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ABSTRACT
We develop a machine-learning method for coarse-graining condensed-phase molecular systems using anisotropic particles. The method
extends currently available high-dimensional neural network potentials by addressing molecular anisotropy. We demonstrate the flexibility of
the method by parametrizing single-site coarse-grained models of a rigid small molecule (benzene) and a semi-flexible organic semiconductor
(sexithiophene), attaining structural accuracy close to the all-atom models for both molecules at a considerably lower computational expense.
The machine-learning method of constructing the coarse-grained potential is shown to be straightforward and sufficiently robust to capture
anisotropic interactions and many-body effects. The method is validated through its ability to reproduce the structural properties of the small
molecule’s liquid phase and the phase transitions of the semi-flexible molecule over a wide temperature range.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143724

I. INTRODUCTION

Machine learning is quickly becoming an invaluable tool in
the search, analysis, and development of new materials.1,2 Neu-
ral networks, in particular, have had major recent success in areas
ranging from predicting the folded conformation of biological
macromolecules such as proteins3 to developing highly accurate
temperature-transferable interatomic potentials.4,5 The latter is an
important advance in the field of molecular dynamics (MD) sim-
ulations. Improvements in these machine-learning models aim to
expand the length and time scale of simulations without sacrificing
accuracy.6,7 Currently used ab initio molecular dynamics simula-
tion models are generally accurate but are computationally expen-
sive, limiting their ability to probe long time scales.8,9 However,
machine-learning potentials can produce ab initio accuracy at the
computational cost of classical atomistic models.10,11

Even though simulations at the classical MD level are faster
than ab initio MD, the speedup is still insufficient to model the
large length and time scales needed to fully understand certain phe-
nomena and processes such as supramolecular assembly. It is well
known that explicit modeling of high-frequency motion is not crit-
ical for describing many phenomena in molecular systems. These

simplifications have led to the development of molecular coarse-
grained models to study large, complex materials and biological
systems.12 Parameterization of coarse-grained interaction potentials
commonly uses one of two strategies: the top-down approach, in
which parameters are tuned to match macroscopic observables, as
exemplified by the Martini model,13 and the bottom-up approach, in
which interactions are derived from the properties of a fine-grained
model with more degrees of freedom.12 By following a similar
bottom-up process used to apply machine learning to ab initio MD
data, neural-network approaches have been extended to coarse-
grained molecular models, further extending the length and time
scale of simulations with atomistic accuracy.14,15

Integrating out fine-grained degrees of freedom in the
coarse-graining process introduces many-body interactions between
coarse-grained particles, even if the underlying fine-grained model
contains only pair-wise interactions. Thus, neural-network poten-
tials using isotropic coarse-grained particles have several advantages
over their pair-wise additive analytical counterparts since they are
constructed as many-body potentials. This many-body potential can
become costly when multiple coarse-grained particles are needed
to preserve the shape anisotropy of a molecular fragment. It is
sometimes more accurate and computationally efficient to represent
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these groups of atoms as a single anisotropic coarse-grained parti-
cle, such as an ellipsoid, as in the case of large, rigid, anisotropic
molecular fragments. Analytical anisotropic coarse-grained poten-
tials such as the Gay–Berne potential16,17 were developed to address
the poor performance of spherically symmetric potentials in repli-
cating intrinsic anisotropic interactions such as π-stacking. By
modeling rigid anisotropic groups of atoms as ellipsoids, the
anisotropic properties of the group are preserved in a single-site
model. Shape and interaction anisotropy are especially important
for the study of organic semiconductor molecules, which typi-
cally consist of highly anisotropic and rigid π-conjugated units and
often form liquid-crystal phases whose morphology strongly affects
their performance in devices such as solar cells, transistors, and
light-emitting diodes.18

Unlike analytical pair-wise additive potentials such as the
Gay–Berne potential, high-dimensional neural-network potentials
are constructed based on the immediate neighborhood of a molecule
and, thus, account for many-body effects as well as local density vari-
ations. Notable machine-learning implementations of interatomic
and intermolecular potentials include the neural-network potentials
developed by Behler et al.19 The Behler neural-network potentials
are constructed from a set of symmetry functions used to represent
the invariant properties of the atomic environment of each atom
taken from ab initio simulations. DeepMD10 and DeepCG14 are two
other neural-network codes constructed for atomistic and coarse-
grained simulations, respectively. All these neural-network poten-
tials rely on an invariant representation of the atomic/molecular
environment. The CGnets deep-learning approach15 employs a prior
potential to account for areas in a coarse-grained dataset that may
not be properly sampled due to high repulsive energies. These inter-
actions are especially important to reproduce the local structure of
the simulated material.

Machine learning has previously been applied to the param-
eterization of coarse-grained models with anisotropic particles,20

but no such implementation has used a nonlinear neural-network
optimization method to construct the coarse-grained potential. In
this work, we address this gap in knowledge by using a neu-
ral network to construct a high-dimensional anisotropic coarse-
grained potential. We parameterize the neural-network potential
using a recently derived systematic and general bottom-up coarse-
graining method called anisotropic force-matching coarse-graining
(AFM-CG),21 which generalizes the multi-scale coarse-graining
(MS-CG) method22 for isotropic coarse-grained particles to
anisotropic particles. The method rigorously accounts for finite-
temperature, many-body effects without assuming a specific func-
tional form of the anisotropic coarse-grained potential. It yields
general equations relating the forces, torques, masses, and moments
of inertia of the coarse-grained particles to the properties of a fine-
grained (e.g., all-atom) MD simulation based on a mapping between
fine-grained and coarse-grained coordinates and momenta and by
matching the equilibrium coarse-grained phase-space distribution
with the mapped distribution of the fine-grained system. The pre-
vious implementations of the AFM-CG method approximated the
coarse-grained potential as a sum of pair interactions between parti-
cles.21 Here, we extend this approach to more general many-body
anisotropic interactions described by a neural-network potential.
We also extend the approach, which was derived for constant-
volume systems in the canonical ensemble to constant-pressure

systems by applying a virial-matching condition previously derived
for the MS-CG method.23

A general coarse-grained potential should capture any
temperature-dependent phase transition associated with either melt-
ing, annealing, or glass transition temperatures as well as the local
structure and density of the material. The focus is on the develop-
ment of a model for which trained parameters can be easily obtained
and one capable of reproducing interaction anisotropy, tempera-
ture transferability, and many-body effects. The flexibility of the
new model is demonstrated through the matching of structural and
thermodynamic properties of condensed-phase systems of a small
anisotropic molecule, benzene, and of a larger, more flexible organic
semiconductor molecule, sexithiophene. These two molecules were
chosen to determine the conditions under which coarse-grained
structural inaccuracy outweighs the computational efficiency of a
single-anisotropic-site model.

II. THEORY
The key aspects of the theory that underpins the AFM-CG

method and its extension to constant pressure via virial matching
are summarized below. The reader is referred to Ref. 21 for a more
detailed description and the full derivation of the method.

A. Fine-grained to coarse-grained mapping
The positions rn

= r1, r2, . . . , rn of the n fine-grained particles
are mapped onto the positions RN

= R1, R2, . . . , RN and orientations
ΩN
= Ω1,Ω2, . . . ,ΩN of the N anisotropic coarse-grained particles,

where ri is the position of fine-grained particle i, and RI and ΩI are
the position and orientation, respectively, of coarse-grained parti-
cle I, as shown in Figs. 1(a) and 1(b) for the α-sexithiophene and
benzene molecules, respectively. Each fine-grained particle i is
mapped to a single coarse-grained particle by defining N non-
intersecting subsets, ζ1, ζ2, . . . , ζN , of the fine-grained particle
indices such that ζI contains the indices of the fine-grained particles
mapped onto coarse-grained particle I. The position RI of coarse-
grained particle I is defined to be equal to the center-of-mass of the
group of fine-grained particles that are mapped onto it, i.e.,

RI =
∑i∈ζI

miri

∑i∈ζI
mi

, (1)

where mi is the mass of fine-grained particle i and ∑i∈ζI
denotes a

sum over the fine-grained particles in the set ζI of particles mapped
onto the coarse-grained particle I. The orientation

ΩI =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΩI,1

ΩI,2

ΩI,3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

of coarse-grained particle I is specified by the rotation matrix whose
components are the particle’s three normalized principal axes of
inertia, ΩI,q for q = 1, 2, 3. These axes are defined to be equal to the
corresponding principal axes relative to the center-of-mass of the
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FIG. 1. Mapping of fine-grained atom positions to position and orientation coordinates of anisotropic coarse-grained particles for pairs of (a) α-sexithiophene and (b) benzene
molecules, in which each molecule is mapped to a single coarse-grained particle. Carbon, hydrogen, and sulfur atoms in the all-atom structures are colored gray, white, and
yellow, respectively. The arrows on the coarse-grained particles represent the principal inertia axes that define the particle orientation, which intersect at the center-of-mass
defining the particle position. (c) All-atom benzene system in which the coarse-grained representation has been overlaid; the magnified image shows the atomistic forces
(black arrows) that contribute to the coarse-grained force F I and torque τI (green arrows) on a specific molecule.

group of fine-grained particles that are mapped onto the coarse-
grained particle. Thus, these axes are the normalized eigenvectors
of the inertia tensor

IFG,I =∑
i∈ζI

mi(∥Δri∥
2E − ΔriΔrT

i ), (3)

where Δri = ri − RI is the position of fine-grained particle i relative
to the center-of-mass (coarse-grained particle position), E is the
3 × 3 identity matrix, ∥ ⋅ ⋅ ⋅ ∥ denotes the vector norm, and rT

i is
the transpose of the vector ri. From these coordinate mappings and
the relationship between generalized coordinates and momenta
from Hamilton’s equations,24 mappings from the linear momenta
pn
= p1, p2, . . . , pn of the fine-grained particles to the lin-

ear momenta PN
= P1, P2, . . . , PN and angular momenta

LN
= L1, L2, . . . , LN of the anisotropic coarse-grained particles

can also be defined, where pi is the momentum of fine-grained
particle i, and PI and LI are the linear and angular momentum,
respectively, of coarse-grained particle I.21 The mappings for
coarse-grained particle I are

PI =
MI

∑i∈ζI
mi
∑

i∈ζI

pi (4)

and

LI = III−1
FG,I∑

i∈ζI

Δri × pi, (5)

respectively, where II is the inertia tensor of coarse-grained particle
I, and × denotes the vector (cross) product.

B. Configuration-space consistency conditions
Given these mappings, several conditions can be derived

that the coarse-grained model must satisfy for its equilibrium

coarse-grained phase-space distribution to match the correspond-
ing mapped distribution of the fine-grained system. Consistency
between the configuration-space distributions gives the following
matching conditions between the forces FI and torques τI on
coarse-grained particle I and the forces on the fine-grained particles
mapped onto it:21

FI(RN ,ΩN
) = −

∂U
∂RI
= ⟨∑

i∈ζI

fi⟩

RN ,ΩN

(6)

and

τI(RN ,ΩN
) = −∑

q
ΩI,q ×

∂U
∂ΩI,q

= ⟨∑

i∈ζI

Δri × fi⟩

RN ,ΩN

, (7)

where U(RN ,ΩN
) is the coarse-grained potential, fi(r

n
) = −

∂u
∂ri

is the force on fine-grained particle i, with u(rn
) denoting the

fine-grained potential and ⟨⋅ ⋅ ⋅ ⟩RN ,ΩN denoting an average over
fined-grained configurations mapped to coarse-grained configura-
tion RN , ΩN . The fine-grained atomistic forces that contribute to the
coarse-grained force and torque on a molecule in a liquid benzene
system are shown in Fig. 1(c).

C. Momentum-space consistency conditions
Consistency between the momentum-space distributions

requires the mass MI of coarse-grained particle I to be the sum of
the masses of its constituent fine-grained particles, i.e.,21

MI =∑
i∈ζI

mi. (8)

In addition, if it is assumed that the principal moments of inertia
of the coarse-grained particles are constant (which is necessary for

J. Chem. Phys. 159, 024110 (2023); doi: 10.1063/5.0143724 159, 024110-3

© Author(s) 2023

 16 August 2023 07:56:46

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

the coarse-grained model to be compatible with standard molecular
dynamics simulation algorithms and codes), momentum-space con-
sistency between coarse-grained and fine-grained models requires
the angular momentum (or, equivalently, angular velocity) distri-
bution of the fine-grained system to be separable into independent
factors for each coarse-grained particle and for these factors to
be independent of the system configuration, which leads to the
condition21

I1/2
I,q exp(−

II,qω2
I,q

2kBT
) ≈ ⟨I1/2

FG,I,q exp(−
IFG,I,qω2

I,q

2kBT
)⟩

RI ,ΩI

, (9)

where II,q, IFG,I,q, and ωI,q are the components of the coarse-grained
moment of inertia, fine-grained moment of inertia, and angular
velocity about the q axis, respectively and ⟨⋅ ⋅ ⋅ ⟩RI ,ΩI denotes an equi-
librium average of fine-grained configurations consistent with the
coordinate mapping of coarse-grained particle I. The assumption of
separability and configuration independence of the angular momen-
tum distribution should be accurate for groups of atoms that behave
approximately as rigid bodies. However, it is unclear if this assump-
tion is accurate, in general, for flexible molecules. However, the
choice of the inertia tensor components in the coarse-grained model
does not affect any of the key results on structural and thermo-
dynamic properties presented later on, so we do not dwell on the
accuracy of this choice. Furthermore, if the fluctuations in IFG,I,q are
small compared to its mean, it can be shown that21

II,q ≈ ⟨IFG,I,q⟩RI ,ΩI
, (10)

i.e., the principal moment of inertia of a coarse-grained particle
about each principal axis q is approximately equal to the equilibrium
average of the corresponding principal moment of the fine-grained
particles mapped onto it.

D. Virial matching
The AFM-CG method was derived only for the constant-

volume conditions of the canonical ensemble but is straightfor-
wardly generalized to constant-pressure conditions by analogy
with the MS-CG method for spherical coarse-grained particles in
the isothermal-isobaric ensemble.23 Thus, the force- and torque-
matching conditions at constant pressure are the same as those in
Eqs. (6) and (7), except that the coarse-grained forces, torques, and
potential are, in general, functions of the coarse-grained system vol-
ume V and the equilibrium average is constrained to configurations
in which the fine-grained system volume v = V . The coarse-grained
potential must also satisfy a virial-matching condition23

W(RN ,ΩN , V) = −
∂U
∂V

= ⟨
(n −N)kBT

v
+

1
3v

n

∑

i=1
fi ⋅ ri⟩

RN ,ΩN ,V

. (11)

E. Summary
In summary, for the equilibrium phase-space distribution of the

coarse-grained model to match that of the fine-grained model in the
isothermal-isobaric ensemble, the coarse-grained potential should
satisfy Eqs. (6), (7), and (11), while the coarse-grained masses and

principal moments of inertia should satisfy Eqs. (8) and (9), respec-
tively. As shown below, using the more approximate Eq. (10) to
parameterize the moments of inertia gives almost the same results
as Eq. (9), even for a flexible molecule, so we have used this simpler
equation for parameterization later on.

III. METHODS
A. Force-, torque-, and virial-matching algorithm

The analytical expression for the coarse-grain potential U is
not usually known. However, an approximation to the functional
form can be obtained using a neural-network optimization algo-
rithm with Eqs. (6), (7), and (11) acting as necessary constraints. In
general, U(RN ,ΩN , V) is a function of the particle configuration and
system volume. In this work, we have assumed that U does not
depend explicitly on V , in which case23

∂U
∂V
=

1
3V

N

∑

I=1

∂U
∂RI
⋅ RI. (12)

With this approximation, the virial-matching condition in Eq. (11)
can be written, using v = V , as

−

N

∑

I=1

∂U
∂RI
⋅ RI = ⟨3(n −N)kBT +

n

∑

i=1
fi ⋅ ri⟩

RN ,ΩN ,V

. (13)

Despite this approximation, we show later on that the coarse-grained
models parameterized accurately match the average density of the
corresponding all-atom fine-grained system at constant pressure.
Note that previous neural-network coarse-graining implementa-
tions for isotropic particles14,15 have not used pressure-matching
in neural-network training and were restricted to constant-volume
systems in which the density was not allowed to vary, so the ability
of the resulting models to describe the system density accurately at
constant pressure is not possible to ascertain.

To ensure that all equivalent configurations are assigned the
same position in coordinate space, a transformation was made from
the set of Cartesian coordinates to a vector DIJ that was invariant
under translation, rotation, and permutation of any pair of coarse-
grained particles I and J,10,25–27 which was defined in terms of the
positions, RI and RJ , and orientations,ΩI andΩJ , of the two particles
by

DIJ = {RIJ , RIJ ⋅ΩI,1, RIJ ⋅ΩI,2, RIJ ⋅ΩI,3,
RIJ ⋅ΩJ,1, RIJ ⋅ΩJ,2, RIJ ⋅ΩJ,3,
ΩI,1 ⋅ΩJ,1,ΩI,1 ⋅ΩJ,2,ΩI,1 ⋅ΩJ,3,
ΩI,2 ⋅ΩJ,1,ΩI,2 ⋅ΩJ,2,ΩI,2 ⋅ΩJ,3,
ΩI,3 ⋅ΩJ,1,ΩI,3 ⋅ΩJ,2,ΩI,3 ⋅ΩJ,3}, (14)

where RIJ ≡ ∥RIJ∥, RIJ ≡ RI − RJ , and ΩI and ΩJ are specified by
rotation matrices of the form of Eq. (2). The coordinates of each
neighbor within the cut-off distance of particle I were transformed
to a DIJ vector. All the DIJ vectors for a given neighborhood were
concatenated into a 2D matrix DI of size N × dim(DIJ) representing
a unique configurational fingerprint for coarse-grained particle I.

The potential function could then be written in terms of a set of
neural network trainable parameters and activation functions trans-
forming DI to a potential energy value. Although, DI is a sufficient
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specification of the coarse-grained coordinates to enforce the rele-
vant invariant properties of the molecular environment, it does not
possess all the symmetries of the potential energy surface that it aims
to fit.25,28 For each molecular environment, it was assumed that the
interactions were predominantly short-ranged such that neighbors
beyond a certain cut-off distance, Rc, did not contribute to the poten-
tial.19 This condition can be enforced by a cut-off function of the
form

gc(RIJ) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
2
[cos(

πRIJ

Rc
) + 1], RIJ ≤ Rc,

0, RIJ > Rc.
(15)

A set of these cut-off functions can enforce the radial symmetry
conditions of the underlying potential energy surface by storing
information about the radial distribution of neighbors, using19

G1
I =∑

J≠I
gc(RIJ). (16)

Continuity of the potential along angular dimensions was ensured
by using a compression layer to learn a set of collective variables
from vector DIJ , which were constrained by a modification of the
well-behaved G5 symmetry function19 that describes the relative ori-
entation of anisotropic particles instead of the angle between triplets
of isotropic particles and is given by

G5
I =∑

J≠I

M

∏

μ=1
21−ν
(1 + λ cos θIJ,μ)

νe−η(RIJ−Rs)2

gc(RIJ), (17)

where λ ∈ {−1, 1} and Rs, ν, and η are tunable hyperparameters,
while {cos θIJ,μ} is the set of machine-learned collective variables
with the same properties as the angular component of the under-
lying potential, and M is the total number of machine-learned
angular variables. These angular symmetry functions store informa-
tion about the angular-radial distribution of neighbors in the local
environment of coarse-grained particle I. Unlike the case of spher-
ically symmetric particles, in a local reference frame, a neighboring
anisotropic particle requires a minimum of seven independent scalar
variables to fully describe its position and orientation. However,
previous implementations of analytical potentials, including the
Gay–Berne potential,16,17 have used fewer coordinates for the calcu-
lation of the potential and forces. Similarly, for the neural-network
potential, an additional compression layer was included to remove
the redundant angles from the DIJ vectors since the combination
of translation and rotation in 3D is parameterized by at most seven
unique coordinates. The Behler symmetry functions were enforced
on the output of the compression layer, ensuring that the learned
compression had the same symmetry and continuity as the underly-
ing potential. The reduction in the dimension of DIJ is expected to
lead to improved generalization and reduced over-fitting on a small
dataset, which can result in more efficient training of an accurate
potential.

For each CG particle I with a nearest-neighbor molecular
environment represented by the set of distances RIJ and angles
cos θIJ,μ, a set of these symmetry functions with tuned hyperpa-
rameters (λ, ν,η, Rs, and Rc) was used as the input to a dense
neural network to predict the potential energy of the molecular

environment. Symmetry functions used to represent the local envi-
ronment were constructed using all possible permutations of values
from a specified set of hyperparameters. The neural network ini-
tially used eight symmetry functions, including a single G1 symmetry
function parameterized by the initial guess of the optimal cut-off
radius. New symmetry functions were added progressively to the
set if they resulted in a significant reduction in the neural-network
cross-validation loss, which is defined below, compared with the pre-
ceding set of symmetry functions. The set of hyperparameters in the
symmetry functions used in the anisotropic coarse-grained mod-
els parameterized in this work can be found in the supplementary
material.

To further reduce the amount of data needed to train the neural
network, a prior repulsive potential was defined with pairwise addi-
tive properties. This potential was used to ensure physical behavior
in the regions of the potential where the forces are large and, thus, are
rarely sampled in an equilibrium MD simulation. This prior poten-
tial only needs to satisfy two conditions: first, it must be repulsive
at short radial separations, and, second, the position of its repul-
sive barrier must be orientationally dependent. A simple equation
satisfying these conditions is

Uprior,I =∑
J≠I

B1σc(DI)
−B2 , (18)

where σc is a neural-network compression layer function, and B1
and B2 are strictly positive trainable parameters. It is also possible
to achieve a similar large repulsive barrier through a more advanced
nonlinear sampling of the MD simulation data. The prior poten-
tial fits the purely repulsive part of the angular-dependent potential
to the molecular environment, while the neural-network potential
fits the attractive and oscillatory corrections to the environment.
The final prediction for the potential energy of the environment of
coarse-grained particle I is, therefore, the sum of the neural-network
potential UNN,I and the prior repulsive potential Uprior,I ,15

UI = UNN,I +Uprior,I ; (19)

thus, the total coarse-grained potential is

U =
N

∑

I=1
UI. (20)

From the matching conditions in Eqs. (6), (7), and (13), opti-
mization of the neural-network weights and biases requires a loss
function of the form

L = ⟨
N

∑

I=1

⎛

⎝

α∣FFG,I +
∂U
∂RI
∣

2
+ β
RRRRRRRRRRR

τFG,I +∑
q
ΩI,q ×

∂U
∂ΩI,q

RRRRRRRRRRR

2
⎞

⎠

+ γ∣3(n −N)kBT +
N

∑

I=1
(W̄ FG,I +

∂U
∂RI
⋅ RI)∣

2

⟩

RN ,ΩN ,V

, (21)

where

FFG,I ≡∑
i∈ζI

fi, τFG,I ≡∑
i∈ζI

Δri × fi, W̄FG,I ≡∑
i∈ζI

fi ⋅ ri, (22)

and α,β, and γ are weights. These weights specify the fraction of
each loss that is used for backpropagation and were free to change
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with the learning rate during optimization.14 Even though there
have been significant efforts to develop methods to fit the con-
strained averaged coarse-grained forces directly,29,30 the average
total fine-grained forces subject to the constraint of matching fine-
grained and coarse-grained configurations are not easily obtained.
An indirect means of minimizing the loss function in Eq. (21)
is possible by replacing the constrained ensemble average with an
average over instantaneous unconstrained simulation configura-
tions14

Linst =
1

Nt

Nt

∑

t=1
[

N

∑

I=1
(α∣FFG,I(rn

t ) +
∂U(ξt)

∂RI
∣

2

+ β
RRRRRRRRRRR

τFG,I(rn
t ) +∑

q
ΩI,q (ξt)) ×

∂U (ξt))

∂ΩI,q

RRRRRRRRRRR

2
⎞

⎠

+ γ∣3(n −N)kBT +
N

∑

I=1
(W̄ FG,I(rn

t ) +
∂U(ξt)

∂RI
⋅ RI(ξt))∣

2⎤
⎥
⎥
⎥
⎥
⎦

,

(23)

since it can be shown, for a sufficiently large dataset that comprehen-
sively samples the equilibrium ensemble of the fine-grained system,
that L and Linst have the same global minimum. Here, Nt is the
number of simulation configurations in the dataset, rn

t and vt are
the fine-grained coordinates and system volume for configuration
t, and ξt = (R

N
(rn

t ),ΩN
(rn

t ), V(vt)) is the mapped coarse-grained
configuration for this fine-grained configuration. The loss function
was optimized using the minibatch gradient descent as implemented
in TensorFlow.

The feedforward neural network shown in Fig. 2 was then
trained, where the forward propagation used matrix DI as an input
to predict the coarse-grained potential U, after which TensorFlow’s
computational derivative was used to calculate the outputs, namely
the predicted forces, torques, and virial. In the backpropagation
stage, the loss function was used to calculate the error between the
true and predicted values, which was then used to update the net-
work weights and biases. The errors between the true and predicted
parameters were calculated using TensorFlow’s mean squared error,
and gradient descent was implemented using TensorFlow’s Adam
optimizer.31 Once the error of the neural network was minimized,
the neural-network model was used to predict the forces, torques,

FIG. 2. Schematic of anisotropic force-matching neural network architecture.

and virial. However, removing the output and derivative layers gives
access to the predicted potential of mean force. By optimizing the
partial derivatives of the potential instead of the potential itself,
by the nature of the derivative, there will be less oscillation in the
potential at the edges of the dataset close to the cut-off distances.

B. LAMMPS modification and neural
network implementation

The neural network was constructed in Tensorflow (ver-
sion 2.3.0)32 using the Keras (version 2.4.3) functional API33 and
saved using the Tensorflow SavedModel format. The trained neural
network was implemented in LAMMPS using the Tensorflow C API
and cppflow wrapper. All simulations were carried out using the
LAMMPS MD software package (version 20 Nov 19).34–36 The Opti-
mized Potentials for Liquid Simulations-All Atom (OPLS-AA) force
field37–40 was used for all all-atom simulations with a cut-off distance
of 10 Å for short-ranged non-bonded interactions. The parameters
for benzene were identical to those in Ref. 21. Bond, angle, dihe-
dral, and Lennard–Jones OPLS-AA parameters with 1.14 ∗ CM1A-
LBCC partial atomic charges41 for sexithiophene were obtained from
the LigParGen web server.42 Long-ranged electrostatic interactions
were calculated with the particle–particle particle–mesh (PPPM)
method36,43 The bonds that include hydrogen were constrained
using the SHAKE algorithm.44 Simulations were carried out in the
isothermal-isobaric (NPT) ensemble at a pressure of 1 atm, with
the temperature and pressure controlled by using a Nosé–Hoover
thermostat and barostat.45,46

Neural-network training was carried out using data from
a 25 ns all-atom simulation in which simulation configurations,
forces, and velocities were saved at 2 ps intervals. The simulation
snapshots from the last 20 ns were shuffled and then divided into
four groups of equal size, {g0, g1, g2, and g3}. The neural network
was initially trained on g0, while g3 was used as the validation set.
New snapshots were added from g1 and g2 if the mean errors of
their predicted forces and torques were larger than those of the
validation set. This iterative procedure increases the number of
snapshots in the training set that are most dissimilar/uncorrelated
to those in the validation set. The accuracy of the trained neural net-
work was then compared to the expected accuracy determined from
k-fold cross-validation.47,48 During k-fold cross-validation, the last
20 ns of simulation data was shuffled and divided into ten folds,
{ψ0, . . . ,ψ9}. The model was validated on ψi and trained on ⋃j≠i ψj
for all i, j ∈ {0 − 9}. The loss of the iterative training method was
found to be identical to the k-fold cross-validation loss, which sug-
gests that there was no significant data leakage between the training
and validation sets.

The coarse-grained simulations were done using a modified
version of LAMMPS in which the trained neural network was intro-
duced to calculate the forces and energies. The dimensions of the
coarse-grained sites used in the simulations were derived from the
inertia tensor of the all-atom model. As a rigorous test of the ability
of the coarse-grained model to capture the properties of the all-atom
model under a variety of conditions in addition to the single tem-
perature at which the neural network was trained, the equilibrium
properties of equivalent coarse-grained and all-atom systems were
compared in independent simulations at several different tempera-
tures. In all cases, the total length of the coarse-grained simulation
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was 25 ns, with the last 20 ns used to calculate structural and thermo-
dynamic properties. Statistical uncertainties were estimated using
block averages49 and are given as two standard errors.

IV. RESULTS AND DISCUSSION
To demonstrate the flexibility of the method, we have used

our neural-network model to construct coarse-grained interaction
potentials for benzene, an archetypal anisotropic small molecule,
and α-sexithiophene, an organic semiconductor with significant
applications in organic electronic devices.50–52 These molecules
were selected to demonstrate the neural network’s ability to handle
anisotropic molecules of varying complexity, flexibility, and aspect
ratio while still reproducing their structural and phase behavior.

The shape of a coarse-grained particle obtained from the
anisotropic coarse-graining method is determined by the “average”
shape of the fine-grained molecule or molecular fragment that is
mapped to it under the parameterization conditions. Thus, the
variation of the aspect ratio of the molecule or molecular frag-
ment with temperature in the all-atom simulations can potentially
be a qualitative indicator of the temperature transferability of the
coarse-grained model. Here, the aspect ratio of the molecule was
calculated as the ratio of the length to the breadth of the molecule,
where the length was defined as the longest principal axis and the
breadth was defined as the sum of the remaining two semi-axes.
Unlike benzene, the thiophene–thiophene dihedral angles also have
a temperature-dependent effect on the aspect ratio of sexithiophene.

Neural networks, in general, are very good at interpolation but
struggle with extrapolation.53–56 The accuracy of the model is, there-
fore, expected to decrease as the aspect ratio of the molecule deviates
from that at the parameterization temperature, as well as when the
density distribution is sufficiently different from the parameteriza-
tion temperature. By parameterizing the systems in the liquid phase,
the model can capture a wider variety of fluctuations in the density of
the system and the dimensions of the molecules. The average size of a
flexible molecule in the isotropic phase will be different from the size
of the molecule when locked in a rigid crystal structure.57,58 How-
ever, this temperature-dependent size difference should decrease
with increasing rigidity of the molecule.

A. Benzene
Simulations consisting of 500 benzene molecules were carried

out at 280, 300, 320, 330, and 350 K, and the coarse-grained neural-
network model was parameterized at 300 K. The time step was
2 fs in the all-atom simulations and 12 fs in the coarse-grained
simulations. The cut-off distance hyperparameter Rc was 10 Å. The
root mean squared validation error per molecule for the forces was
2.55 kcal mol−1 Å−1 and that for the torque was 4.35 kcal mol−1. The
root mean squared validation error in the pressure was 0.0092 atm.

The average principal moments of inertia in the all-atom sim-
ulation at 300 K were used to determine the principal moments
of the coarse-grained model using Eq. (10) (values given in the
supplementary material) since the fluctuations in the moments at
the parameterization temperature were small.21 The variation of the
molecular aspect ratio of the all-atom benzene model with temper-
ature is shown in Fig. 3. The distribution of possible dimensions
observed for benzene is narrow and remains fairly constant with

FIG. 3. Length-to-breadth ratio of the all-atom benzene model at 1 atm and various
temperatures.

temperature, making benzene an ideal case where molecular flex-
ibility does not contribute significantly to the overall error of the
model.59

Figure 4 shows that the coarse-grained neural-network model
accurately captures the liquid density of the all-atom model over a
wide range of temperatures, from just above the freezing point to
just below the boiling point, with only slight deviations for the tem-
perature furthest from the parameterization temperature. As shown
in Fig. 5, the coarse-grained model also accurately predicts the radial
distribution function (RDF) of the all-atom model over the same
temperature range.

To further elucidate the accuracy of the neural-network coarse-
grained model, the angular–radial distribution function (ARDF) was
analyzed. The ARDF is defined by

g(r, θ) =
⟨n(r, θ)⟩

4
3πρ[(r + Δr)3

− r3
] sin θΔθ

, (24)

FIG. 4. Density vs temperature of the all-atom (AA) and coarse-grained (CG) ben-
zene models at 1 atm. Error bars are smaller than the symbols (on the order of
±10−4 and ±10−3 g cm−3, respectively, for the AA and CG models).
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FIG. 5. Radial distribution function (RDF) of the all-atom (solid lines) and coarse-
grained (dashed lines) benzene models at 1 atm and various temperatures. The
RDFs have been shifted vertically for clarity.

where ⟨n(r, θ)⟩ is the average number of molecules in the spher-
ical shell within the bounds r to r + Δr of the center-of-mass of
a chosen molecule and having an out-of-plane axis rotation of θ
with respect to the out-of-plane axis of the chosen molecule,60 and
ρ is the bulk number density. Figure 6 shows the 2D heatmap of
the ARDF along with 1D slices of this function at specific angles
at 300 K (the parameterization temperature) for the all-atom and
coarse-grained models. The ARDFs at the other simulated tempera-
tures are compared in the supplementary material. At all simulated
temperatures between 280 and 350 K, the coarse-grained model
captures all the major features of the fine-grain structure of the fluid.
The only difference is a slight underestimation of the peak heights by
the coarse-grained model. The neural-network model can demon-
strate temperature transferability through the careful selection of the
neural network hyperparameters to prevent the overfitting of the
local number density variations.

The coarse-grained simulation of anisotropic molecules using
a neural-network potential is more suited for large, preferably
rigid, molecules, for which a high degree of coarse-graining can be
achieved with reasonable accuracy. However, the model was still
able to achieve a modest 20× speedup compared with the atom-
istic simulations through a combination of reduced computation
time per timestep and a larger timestep. This poor performance
for a small molecule such as benzene is due to the small reduction
in the number of degrees of freedom from the all-atom model to
the coarse-grained model, coupled with a neural-network potential
that is more computationally expensive than an analytical poten-
tial. Nevertheless, computational savings are obtained even in this
suboptimal case. Simulations were carried out on a 4-core Intel
i7-4790K CPU, but further speedups could be achieved by taking
advantage of the GPU-enabled version of TensorFlow.

B. Sexithiophene
Simulations of 512 sexithiophene molecules were carried out

at 570, 590, 640, and 680 K temperatures, corresponding to tem-
peratures previously identified in all-atom MD simulations to
correspond to crystalline (K), smectic-A (SmA), nematic (N), and
isotropic (I) phases, respectively.61 The time step was 1 fs in the
all-atom simulations and 12 fs in the CG simulations. Although we
have used the OPLS-AA force field for our all-atom simulations,
whereas these previous MD simulations61 used the related AMBER
force field,62–64 the structural properties of systems simulated with
these two force fields (in particular, the density, orientational order
parameter, and radial distribution function discussed below) are
very similar for the temperature range studied. The cut-off distance
hyperparameter Rc was set to 21 Å. The neural-network model was
parameterized using simulation snapshots from the isotropic phase
at 680 K, where the molecular mobility was highest. The conditions
of the isotropic bulk phase are advantageous in efficiently sampling
the configuration space, especially rare high-energy configurations

FIG. 6. Angular–radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-grained (CG) (bottom) benzene models at 300 K and 1 atm depicted as a heat map
(left) and 1D slices at a constant angle (right). Face-to-face, edge-to-edge, and parallel displaced configurations occur when the angle is 0○, while edge-to-face configurations
occur at 90○.
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necessary for the accurate reproduction of the repulsive part of the
coarse-grained potential.

As shown in Fig. 7(a), the distributions of the principal
moments of inertia of sexithiophene in the all-atom simulation at
the parameterization temperature are broad, indicating that Eq. (10)
may not be adequate for parameterizing the moments of inertia of
the coarse-grained model. However, we found that using the more
general Eq. (9) to parameterize the coarse-grained moments of iner-
tia [by fitting the distributions in Figs. 7(b)–7(d)] gave values within
<1%. So we used the values from Eq. (10) in the coarse-grained
model.

The root mean squared validation error per molecule for the
sexithiophene forces was 3.95 kcal mol−1 Å−1 and that for the
torque was 9.8 kcal mol−1. The sexithiophene final force and torque
losses were larger than those of benzene because the model was

FIG. 7. (a) Principal moment of inertia distributions for the all-atom (AA) sexithio-
phene model at 680 K and 1 atm. The corresponding angular velocity distribution
of each principal axis along with the coarse-grained (CG) fit to the distribution given
by Eq. (9) is shown in (b)–(d).

not complex enough to account for the bending of the molecule
and the rotation of the individual thiophene rings. The loss is also
skewed toward larger values when compared with benzene because
sexithiophene is a larger molecule, and so the interactions between
molecules are stronger overall.

The structural properties of the coarse-grained model were
compared with those of its all-atom counterpart at each of the sim-
ulated temperatures. The nonlinear change in density with respect
to temperature is associated with the phase changes that occur at
the simulated temperatures (Fig. 8).61 The density of the coarse-
grained system agrees well with that of the all-atom system, with
minimal deviations from the fine-grained system with increas-
ing distance from the parameterization temperature. Compared
with benzene, sexithiophene has a much larger change in density
between the crystalline and isotropic phases. This difference results
in less overlap between the local density variations in the crys-
talline phase at the lowest temperature and the training dataset
in the isotropic phase at the highest temperature. The sexithio-
phene molecule is also much more flexible than benzene, as seen
in the wide distribution of the aspect ratio in the all-atom model
at all the simulated temperatures shown in Fig. 9, and its dimen-
sions change significantly with temperature over the range studied.
This variation of the all-atom molecular dimensions will lead to
discrepancies between the angular-momentum distributions of the
coarse-grained and fine-grained sexithiophene models in Eq. (9)
as the temperature deviates from the parameterization tempera-
ture due to the fixed principal moments of inertia of the coarse-
grained model. However, these discrepancies do not affect any of the
structural or thermodynamic properties presented below. Another
limitation of representing sexithiophene as a single-site ellipsoid
is the loss of thiophene–thiophene torsional information. That is,
for any given position and orientation of the coarse-grained ellip-
soid, there are multiple different relative orientations between the
thiophene groups.65 This loss of information is significant because
the anisotropic interactions of the thiophene subunits are lost, which
reduces the neural network’s ability to isolate which of the two short
axes corresponds to the π-stacking direction.

FIG. 8. Density vs temperature of the all-atom (AA) and coarse-grained (CG) sex-
ithiophene models at 1 atm. Error bars are smaller than the symbols (on the order
of ±10−3 and ±10−2 g cm−3, respectively, for the AA and CG models).
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FIG. 9. Length-to-breadth ratio of the all-atom sexithiophene model at 1 atm and
various temperatures. The simulated phase is given in parentheses after each
temperature in the legend (I = isotropic, N = nematic, SmA = smectic A, and
K = crystal).

To further confirm that the density changes were associated
with transitions from the crystalline phase through the nematic and
smectic phases to the isotropic phase, the scalar orientational order
parameter P2 was introduced. For a given simulation snapshot at
time t, P2 can be found by diagonalizing the ordering matrix

Q =
1

2N

N

∑

I=1
(3uI ⊗ uI − E), (25)

where uI is the unit vector along the molecular axis, and E is the
identity matrix. ⟨P2⟩ is the average over the largest eigenvalue of
this matrix for all snapshots of equilibrium configurations.61 Larger
values of the scalar orientational order parameter close to one indi-
cate an ordered crystalline structure, while values close to zero cor-
respond to an isotropic disordered phase. The coarse-grained model
reproduces the orientational order parameter of the all-atom model
reasonably well over the temperature range simulated, as shown
in Fig. 10. The coarse-grained model underestimates the degree
of orientational ordering observed in the all-atom model away
from the parameterization temperature, likely because it does not
capture the increasing molecular shape anisotropy that is observed
in the all-atom model as the temperature decreases (Fig. 9). As
expected, the largest difference occurs in the predicted crystalline
phase.

The same trend is seen in the radial distribution functions
shown in Fig. 11, in which the agreement between the coarse-grained
and all-atom models at most temperatures is excellent, with the
largest deviations for the crystalline phase. The underestimation and
broadening of the peaks in the crystalline radial distribution func-
tion explain the discrepancy between the order parameter of the
all-atom and coarse-grained models. The observed differences are
most likely due to the effect on molecular packing of the afore-
mentioned discrepancy in molecular shape between the two models
as temperature decreases.66 Nevertheless, even in the crystalline
phase, the coarse-grained model captures the peak positions of the
radial distribution function very well. We are not aware of any pre-
viously developed systematically coarse-grained anisotropic model

FIG. 10. Orientational order parameter vs temperature for the all-atom (AA) and
coarse-grained (CG) sexithiophene models at 1 atm. Typical simulation configura-
tions are shown at each temperature for each system (AA model above the data
points and CG model below), in which the molecules have been colored according
to their orientation with respect to the phase director (blue = parallel, red = per-
pendicular). Error bars are smaller than the symbols (on the order of ±10−3 and
±10−4, respectively, for the AA and CG models).

that quantitatively captures the liquid-crystal phase behavior of the
all-atom model from which it was derived.

The coarse-grained model also accurately describes orienta-
tional correlations in condensed-phase sexithiophene, as illustrated
by a comparison with the angular-radial distribution function of the
all-atom model. At the parameterization temperature, the coarse-
grained model is able to capture all major features when compared to

FIG. 11. Radial distribution function (RDF) of the all-atom (solid lines) and coarse-
grained (dashed lines) sexithiophene models at 1 atm and various temperatures.
The RDFs have been shifted vertically for clarity. The simulated phase is given
in parentheses after each temperature in the legend (I = isotropic, N = nematic,
SmA = smectic A, and K = crystal).
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FIG. 12. Angular-radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-grained (CG) (bottom) sexithiophene models at 680 K and 1 atm (isotropic phase)
depicted as a heat map (left) and 1D slices at constant angle (right). Face-to-face, edge-to-edge, and parallel displaced configurations occur when the angle is 0○, while
edge-to-face configurations occur at 90○.

the all-atom model (Fig. 12). The neural-network model is also able
to capture the relevant features in the structure of sexithiophene’s
smectic liquid-crystal phase at 590 K, as shown in Fig. 13. The
discrepancies in the width and height of the peaks are likely due
to the differences in molecular shape away from the parameteri-
zation temperature that was mentioned earlier. The ARDFs of the
two models in the nematic phase at 640 K are compared in the
supplementary material and show similarly good agreement.

Despite sexithiophene not strictly meeting the conditions to
be coarse-grained to a single anisotropic particle due to its signifi-
cant flexibility, the coarse-grained neural-network model is still able
to reproduce its condensed-phase structural properties and phase

behavior with remarkable accuracy. The limitation of the single-
site model is only evident under conditions where the conformation
of the molecule is highly temperature-dependent. One way to con-
struct a neural network model that is independent of temperature
would be to extract the training data from multiple temperatures
and define the molecular dimensions as the average over the crys-
talline and isotropic phases. Although, the results for sexithiophene
are substantially better than expected given its flexibility, improve-
ments can be made to the model by considering a coarse-grained
mapping consisting of more than one site.67

The coarse-grained simulation of sexithiophene demonstrated
a speed-up of 132× compared with the all-atom simulation using the

FIG. 13. Angular-radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-grained (CG) (bottom) sexithiophene models at 590 K and 1 atm (smectic phase)
depicted as a heat map (left) and 1D slices at constant angle (right). Face-to-face, edge-to-edge, and parallel displaced configurations occur when the angle is 0○, while
edge-to-face configurations occur at 90○.
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same hardware employed for the benzene simulations. This speedup
is primarily due to the large reduction in the number of degrees of
freedom in coarse-graining this molecule.

V. CONCLUSIONS
We have applied machine learning and a recently derived sys-

tematic coarse-graining method for anisotropic particles to develop
a single-site anisotropic coarse-grained potential of a molecular sys-
tem. The iterative training of the neural-network potential is able
to reproduce the forces, torques, and pressure of the fine-grained
all-atom system. The final loss of the iterative training model was
identical to the loss obtained from k-fold cross-validation. The
CG model performs well for a rigid molecule like benzene, but,
remarkably, it also describes the phase behavior and molecular-
scale structural correlations of a flexible molecule like sexithio-
phene with comparable accuracy, even though the aspect ratio of
the molecule changes significantly over the simulated temperature
range. We have demonstrated the versatility of the coarse-graining
method by parameterizing models of benzene and sexithiophene at
a single temperature and then studying their accuracy in captur-
ing the structural properties of the corresponding all-atom model
at different temperatures. The sexithiophene model was also used
to show the ability of the model to reproduce the phase behav-
ior of the all-atom model, with the lowest fidelity coming from
the crystalline phase, where the aspect ratio of the molecule had
the largest deviation from the parameterization dataset. A natural
extension to this work would be to generalize the method to a multi-
site anisotropic coarse-grained model for flexible molecules and
polymers.

SUPPLEMENTARY MATERIAL

The supplementary material provides more extensive structural
comparisons between the all-atom and coarse-grained simulations,
more details on the methods used for the calculations, quantification
of the agreement between structural and thermodynamic properties
of the all-atom and coarse-grained models, and a list of the software
needed to implement and train the neural-network potential, along
with links to their GitHub repositories.
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