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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic
tumours, representing greater than 90% of all diagnosed cases of pancreatic cancer. PDAC has the
lowest 5-year survival rate of all tumour malignancies with less than 9% patient survival. A unique
feature of PDAC tumours is the presence of a dense fibrotic fortress that creates a physical barrier
around the cancer cells, thus resulting in a reduced penetrability of drugs and a ‘sanctuary’ in which
cancer cells thrive, termed desmoplasia. Extensive desmoplasia in the PDAC tumour microenvi-
ronment (TME) is a crucial factor that influences PDAC development, progression, metastasis, and
resistance to treatment. This review will focus on the role of the TME in PDAC, current treatments for
PDAC, and a reflection on past and current clinical trials targeting components of the TME in PDAC.

Abstract: An overabundance of desmoplasia in the tumour microenvironment (TME) is one of the
defining features that influences pancreatic ductal adenocarcinoma (PDAC) development, progres-
sion, metastasis, and treatment resistance. Desmoplasia is characterised by the recruitment and
activation of fibroblasts, heightened extracellular matrix deposition (ECM) and reduced blood supply,
as well as increased inflammation through an influx of inflammatory cells and cytokines, creating
an intrinsically immunosuppressive TME with low immunogenic potential. Herein, we review the
development of PDAC, the drivers that initiate and/or sustain the progression of the disease and
the complex and interwoven nature of the cellular and acellular components that come together to
make PDAC one of the most aggressive and difficult to treat cancers. We review the challenges in
delivering drugs into the fortress of PDAC tumours in concentrations that are therapeutic due to
the presence of a highly fibrotic and immunosuppressive TME. Taken together, we present further
support for continued/renewed efforts focusing on aspects of the extremely dense and complex TME
of PDAC to improve the efficacy of therapy for better patient outcomes.

Keywords: pancreatic ductal adenocarcinoma; tumour microenvironment; desmoplasia; immunotherapy;
targeted therapy

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic
neoplasms, representing greater than 90% of all diagnosed cases of pancreatic cancer with
neuroendocrine tumours accounting for the remaining 10% [1]. PDAC has the lowest
5-year survival rate of all tumour malignancies with less than 9% patient survival [2]. Poor
survival of patients with PDAC is largely attributed to the cancer developing with few
symptoms and as a result, most PDAC patients are diagnosed with an advanced stage of
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disease, often including metastases to the liver, lungs, and peritoneum [3–5]. Unfortunately,
the incidence of PDAC is on the rise. In the United States, the incidence of pancreatic cancer
is projected to reach the second leading cause of cancer-related death (behind lung cancer)
by 2040 and will surpass breast, prostate, and colorectal cancers [2,6].

2. Disease Development

PDAC originates from the exocrine portion of the pancreas which constitutes 90% of
the organ and consists of acinar cells and a ductal network. Acinar cells exhibit a degree
of plasticity which allows them to contribute to both homeostasis and regeneration of
pancreatic exocrine tissue. Under environmental stimuli (e.g., tissue damage, inflammation,
stress) acinar cells transdifferentiate to a more epithelial phenotype, a process known as
acinar to ductal metaplasia (ADM) [7,8]. During ADM, acinar cells are more susceptible to
mutational hits, which can accumulate and lead to the development of precursor neoplasms
and invasive adenocarcinoma (Figure 1). Pancreatic intraepithelial neoplasms (PanINs) are
the most common form of pancreatic precursor lesions. The three grades of PanINs, namely,
PanIN-1A (flat) and PanIN-1B (papillary), PanIN-2 and PanIN-3 consist of increasing
amounts of cell atypia [9]. Additionally, intraductal papillary mucinous neoplasms (IPMNs)
and mucinous cystic neoplasms (MCNs) are cystic pancreatic lesions that can also lead
to invasive PDAC [7,9]. The accumulation of genetic changes (in several oncogenic and
tumour suppressor genes) within these cells leads to an invasive PDAC [7].
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Figure 1. Progression and development of PDAC. Acinar cells in a normal pancreatic duct transform
into ductal epithelial cells during the development of pancreatic intraepithelial neoplasia (PanIN)
stages 1–3, which can further develop into pancreatic ductal adenocarcinoma (PDAC) after key
oncogenic genetic mutation events (KRAS activation, CDKN2A/TP53/SMAD4 deactivation).

3. Drivers

A unique feature of PDAC tumours is an abundance of dense fibrotic stroma that
constitutes up to 90% of the tumour volume [10,11]. The dense desmoplastic stroma
creates a physical barrier around the cancer cells, fortifying the epithelium and hindering
vascularisation, thus resulting in reduced penetrability of drugs and a ‘sanctuary’ in which
cancer cells thrive [12]. Extensive desmoplasia in the tumour microenvironment (TME) is a
crucial factor that influences PDAC development, progression, metastasis, and resistance to
treatment [13] and is arguably the most important pathophysiological feature of this cancer.

PDAC is documented to have a complex genomic landscape and mutation profile of
cancer associated genes [14,15]. During tumour development, key oncogenic alterations
occur where the genes KRAS (Kirsten rat sarcoma viral oncogene homolog), CDKN2A
(cyclin dependent kinase inhibitor 2A), SMAD4 (Mothers against decapentaplegic homolog
4), and TP53 (Tumour protein 53) are most frequently mutated [4,16].

Key signalling pathways have been implicated in the development of PDAC and the
development of desmoplasia. In particular, the tumour growth factor (TGF)-β signalling



Cancers 2023, 15, 2354 3 of 19

pathway plays an important role in pancreatic carcinogenesis [17]. TGF-β also regulates
the development of the desmoplastic TME by inducing a fibroblast response which causes
dense build-up of stromal cells and extracellular matrix (ECM) [18]. Cancer associated
fibroblasts (CAFs) are the primary producer of the ECM protein collagen which is one of
the main contributors of tumour desmoplasia in PDAC [19,20].

Integrin signalling is also an important cornerstone of PDAC TME homeostasis as it
mediates adhesion of cells to ECM components such as collagen (types I and IV), fibronectin,
and laminin [21]. As the main receptors for ECM molecules, integrins engage with the actin
cytoskeleton via the linker protein talin and initiate bidirectional signals from both sides of
the plasma membrane. Integrins can function collectively as mechanoreceptors in response
to extracellular mechanical signals such as sheer stress and transduce the signal into the
cell (outside-in signalling) [22]. Integrins are also known to regulate cancer cell activation
and recruitment of CAFs in the stroma through TGF-β and participate in ECM remodelling
(via the platelet derived growth factor receptor (PDGFR)), to provide a pre-metastatic niche
for invading cancer cells (inside-out signalling) [23,24]. The bi-directional signalling of
integrins is critical for promoting and regulating cell proliferation, adhesion, and migration,
as well as chemotherapy resistance [21,25].

Signalling through the Janus kinase (JAK)/signal transducer and activator of tran-
scription (STAT) pathway is initiated upon binding of cytokines such as interleukin (IL)-1
and IL-6 to their receptor, and is reported to enhance PDAC fibrosis, and ECM remodelling
for increased stiffness of PDAC tumours [26–28]. In PDAC, IL-1α-induced signalling leads
to activation of JAK1/2 and STAT1/3 in ECM producing pancreatic stellate cells which
then promotes an inflammatory state of CAFs favouring further tumour growth [29].

Sonic hedgehog (SHH) is also overexpressed by neoplastic PDAC cells, and this
pathway is important for the formation of a fibroblast-rich desmoplastic stroma [30]. The
increased expression of SHH has been observed during pancreatic tumourigenesis, where
the expression becomes elevated as the tumour progresses towards an advanced stage
of PDAC, and aberrant activation of the Hedgehog signalling pathway is reported to be
associated with metastatic potential of the tumour [3,27,31].

4. Tumour Microenvironment

The TME of PDAC tumours is characterised by the recruitment and activation of
CAFs, heightened ECM deposition (e.g., collagen), reduced blood supply, as well as in-
creased inflammation via the influx of inflammatory cells and cytokines into the tumour
(Figure 2) [32].

4.1. Fibroblasts

The PDAC TME consists of an abundance of stromal cells such as pancreatic stellate
cells and CAFs, which are major contributors to the dense desmoplastic reaction seen in
PDAC through the production of acellular components that make up the ECM [33,34].
Stellate cells are myofibroblast-like cells that produce large amounts of ECM components,
growth factors, and cytokines/chemokines in support of PDAC growth [35–37]. Bachem,
Schünemann [38] and colleagues documented that when stellate cells were grown in the
conditioned media of PDAC cancer cell lines, there was an increase in cell proliferation
and synthesis of collagen type I and fibronectin. When the opposite occurred (i.e., PDAC
cells were grown in the conditioned media of stellate cells), PDAC cells demosnstrated
increased proliferation, invasion and migration [39]. Furthermore, mice injected with CAFs
and PDAC cells produced larger tumours with increased desmoplasia and fibrosis when
compared to PDAC cells injected alone [13,38,40].

CAFs are major orchestrators of the pancreatic TME due to their dominant production
of acellular components of the ECM, e.g., collagen [33,34]. In the stroma, CAFs interact
with other cells as well as the ECM to mediate cancer cell proliferation, migration, invasion,
and metastasis, in part through reorganisation of the ECM. Within the PDAC tumour,
there exists a tumour-stroma crosstalk between cancer cells and CAFs through paracrine
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signalling which influences tumour progression and desmoplasia through the production
of growth factors, cytokines, and chemokines [32]. For instance, factors such as IL-6
and IL-1 (both of which induce JAK/STAT signalling) are secreted by cancer cells to
promote CAF activation [29,41]. In response, CAFs then secrete chemokines, cytokines
(e.g., IL-6), growth factors (e.g., vascular endothelial growth factor, VEGF), exosomes, and
metabolites to instruct cancer cells and other TME components that promote angiogenesis
and recruit immunosuppressive cells for immune cell evasion; thus further promoting
PDAC progression [32,42,43]. The release of the growth factor TGF-β by cancer cells also
induces the formation of a desmoplastic ECM produced by CAFs, and up-regulation of
integrins on CAFs. Integrin α3β1 binds laminin-332 to mediate CAF activation and promote
PDAC growth and invasion. Integrins also assist in the assembly of fibronectin at CAF
cell protrusions to further enable integrin-mediated cancer cell migration [34,44,45]. Taken
together, there exists a complex relationship between PDAC cells, CAFs, stellate cells, the
TME, the immune cell response and cancer progression.
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Figure 2. PDAC tumour microenvironment and therapeutic targets. A key feature of PDAC is the
presence of dense fibrotic stroma or desmoplasia. PDAC tumours consist of ECM components such as
collagen and hyaluronan, as well as pro-tumourigenic and anti-tumorigenic cellular components such
as fibroblasts, vessel forming endothelial cells, vasculogenic mimicry (VM) vessels, cancer associated
fibroblasts (CAFs), pancreatic stellate cells, lymphocytes, dendritic cells (DCs), tumour associated
macrophages (TAMs), natural killer (NK) cells, and myeloid derived suppressor cells (MDSCs).

4.2. Extracellular Matrix

The ECM is a non-cellular component of the TME which provides essential phys-
ical scaffolding as well as biochemical and biomechanical cues to the cells [46]. ECM
components include collagen, fibronectin, proteoglycans, and hyaluronic acid, as well as
catalytically active enzymes and proteinases [47]. The connective tissue of PDAC can make
up 60–90% of the total tumour area [48], and its presence correlates with poor survival for
PDAC patients [49].

In PDAC progression and in pancreatitis, collagens are the most prominent component
of ECM proteins, comprising more than 90% of the ECM matrisome at all stages of disease.
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Proteoglycans and glyco-proteins such as fibronectin make up the rest of the matrix and
these ECM proteins are all overexpressed in PDAC [20]. An analysis of tumour extracts
also reveal that of the 28 different collagen subtypes (categorised into four subfamilies),
PDAC tumours contain an overabundance of fibril-forming collagen subfamily types I, III,
and V, and network-forming collagen subfamily type IV [50,51]. High collagen content
in PDAC is reported to correlate with reduced patient survival [52]. Collagens I, IV, and
V promote the pro-tumourigenic features of PDAC cell survival, proliferation, migration,
invasion and EMT [53–55]. In PDAC tumours, collagen I is the most abundant ECM protein
in the TME and has a high affinity for signalling via integrin β1 that is expressed on the
surface of PDAC cells. More specifically, integrins β1 and β6 are reported to promote PDAC
cell growth, survival, migration, and invasion [46,56,57]. Type IV collagen exerts its pro-
tumorigenic effects on the pancreatic cancer cells via an autocrine loop, where it interacts
with integrin receptors on the surface of the cancer cells to enhance their survival [53].
Similarly, type V collagen influences cancer cells in a paracrine fashion via activation of
the β1-integrin/focal adhesion kinase (FAK) signalling pathway [58]. Indicating that the
cellular and acellular components in the TME work in tandem to maintain and regulate
cancer cell growth.

Tumour stiffness caused by collagen cross-linking can also enhance cancer cell prolifer-
ation and promote cancer cell invasion via integrin signalling. Briefly, collagen cross-linking
occurs via a family of enzymes, lysyl oxidases (LOX), which activate signalling factors
such as yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding
motif (TAZ) for cancer cell proliferation [59,60]. An increase in collagen thickness and
tissue tension is also linked to PDAC prognosis [28,61]. Notably, increased collagen content,
accompanied by an increase in another ECM protein hyaluronan (HA), both contribute
to drug resistance (e.g., doxorubicin) in pancreatic cancer [62]. Notably, the desmoplastic
collagen in PDAC is not all tumour promoting but can also be a barrier to cancer develop-
ment. By way of example, a study by Rhim, Oberstein [30] showed that reducing stromal
desmoplasia in the TME of PDAC tumours (by inhibiting the SHH pathway component
Smoothened) accelerated tumour growth and metastasis.

4.3. Vasculature

As tumours increase in size, the TME becomes increasingly hypoxic, and cancer cells
adapt by upregulating tissue processes that enhance access to the blood supply [4,63].
One such process, and another hallmark of cancer progression, is the induction of neo-
angiogenesis (the formation of new blood vessels from existing endothelial cell lined
vessels). Angiogenesis is a process largely driven by the signalling protein VEGF [64]
which is upregulated in response to hypoxia [7,65].

Interestingly, some tumours, including PDAC, are considered ‘hypo-vascular’ and are
populated with avascular stromal ‘deserts’ with substantially lower microvessel densities
when compared to healthy areas of the pancreas [66]. Vascular dysfunction presents as a
major obstacle to pharmaco-delivery and drug efficacy in the fight against PDAC; Komar,
Kauhanen [67] and colleagues documented that compared to adjacent normal pancreatic
tissue, the blood flow in pancreatic tumours is decreased by ~60% which consequently
infers poor blood perfusion and impaired drug delivery to the tumour site [67].

Despite the dysfunctional vasculature and poor blood perfusion, PDAC tumours are
still able to thrive by adapting and using alternate metabolic and scavenging pathways
(e.g., autophagy and micropinocytosis) [68,69]. To this end, studies have shown that some
solid tumours, including PDAC, are able to gain access to the blood circulatory system via a
method independent of endothelial cell lined vasculature, by forming their own vessel-like
structures in a process known as vasculogenic mimicry (VM) [70,71]. Studies have shown
that a VM phenotype has been associated with poor prognosis and that PDAC cancer cells
have the ability to form functional VM vessels in vitro and in vivo [71,72]. While much is
still to be uncovered about the VM potential of PDAC cells, Yang, Zhu [73] demonstrated
that hypoxia-inducible factor 2 alpha (HIF-2α) promotes VM formation in vitro and in vivo
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through twist family basic helix-loop-helix (bHLH) transcription 1 (Twist1) binding to
vascular endothelial-cadherin (VE-cadherin) in pancreatic cancer cells. Our own work
has also highlighted the expression of adhesion molecules by VM-competent cancer cells
allowing for the active recruitment of circulating leukocyte subsets [74].

4.4. Immune Cell Presence

PDAC tumours are often considered immunologically ‘cold’; however, the role of the
immune TME in PDAC is emerging as an important prognostic feature [75]. The PDAC
TME is characterised by a highly heterogeneous immune cell infiltration profile: in the
early stages of PDAC development, the TME is largely pro-inflammatory, but following the
infiltration of immunosuppressive cells, the TME shifts to an anti-inflammatory state [76].
When this occurs, the PDAC TME has a high content of regulatory T cells (Tregs), tumour
associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), as well
as a relatively low prevalence of anti-tumour CD4+ and CD8+ T cells, natural kill (NK
cells), and dendritic cells (DCs) [34].

4.4.1. Conventional T Lymphocytes

T lymphocytes are central to tumour immunology, being able to specifically recognise
tumour-associated antigens. Circulating effector, memory and effector memory T cells
are all able to migrate from the blood to tumour sites. Conventional cytotoxic CD8+ T
cells are powerful effectors of the antitumour immune response, capable of directly killing
cancer cells by secreting granules containing enzymes including granzymes and perforin.
The infiltration of tumours by CD8+ T cells is associated with an improved prognosis in
multiple cancer types including PDAC [77,78]. While many studies have focussed on CD8+
T cells, the importance of CD4+ T cells for tumour control and response to immunotherapy
approaches is becoming apparent [79]. CD4+ helper T cells license antigen-presenting cells
(APC) to engage in effective priming of CD8 T cells, as well as activating NK cells, myeloid
cells, and other cell types via secreted factors. There is growing evidence for a cytotoxic
subset of CD4+ T cells capable of directly killing cancer cells. Conventional subsets of
CD4+ T cells including T helper type 1 (TH1), TH2, TH17, TH9, T follicular helper (TFH) and
Tregs are found within tumours and numbers of CD4+ T cells with TH1 phenotype are
associated with beneficial outcomes. In addition to recruited populations of T cells, tissue
resident memory T cells (TRM) are a tissue-specific component of the TME. TRM are CD4
or CD8 positive T lymphocytes that persist in tissues long-term following primary T cell
responses, and their proportion within the T cell infiltrate is related to a good prognosis [80].
A recent PDAC study of tumour infiltrating lymphocytes identified significant populations
of CD8+ TRM with an exhausted (PD1 high, TIGIT high) phenotype, Tregs and TH17 cells in
line with an immunosuppressed microenvironment [81]. Furthermore, it has been shown
that both the infiltration of CD4+ T cells and CD8+ T cells is associated with improved
overall survival (OS) and disease-free survival (DFS) in PDAC; however, the TME of PDAC
tumours have poor infiltration of CD4+ and CD8+ lymphocytes [82,83].

4.4.2. Regulatory T Lymphocytes

Tregs are a subpopulation of CD3 + CD4 + CD25+ T cells that express the transcription
factor forkhead box P3 (FOXP3) and have a role in maintaining homeostasis and self-
tolerance. In PDAC, Tregs are considered pro-tumorigenic due to their ability to promote
the TME development, promote cancer cell invasion and facilitate anti-tumour immune
escape [84]. The number of tumour infiltrating Tregs gradually increases throughout
the progression of PDAC and is strongly associated with poor prognosis due to their
ability to suppress tumour specific CD4+ and CD8+ T cells and NK cells [85]. Tregs have
been documented to directly modulate the TME through the production of IL-10, TGF-β,
IL-35 and granzyme B, and indirectly through the expression of cytotoxic lymphocyte-
associated antigen-4 (CTLA-4) and programmed cell death 1 (PD-1) [84]. IL-10 and IL-
35 are immunosuppressive cytokines produced by Tregs that inhibit effector immune
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cells (i.e., CD4+ and CD8+ T cells), therefore protecting the cancer cells from immune
surveillance [84,86]. Tregs can also modulate immunosuppression through the CTLA-
4 and PD-1 pathways. CTLA-4 can bind at higher affinity to CD80 and CD86 ligands
expressed on APCs than CD28 which is the co-factor essential for activation of naïve T cells.
Bengsch, Knoblock [87] demonstrated that targeting CD25, using an anti-CD25 antibody in
PDAC, reduced the number of Treg cells within the tumour and increased the number of
CD4+ T helper cells, reaffirming that depleting Tregs revitalises the immune system for an
anti-tumour immune response.

4.4.3. B Lymphocytes

B cells are the key component of the adaptive humoral immune system and function
by producing antigen-specific antibodies against non-self [76]. Relevant to tumour im-
munology, they are also able to present antigen to T cells within the TME [88]. The role of B
cells within the PDAC TME remains to be fully elucidated, with some studies suggesting a
pro-tumourigenic role and others suggesting an anti-tumourigenic role. For example, an
in vivo study by Spear, Candido [89] observed that B cells have an immunosuppressive
role when in secondary lymphoid organs, however, are more immunostimulatory when
found in the PDAC TME and therefore support the anti-tumour immune response [89].
Castino, Cortese [90] also demonstrated that within PDAC tumours B cells are found in
two histologically different structures, either as infiltrating lymphocytes or in organised
tertiary lymphoid tissue (TLTs). An increase in OS for PDAC patients was only associated
with B cells found in TLTs, and this was correlated with a higher number of infiltrating
CD8+ T cells; however, infiltrating B cells within the TME was associated with a poorer
OS [90]. Clearly, there is a need for further studies to better elucidate the function of B cells
in PDAC development.

4.4.4. Natural Killer Cells

NK cells are innate cytolytic immune cells that recognise and directly kill cancer
cells through receptor activation. NK cells are also able to elicit an anti-tumour response
through interactions with other immune cell types (e.g., DCs, macrophages and T cells) [91].
There are two main subtypes of NK cells: CD56dim which exert potent cytotoxicity and
secrete low levels of cytokines (e.g., interferon gamma (IFNγ), tumour necrosis factor
alpha (TNFα)), and CD56 bright which are poorly cytotoxic and secrete high levels of
cytokines [85]. In PDAC, NK cells are characterised by impaired anti-tumour activity as
well as reduced expression of cytotoxicity receptors [91]. Peng, Zhang [92] demonstrated
that the percentage of surface receptors and cytotoxic granules (e.g., perforin and granzyme
B) were significantly downregulated in NK cells following exposure to PDAC cancer
cells. It is thought that the impaired NK activity is due to secreted factors such as TGF-β
and IL-10, as well as indoleamine 2,3-dioxygenase (IDO) and matrix metalloproteinases
(MMPs) [91,92]. Furthermore, a study by Lim, Kim [93] and colleagues demonstrated that
NK cells isolated from PDAC patient tumours had reduced expression of C-X-C motif
chemokine receptor 2 (CXCR-2) when compared to healthy donor NKs, which is suggested
to be responsible for the low numbers of NK cells seen within the PDAC TME [93].

4.4.5. Tumour Associated Macrophages

TAMs are a type of myeloid cell that are found in high proportions within the PDAC
TME [94]. TAMs are known to exert both pro-tumourigenic and anti-tumourigenic roles
depending on the polarised phenotype of the macrophage [95]. In the early stages of
PDAC the TME is characterised by macrophages that have a M1 phenotype (i.e., pro-
inflammatory) [95,96]. M1 TAMs are attracted to the TME by cytokines such as IFNγ and
TNFα where they secrete proinflammatory cytokines, chemokines and effector molecules to
intensify the tumouricidal activity [97]. As PDAC disease progresses, TAMs are influenced
by the release of cytokines such as IL-4, IL-10, IL-13 and TGF-β and as a result polarise
to a M2 phenotype (i.e., anti-inflammatory) [98]. The M2 phenotype is documented to
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promote immunosuppression, angiogenesis, ECM remodelling and desmoplasia, accelerate
metastasis, and overall progression of disease [99]. M2 macrophages produce IL-10, TGF-β,
chemokine (C-C motif) ligand (CCL) 2, CCL17 and other cytokines/chemokines that inhibit
the activity of CD8+ cytotoxic T cells and NK cells whilst promoting the migration of
Tregs into the tumour [97]. Interestingly, Liou, Döppler [100] showed that the depletion of
macrophages or the neutralisation of macrophage attracting intercellular adhesion molecule
1 (ICAM-1) delayed the development of PanIN lesions, therefore revealing a role for TAMs
within the PDAC TME and a potential therapeutic avenue.

4.4.6. Myeloid-Derived Suppressor Cells

MDSCs are a heterogenous population of activated myeloid progenitor cells that are
formed in the process of myelopoiesis within the bone marrow [101]. During homeostasis,
immature myeloid cells (IMCs) differentiate into lineage-specific cell populations. However,
in a cancer setting, the overproduction of soluble factors such as granulocyte macrophage
colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), IL-6,
VEGF and TNFα promotes the formation of MDSCs that are recruited to the tumour site
via the CXC family of chemokines such as CCL2, CXCL-12, CXCL-15 [102]. MDSCs can be
characterised into two distinct populations; monocytic MDSCs (M-MDSCs) and granulo-
cytic MDSCs (G-MDSCs) [96]. MDSCs are known to contribute to the immunosuppressive
TME within PDAC through the direct and indirect inhibition of T cells and NK cells, and
the cross-talk and stimulation of Treg cells [91,96]. It has also been demonstrated that
compared to healthy controls PDAC patients have elevated levels of MDSCs within the
bone marrow and blood circulation which are rapidly recruited to the PDAC TME [103].
Furthermore, it has been shown that targeting G-MDSCs in PDAC increased the numbers
of activated cytotoxic T cells within the PDAC TME, whilst also inducing apoptosis of
cancer cells and remodelling of the TME (particularly the stroma) [104].

4.4.7. Dendritic Cells

DCs are professional APCs that form a critical link between the innate and adaptive
immune systems [85]. Tumour-specific immunity is mediated by DCs as they recognise,
process, and then present tumour associated antigens to adaptive cells [76]. DCs are rarely
found within the PDAC TME, but rather in the stroma surrounding the tumour. DCs in the
TME are often dysfunctional due to cancer cell secreted factors (e.g., IL-6, VEGF, TGF-β,
and reactive oxygen species (ROSs)) [105]. These dysfunctional DCs are compromised in
their ability to engulf, process, and present tumour-specific antigens, thereby inhibiting an
anti-tumour response [85]. When DCs are present in high numbers within the peripheral
circulation and the PDAC TME, there is improved OS of the patients [106]. Furthermore,
Fukunaga, Miyamoto [107] demonstrated that the number of DCs within the PDAC TME
was significantly increased when CD4+ and CD8+ TILs were also present.

5. Current Treatments and Hurdles

Currently, PDAC treatment outcomes are determined by the disease stage at presen-
tation. The treatment associated with the best OS is a margin-negative surgical resection
including chemo- and/or radiotherapy. However, this is only achieved in ~10–20% of
patients who are diagnosed at a relatively early stage. The remaining 80–90% of patients
present with advanced, non-resectable disease and a majority possessing distant metasta-
sis [7,108]. Advanced PDAC tumours are currently treated with chemotherapeutics such as
gemcitabine, capecitabine and 5-fluorouracil [109]. FOLFIRINOX (oxaliplatin, irinotecan,
leucovorin and fluorouracil) or a combination therapy of gemcitabine and a nanoparticle
albumin-bound paclitaxel (nab-paclitaxel) have been employed and have demonstrated
an improved survival in a higher proportion of patients when compared to gemcitabine
alone [110]. Unfortunately, these treatments are associated with increased toxicity and
hence, can only be prescribed in patients with a good performance index [111]. In addition
to the late diagnosis of PDAC patients, there are also intrinsic and extrinsic factors that can
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impede upon therapy success. Such examples include acquired chemotherapy resistance,
high mutational burden and pro-oncogenic signalling potential by the cancer cells, high
metastatic burden, and the presence of an immunosuppressive TME. Furthermore, the
dense stromal and connective tissue in PDAC tumours contributes to elevated tissue pres-
sure through eliciting solid stress by compressing on the blood vessels, further inhibiting
effective penetration of anti-cancer drugs, and thus contributing to a lack of efficiency
for PDAC treatments [12,112–114]. Thus, the OS for PDAC patients has not improved in
decades highlighting the need for more potent therapies and earlier detection methods.

Clinical Trials

Erlotinib (epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor), and
Olaparib (a poly adenosine diphosphate (ADP)-ribose polymerase (PARP) inhibitor) are
the only two approved targeted therapies used for the treatment of PDAC (Table 1,
Figure 2) [115]. However, most patients have, or inevitably develop, intrinsic resistance to
EGFR inhibitors, leading to disease progression [116]. In fact, as a survival mechanism,
tumours have reportedly developed resistance through the activation of EGFR-independent
signalling pathways, which are downstream of the erythroblastic leukaemia viral onco-
gene homologue (ErbB) family members that promote persistent cancer cell survival [116].
Olarparib is also approved for PDAC patients with breast cancer gene 1 (BRCA1) or BRCA2
germline mutations in their cancer cells, which reportedly only reflects a small subset of
patients diagnosed with metastatic pancreatic cancer [117,118].

Historically, clinical trials with targeted treatments for PDAC have been underwhelm-
ing. Multiple clinical trials of anti-angiogenic agents that target the tumour vasculature
without interfering with the normal vasculature yielded disappointing results (Table 2,
Figure 2) [112,119]. Even anti-cancer therapies proven to be successful in the treatment
of other cancers such as Trametinib, a MEK (mitogen-activated protein kinase kinase)
inhibitor were found to be ineffective in PDAC [27]. Additionally, given that the hedgehog
signalling pathway is key in PDAC development, SHH inhibition was also tested, but
without success. Further investigation in murine studies revealed that complete inhibition
of SHH led to an increase in vascularity and proliferation, showing that Hedgehog driven
tumours also supress tumour growth by restraining tumour angiogenesis [30]. Due to
the immunosuppressive nature of the PDAC TME, several clinical trials have investigated
immune checkpoint inhibitors (ICIs), anti-PD-1 or anti-programmed death ligand-1 (PD-L1)
(that block the inhibition of T cell activation by cancer cells) as both a monotherapy and in
combination with other therapies, i.e., gemcitabine); however, results have thus far been
disappointing (Table 2) [120–124].

The dense stromal reaction leading to the compression of blood vessels and inade-
quate drug penetration has also emerged as a potential target for therapeutic intervention.
A preclinical study demonstrated that excessive HA present in PDAC tumours (which
elevates interstitial pressure and impairs perfusion) is degraded by pegvorhyaluronidase
alfa (PEGPH20), and that this degradation of HA by PEGPH20 led to an increase in drug
delivery. Another clinical trial targeted ECM producing pancreatic stellate cells via all-trans-
retinoic acid (ATRA) to reprogram pancreatic stroma and suppress PDAC growth. ATRA
in combination with gemcitabine-nab-paclitaxel chemotherapy delivered to patients with
advanced, unresectable PDAC is currently in a phase II randomised trial [125]. Another
approach utilised Losartan, a clinically approved angiotensin II receptor antagonist with
antifibrotic activity (i.e., reduce the amount of collagen and HA in the tumour) [126], which
led to decompression of tumour vessels and significantly improved perfusion [127]. Losar-
tan has also been reported to enhance immune activation, and currently a randomized
phase II study on combining chemoradiotherapy and losartan with ICI immunotherapy
nivolumab (anti-PD-1 blocking antibody) is in progress [128]. A clinical trial is also under-
way testing the efficacy of targeting connective tissue growth factor (CTGF). In preclinical
mouse models, treatment with pamrevlumab (or FG-3019), a humanized monoclonal
antibody targeting CTGF, shows that pamrevlumab attenuates tumour growth, metasta-



Cancers 2023, 15, 2354 10 of 19

sis, and angiogenesis [129]. The clinical trial testing pamrevlumab in combination with
gemcitabine-nab-paclitaxel or FOLFIRINOX in patients with locally advanced PDAC is
currently ongoing.

Given that PDAC tumours are intrinsically immunosuppressive and have lower im-
munogenic potential [34], targeting the tumour promoting immune cells is an attractive
approach to inhibit PDAC progression. To this end, current clinical trials are investigating
novel immune-modulating agents such as those targeting CAF-mediated immunosup-
pression, checkpoint inhibitors, myeloid cells, Tregs, stromal depletion (by targeting CAF,
FAK, PDGFRα, IL-1, IL-6), and chimeric antigen receptor (CAR)-T cells (e.g., carcinoem-
bryonic antigen (CEA), mesothelin (MSLN) and mucin 1 (MUC1)) (Figure 2). These agents
are being considered as a monotherapy as well as in combination with standard of care
chemotherapeutic drugs [130,131]. Immunotherapy aims to improve the anti-tumour im-
mune response and has proven successful in other solid cancers (e.g., melanoma); however,
this has not been the case in PDAC [132]. Several immunotherapies of different categories
including immunomodulators (e.g., ICIs), immune stimulatory agonists, cytokines and
adjuvants), oncolytic viruses, monoclonal antibodies (mAbs), adoptive cell therapies and
cancer vaccines have and are being assessed in PDAC [132].

Table 1. Non-chemotherapy targeted drug clinical trials that progressed to approval.

Trial
[Reference] Year Target Trial Design Comparator

Groups Overall Survival Inference

NCT00026338
(NCIC CTG
PA.3) [115]

2001–2004 HER1/EGFR

Phase III
Randomised
Triple blinded
Parallel
assignment

Erlotinib and
gem (n = 285)
vs.
Placebo and
gem (n = 284)

OS was significantly
longer in the erlotinib
and gem group with an
estimated HR of 0.82
(95% CI, 0.69 to 0.99;
p = 0.038)
PFS was significantly
longer in the erlotinib
and gem group with an
estimated HR of 0.77
(95% CI, 0.64 to 0.92;
p = 0.004)

Erlotinib
improves OS
and PFS when
used
concurrently
with gem

NCT02184195
[118] 2014–2019 PARP

Phase III
Randomised
Quadruple
blinded
Parallel
assignment

Olaparib
(n = 92)
vs.
Placebo (n = 62)

No significant
difference in OS
PFS was significantly
longer in the olaparib
group than in the
placebo group HR of
0.53 (95% CI, 0.35 to
0.82; p = 0.004)

Olaparib
improves PFS
to patients with
germline BRCA
mutated PDAC

Abbreviations: CI–confidence interval, HER1/EGFR–human epidermal growth factor receptor type 1, HR–hazard
ratio, OS–overall survival, PFS–progression free survival.

Table 2. Failed clinical trials targeting the PDAC tumour microenvironment.

Trial
[Reference] Year Target Trial Design Comparator

Groups
Overall
Survival Inference

Anti-angiogenic agents

NCT00088894
(CALGB 80303)
[133]

2004–2006 VEGFA

Phase III
Randomised
Double blinded
Parallel
assignment

Bevacizumab and
gem (n = 302)
vs.
Placebo and gem
(n = 300)

No significant
difference in OS
and PFS

The combination of
bevacizumab and
gem does not
improve survival in
PDAC
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Table 2. Cont.

Trial
[Reference] Year Target Trial Design Comparator

Groups
Overall
Survival Inference

NCT0095966
(BAY 43-9006)
[134]

2004–2006

Raf ser-
ine/threonine
kinase isoforms,
VEGFR2,
receptor
tyrosine kinases

Phase III
Not blinded
Single group
assignment

Sorafenib and
gem (n = 17)

Trial
terminated–
lack of
efficacy

The combination of
sorafenib and gem
does not improve
survival in PDAC

VMIN
000005133
(PEGASUS-PC
study)
[135]

2009–2014 VEGFR2

Phase II/III
Randomised
Double blinded
Parallel
assignment

Elpamotide and
gem (n = 100)
vs.
Placebo and gem
(n = 53)

No significant
difference in OS
No significant
difference in
PFS

The combination of
elpamotide and
gem does not
improve survival in
PDAC

Anti-fibrotic/ECM agents

NCT01231581
[136] 2010–2012 MEK1/2

Phase II
Randomised
Double-blinded
Parallel
assignment

Trametinib and
gem (n = 80)
vs.
Placebo and gem
(n = 80)

No significant
difference in OS
and PFS

The combination of
trametinib and gem
does not improve
survival in PDAC

NCT01130142
[137] 2010–2012 Hedgehog

pathway

Phase I/II
Randomised
Double-blinded
Parallel
assignment

Saridegib
(IPI-926) and gem
vs.
Placebo and gem
Total n = 122

Trial
terminated–
patient survival
diminished
(increase in
vascularisation
and
proliferation)

The combination of
saridegib and gem
diminishes patient
survival

NCT01064622
[138] 2009–2012

Hedgehog
pathway
(smoothened)

Phase II
Randomised
Double-blinded
Parallel
assignment

Vismodegib and
gem (n = 53)
vs.
Placebo and gem
(n = 53)

No significant
difference in OS
and PFS

The combination of
vismodegib and
gem does not
improve survival in
PDAC

NCT02715804
(HALO-301)
[139]

2016–2019 Hyaluronan

Phase III
Randomised
Double-blinded
Parallel
assignment

PEGPH20 and
AG (n = 327)
vs.
Placebo and AG
(n = 165)

No significant
difference in OS
and PFS

The combination of
PEGPH20 and AG
does not improve
survival in PDAC

NCT01821729
[140] 2013–2018

Renin-
angiotensin
system

Phase II
Not blinded
Single group
assignment

FOLFIRINOX,
losartan and
proton beam RT
(n = 49)

69% of
participants
became eligible
for tumour
resection

FOLFIRINOX,
losartan and proton
beam RT was well
tolerated, further
studies required

Immunological agents

NCT02558894
[121] 2015–2017 PD-L1

CTLA-4

Phase II
Randomised
Not blinded
Parallel
assignment

Durvalumab
alone (n = 33)
vs.
Durvalumab and
tremelimumab
(n = 32)

No significant
difference in OS
and PFS

The combination of
durvalumab and
tremelimumab
does not improve
survival in PDAC

Brahmer, 2013
NCT00729664
[122]

2009–2015 PD-L1

Phase I
Non-
randomised
Not blinded
Parallel
assignment

MDX1105-01 at
increasing
concentrations
(n = 14 PDAC
patients)

No objective
response to
treatment

MDX1105-01 does
not improve
survival in PDAC
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Table 2. Cont.

Trial
[Reference] Year Target Trial Design Comparator

Groups
Overall
Survival Inference

NCT00112580
[141] 2005–2009 CTLA-4

Phase II
Not blinded
Single group
assignment

Ipilimumab
(n = 27)

No or minor
objective
response to
treatment

Ipilimumab does
not improve
survival in PDAC

NCT00084383
[142] 2002–2005 GM-CSF

Phase II
Not blinded
Single group
assignment

GVAX
and adjuvant
chemoradiother-
apy
(n = 60)

Median OS of
24.8 months
(95% CI,
21.2–31.6)

GVAX and
adjuvant
chemotherapy was
well tolerated,
further studies
required

NCT02562898
[143] 2015–2019 B cells (repro-

gramming)

Phase I/II
Non-
randomised
Not blinded
Parallel
assignment

Ibrutinib,
paclitaxel and
gem (n = 18)

No objective
response to
treatment

Ibrutinib, paclitaxel
and gem does not
improve survival in
PDAC

Abbreviations: CI–confidence interval, FOLFIRINOX–oxaliplatin, irinotecan, leucovorin and fluorouracil, Gem–
Gemcitabine, HER1/EGFR–human epidermal growth factor receptor type 1, HR–hazard ratio, MEK1/2–Mitogen-
activated protein kinase 1/2, OS–overall survival, PFS–progression free survival, RAF–rapidly accelerated
fibrosarcoma.

6. Conclusions

While the survival rates of most cancers have dramatically improved in the last few
decades, this is not the case for PDAC where the 5-year survival rate has remained below
9% [144]. At the present time, achieving an improved survival rate for patients with PDAC
is fraught with barriers including the lack of a specific biomarker to detect PDAC at an
early stage (when meaningful attempts at treatment are feasible), and the inability to
identify patients who will benefit from aggressive treatments (surgery and chemo-/radio-
therapy) [145]. Unfortunately, even the most exciting advances in cancer treatments have
been disappointing in PDAC. For example, while immunotherapy (e.g., ICIs such as anti-
PD-1 antibodies) has transformed the treatment landscape for many cancer patients (e.g.,
lung, melanoma), for PDAC patients, <2% show improved outcomes.

As detailed above, the main challenge is the difficulty in delivering drugs to the tumour,
with the presence of a densely packed ‘desmoplastic’ TME preventing most anti-PDAC
drugs and immune cells from reaching the ‘heart’ of the tumour in therapeutic/effective
concentration. Given that the prognosis of PDAC patients is largely determined by stage of
diagnosis and tumour biology [146], renewed efforts focusing on aspects of the extremely
dense and complex TME provide hope for improved efficacy of PDAC therapy.
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