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Abstract 

Purpose:  Whilst survival in paediatric critical care has improved, clinicians lack tools capable of predicting long-term 
outcomes. We developed a machine learning model to predict poor school outcomes in children surviving intensive 
care unit (ICU).

Methods:  Population-based study of children < 16 years requiring ICU admission in Queensland, Australia, between 
1997 and 2019. Failure to meet the National Minimum Standard (NMS) in the National Assessment Program-Literacy 
and Numeracy (NAPLAN) assessment during primary and secondary school was the primary outcome. Routine ICU 
information was used to train machine learning classifiers. Models were trained, validated and tested using stratified 
nested cross-validation.

Results:  13,957 childhood ICU survivors with 37,200 corresponding NAPLAN tests after a median follow-up duration 
of 6 years were included. 14.7%, 17%, 15.6% and 16.6% failed to meet NMS in school grades 3, 5, 7 and 9. The model 
demonstrated an Area Under the Receiver Operating Characteristic curve (AUROC) of 0.8 (standard deviation SD, 0.01), 
with 51% specificity to reach 85% sensitivity [relative Area Under the Precision Recall Curve (rel-AUPRC) 3.42, SD 0.06]. 
Socio-economic status, illness severity, and neurological, congenital, and genetic disorders contributed most to the 
predictions. In children with no comorbidities admitted between 2009 and 2019, the model achieved a AUROC of 
0.77 (SD 0.03) and a rel-AUPRC of 3.31 (SD 0.42).

Conclusions:  A machine learning model using data available at time of ICU discharge predicted failure to meet 
minimum educational requirements at school age. Implementation of this prediction tool could assist in prioritizing 
patients for follow-up and targeting of rehabilitative measures.
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Introduction

Progress in the field of paediatric intensive care over the 
past decades has led to a reduction of in-hospital mortal-
ity to as little as 2.5% even for complex conditions such as 
congenital heart disease or cancer [1–3]. However, criti-
cal illness during childhood occurs at a vulnerable period 
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of brain development, and neurological injury may result 
from disease, complications or treatment-related mecha-
nisms, for example inadequate cerebral oxygen supply 
during shock or drug-related toxicity [4–6]. Families 
of critically ill children, clinicians, and researchers con-
sider survival with good long-term neurodevelopment as 
a priority for care, benchmarking, and research [7]. The 
ability of a child to meet minimum requirements in pri-
mary or secondary school represents a desirable outcome 
from the family, healthcare provider and societal per-
spectives and translates into a high chance to ultimately 
learn a profession, earn an income and lead an independ-
ent life in adulthood. Yet, most paediatric intensive care 
unit (PICU) survivors are not offered follow-up beyond 
hospital discharge due to lack of long-term follow-up 
resources. Currently, there are no models available ena-
bling the prediction of long-term neurodevelopmental 
outcomes which permit risk stratification to target post-
discharge rehabilitation measures for children most likely 
to benefit. Machine learning approaches to make unbi-
ased use of large datasets carry great promise to improve 
prediction of complex outcomes in heterogeneous popu-
lations [8, 9].

We hypothesised that routinely collected healthcare 
data available at time of discharge from the intensive care 
unit (ICU) could train machine learning algorithms to 
predict which children are likely to fail to meet minimum 
requirements at school age. Through data-driven feature 
selection incorporated within the machine learning algo-
rithms, we also aimed to identify which  variables were 
most predictive of poor educational outcomes.

Methods
Study design and overview
This is a state-wide data linkage study incorporating data 
from the Australian and New Zealand Paediatric Inten-
sive Care Registry (ANZPICR) [10] and the National 
Assessment Program-Literacy and Numeracy (NAPLAN; 
https://​www.​nap.​edu.​au/). Ethical approval was obtained 
from the Children’s Health Queensland Human Research 
Ethics Committee (HREC/16/QRCH/255). Reporting 
follows the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis 
(TRIPOD) guidelines [11].

Study population
Eligible children were aged below 16 years when admit-
ted to an ICU in the state of Queensland, Australia, 
between 1st January 1997 and 31st December 2019 and 
had available NAPLAN educational outcome data. Chil-
dren who died before NAPLAN testing and those where 
the NAPLAN testing occurred before ICU admission 
were excluded.

Data sources
Data were extracted from ANZPICR which collects data 
from all PICU admissions in Australia, including demo-
graphics, admission details, diagnoses, procedures, 
physiology and specific ICU therapies. Contribution to 
ANZPICR is a mandatory requirement, and > 90% of 
all PICU admissions have been captured in the registry. 
Through linkage with the state-wide death registry, chil-
dren who were still alive by their first projected NAPLAN 
test date were identified.

NAPLAN was established in 2008 and is a nationwide 
annual assessment of students’ literacy and numeracy 
skills, undertaken in primary (Grades 3 and 5) and sec-
ondary school (Grades 7 and 9). Children sit their 
NAPLAN tests usually at age of 8.5 years in Grade 3 and 
14.5 years in Grade 9 [12]. Australia has a mixed school 
system, and NAPLAN is assessed across public and pri-
vate schools. NAPLAN contains five domains: Grammar 
and Punctuation, Spelling, Writing, Reading and Numer-
acy. Performance on the Reading and Numeracy domains 
is considered most relevant [13]. For every grade, thresh-
olds for National Minimum Standards (NMS) are defined 
by the Australian Curriculum Assessment and Reporting 
Authority which capture the minimum acceptable stand-
ard of educational achievement without which a student 
is expected to fail to make sufficient progress at school. 
Children are exempt from NAPLAN testing if they have 
a significant neurocognitive or neuromotor disability 
or other coexisting conditions that severely limit their 
capacity to participate in the tests to the extent that they 
are expected to fail. Exempt children are by rule classi-
fied as failing to meet the NMS. Children are classified 
as Absent or Withdrawn if they do not complete the test 
as a result of being absent from school on the test day or 
withdrawn by their parents/carers.

Data preparation
The ANZPICR dataset was linked to the individual 
NAPLAN records provided by the Queensland Cur-
riculum and Assessment Authority using determinis-
tic and probabilistic linkage performed by Queensland 
Health’s Statistical Services Branch [14]. Description of 

Take‑home message 

In this population-based cohort study including 13,957 children 
admitted to the intensive care unit (ICU), a machine learning model 
using data available at time of ICU discharge predicted failure to 
meet minimum requirements at primary and secondary school age 
with a median follow-up duration of 6  years. The proposed model 
provides a tool for healthcare providers to stratify paediatric ICU 
patients in relation to their risk of long-term sequelae, which can 
assist the design of early rehabilitative measures and inform the pri-
oritisation of patients for follow-up

https://www.nap.edu.au/


787

the selection of the analysed cohort and pre-processing 
of the data (including data transformations, missing data 
imputation and the construction of principal component 
scores) is described in Supplementary Methods. Chil-
dren who were marked as Absent or Withdrawn from 
both the Reading and Numeracy domains, and duplicate 
NAPLAN tests, were excluded. For children with multi-
ple ICU admissions, the child’s last ICU admission prior 
to the corresponding NAPLAN test was used for analysis 
and sensitivity analyses when using the first admission 
and the worst admission (based on the highest Paediatric 
Index of Mortality 2 [PIM2] score) were performed.

Outcomes
The primary outcome was failing to meet the NMS on 
both the Reading and Numeracy domains for the corre-
sponding grade [14]. Secondary outcomes were failing to 
meet the NMS on the Reading or the Numeracy domains, 
failing to meet the NMS on any of the five domains, fail-
ing to meet the NMS on at least two domains, and failing 
to meet the NMS on all domains.

Predictors
We selected all predictors that were available using rou-
tine ANZPICR data at time of ICU discharge encompass-
ing demographics, admission information, physiology, 
specific therapies and diagnostic/procedural codes (Sup-
plementary Methods). The ANZPICR contains over 
500 diagnostic and procedural codes used to record the 
principal, underlying and associated diagnoses for each 
admission. Dimensionality reduction was performed 
using principal component analysis (Supplementary 
Table  1). The principal component (PC) scores were 
extracted and used as predictors in place of the indi-
vidual codes. Socio-economic status (SES) was assessed 
using both the Socio-Economic Indexes for Areas-Index 
of Relative Socio-economic Disadvantage (IRSD) deciles 
derived from the postcode recorded at time of admission 
as well as an SES category variable calculated from paren-
tal occupation and education variables (Supplementary 
Methods) [14–17].

Machine learning models
The following machine learning models commonly used 
for classification tasks were compared: Logistic Regres-
sion with L1 regularisation, [18] Random Forest [19], 
Gradient Boosting Machine[20] and a Multi-Layer Per-
ceptron neural network [21]. All modelling was per-
formed in Python (version 3.8.8) using the scikit-learn 
and LightGBM packages and the code for each model is 
available online (https://​github.​com/​Trish​Gilho​lm/​ML_​
predi​ction_​school_​outco​mes).

In order to control bias and avoid overfitting, the mod-
els were trained, validated and tested using five-fold 
stratified nested cross-validation (Supplementary Meth-
ods). We evaluated the performance of the four models 
within each Grade, separately. The performance of each 
model was summarized by calculating the mean and 
standard deviation of the Area Under the Receiver Oper-
ating characteristic Curve (AUROC) and Area Under 
the Precision Recall Curve (AUPRC) across the five test 
folds. The mean and the standard deviation for the rela-
tive AUPRC (the AUPRC divided by the prevalence of the 
outcome) were also calculated to enable comparison of 
the AUPRCs across grades, where the prevalence of the 
outcomes differs. The best performing model out of the 
four models compared was a priori defined as the model 
that had the highest mean relative AUPRC when aver-
aged across the four grades. Secondary outcomes were 
assessed for each grade using the best performing model 
only.

A final model, combining all four grades, was derived. 
In order to keep the observations independent, the data 
comprising the next available NAPLAN test result clos-
est to the last recorded ICU admission for each child 
was used. The predictive performance of the combined 
model was evaluated across a range of clinical subgroups. 
The according sensitivity, specificity, positive likelihood 
ratio and negative likelihood ratio were also calculated 
at thresholds corresponding to 75%, 80%, 85% and 90% 
sensitivity based on published recommendations[22, 23]. 
Sensitivity analyses were conducted using 33 ICU-related 
modifiable factors as predictors only (demographic vari-
ables and diagnostic and procedural PC scores removed) 
and on a modified composite outcome of death after ICU 
or failure to meet NMS. SHapley Additive exPlanation 
(SHAP) plots [24] were produced for all models to iden-
tify the top 20 predictors which contributed most to the 
model predictions. The normalized importance values 
were aggregated across the five test folds by calculating 
the mean and the standard deviation of the importance 
values for each variable.

Results
Patients and outcomes
During the study period, a total of 28,882 children were 
admitted to ICU in Queensland. Of these, 18,190 were 
of the required age to be expected to participate in 
NAPLAN testing at least once. For 4233 (23.3%) of these 
children, no NAPLAN data were available (Supplemen-
tary Methods, Fig. 1). In total, 13,957 children represent-
ing 21,304 ICU admissions had corresponding NAPLAN 
data encompassing 37,200 NAPLAN tests. Children with 
linked NAPLAN data were older, more likely to be an 
elective admission and had lower predicted mortality in 

https://github.com/TrishGilholm/ML_prediction_school_outcomes
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Queensland paediatric ICU records
28,882 children, 43,244 ICU admissions

Excluded children born before 1993 or after 2011
10,692 children, 15,252 admissions

Children of an eligible age to sit at least one 
NAPLAN test

18,190 children, 27,992 admissions

Excluded children who did not have Queensland 
NAPLAN records

4,233 children, 6,688 admissions

576 children died in ICU/hospital
406 children died outside hospital
3,251 children assumed to be alive at NAPLAN 
testing

Children with linked NAPLAN records
13,957 children, 21,304 admissions, 37,200 

NAPLAN tests

Excluded

1 child (1 admission) with duplicate NAPLAN
entries, 345 duplicate NAPLAN tests
Admissions that occurred after or during the 
NAPLAN testing year

o 1,704 children
o 2,771 admissions
o 7,909 NAPLAN tests

Children with an eligible NAPLAN record for at least one of four NAPLAN tests
12,252 children, 18,532 admissions 28,946 NAPLAN tests

Grade 3

11,959 

admissions (incl. 

3,968 admissions 

before the last 

admission per 

child)

7,991 NAPLAN 

tests (incl. 738 

absent and 

withdrawn tests)

Grade 5

11,464

admissions (incl. 

3,883 admissions 

before the last 

admission per 

child)

7,581 NAPLAN 

tests (incl. 716 

absent and 

withdrawn tests)

Grade 7

10,626 

admissions (incl. 

3,597 admissions 

before the last 

admission per 

child)

7,029 NAPLAN 

tests (incl. 781 

absent and 

withdrawn tests)

Grade 9

9,459 admissions

(incl. 3,114 

admissions before 

the last admission 

per child)

6,345 NAPLAN 

tests (incl. 1,020 

absent and 

withdrawn tests)

Grade 3 – Final 
Sample Analysed

7,253 admissions and 

NAPLAN tests

Grade 5 – Final 
Sample Analysed

6,865 admissions and 

NAPLAN tests

Grade 7 – Final 
Sample Analysed

6,248 admissions and 

NAPLAN tests

Grade 9 – Final 
Sample Analysed

5,325 admissions and 

NAPLAN tests

Data used for the final combined model on the next NAPLAN test after last admission*
11,483 children

7,017 (61.1%) Year 3 tests, 1,742 (15.2%) Year 5 tests, 1,417 (12.3%) Year 7 tests, 1,307 (11.4%) Year 9 tests

Fig. 1  Participant flow diagram demonstrating the selection of the analyzed sample for each of the four school grades and numbers included the 
final combined model. ANZPICR Australia and New Zealand Paediatric Intensive Care Registry, NAPLAN National Assessment Program-Literacy and 
Numeracy, ICU intensive care unit; *For the combined model, only one ICU admission and one NAPLAN testing year outcome were used per child. 
Specifically, the NAPLAN test following the last recorded and eligible ICU admission per child was used for the combined model. As most children 
are admitted to ICU before they are eight years old, the NAPLAN test included most commonly in the final model was the Grade 3 test.
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comparison to those with no linked NAPLAN records 
(Supplementary Tables 2 and 3). After exclusions due to 
absent and withdrawn students (Supplementary Table 4), 
the final analyzed sample sizes were 7253 children for 
Grade 3, 6865 children for Grade 5, 6248 children for 
Grade 7 and 5325 children for Grade 9, respectively 
(Table 1). 14.7%, 17%, 15.6% and 16.6% of children failed 
to meet the NMS on both the reading and numeracy 
domains in Grade 3, 5, 7 and 9, respectively, which was 
several fold greater than the overall Queensland popula-
tion (Supplementary Table 5, Supplementary Fig. 1).

Model development
When comparing the performance of the four machine 
learning prediction models across the grades, the mean 
AUROCs ranged from 0.76 (SD 0.01) to 0.80 (SD 0.02; 
Supplementary Fig. 2; Supplementary Table 6). The mean 
relative AUPRCs ranged from 3.0 (SD 0.11) to 3.67 (SD 
0.12). Sensitivity analyses using the first and worst ICU 
admissions resulted in similar performance (Supplemen-
tary Fig. 3). The Gradient Boosting Machine was selected 
as the best performing model, with similar performance 
achieved across grades (Table  2, Supplementary Figs.  4 
and 5, Supplementary Table  6). Variables relating to 
demographics (SES, IRSD decile, age at admission), ill-
ness severity (number of ICU admissions, ICU length of 
stay, base excess, systolic blood pressure and partial O2 
pressure), and diagnostic and procedural code PC clus-
ters relating to neurological, congenital, and genetic 
disorders contributed most to the predictions (Supple-
mentary Fig. 6). High SES was identified as a consistent 
protective factor. When assessing secondary outcomes, 
the performance of the model increased with a higher 
number of failed NAPLAN domains, with the best pre-
dictions produced for failing to meet NMS on all five 
domains (Supplementary Tables 7–10).

Final combined model
The final combined model comprised 11,483 admis-
sions, of which 61.1%, 15.2%, 12.3% and 11.4% were of 
NAPLAN Grades 3, 5, 7 and 9, respectively, aligning with 
the age distribution of children requiring ICU admis-
sions. The median time between ICU discharge and 
NAPLAN test was 6 years (IQR 2, 8) and 16.7% failed to 
meet the NMS on the reading and numeracy domains. 
The combined model demonstrated good predictive 
performance (mean AUROC 0.80 [SD 0.01], mean rela-
tive AUPRC 3.42 [0.07]) (Fig.  2A, B). At 85% sensitiv-
ity, the model reached a specificity of 51% (SD 3%), a 
positive likelihood ratio of 1.75 (SD 0.14), and a negative 
likelihood ratio of 0.29 (SD 0.02) (Table 2). In subgroup 
analyses, the model resulted in mean AUROCs of > 0.70 
for all subgroups except prematurity, and demonstrated 

the best predictive performance for pneumonia, chronic 
neurological conditions, admission years between 2009 
and 2019, respiratory infections, and children with any 
comorbidities (Fig. 2C, Supplementary Table 11). In chil-
dren with no comorbidities admitted between 2009 and 
2019, the model achieved a mean AUROC of 0.77 (SD 
0.03), and a mean relative AUPRC of 3.31 (SD 0.42).

Risk factors with the highest mean normalized impor-
tance included demographics, illness severity, and diag-
nostic and procedural code PC clusters associated with 
neurological, infectious, respiratory, congenital, and 
genetic disorders (Fig.  3). A sensitivity analysis using 
ICU-related factors only as predictors demonstrated 
reduced predictive performance (mean AUROC 0.67 
[SD 0.02], mean relative AUPRC 1.91 [SD 0.11], Supple-
mentary Fig.  7), but highlighted potentially modifiable 
factors contributing most to the outcome, most of which 
were also identified in the main model (e.g. higher num-
ber of previous ICU admissions, longer total ICU length 
of stay and lower systolic blood pressure on admission). 
Sensitivity analyses using the composite outcome death 
after PICU (565/12,029 [4.7%] deaths) or failure to meet 
NMS resulted in improved predictive performance over-
all and in most subgroups, and revealed similar risk fac-
tors (mean AUROC 0.84 [SD 0.01], mean relative AUPRC 
3.65 [SD 0.06]), Supplementary Figs. 8 and 9).

Discussion
In this population-based study of a large cohort of chil-
dren admitted to ICU, a machine learning model using 
data available at time of ICU discharge predicted failure 
to meet minimum requirements at primary and second-
ary school age, at a median follow-up of 6  years. The 
model built for all survivors of PICU was capable of pre-
dicting failure to meet minimum educational require-
ments even in children without comorbidities, as well as 
in children with diverse conditions such as pneumonia 
or trauma, with best performance observed in patients 
admitted to ICU between 2009 and 2019.

Contrary to a multitude of models predicting early 
mortality in critically ill children [10, 25], clinicians cur-
rently lack tools capable of predicting long-term out-
comes in children surviving ICU. Recent prediction 
models on non-mortality outcomes focus on health-
related quality of life measured through standardized 
parent-reported questionnaires obtained within twelve 
months of ICU discharge and were primarily built on 
specific research cohorts not necessarily generalisable 
to broader populations [26–28]. Measures of quality 
of life alone may not adequately capture cognitive and 
functional performance, which is essential for educa-
tional and ultimately, professional achievement [29–32]. 
Comprehensive neuropsychological face-to-face testing 
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Table 1  Demographic and clinical characteristics of PICU survivors assessed within each NAPLAN school grade cohort

Data presented correspond to the last ICU admission before the corresponding NAPLAN test per child. Counts and percentages, and median and interquartile ranges 
are provided

Children can have up to four NAPLAN tests so the same child can be represented in multiple grades. However, the last PICU admission before the corresponding 
NAPLAN test may be different for children who have had PICU admissions between NAPLAN test years

ICU Intensive Care Unit, NAPLAN National Assessment Program-Literacy and Numeracy, SES socioeconomic status, ENT ears, nose and throat

Characteristic Grade 3
N = 7253

Grade 5
N = 6865

Grade 7
N = 6248

Grade 9
N = 5325

Demographics

Gender (male) 4227 (58.3%) 3955 (57.6%) 3584 (57.4%) 3040 (57.1%)

Aboriginal and Torres Strait Islander 304 (4.2%) 209 (3%) 162 (2.6%) 132 (2.5%)

Age at admission (months) 19 (4, 52) 26 (6, 67) 38 (8, 92) 61 (14, 125)

Index of Relative Socio-economic Disadvantage (IRSD) Decile 6 (3, 8) 6 (3, 8) 6 (3, 8) 6 (3, 8)

Low SES 1904 (26.3%) 1804 (26.3%) 1564 (25%) 1195 (22.4%)

Medium SES 2228 (30.7%) 2051 (29.9%) 1876 (30%) 1568 (29.4%)

High SES 2217 (30.6%) 2090 (30.4%) 1927 (30.8%) 1731 (32.5%)

No information 904 (12.5%) 920 (13.4%) 881 (14.1%) 831 (15.6%)

Time between ICU discharge and NAPLAN test (years) 7 (4, 8) 8 (5, 10) 9(5, 12) 9 (4, 13)

Comorbidities

No comorbidities 3607 (49.7%) 3558 (51.8%) 3362 (53.8%) 2967 (55.7%)

Prematurity 351 (4.8%) 226 (3.3%) 99 (1.6%) 43 (0.8%)

Congenital heart disease 1265 (17.4%) 1157 (16.9%) 1019 (16.3%) 785 (14.7%)

Congenital syndrome 449 (6.2%) 404 (5.9%) 373 (6%) 317 (6%)

Oncologic conditions 182 (2.5%) 171 (2.5%) 162 (2.6%) 157 (2.9%)

Chronic respiratory conditions 823 (11.3%) 672(9.8%) 550 (8.8%) 379 (7.1%)

Chronic neurological conditions 482 (6.6%) 514 (7.5%) 514 (8.2%) 501 (9.4%)

Infections

 Respiratory infections 1312 (18.1%) 1016 (14.8%) 764 (12.2%) 545 (10.2%)

 Pneumonia or Pneumonitis 441 (6.1%) 381 (5.5%) 295 (4.7%) 227 (4.3%)

 Bronchiolitis 650 (9%) 460 (6.7%) 310 (5%) 194 (3.6%)

 Invasive infection 804 (11.1%) 720 (10.5%) 581 (9.3%) 484 (9.1%)

 Sepsis/Septic shock 305 (4.2%) 269 (3.9%) 209 (3.3%) 182 (3.4%)

Other

 Asthma 417 (5.7%) 396 (5.8%) 363 (5.8%) 304 (5.7%)

 Diabetic ketoacidosis 146 (2%) 191 (2.8%) 240 (3.8%) 281 (5.3%)

Trauma

All trauma 773 (10.7%) 865 (12.6%) 901 (14.4%) 860 (16.2%)

Head Trauma 299 (4.1%) 351 (5.1%) 398 (6.4%) 373 (7%)

Elective surgery

ENT surgery 809 (11.2%) 722 (10.5%) 602 (9.6%) 406 (7.6%)

Congenital Heart Surgery 1182 (16.3%) 1192 (17.4%) 1011 (16.2%) 858 (16.1%)

Illness severity and treatment

ICU length of stay—last admission (hours) 24 (17, 50) 23 (17, 48) 23 (16, 46) 22 (16, 45)

Invasive ventilation 2877 (39.7%) 2833 (41.3%) 2575 (41.2%) 2152 (40.4%)

Time intubated—last admission (hours) 0 (0, 16) 0 (0, 16) 0 (0, 15) 0 (0, 14)

Paediatric Index of Mortality (PIM)-2 (%) 0.5 (0.1, 1.2) 0.5 (0.1, 1.2) 0.6 (0.1, 1.3) 0.6 (0.1, 1.3)

Inter-hospital transfer preceding ICU admission 1538 (21.2%) 1417 (20.6%) 1264 (20.2%) 1086 (20.4%)

Elective admission 3249 (44.8%) 3118 (45.4%) 2822 (45.2%) 2364 (44.4%)

Number of previous ICU admissions

0 5645 (77.8%) 5327 (77.6%) 4851 (77.6%) 4149 (77.9%)

1 914 (12.6%) 858 (12.5%) 773 (12.4%) 642 (12.1%)

2–4 555 (7.7%) 532 (7.7%) 499 (8%) 428 (8%)

5 or more 139(1.9%) 148 (2.2%) 125 (2%) 106 (2%)
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represents the gold standard to assess long-term out-
comes in children, but remains highly resource-intensive 
and is often not available outside highly selected research 
cohorts [33–35]. Verlinden et  al. followed up 614 chil-
dren on average 1.9 years post-PICU and observed infe-
rior scores across several neuropsychological outcomes 
compared to healthy children [34]. Our study including 
educational encounters of 13,957 PICU survivors pro-
vides unprecedented power coupled with the strengths of 
a population-based design across a prospective manda-
tory ICU registry known for its high internal and exter-
nal validity [36]. The overall incidence of 16.7% failure to 
meet NMS corroborates a previous Finnish study, where 
13% of 753 PICU survivors were reported to have major 
difficulties in school, using the Strengths and Difficulties 
questionnaire [37].

Prediction modelling was restricted to routine health-
care data available at time of ICU discharge and demon-
strated comparable results across the four school grades, 
reaching a specificity of 51% at 85% sensitivity. The 
American Academy of Pediatrics Committee on Chil-
dren with Disabilities stated requirements for neurode-
velopmental screening tools [22, 23]; however, these are 
predominantly applied to tests identifying disability at 
time of testing, rather than predicting educational out-
comes several years later. The final model revealed three 
key groups of variables contributing to poor educational 
outcomes: sociodemographic information, disease sever-
ity and disease clusters. The strong role of SES is sup-
ported by a broad body of literature across preterm and 
paediatric patients [14, 17, 38]. This finding demonstrates 
the particular vulnerability of children from lower socio-
economic backgrounds and highlights the importance to 
target post-discharge measures to such disadvantaged 
populations [39–42]. Several severity measures emerged 
as key predictors, including number and duration of ICU 
admissions, low systolic blood pressure, base excess and 
cardiorespiratory arrest. We posit that these variables 
serve as proxy markers of brain damage associated with 
severe illness, risk of hypotension or hypoxia during ICU, 
as well as prolonged exposure to side effects from ICU 
therapies such as sedation [6, 43]. Some of these variables 
are potentially modifiable.

The heterogeneity of ICU diseases previously posed 
obstacles for accurate non-mortality prediction mod-
els. Using principal components analysis on diagnostic 
and procedural codes, we were able to define combina-
tions with particular impact on long-term outcomes. As 
variations of the ANZPICR are used in Oceania, Europe 
and South America, implementation of such a model 
may permit individualized stratification of patients at 
time of ICU discharge in relation to their risk of long-
term sequelae. However, the generalizability of our find-
ings is limited by the Australian educational outcomes 
assessed in our study, the fact that the cohort spans 
across 20 years of ICU care [1], and considering the lack 
of NAPLAN data in 23% of survivors due to interstate 
movement, home schooling and linkage failures. Of note, 
the predictive performance improved substantially when 
assessing children admitted in the more recent decade, 
implying that prospective calibration of the model may 
further enhance its accuracy. Sensitivity analyses predict-
ing death after ICU or failure to meet NMS improved the 
diagnostic performance, demonstrating the robustness of 
the model. Whilst composite outcomes of death or dis-
ability have been used in the ICU literature [44], the ear-
lier timing of death, fundamentally distinct implications 
for families, and differences in actionable measures (such 
as rehabilitation) in our view favour the design of tools 

Table 2  Specificity, positive likelihood ratio and  negative 
likelihood ratio, corresponding to the predefined sensitiv‑
ity thresholds of 75%, 80%, 85% and 90% for each of the 
individual grade models and the combined model

The mean and the standard deviation across cross-validation folds are reported 
for each statistics

PLR positive likelihood ratio, NLR negative likelihood ratio, SD standard deviation

Sensitivity 
threshold

Mean specificity %
(SD)

Mean PLR
(SD)

Mean NLR
(SD)

Grade 3
75% 65% (4%) 2.16 (0.21) 0.38 (0.02)

80% 57% (4%) 1.89 (0.21) 0.35 (0.03)

85% 49% (2%) 1.65 (0.1) 0.3 (0.01)

90% 42% (4%) 1.56 (0.1) 0.24 (0.02)

Grade 5
75% 65% (3%) 2.12 (0.14) 0.39 (0.01)

80% 58% (3%) 1.94 (0.12) 0.34 (0.01)

85% 52% (3%) 1.78 (0.11) 0.28 (0.01)

90% 42% (3%) 1.55 (0.07) 0.24 (0.01)

Grade 7
75% 67% (5%) 2.29 (0.35) 0.37 (0.03)

80% 58% (5%) 1.95 (0.29) 0.34 (0.04)

85% 49% (3%) 1.68 (0.11) 0.31 (0.02)

90% 37% (4%) 1.24 (0.49) 0.26 (0.03)

Grade 9
75% 64% (6%) 2.16 (0.33) 0.39 (0.03)

80% 57% (5%) 1.87 (0.24) 0.36 (0.03)

85% 45% (8%) 1.58 (0.23) 0.34 (0.06)

90% 33% (8%) 1.36 (0.19) 0.31 (0.06)

Combined model
75% 68% (2%) 2.35 (0.16) 0.37 (0.01)

80% 60% (2%) 2.03 (0.12) 0.33 (0.01)

85% 51% (3%) 1.75 (0.14) 0.29 (0.02)

90% 40% (3%) 1.5 (0.09) 0.25 (0.02)
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predicting failure to meet NMS. Whether implement-
ing the algorithm will allow to select patients for more 
resource-intensive follow-up or facilitate the enrichment 
of patients more likely to benefit from targeted rehabili-
tative or educational interventions [45, 46] needs to be 
tested by future studies.

Several additional limitations need to be considered. 
Due to the unique availability of the included educational 
databases, external validation was not feasible. Instead, 
we used nested cross-validation to avoid overfitting. 
Although NAPLAN scores correlate with standardized 

intelligence quotient measures, as well as with school 
assessments undertaken in the U.S. and in Singapore 
[47–49], they are not internationally used limiting direct 
comparisons with other school systems. Inherent to the 
nature of PICU admissions, the vast majority occurred 
before school entry, thus prohibiting before-after analy-
ses. Finally, preterm infants which are usually admitted to 
neonatal rather than PICUs represented only 3% of the 
cohort and unique developmental risks related to prema-
turity were not captured by the ANZPICR.
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Fig. 2  Mean area under the receiver operating characteristic curve (AUROC) (A), mean area under the precision recall curve (AUPRC) (B), and mean 
AUROCs for specific patient subgroups (C) of the machine learning model predicting failure to meet National Minimal Standard in school. Curves 
represent findings across cross-validation folds for the combined model. Shading indicates ± two standard deviation error (A, B), and ± one stand-
ard deviation error for patient subgroups (C). The horizontal lines (C) indicate the mean AUROC ± one standard deviation of the entire cohort
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In conclusion, a machine learning algorithm using data 
available at time of ICU discharge provides a tool capa-
ble of predicting which children are likely to fail meeting 
minimum educational requirements during primary and 
secondary school. Prospective evaluation of this predic-
tion tool can assist the design of future implementation 
strategies which may enable personalized prioritization 
for follow-up and early rehabilitative measures.
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