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Abstract
Purpose of Review  Despite the crucial role that prediction models play in guiding early risk stratification and timely interven-
tion to prevent type 2 diabetes after gestational diabetes mellitus (GDM), their use is not widespread in clinical practice. The 
purpose of this review is to examine the methodological characteristics and quality of existing prognostic models predicting 
postpartum glucose intolerance following GDM.
Recent Findings.
A systematic review was conducted on relevant risk prediction models, resulting in 15 eligible publications from research 
groups in various countries. Our review found that traditional statistical models were more common than machine learning 
models, and only two were assessed to have a low risk of bias. Seven were internally validated, but none were externally 
validated. Model discrimination and calibration were done in 13 and four studies, respectively. Various predictors were identi-
fied, including body mass index, fasting glucose concentration during pregnancy, maternal age, family history of diabetes, 
biochemical variables, oral glucose tolerance test, use of insulin in pregnancy, postnatal fasting glucose level, genetic risk 
factors, hemoglobin A1c, and weight.
Summary  The existing prognostic models for glucose intolerance following GDM have various methodological shortcom-
ings, with only a few models being assessed to have low risk of bias and validated internally. Future research should prioritize 
the development of robust, high-quality risk prediction models that follow appropriate guidelines, in order to advance this 
area and improve early risk stratification and intervention for glucose intolerance and type 2 diabetes among women who 
have had GDM.
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Introduction

Gestational diabetes mellitus (GDM) is a condition where 
women without a previous diagnosis of diabetes exhibit 
abnormal blood glucose levels during pregnancy [1, 2]. It is 
one of the most common pregnancy complications world-
wide [3, 4], affecting up to 14 million women annually [5, 

6]. The prevalence of GDM is increasing globally, due to 
changes in lifestyle, increasing rates of maternal obesity 
[7–9], and evolving diagnostic criteria. In 2021, according to 
the International Diabetes Association, the estimated pooled 
standardized prevalence of GDM globally was 14.0%, and 
regionally was 27.6% in the Middle East and North Africa, 
20.8% in South-East Asia, 14.7% in Western Pacific, 14.2% 
in Africa, 10.4% in South America and Central America, 
7.8% in Europe, and 7.1% in North America and the Carib-
bean [2].

Often, blood glucose levels associated with GDM will 
become normal after delivery; however, these women 
remain at high risk of developing postpartum metabolic 
abnormalities such as glucose intolerance and type 2 dia-
betes mellitus (T2DM). According to recent literature, 12.3 
to 60.0% of pregnant women who had GDM will develop 
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some form of glucose intolerance up to 15 years postpartum 
[10–14] which increases to 70.0% 28 years after pregnancy 
[11, 15], although this varies in different populations and 
ethnic groups. Hence, women with a history of GDM have a 
greater than sevenfold risk of developing postpartum glucose 
intolerance than those who were normoglycemic [5, 16]. 
For this reason, the American College of Obstetricians and 
Gynecologists (ACOG) and the American Diabetes Associa-
tion (ADA) recommend postpartum screening of all mothers 
who had GDM from 4 to 12 weeks postpartum for timely 
intervention [17, 18].

Previous studies have reported a range of prognostic fac-
tors associated with risk of developing postpartum glucose 
intolerance after GDM, which include demographic and 
clinical factors, antepartum laboratory results, and metabolic 
factors. For example, factors including age, increased parity, 
higher pre-conception body mass index (BMI), family his-
tory of diabetes, insulin therapy during pregnancy, degree 
of hyperglycemia during pregnancy (higher area under the 
curve (AUC) of glucose, higher fasting plasma glucose 
(FPG)), and impaired pancreatic β-cell function were con-
sistently found to be associated with postpartum glucose 
intolerance [11, 13, 19–23]. Abnormal findings on a variety 
of antepartum glucose tolerance tests (OGTT) [24–28] were 
also reported to be associated with a high risk of post-partum 
glucose intolerance (e.g., low insulinogenic index II levels 
on the antepartum 75-g OGTT (42)). More than 60 genetic 
factors have been identified in association with T2DM. 
Given women with GDM have a family history of T2DM, it 
has been found that some genetic variants of T2DM are also 
associated with early or late postpartum glucose intolerance 
among women who had GDM [29–33]. In addition, a range 
of specific metabolic biomarkers including amino acids 
(branched-chain amino acids, hexose), lipids (linoleic acid, 
phospholipids, lysophosphatidylcholines, acylcarnitines, 
sphingomyelins (i.e., SM (OH) C14:1)), p-cresol sulfate, 
and glycocholic acid have also been reported as predictive 
for postpartum glucose intolerance among women who had 
GDM [34–38].

Risk prediction models have the advantage of identifying 
women who are at high risk of developing glucose intoler-
ance after GDM with greater accuracy than single markers 
and in a timely manner (e.g., years before development). 
This enables women and their healthcare providers to ensure 
ongoing screening and implementation of early prevention 
strategies to optimize health outcomes. Risk prediction 
models can be applied with each women at any time, which 
can be important as it has been shown that the majority of 
women (even those at high risk of postpartum T2DM) did 
not attend postpartum screening for glucose intolerance [39, 
40]. Since glucose intolerance is well known to be effec-
tively managed with lifestyle modification [41, 42], early 

identification of these at-risk women and more focused 
ongoing screening may prevent T2DM.

Prediction models that have strong predictive ability, 
validated, generalizable, and based on easily accessible vari-
ables, is required in order to effectively prevent postpartum 
T2DM risk. A systematic review is needed to aid clinicians 
in selecting postpartum T2DM risk prediction tools and to 
summarize all available prediction models for researchers. 
Therefore, this systematic review aims to summarize and 
critically evaluate the reporting quality, methodological 
characteristics, and risk of bias of studies reporting predic-
tion models for developing postpartum glucose intolerance 
developing after GDM.

Methods

This study was conducted according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Anal-
yses (PRISMA) [43] and using The Checklist for critical 
Appraisal and data extraction for systematic Reviews of pre-
diction Modelling Studies (CHARMS) checklist [44]. The 
protocol for this systematic review is registered at the inter-
national prospective register of systematic reviews (PROS-
PERO); CRD42022327239.

Formulating the Review Question and Protocol

The review question was formulated based on the PICOTS 
framework (population, intervention, comparison, outcome, 
time, and settings) as recommended by the CHARMS check-
list. The study protocol was developed by considering the 
rationale, objectives, design, methodology, and statistical 
considerations of the systematic review (Table 1).

Main outcome(s)

The main outcome of interest for this study is the devel-
opment of glucose intolerance in women with a history 
of GDM. This encompasses metabolic conditions such as 
T2DM, pre-diabetes (impaired fasting glucose (IFG) and 
impaired glucose tolerance (IGT)) which developed within 
20 years postpartum. These are defined and identified by 
fasting plasma glucose concentrations and/or OGTT results 
according to the World Health Organization criteria [45], 
national or regional Diabetes Association diagnostic crite-
ria, or specified local criteria. Patients with IFG and/or IGT 
are now referred to as having “pre-diabetes” indicating the 
relatively high risk for the development of T2DM in these 
patients.



Current Diabetes Reports	

1 3

Eligibility Criteria

Prediction models were conducted to predict the risk of post-
partum glucose intolerance among women who had GDM 
worldwide in all settings including hospitals, primary care, 
secondary, tertiary, and community-based settings. We 
included both prospective and retrospective cohort prog-
nostic model studies. We did not restrict studies by ethnic 
origin or parity.

Studies with no original data (meetings, editorials, let-
ters, narrative reviews, and commentaries), studies that were 
performed with a cohort of women with T2DM before preg-
nancy, and studies that were published in languages other 
than English were excluded.

Search Strategy and Screening

The search was conducted on May 21, 2022 across eight 
databases: Ovid Medline, Ovid Embase, Ovid Emcare, Sco-
pus, Web of Science, CINHAL, Maternity & Infant Care 
Database (MIDIRS), and Global Health 1910 to 2022 Week 
18 attached in Appendix S1. We also manually searched 
the references of the selected articles to identify additional 
eligible studies.

Studies identified on database searching were imported 
to Covidence web-based software (developed by Australian 
not-for-profit company called SaaS enterprise) for the title 
and abstract screening. Title and abstract screening and full-
text reviews were done by two independent reviewers (YB 
and DH) based on the aforementioned eligibility criteria, and 
disagreement was resolved by discussion.

Critical Appraisal

The CHARMS tool was applied to assess the methodolog-
ical quality and relevance of studies. The source of data 
used for prediction model development was assessed. Par-
ticipants’ selection (method, setting, inclusion, and exclu-
sion criteria); definition, clarity, consistency of outcome 
of interest, and candidate predictors’ assessment used; 

sample size used for prediction model development; miss-
ing data handling; methodologies used for model devel-
opment, performance measurement, and model evalua-
tion; and interpretation of the results were assessed by 
the checklist.

Risk of Bias (Quality) Assessment

Two researchers (YBM, DWH) assessed the risk of bias. In 
abstract and full-text screening, discrepancies were resolved 
by discussion, and consensus was reached on all discrep-
ancies. Assessment of risk of bias and model applicability 
was conducted using the Prediction models Risk Of Bias 
Assessment Tool (PROBAST) tool. This involves the assess-
ment of four domains (participants, predictors, outcome, and 
analysis) to cover key aspects of prediction model studies. 
Under these four domains, there are 20 signaling questions 
overall. These questions were scored as “Low,” “High,” or 
“Unclear.” A low score indicates a low risk of bias, whereas 
high shows the presence of bias, and unclear was used when 
there was insufficient reported information to decide on 
risk. The overall risk of bias was graded as low risk when 
all domains were considered low risk, and high risk when 
at least one of the domains was considered high risk. The 
first three domains (participants, predictors, outcome) were 
also rated for concern regarding applicability (low, high, 
or unclear) to the systematic review question. Concerns 
regarding applicability were rated similarly to risk of bias, 
but without signaling questions (Table S1).

Data Extraction (Selection and Coding)

A data extraction grid was created including all relevant 
variables and key elements in Transparent Reporting of a 
multivariable prediction model of Individual Prognosis Or 
Diagnosis (TRIPOD) checklist which was pilot tested by 
using sample articles and modified accordingly. The follow-
ing variables were extracted by two authors independently: 
country, source of data, participants (ethnicity, maternal char-
acteristics), outcomes to be predicted, candidate predictors 

Table 1   PICOTS of the review question

Domain Description

Population The population of interest comprises women who had gestational diabetic mellites
Intervention (model) The focus is on the prognostic models predicting postpartum glucose intolerance among 

women who had gestational diabetes mellitus
Comparator The existence of alternative models was not considered in our case study
Outcome(s) The outcome was defined as postpartum glucose intolerance
Timing Here, we focus on development of postpartum glucose intolerance until 20 years of delivery
Setting Available prediction models for the prediction of postpartum glucose intolerance among 

women who had gestational diabetes mellitus in all settings (such as hospitals, primary 
care, secondary, tertiary settings, and community-based) were included
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(index tests), sample size, missing data, model development, 
model performance measurements (calibration discrimina-
tion), model evaluation, and results (Appendix S2).

Strategy for Data Synthesis

Data synthesis was performed using thematic and context 
analysis to summarize the methodologies used to develop 
the prediction studies, participant selection, predictor varia-
ble selection and collection, outcome determination, analysis 
used for model development, variables included in the final 
model, and performance measures used. Appropriate data 
was presented in the form of summary tables and, where 
relevant, graphical representations of the data. Where there 
was a lack of homogeneity in methods used to develop the 

prediction models and different sets of predictors used to 
develop different prediction models, meta-analysis was not 
performed as merging these models may lead to highly cor-
related data and inflated estimates [46, 47]. If meta-analysis 
was not indicated, then qualitative evaluation and synthesis 
of estimates were applied to summarize and appraise the 
available model estimates.

Results

Main Characteristics of Included Studies

The systematic review process is presented on the flow chart 
in Fig. 1. The electronic search method yielded 3455 unique 

Fig. 1   PRISMA flow diagram 
showing the systematic review 
process

Records identified from*: 
OVID Medline: 1373, 
Ovid Embase: 2374, 
CINHAL Plus: 1042, 
Scopus: 71, 
Web of Science: 366, 
EMCARE: 628,
Global Health: 576, 
Maternity & Infant Care 
Database (MIDIRS): 349: 
Totall: 6783

Records removed before 
screening:

Duplicate records removed (n 
=3277)

References imported to 
Covidence for title and abstract 
screening (n = 3506)

Duplicates removed 
(n = 51)

Studies screened against title 
and abstract
(n = 3455)

Studies excluded
(n = 3402)

studies assessed for full-text 
eligibility (n = 53)

Reports excluded: 38 excluded
23 Not a prediction model 
study
6 Conference Abstract
3 Wrong outcomes
2 Duplicate
2 Wrong study design
1 Wrong patient population
1 non-English Language 
study

studies included (n = 15)

Identification of studies via databases and registers
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articles, of which 3402 articles were excluded on title and 
abstract screening leaving 53 studies to be assessed by full 
text. Following full-text review, a further 38 articles were 
excluded. Finally, fifteen studies reporting 15 risk predic-
tion models were identified and included in this review. All 
included studies were model development studies, with no 
external validation studies found. Included models were 
developed in six different countries or regions: four in the 
USA [35, 48••, 49••, 50], six in Europe [24, 36, 51, 52••, 
53, 54], two in Australia [37, 55••], and one in Asia [56], 
Canada [57], and Ethiopia [58••] between 1995 and 2022.

The primary outcomes of included studies were reported 
as follows: T2DM (n = 10) [35–37, 49••, 50, 51, 53, 55••, 
56, 57], glucose intolerance (n = 4) [24, 52••, 54, 58••], 
and IGT (n = 1) [48••]. Muche et  al. [58••] diagnosed 
glucose intolerance as postpartum pre-diabetes (IFG: 
FPG 100–125 mg/dL; IGT: 2-h plasma glucose in 75 g 
OGTT 140–199 mg/dL) or diabetes (FPG > 126 mg/dL, 
or 2-h plasma glucose > 200 mg/dL in OGTT or random 
plasma glucose > 200 mg/dL) (Table 2). Postpartum diag-
nosis of T2DM/prediabetes for Bartakova et al. [59] was 
performed based on the WHO criteria: FPG ≥ 7 mmol/L 
alone or 2 h after 75 g load glucose ≥ 11.1 mmol/L for 
T2DM, FPG 5.6–6.9 mmol/L or 2 h after 75 g load glucose 
7.8–11.0 mmol/L for prediabetes. Bengtson et al. [48••] 
diagnosed impaired glucose tolerance as HbA1c ≥ 5.7%. 
Kondo et al. [24] diagnosed glucose intolerance with 75-g 
oral glucose tolerance tests. Among ten studies that reported 
T2DM as a primary outcome, greater than half used ADA 
criteria for diagnosis [60] (Table S2).

Predictors in the Final Model

A list of predictors included in the final model is presented 
in Table 3. The number of risk predictor variables included 
in the models ranged from three to seven. Age (n = 6), FPG 
level during pregnancy (n = 8), and BMI (n = 11) were the 
three most common predictor variables included in the final 
model to predict postpartum glucose intolerance. Four mod-
els included biochemical variables such as branched-chain 
amino acids (BCAAs) (Val, Leu, Ile), lipid metabolites 
(sphingomyelin (SM (OH) C14:1), cholesteryl palmitic acid 
(CE(16:0)), non-esterified fatty acids (NEFA(22:4)), triglyc-
erides and their fatty acid combination (TAG 48:2 FA 16:1, 
TAG 54:0 FA 16:0, TAG 50:1 FA 16:0), cholesteryl icosa-
tetraenoate (CE(20:4)), phosphatidylethanolamine (PE(P-
18:0/18:1), PE(P-36:2)), phosphatidylcholine (PC ae C40:5), 
hexoses, and phosphatidylserine (PS 38:4) [35–37, 55••]. 
Five models included a family history of diabetes mellitus, 
and four models included a 2-h plasma glucose level dur-
ing pregnancy. Postnatal fasting glucose level, postnatal 2-h 
plasma glucose level, insulin therapy during pregnancy, 
and genetic factors were also other common prognostic 

determinants considered for model building. GDM history 
in a prior pregnancy, GDM diagnosis at < 24 weeks ges-
tation, personal history of hypothyroidism, instrumental 
delivery, lactation, ethnicity, antenatal depression, blood 
pressure, genetic risk factors, and insulinogenic index/fast-
ing immunoreactive insulin were each included only in one 
model (Fig. 2).

Predictive Performance

Traditional statistical models were common, with only three 
applying machine learning (Table 4). The predictive perfor-
mance of each study model is summarized in Table 3. The 
predictive performance of 13 studies that reported the area 
under the curve ranged from 0.66 to 0.92. However, none 
were externally validated. Only a few models were validated 
internally [35–37, 49••, 51, 55••]. Calibration was reported 
only for some models using Hosmer–Lemeshow test, cali-
bration plot, and calibration slope [24, 51, 53].

Risk of Bias Assessment and Meta‑analysis

The risk of bias and applicability assessment results are 
shown in Table S1. Overall low risk of bias was present in 
two (2/15) studies only. Three domains including participant 
selection, predictor assessment, and outcome assessment 
resulted in a low risk of bias for most studies. A high risk 
of bias for participant selection was mainly due to contro-
versial inclusion or exclusion criteria Table S3. In addition, 
two studies selected participants for inclusion based on one 
question only asking “Have you ever been told that you had a 
high sugar level during pregnancy?” which is a less sensitive 
approach, potentially introducing serious bias and may com-
promise the transportability of the model [49••, 57]. The 
answer to the question “Were predictor assessments made 
without knowledge of outcome data?” resulted in a high risk 
of bias because the assessment of predictors was performed 
in retrospect after the outcome was known and/or there was 
no statement showing whether assessors were blinded or not. 
As most models had less than 10 events per variable (EPV) 
or the EPV was unable to be extracted (Table 2), this was 
scored as a high risk of bias for most models.

However, in the analysis section, most studies had a high 
risk of bias. In some studies, continuous and categorical 
variables were not handled appropriately. For instance, 
although using continuous variable is recommended in 
prediction model development, Man (2021) categorized 
age into six categories and BMI into three categories. The 
analysis did not include all enrolled participants and/or did 
not report on those who were excluded. Additionally, par-
ticipants with missing data were not adequately addressed 
and/or were not reported. For example, Ignell (2016), 
which relies on prospective data collection, experienced a 
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significant amount of lost to follow-up. The selection of pre-
dictors based on univariable analysis was applied and/or not 
reported [48••, 58••], and complexities in the data were not 
accounted for appropriately and/or not reported. Relevant 

model performance measures were not evaluated appropri-
ately and/or not reported. Furthermore, model overfitting 
and optimism in model performance were not accounted for 
and/or not reported. Predictors and their assigned weights 

Table 2   Prediction temporality and sample size with respective events in included models

EHRs electronic health records, MR medical records, GDM Dx gestational diabetes mellitus diagnosis, PP postpartum, T2DM type 2 diabetes 
mellitus, GI glucose intolerance, NIDDM non-insulin dependent diabetes mellitus, GA glucose abnormality, pDM primary diabetes mellitus, DM 
diabetes mellitus, IGT impaired glucose intolerance, USA United States of America, RCT​ randomized controlled trial

Articles Country Setting Data source Study design Baseline 
time(t0)

Number of 
participants 
included

Number of 
events and 
percent

GI test time 
(t1)

Primary 
outcome

Bengtson 
2022

USA Clinical 
(hospital-
based)

Question-
naires

Prospective 
cohort

2 days PP 203 71 (35%) 4–12 weeks IGT

Man 2021 USA Both Secondary 
data

RCT​ History 317 82 (25.9%) 3 years DM

Bartáková 
2021

Czech 
Republic

Clinical 
(hospital-
based)

EHRs and 
question-
naires

Retrospec-
tive cohort 
(cross-
sectional)

GDM Dx 244 22 (9%) 6–12 weeks GI

Joglekar 
2020

Australia Clinical 
(hospital-
based)

Question-
naires

Prospective 
cohort

12 Weeks pp 103 21 (20.4%) (10 years) T2DM

Muche, 
2020

Ethiopia Clinical 
(hospital-
based)

MR and 
question-
naires

Prospective 
cohort 
study

GDM Dx 112 24 (21.4%) 6–12 weeks GI

Khan 2019 Germany Clinical 
(hospital-
based)

EHRs Nested case 
control 
study

6–9 Weeks 
pp

140 55(39.3%) 2 years DM

Kondo 2018 Japan Clinical 
(hospital-
based)

MR Retrospec-
tive cohort 
study

GDM Dx 123 45 (36.6%) 8–12 weeks GI

Allalou 
2016

USA Clinical 
(hospital-
based)

MR and 
question-
naires

Prospective 
cohort

6–9 Weeks 
pp

1010 122 
(12.08%)

4 years T2DM

Ignell 2016 Sweden Clinical 
(hospital-
based)

EHRs A prospec-
tive cohort 
study

GDM Dx 362 72 (19%) 5 years DM

Köhler 2016 Germany Clinical 
(hospital-
based)

Question-
naires

A prospec-
tive cohort 
study

GDM Dx 257 110 (42.8%) 20 years DM

Bartáková 
2015

Czech 
Republic

Clinical 
(hospital-
based)

EHRs Retrospec-
tive cohort

GDM Dx 305 51 (16.7%) 1 year GA

Lappas 
2015

Australia Clinical 
(hospital-
based)

MR and 
question-
naires

Prospective 
cohort

12 Month pp 104 21 (20.2%) 8–10 years T2DM

Cormier 
2015

Canada Community 
based

Survey A cohort 
study

PP 214 135 
(63.08%)

3 years pDM & DM

Kwak 2012 South Korea Clinical 
(hospital-
based)

MR Prospective 
cohort 
study

GDM Dx 395 116 (29.4%) 45 months T2DM

Kjos SL 
1995

USA Clinical 
(hospital-
based)

MR and 
question-
naires

Prospective 
cohort

4–16 Weeks 671 146 (21.7%) 5–7 years NIDDM
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in the final model did not correspond to the results from the 
reported multivariable analysis and/or are not reported.

Meta-analysis was not possible due to the lack of homo-
geneity in methods used to develop the prediction models, 

different sets of predictors used to develop different predic-
tion models, and heterogeneity in the prediction time inter-
val ranging from 1 to 20 years postpartum.

Table 3   Prognostic determinants included in the final model and their respective predictive performance

HosLTest Hosmer–Lemeshow test, BMI body mass index, GDM gestational diabetes mellitus, FPG fasting plasma glucose, oGTT​ oral glucose 
tolerance test, CE(16:0) cholesteryl ester (16:0), NEFA(22:4) non-esterified fatty acids (22:4), TAG 48:2 FA 16:1 triacylglycerol 48:2, fatty acid 
16:1, CE(20:4) cholesteryl ester (16:0), PE(P-18:0/18:1) phosphatidylethanolamine, TAG 54:0 FA 16:0 triacylglycerol 54:0, fatty acid 16:0, 
TAG 50:1 FA 16:0 triacylglycerol 50:1, fatty acid 16:0, HbA1c hemoglobin A1c, wGRS weighted genetic risk score, PC ae C40:5 phosphatidyl-
choline acyl-alkyl C40:5, SM (OH) C14:1 C14:1-OH sphingomyelin
* The predictive performance is not reported

Study Prognostic factors included in the final model Discrimination Calibration Classification

C-statistics AUC​ Slope Plot HosLTest Sensitivity specificity

Bengtson 2022 Weight, BMI, family history of type 2 diabetes, 
GDM in a prior pregnancy, GDM diagno-
sis < 24 weeks’ gestation, and fasting and 2-h 
plasma glucose at 2 days postpartum

0.79 (0.72, 0.85) 80.0% 58.0%

Man 2021 Insulin treatment during pregnancy, BMI, fast-
ing glucose level, HbA1c

0.74

Bartáková 2021 FPG in mid-trimester OGTT above 
5.1 mmol/L, obesity, family history of diabe-
tes, instrumental delivery, personal history of 
hypothyroidism

0.83 82.4% 90.3%

Joglekar 2020 Age, BMI, pregnancy fasting glucose, postpar-
tum fasting glucose, cholesterol, and triacylg-
lycerols, circulating miR-369-3p measured at 
12 weeks postpartum

0.92 (0.84, 1.00) 91.0% 89.0%

Muche 2020 Advanced maternal age, overweight and/or 
obesity, high FPG at GDM diagnosis, and 
antenatal depression

0.88 (0.82–0.94) P = 0.759

Khan 2019 Seven lipid metabolites (CE (16:0), NEFA 
(22:4), TAG 48:2 FA 16:1, CE (20:4), PE(P-
18:0/18:1), CE (16:0), TAG 54:0 FA 16:0, 
TAG 50:1 FA 16:0)

0.92 (0.89,0.95) 87.0% 93.0%

Kondo 2018 Basic model (i.e. age, family history of diabe-
tes, BMI >  = 25 kg/m2, and use of insulin 
during pregnancy) plus insulinogenic index/
fasting immunoreactive insulin < 1.1

0.71 (0.59–0.83) P = 0.2102

Allalou 2016 PC ae C40:5, hexoses, branched-chain amino 
acids (BCAAs) (Val, Leu, Ile), and SM (OH) 
C14:1

0.83 (0.76–0.89) 86.3% 69.0%

Ignell 2016 Ethnic origin, 2-h glucose concentrations dur-
ing pregnancy, BMI

0.91 86.0% 82.1% 88.0%

Köhler 2016 Insulin treatment during pregnancy, family 
history of diabetes, BMI in early pregnancy, 
and lactation

0.76 1.13

Bartáková 2015 HbA1c, FPG, 1-h post 75 g load glucose*
Lappas 2015 Three lipids (CE 20:4, PE(P-36:2), and PS 

38:4), six risk factors (age, BMI, and levels 
of pregnancy fasting glucose, postnatal 
fasting glucose, triacylglycerol, and total 
cholesterol)

0.86 (0.86, 0.87) 59.0% 89.9%

Cormier 2015 Age, BMI, explained-variance GRS 0.67 (0.60–0.73)
Kwak 2012 Age, pre-pregnancy BMI, family history of 

diabetes, blood pressure, fasting glucose and 
fasting insulin concentration, wGRS

0.77

Kjos SL 1995 The area under OGTT glucose curve at 
4–14 weeks postpartum, Gestational age at 
diagnosis of GDM, the area under OGTT 
glucose curve during pregnancy, and the 
highest fasting serum glucose centration dur-
ing pregnancy*
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Discussion

This systematic review of risk models predicting postpar-
tum glucose intolerance among women who had GDM 
identified 15 models; however, none were externally 
validated and less than half were internally validated. No 
models had the same set of prognostic factors, and factors 
included a range of demographic, clinical, and biomarker 
factors. The most frequent factors were BMI (measured 
pre-pregnancy or early pregnancy), fasting glucose concen-
tration during pregnancy, maternal age, and family history 
of T2DM. Some studies included only traditional clinical 
risk factors (e.g., age, BMI, pregnancy fasting OGTT, and 
postnatal fasting OGTT), while others included biochemi-
cal variables and genetic factors. Among traditional risk 
factors, the most common potentially modifiable factor 
was BMI (pre-pregnancy/early pregnancy). Predictive 
performances were suggested to be above chance (with 
AUC > 0.66); however, performance was difficult to evalu-
ate as all included studies had a high risk of bias with vari-
ous methodological shortcomings.

The type of prognostic factors used in the models 
depended on the time when risk for postpartum glucose 
intolerance was assessed. Some studies used clinical and 

biochemical factors collected during and/or before GDM 
diagnosis, thus making the GDM diagnosis the starting 
point (baseline) for the prediction. However, other studies 
had baseline risk assessments after delivery at 2 days [48••], 
6–9 weeks [35, 36], 12 weeks [55••], 4–16 weeks [50], and 
12 months [37]. In these latter studies, additional prognostic 
factors included postnatal fasting and 2-h plasma glucose 
[37, 51, 55••], mode of delivery [52••], lactation [51], and 
circulating miR-369-3p measured at 12 weeks postpartum 
[55••]. Future studies are warranted to examine which base-
line time point and prognostic factors are associated with the 
most accurate prediction.

This review has highlighted that, although study par-
ticipants were defined as women with GDM, the inclusion 
criteria applied were not always rigorous; for example, two 
studies selected participants based on one question only ask-
ing “Have you ever been told that you had a high sugar level 
during pregnancy?” 49••, 57. Instead, wherever possible, a 
diagnostic test or robust selection criteria should be applied 
to distinguish the target population to be included in the 
study [61, 62]. Otherwise, ambiguous population groups can 
lead to excess variability in the study data, making predic-
tion difficult, therefore limiting any usefulness of the models 
and eventual inclusion in subsequent meta-analyses.

Fig. 2   Predictors commonly uti-
lized for developing prediction 
models to predict postpartum 
glucose intolerance in stud-
ies included in this systematic 
review
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Many of these studies used routinely collected health data 
which is more generalizable at population level. However, 
missing data are not uncommon when examining routinely 
collected health data and retrospective cohort studies which 
may reduce the available evidence to build the model [63]. 
Instead of ignoring variables having missing data, which 
can introduce a source of serious bias, it is suggested that 
missing data should be replaced based on the available infor-
mation by using advanced methods such as multiple imputa-
tions [64]. However, only a few models discussed missing 
data [48••, 53, 55••, 56], and only Bengtson et al. [48••] 
and Kwak et al. [56] applied multiple imputations to handle 
missing data. Where other studies instead excluded partici-
pants due to missing clinical data, this may aggravate the 
problem of small sample size and discards the information 
of nearly complete data [55••].

Comparing the predictive performance of the included 
studies is not a straightforward task, as the predictors uti-
lized for each model’s development vary. Nonetheless, it 
can be observed that, on average, machine learning algo-
rithms outperform traditional models in terms of sensitivity 
and specificity. This can be attributed to their capacity to 
identify complex patterns and relationships in the data that 
may not be apparent to the naked eye. It is worth noting, 
however, that traditional models may have advantages in 

terms of being more interpretable and simpler. Although 
some models show performance measures suggesting excel-
lent predictive capabilities, our review found that none were 
externally validated and only a few were internally validated. 
This lack of validation puts their reproducibility under ques-
tion. Therefore, testing the model performance in a new 
population in a different geographic region or in different 
time period is required to further this field and to assess the 
practical utility of the model.

Women who have experienced GDM are 8 to 10 times 
and 2 times at higher risk of developing type 2 diabe-
tes and cardiovascular disease (CVD), respectively [5, 
65–68]. The above emphasizes the pressing requirement 
for timely and continuous proactive monitoring, as well 
as efficient preventative measures, for type 2 diabetes 
and cardiovascular disease (CVD). Among these strat-
egies, developing a well-designed clinical prediction 
model based on historical, antepartum, and even early 
postpartum variables is mandatory to early identification 
of at-risk women and early initiation of intervention. To 
be more precise, the screening and prevention of T2DM 
related to gestational diabetes is a subject that is challeng-
ing and controversial [69] and would benefit greatly from 
the development of a thoroughly planned and validated 
prediction model.

Table 4   Data analysis method and modes of model presentation of the studies

NR not reported, ROC receiver operating characteristic

Study Miss-
ing data 
described

Missingness 
handling 
described

Statistical/data analysis methods used for model development Mode of model presentation

Bengtson 2022 Yes Yes Lasso regression NR
Man 2021 No No Multivariable Cox proportional hazards regression Risk prediction equation
Bartáková 2021 No No Univariate and multivariate logistic regression with backward 

stepwise prediction algorithm
Risk score

Joglekar 2020 Yes Yes Univariate and multivariate logistic models were constructed 
to determine an eventual statistically significant effect of any 
relevant variable and ROC analysis was applied to test the final 
models. Machine learning and traditional analysis

NR

Muche 2020 No No Multivariable logistic regression Risk prediction equation
Khan 2019 No No Stepwise multiple (both ways) logistic analysis and machine 

learning approach
Decision tree

Kondo 2018 No No Multivariable logistic regression analysis, decision-curve analysis NR
Allalou 2016 No No Machine learning Decision tree
Ignell 2016 Yes No Multivariable regression analysis Model equation
Köhler 2016 No No Lasso method for Cox regression Risk score
Bartáková 2015 No No Logistic regression analysis and ROC analysis NR
Lappas 2015 Yes No Student’s t test, multivariate logistic regression analysis NR
Cormier 2015 No No General linear model procedure and using the type-III sum of 

squares and logistic regression and ROC analysis
NR

Kwak 2012 Yes Yes Multiple logistic regression analysis NR
Kjos SL1995 No No Multivariate regression analysis NR



	 Current Diabetes Reports

1 3

Strengths and Limitations

This is the first systematic review of risk prediction 
studies of postpartum glucose intolerance among women 
who have a history of GDM. Strengths of this review are 
that the search strategy was built based on a validated 
search strategy for prediction models, and the quality 
of risk prediction models was assessed by CHARMS 
guidelines. Limitations for deriving information from 
this review mostly arise from the low quality of the iden-
tified eligible studies. However, examining the overall 
quality and characteristics of existing models is impor-
tant to understand the flaws and strengths of developed 
models, using these as stepping stones to build novel 
models in future.

A major limitation of the studies identified is that 
very few followed the reporting guidelines for prognos-
tic risk prediction modeling. Researchers examining this 
area are strongly recommended to follow the appropriate 
guidelines so that this area can be advanced. Another 
major limitation of the models identified was that there 
was a high risk of bias evident in all included studies. 
The various methodological shortcomings included the 
use of inadequate sample sizes, uncertain inclusion or 
exclusion criteria, lack of missing data reporting and/
or handling, inappropriate management of continuous 
and categorical variables, use of univariable analysis 
for selection of predictors, failing to evaluate/report rel-
evant model performance measures, failing to consider 
model overfitting and optimism in model performance, 
lack of internal and external validation, the low trend 
of model performance measure reporting, and lack of 
model presentation.

Furthermore, only a fraction of models considered 
overfitting. Overfitting is especially prevalent when there 
are too few outcome events as compared with candidate 
prognostic determinants. Additionally, overfitting is 
expected when the model is developed in a small data-
set, inappropriate continuous variables categorization is 
employed, and when stepwise predictor selection meth-
ods based on significance criteria are applied [70, 71]. In 
the included studies, some had very small sample sizes 
(n = 103, event = 21) [55••], (n = 104, event = 21) [37], 
(n = 112, event = 24) [58••], (n = 123, event = 45) [24] 
(n = 140, event = 55) [36], (n = 203, event = 71) [48••]. 
If the number of predictors considered for prediction is 
larger than the number of events of interest, the predictive 
performance will be overestimated. Preferably, predictive 
model studies necessitate a minimum of several hundred 
outcome events [72]. Small samples and a reduced number 
of events compared to several predictors will lead to over-
fitting and compromise the transportability of the model 
in a similar or a different population. This is important 

especially in regions with increasing migration, and the 
propensity for some groups to “adopt” a higher risk in the 
new home; therefore, external validation and ultimately 
generalisable models are needed more than ever.

Conclusions

GDM is common, and rates are rising globally. Women 
with this condition have a high risk of conversion to glu-
cose intolerance postpartum. Identification of those at risk 
can facilitate targeted screening and prevention strategies. 
Despite this, our systematic review identified that exist-
ing prognostic models for glucose intolerance following 
GDM were not externally validated, and only a few were 
internally validated. In addition, there was a high risk of 
bias, unreported model calibration, and low use of model 
presentation methods. Future research should focus on the 
development of robust, high-quality risk prediction models 
by incorporating easily accessible prognostic determinates 
to enhance the practical application and accuracy of risk 
prediction models for glucose intolerance and T2DM fol-
lowing GDM looking the summarized result of this review. 
External validation is also required before implementing 
these prediction models into clinical practice.
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