions satisfy
the familiar dispersion relations [28],

F̄ 1ðω; Q2Þ ¼ 2ω2

Z
1

0

dx
2xF1ðx;Q2Þ
1 − x2ω2 − iϵ

; ð2Þ

F 2ðω; Q2Þ ¼ 4ω

Z
1

0

dx
F2ðx;Q2Þ

1 − x2ω2 − iϵ
; ð3Þ

where F̄ 1ðω; Q2Þ ¼ F 1ðω; Q2Þ − F 1ð0; Q2Þ.
The parametrization of the forward Compton amplitude

in terms of F1 and F2 is not unique. Alternatively, we can
consider a parametrization in terms of the transverse, 2xF1,
and longitudinal, FL, structure functions [28–31]. The
latter is given by [28,30],

FLðx;Q2Þ¼
�
1−

4M2
N

Q2
x2
�
F2ðx;Q2Þ−2xF1ðx;Q2Þ; ð4Þ

which can directly be obtained from the ratio of cross
sections [30,31]. Here MN is the mass of the nucleon. As
Q2 → ∞, Eq. (4) reduces to FLðxÞ → F2ðxÞ − 2xF1ðxÞ,
which vanishes in the quark-parton model due to the
familiar Callan-Gross relation. In QCD, FL is OðαsÞ
suppressed at leading twist and any power correction
may be identified as higher twist.
Writing,

FLðω;Q2Þ¼−F 1ðω;Q2Þþ
�
ω

2
þ2M2

N

ωQ2

�
F 2ðω;Q2Þ; ð5Þ

we can express F̄L by a subtracted dispersion relation in
terms of FL,

F̄Lðω; Q2Þ ¼ 8M2
N

Q2

Z
1

0

dxF2ðx;Q2Þ

þ 2ω2

Z
1

0

dx
FLðx;Q2Þ

1 − x2ω2 − iϵ
; ð6Þ

where F̄Lðω; Q2Þ ¼ FLðω; Q2Þ þ F 1ð0; Q2Þ.
We isolate the Compton structure functions from the

tensor in Eq. (1). Working in Minkowski space and setting
q3 ¼ p3 ¼ 0 we have

F 1ðω; Q2Þ ¼ T33ðp; qÞ; ð7Þ

F 2ðω; Q2Þ ¼ ωQ2

2E2
N
½T00ðp; qÞ þ T33ðp; qÞ�: ð8Þ

FL is constructed via Eq. (5).
Expanding the integrands in Eqs. (2), (3), and (6) as a

geometric series, we express the Compton structure func-
tions as infinite sums over the Mellin moments of the
inelastic structure functions,

F̄ 1;Lðω; Q2Þ ¼
X∞
n¼0

2ω2nMð1;LÞ
2n ðQ2Þ; ð9Þ

F 2ðω; Q2Þ ¼
X∞
n¼1

4ω2n−1Mð2Þ
2n ðQ2Þ; ð10Þ

where Mð1Þ
0 ðQ2Þ ¼ 0, 2MðLÞ

0 ðQ2Þ ¼ 8M2
N

Q2 Mð2Þ
2 ðQ2Þ,

Mð1Þ
2n ðQ2Þ ¼ 2

Z
1

0

dxx2n−1F1ðx;Q2Þ; ð11Þ

Mð2;LÞ
2n ðQ2Þ ¼

Z
1

0

dxx2n−2F2;Lðx;Q2Þ; ð12Þ

for n > 0.
For our purposes, it is convenient to express the

expansion of F 2 in terms of the independently positive-
definite moments of F1 and FL,

F 2ðωÞ
ω

¼ τ

ð1þ τω2Þ
X∞
n¼0

4ω2n
h
Mð1Þ

2n þMðLÞ
2n

i
; ð13Þ

where τ ¼ Q2=4M2
N . The intercept at ω ¼ 0 is proportional

to the lowest moment of F2, i.e.M
ð2Þ
2 ðQ2Þ. Higher moments

are given by the appropriate combinations of the moments
of F1 and FL.
In the following discussion, we provide the details of our

procedure for extracting the moments directly from the
Compton amplitude obtained in a lattice simulation.

III. THE FEYNMAN-HELLMANN APPROACH

The novel idea is to compute the Compton amplitude by
means of the second-order Feynman-Hellmann theorem as
derived and described in detail in [26]. Here we summarize
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the procedure relevant to this work. We perturb the fermion
action by the vector current,

SðλÞ ¼ Sþ λ

Z
d3zðeiq·z þ e−iq·zÞJ μðzÞ; ð14Þ

where λ is the strength of the coupling between the quarks
and the external field, J μðzÞ ¼ ZVq̄ðzÞγμqðzÞ is the
electromagnetic current coupling to the quarks, q is the
external momentum inserted by the current and ZV is
the renormalization constant for the local electromagnetic
current, which has been determined in Ref. [32]. The
perturbation is introduced on the valence quarks only,
hence only quark-line connected contributions are taken
into account in this work. For the perturbation of valence
and sea quarks see [33].
We consider q3 ¼ p3 ¼ 0 and current components J 0

andJ 3, enabling us to compute T00 and T33. These are then
given by the second-order energy shift [26],

∂
2ENλ

ðpÞ
∂λ2

����
λ¼0

¼ −
Tμμðp; qÞ þ Tμμðp;−qÞ

2ENðpÞ
; ð15Þ

where Tμν is the Compton tensor defined in Eq. (1),
q ¼ ð0;qÞ is the external momentum encoded by
Eq. (14), and ENλ

ðpÞ is the nucleon energy at momentum
p in the presence of a background field of strength λ. This
expression is the principal relation that we use to access the
Compton amplitude and hence the Compton structure
functions given in Eqs. (7) and (8).

IV. SIMULATION AND ANALYSIS

Our lattice simulations are carried out on QCDSF/
UKQCD-generated 2þ 1-flavor gauge configurations.
We utilize two ensembles with volumes V ¼ ½323 × 64;
483 × 96�, and couplings β ¼ ½5.50; 5.65� corresponding to
lattice spacings a ¼ ½0.074ð2Þ; 0.068ð3Þ� fm, respectively.
The quark masses are tuned to the SUð3Þ symmetric
point where the masses of all three quark flavors are set
to approximately the physical flavor-singlet mass, m̄ ¼
ð2ms þmlÞ=3 [34,35], yielding mπ ≈ ½470; 420� MeV. We
perform up to Oð104Þ and Oð103Þ measurements by
employing up to six and three sources on the 323 × 64

and 483 × 96 ensembles of size 1764 and 537 configura-
tions, respectively.
We follow the procedure laid out in Ref. [26] to calculate

the energy shifts and extract the Compton amplitude. The
calculations are done for several values of q. Multiple
values of ω are accessed by varying the nucleon momentum
p for a fixed q. A list of ω values used in the analysis is
provided in Appendix A.
By attaching the current selectively to the u and d quarks,

respectively, we obtain the flavor-diagonal contributions uu
and dd corresponding to a handbag diagram at leading

twist, and the mixed-flavor piece, ud, which is purely
higher-twist, corresponding to a cat’s ears diagram.1 We
construct the ratios,

Rqq
λ ðp; tÞ≡Gð2Þ

þλðp; tÞGð2Þ
−λ ðp; tÞ

ðGð2Þðp; tÞÞ2

⟶
t≫0

Aqq
λ e−2ΔE

qq
Nλ
ðpÞt; ð16Þ

Rqq0
λ ðp; tÞ≡Gð2Þ

þλ;þλðp; tÞGð2Þ
−λ;−λðp; tÞ

Gð2Þ
þλ;−λðp; tÞGð2Þ

−λ;þλðp; tÞ

⟶
t≫0

Aqq0
λ e−4ΔE

qq0
Nλ

ðpÞt; ð17Þ
in order to extract the second-order energy shifts for the
flavor-diagonal (qq¼uu, dd) and mixed-flavor (qq0 ¼ ud)

pieces, respectively. Here, Gð2Þ
λ denote the perturbed two-

point correlation functions in the presence of the external
field with the coupling strength λ. In order to calculate
the ud piece as in Eq. (17), we need to consider the
interference of two currents. Therefore, we compute the

perturbed correlators, Gð2Þ
λ1;λ2

, by including an additional
current term in Eq. (14) with the same coupling strength
in magnitude, jλ1j ¼ jλ2j ¼ jλj in close analogy to the
off-forward case [27]. These ratios isolate the energy shifts

(ΔEðqq;qq0Þ
Nλ

ðpÞ) only at even orders of λ.
We proceed with established spectroscopy methods

to extract the energy shifts from the ratios defined in
Eqs. (16) and (17). Fit windows are determined following a
covariance-matrix based χ2 analysis. We perform corre-
lated, one-exponential fits to a range of fit windows that
contain at least four time slices and pick the one with the
best χ2 per degree of freedom, i.e. χ2dof ∼ 1.0. The majority
of the chosen fit windows satisfy this criteria. Any
systematic error due to the choice of fit windows could
be accounted for by a weighted-averaging method [36,37].
At our current precision, we find the energy shifts that are
extracted via both methods to be in good agreement.
Therefore, we continue with simple one-exponential fits.
We typically compute the energy shiftsΔENλ

ðpÞ, for two
jλj values and perform polynomial fits of the form,

ΔENλ
ðpÞ ¼ λ2

∂
2ENλ

ðpÞ
∂λ2

����
λ¼0

þOðλ4Þ; ð18Þ

to determine the Compton amplitude (see Ref. [26]).
Choosing jλj ¼ Oð10−2Þ, higher order Oðλ4Þ terms are
heavily suppressed. Effective mass-plot analogs for the
correlator ratios and their corresponding λ-fits are shown in
Appendix A.

1Note that we are mentioning the leading-twist diagrams for
the clarity of the discussion. In reality, the Compton amplitude
includes all twist contributions.
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The ω dependence of the Compton structure functions
is mapped by extracting the amplitude for each pair of
(q;p). Subsequently, extraction of the moments from the
Compton structure functions follows the methodology
described in [26]. A simultaneous fit of F̄ 1 [Eq. (9)]
and F 2=ω [Eq. (13)] is performed in a Bayesian framework
to determine the first few Mellin moments of the structure
functions. We truncate both series at n ¼ 4 (inclusive)
when determining the moments. These moments are
enforced to be positive definite and monotonically decreas-
ing. Note that the positivity bound does not hold for the ud
contributions but they are constrained by jMud

2nðQ2Þj2 ≤
4Muu

2nðQ2ÞMdd
2nðQ2Þ, since the total inclusive cross section

(hence each moment) is positive for any value of the quark
charges and at all kinematics. The sequences of individual
uu, dd or ud moments are selected according to the
standard probability distribution, expð−χ2=2Þ, where

χ2 ¼
X
F

X
i

½Fmodel
i − F obsðωiÞ�2

σ2
ð19Þ

is the χ2 function with σ2 the diagonal elements of the full
covariance matrix. Here, F stands for F̄ 1 and F 2, and the
index i runs through all the ω values and flavor-diagonal
and mixed-flavor pieces. A posterior distribution is obtained
for each moment on each bootstrap sample. Then, we
resample from these distributions to form a single posterior
distribution for each moment to account for the correlations
between the data points. Representative posterior distribu-
tions for the lowest moments are shown in Appendix B.

V. RESULTS

We show the ω dependence of the Compton structure
functions along with their fit curves in Fig. 1 for a
representative case of Q2 ¼ 4.86 GeV2 calculated on the
483 × 96 ensemble. Note that a small (large) nucleon
momentum p does not necessarily correspond to a small
(large) ω. This explains the larger uncertainties of some ω
values (e.g. ω ¼ 0.06, 0.35 in Fig. 1) in comparison to
their neighbors (see Figs. 5 and 6 in Appendix A for a
comparison of ω ¼ 0.06 to ω ¼ 0.18).
We keep terms up toOðω8Þ in the fit polynomials Eqs. (9)

and (13). The lowest two moments are insensitive to the
addition of higher order terms (see Appendix B). The lowest
moments of the structure functions F2 and FL obtained from
the 323 × 64 and 483 × 96 ensembles are shown in Figs. 2
and 3 as a function of Q2 for the proton. Note that the

moments of the proton are constructed via Mð2;LÞ
2;p ¼

4
9
Mð2;LÞ

2;uu þ 1
9
Mð2;LÞ

2;dd − 2
9
Mð2;LÞ

2;ud . Our F2 moments are in good
agreement with the experimental moments [38], however,
we remind the reader that our results do not yet incorporate
chiral, infinite volume and continuum extrapolations.
Since the Compton amplitude includes all power cor-

rections, we can estimate the leading power correction

(i.e. twist-4) by studying the Q2 behaviour of the moments.
Higher-twist contributions are suppressed by powers of
1=Q2 so one expects to have sizeable contributions for
intermediate to low Q2. Their effect (at the lowest order)
can be modelled by the twist expansion,

Mð2Þ
2;hðQ2Þ ¼ Mð2Þ

2;h þ Cð2Þ
2;h=Q

2 þOð1=Q4Þ; ð20Þ

where h ∈ fuu; dd; ud; pg. We utilize only the Mð2Þ
2 ðQ2Þ

moments obtained on the 483 × 96 ensemble down to
Q2 ≈ 1.5 GeV2 to study the power corrections. We show

our fit [Eq. (20)] in Fig 2. The extracted values forMð2Þ
2;h and

Cð2Þ
2;h are collected in Table I. We note that our results could

be useful for studies investigating the power corrections in
the language of infrared renormalons [39–41].
We compare the lowest (Cornwall-Norton) moment of FL

to the experimentally determined Nachtmann moments [7]
in Fig. 3. While we are unable to resolve a definitive signal

FIG. 1. ω dependence of the Compton structure functions F̄ 1,
F 2, and F̄L at Q2 ¼ 4.86 GeV2. We show the uu (top), dd
(middle), and ud (bottom) contributions. Colored shaded bands
show the fits with their 68% credible region of the highest
posterior density. Points are displaced for clarity.
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for the FL moments, we are able to set an upper bound that is
compatible with the experimental moments.

It is interesting to compare MðLÞ
2 determined from the

relation [1],

MðLÞ;twist−2
2;p ðQ2Þ ¼ 4

9π
αsðQ2ÞMð2Þ;twist−2

2;p ðQ2Þ; ð21Þ

where we replace the leading-twist moment on the RHS

withMð2Þ
2;pðQ2Þ from the current work as an approximation.

We determine αsðQ2Þ at the four-loop order by running its

value from the reference Mτ (tau-mass) scale that is
extracted directly from τ decays [42] with nf ¼ 3 active
flavors. The CRunDec package [43,44] is used to run the
strong coupling constant. The effects of the number of
active flavors, running from theMZ scale as opposed toMτ

scale, and crossing the charm-quark threshold are negli-
gible at this stage in contrast to the large uncertainties of
experimental and lattice data.
TheQ2 behavior is in good agreement with experimental

points as shown in Fig. 3. With improved precision in
future studies, contrasting the direct determination and
twist-2 part of the lowest few moments of FL would
provide improved constraints on higher-twist effects.

VI. CONCLUSIONS

We have presented results of the lowest moments of the
proton structure functions F2 and FL as a function of Q2,
ranging from Q2 ≈ 1 GeV2 to Q2 ≈ 7 GeV2. The calcu-
lations have been done at the SU(3) flavor symmetrical
point. This has been possible for the first time on the lattice,
due to recent advances in computing the forward Compton
amplitude using the second-order Feynman-Hellmann
theorem. Power corrections turn out to be significant, up
to Q2 ≈ 5 GeV2, and much larger than anticipated in
theoretical estimates [15,40]. Already at unphysical quark
masses we find good agreement with the moments
extracted from experiment. However, calculations on addi-
tional ensembles that cover a range of lattice spacings and
pion masses are required to fully account for systematic
effects and rigorously confirm our findings. Our results are
encouraging and show the potential of this approach to
nucleon structure, starting from the all-encompassing
Compton amplitude. The next natural step is to quantify
the lattice systematics. Beyond the unpolarized structure,
we are working towards extending our formalism to include
the spin-dependent structure functions. Additionally,
applying this method to the parity violating sector by
considering weak currents is an exciting future direction.
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APPENDIX A: EXTRACTING THE
ENERGY SHIFTS

We form the ratios defined in Eqs. (16) and (17) in order
to extract the energy shifts from the perturbed correlators.
The allowed p momenta are limited by p2 ≤ ½5; 5; 5;
10; 17� in lattice units for q ¼ ½ð3; 1; 0Þ, (3,2,0), (4,2,0),

TABLE II. Multiple ω values that we can access with several
combinations of p ¼ ðp1; p2; p3Þ and q ¼ ðq1; q2; q3Þ in lattice
units, where we have set p3 ¼ q3 ¼ 0. We only show the ðp;qÞ
combinations that give a positive ω. The ω ≥ 1 values (indicated
by italics) are omitted since they lie outside the allowed ω range.
The regular typeset ω values are also omitted due to their poor
signal quality. We use the ω values shown in boldface only.

ω ¼ 2p · q=Q2

q=ð2π=LÞ
p=ð2π=LÞ (3, 1, 0) (3, 2, 0) (4, 2, 0) (5, 3, 0) (7, 1, 0)

(0, 0, 0) 0.0 0.00 0.0 0.00 0.00
(0, 1, 0) 0.2 0.31 0.2 0.18 0.04
(0, 2, 0) 0.4 0.62 0.4 0.35 0.08
(0, 3, 0) � � � � � � � � � 0.53 0.12
(0, 4, 0) � � � � � � � � � � � � 0.16
(1, 0, 0) 0.6 0.46 0.4 0.29 0.28
(1, 1, 0) 0.8 0.77 0.6 0.47 0.32
(1, 2, 0) 1.0 1.08 0.8 0.65 0.36
(1, 3, 0) � � � � � � � � � 0.82 0.40
(1, 4, 0) � � � � � � � � � � � � 0.44
(1, −1, 0) 0.4 0.15 0.2 0.12 0.24
(1, −2, 0) 0.2 � � � 0.0 � � � 0.20
(−1, 2, 0) � � � 0.15 0.0 0.06 � � �
(1, −3, 0) � � � � � � � � � � � � 0.16
(−1, 3, 0) � � � � � � � � � 0.24 � � �
(1, −4, 0) � � � � � � � � � � � � 0.12
(2, 0, 0) 1.2 0.92 0.8 0.59 0.56
(2, 1, 0) 1.4 1.23 1.0 0.76 0.60
(2, 2, 0) � � � � � � � � � 0.94 0.64
(2, 3, 0) � � � � � � � � � � � � 0.68
(2, −1, 0) 1.0 0.62 0.6 0.41 0.52
(2, −2, 0) � � � � � � � � � 0.24 0.48

(Table continued)

TABLE II. (Continued)

ω ¼ 2p · q=Q2

q=ð2π=LÞ
p=ð2π=LÞ (3, 1, 0) (3, 2, 0) (4, 2, 0) (5, 3, 0) (7, 1, 0)

(2, −3, 0) � � � � � � � � � � � � 0.44
(3, 0, 0) � � � � � � � � � 0.88 0.84
(3, 1, 0) � � � � � � � � � 1.06 0.88
(3, 2, 0) � � � � � � � � � � � � 0.92
(3, 3, 0) � � � � � � � � � � � � 0.96
(3, −1, 0) � � � � � � � � � 0.71 0.80
(3, −2, 0) � � � � � � � � � � � � 0.76
(3, −3, 0) � � � � � � � � � � � � 0.72
(4, 0, 0) � � � � � � � � � � � � 1.12
(4, 1, 0) � � � � � � � � � � � � 1.16
(4, −1, 0) � � � � � � � � � � � � 1.08

FIG. 4. Top to bottom: Effective mass plots for the correlator
ratios of the amplitudes T33 and T00 þ T33, and the corresponding
fits in λ-space, respectively. Shaded regions on the correlator ratio
plots depict the fit windows and extracted energy shifts with their
1σ uncertainty bands. Shaded curves on the λ-fit plots indicate the
fit curves and their 1σ uncertainties. We show the results for
ω ¼ 0.77 (p ¼ ð1; 1; 0Þ2π=L) for q ¼ ð3; 2; 0Þ2π=L obtained on
the 483 × 96 ensemble.
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(5,3,0), ð7; 1; 0Þ�2π=L, respectively. Higher p2 cuts intro-
duce duplicates of ω values with worsening signal quality,
thus do not expand the ω coverage any further. We
tabulate the used ω values in Table II. We omit some
high-p momenta in the analysis due to their poor S/N
which hinders a reliable extraction of the ground state
energy shifts. It is possible to improve the signal quality of
such higher momenta correlators by employing momen-
tum smearing techniques [47], which we plan to inves-
tigate in future work.
Effective mass plots for the correlator ratios are shown in

Figs. 4–6 along with the fits performed in λ-space to extract
the energy shifts for three different kinematics. We show
the ratios for the uu piece only. The dd piece behaves
similarly. Analogous plots for the ud piece are shown in
Fig. 7. The F 1 amplitude is isolated from T33 in a
straightforward fashion, while the F 2=ω amplitude is
accessed from the T00 þ T33 combination up to known
kinematical factors [Eq. (8)]. Top (middle) rows of Figs. 4–6
show the correlator ratios for T33 (T00 þ T33).
Fits to the energy shifts [Eq. (18)] are shown on the

bottom rows of Figs. 4–6 for the uu and dd pieces of T33

and T00 þ T33 both. Since the energy shifts at different λ
values are highly correlated, a χ2-based analysis is not a
reliable goodness-of-fit test. However, we confirm the
suppression of the Oðλ4Þ term, and the absence of λ-odd
terms, by including OðλÞ, Oðλ3Þ, and Oðλ4Þ terms sepa-
rately in the fit. We find that the coefficient of the linear
term is consistent with zero and any residual contamination
from higher-order terms has a negligible effect compared to
the statistical error on the extracted amplitudes. We show
the coefficient of the quadratic term [Eq. (18)] for several
nucleon momenta in Fig. 8 as determined in four different
ways. We either normalize the energy shifts at each λ,
ΔENλi

=λ2i , or perform fits of the form fðλÞ ¼ bλ2, and

gðλÞ ¼ b0λ2 þ cλ4 that includes the quartic contamination.
The data are well-described by a purely quadratic fit, fðλÞ,
and any quartic contamination is negligible.
Figures 5 and 6 compare the quality of the correlator

ratios of ω ¼ 0.06 and ω ¼ 0.18 regarding the discussion
in Sec. V. Although they lie close to each other in ω
space (see Fig. 1), ω ¼ 0.06 has a larger nucleon
momentum p ¼ ð−1; 2; 0Þ2π=L, hence a worse S/N,

FIG. 5. Same as Fig. 4 but for ω ¼ 0.18 (p ¼ ð0; 1; 0Þ2π=L) for
q ¼ ð5; 3; 0Þ2π=L. FIG. 6. Same as Fig. 4 but for ω ¼ 0.06 (p ¼ ð−1; 2; 0Þ2π=L)

for q ¼ ð5; 3; 0Þ2π=L.
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leading to a larger uncertainty in the extracted amplitude
as compared to the amplitude obtained for ω ¼ 0.18
ðp ¼ ð0; 1; 0Þ2π=LÞ.
A few of the ðp;qÞ pairs lead to the same ω for the

kinematics considered in this work. We show the correlator
ratios and fits to the extracted energy shifts for a repre-
sentative case in Fig. 9 for the ðp;qÞ ¼ ðð0; 1; 0Þ;
ð4; 2; 0ÞÞ2π=L and ðð1;−1; 0Þ; ð4; 2; 0ÞÞ2π=L pairs corre-
sponding to ω ¼ 0.2. We do not find any statistically
significant deviation between the amplitudes extracted
from such pairs and keep all occurrences if it is not omitted
due to poor signal quality.

APPENDIX B: BAYESIAN ANALYSIS

We apply the same methodology employed in Ref. [26]
to extract the moments of structure functions from our
Compton amplitude data. Lowest nonvanishing moments,

FIG. 7. Same as Fig. 4 but for the purely higher-twist ud piece.
We show the results obtained on the 483 × 96 ensemble for the
ðp;qÞ ¼ ðð1; 0; 0Þ; ð5; 3; 0ÞÞ2π=L pair. Energy shifts for the
T00 þ T33 combination have been rescaled by a factor of 0.5
on the bottom plot for clarity.

FIG. 8. The coefficient of the quadratic term in Eq. (18)
determined in four different ways (see text). b and b0 are the
quadratic coefficients obtained from a purely quadratic, fðλÞ ¼
bλ2, and a quadratic-plus-quartic, gðλÞ ¼ b0λ2 þ cλ4, fit. We
show the results for the uu piece obtained on the 483 × 96
ensemble at fixed q ¼ ð5; 3; 0Þ2π=L.

FIG. 9. Top to bottom: Correlator ratios of the amplitudes T33

and T00 þ T33 for λ ¼ 0.0375, and the corresponding fits in
λ-space, respectively, for two different p momenta that give
ω ¼ 0.2 at fixed q ¼ ð4; 2; 0Þ2π=L. See the caption of Fig. 4 for
the explanation of shaded regions. We show the results for the uu
piece obtained on the 483 × 96 ensemble.
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Mð1Þ
2 ðQ2Þ [Eq. (11)] and MðLÞ

0;2 ðQ2Þ [Eq. (12)], are sampled
from separate uniform distributions with bounds [0, 1],
while the consecutive higher moments are bounded from

above by their respective preceding moment,Mð1;LÞ
2n ðQ2Þ ∈

½0;Mð1;LÞ
2n−2ðQ2Þ�, for n > 1. Bounds for the ud moments are

discussed in Sec. IV. We employ the PyMC package, a
probabilistic programming library for Python [48], in our
analysis.
We keep terms up to Oðω8Þ in the fit polynomials

Eqs. (9) and (13). We find this to be the minimum required

number of terms to reliably extract at least the lowest two
moments from our Compton amplitude data while keeping
the computational overhead low. Keeping fewer terms lead
to an overestimation of the moments, while including
higher-order terms have a negligible effect. We illustrate
the stability of the lowest moments in Fig. 10 for a
representative case.
In Fig. 11 we show the inferred posterior distributions

for the MðLÞ
2 ðQ2Þ moments at Q2 ¼ 2.86 GeV2 for the

uu, dd, and ud contributions. Although the distributions
of the uu and dd pieces are skewed towards zero, a

nonzero signal is obtained for both. The Mð1Þ
2 ðQ2Þ and

MðLÞ
0 ðQ2Þ distributions (not shown) have well-defined

Gaussian shapes.
The lowest moments of proton F2 and FL shown in

Figs. 2 and 3, respectively, are constructed using the
individual uu, dd, and ud contributions,

MðLÞ
i;p ¼ 4

9
MðLÞ

i;uu þ 1
9
MðLÞ

i;dd −
2
9
MðLÞ

i;ud, where i ¼ 0; 2. Given

thatMðLÞ
2;uu andM

ðLÞ
2;dd are skewed towards zero and having a

MðLÞ
2;ud contribution as significant as MðLÞ

2;uu, the resulting

MðLÞ
2;pðQ2Þ are highly skewed towards zero making a clear

exclusion of a zero value doubtful. Hence, we are only

confident in setting an upper bound for the MðLÞ
2;pðQ2Þ

moments. The MðLÞ
0 ðQ2Þ moments, on the other hand, are

directly proportional to the lowest moments of F2, i.e. the
intercepts of F 2=ω shown in Fig. 1, and finite.

FIG. 10. Stability plots for the lowest moments obtained on the
483 × 96 ensemble at Q2 ¼ 4.86 GeV2 for the uu contribution

only. dd and ud contributions behave similarly. We show MðLÞ
0

(top) that is directly proportional to the lowest moment of F2, and

the lowest two moments, Mð1Þ
2 (middle) and Mð1Þ

4 (bottom) of F1

with respect to the number of terms kept in the fit polynomials.
Color filled symbols indicate the values that we pick.

FIG. 11. Density plots of the posterior distributions for the
lowestMðLÞ

2 moments for uu, dd, and ud contributions. We show
the results for Q2 ¼ 2.86 GeV2 from the 483 × 96 ensemble.
68% credible regions of the highest posterior density are
indicated by the darker regions on the density plot and shown
on the lower panel along with the means of the distributions.
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