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GlycoMinestruct: a new 
bioinformatics tool for highly 
accurate mapping of the 
human N-linked and O-linked 
glycoproteomes by incorporating 
structural features
Fuyi Li1,2,*, Chen Li2,*, Jerico Revote3, Yang Zhang1, Geoffrey I. Webb4, Jian Li5, 
Jiangning Song2,4,6 & Trevor Lithgow5

Glycosylation plays an important role in cell-cell adhesion, ligand-binding and subcellular recognition. 
Current approaches for predicting protein glycosylation are primarily based on sequence-derived 
features, while little work has been done to systematically assess the importance of structural features 
to glycosylation prediction. Here, we propose a novel bioinformatics method called GlycoMinestruct 

(http://glycomine.erc.monash.edu/Lab/GlycoMine_Struct/) for improved prediction of human  
N- and O-linked glycosylation sites by combining sequence and structural features in an integrated 
computational framework with a two-step feature-selection strategy. Experiments indicated that 
GlycoMinestruct outperformed NGlycPred, the only predictor that incorporated both sequence and 
structure features, achieving AUC values of 0.941 and 0.922 for N- and O-linked glycosylation, 
respectively, on an independent test dataset. We applied GlycoMinestruct to screen the human 
structural proteome and obtained high-confidence predictions for N- and O-linked glycosylation sites. 
GlycoMinestruct can be used as a powerful tool to expedite the discovery of glycosylation events and 
substrates to facilitate hypothesis-driven experimental studies.

Glycosylation is a major type of protein post-translational modification (PTM) through which a carbohydrate 
(i.e., a glycosyl donor) is attached to specific functional groups on target proteins (i.e., glycosyl acceptors). It is 
among the most complicated of PTMs occurring in protein biosynthesis1 and is ubiquitous across different spe-
cies and cell types1. Glycosylation plays an important role in a myriad of biological processes involving protein 
folding, sorting, trafficking, degradation, and immune response2–5. Due to its fundamental importance in cell 
biology, protein glycosylation has also been implicated in a number of human diseases, including congenital 
muscular dystrophies6, alcoholism7, Alzheimer’s disease8, and cancer6.

The three major types of glycosylation, N-, O-, and C-linked glycosylation, are distinguished in the func-
tional groups in the protein side chain being modified with the carbohydrate moiety. While little is known 
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about the factors contributing to C-linked glycosylation, asparagine residues can be modified by N-linked gly-
cosylation when located within a consensus sequence motif (Asn-X-Ser/Thr, where X denotes any amino acid 
except Pro9). Oligosaccharyltransferase is the central enzyme of protein N-glycosylation in eukaryotes, cata-
lyzing the formation of an N-glycosidic linkage of oligosaccharides to the side-chain amide of target asparag-
ine residues. This catalysis occurs selectively on consensus sequons Asn-X-Ser/Thr in substrate proteins10. This 
pathway occurs co-translationally (i.e. as unfolded substrate polypeptides enter the endoplasmic reticulum) 
or post-translationally (i.e. after substrate polypeptides have folded in the lumen of the endoplasmic reticu-
lum). Since cell surface and extracellular proteins are first translocated into the endoplasmic reticulum, protein 
N-glycosylation is responsible for much of the glycan modification of these extracellular proteins. O-linked glyco-
sylation involves glycan attachment to serine or threonine residues. There exists at least five classes of O-glycosyl 
modifications, including O-N-acetylgalactosamine (O-galNAc), O-fucose, O-glucose, O-N-acetylglucosamine 
(O-GlcNAc) and O-mannose11. These reactions can occur in the cytosol, to proteins that will remain in the cyto-
sol or enter into the nucleus12,13, or in the cis-, medial- and trans-Golgi compartments after secretory proteins 
traffic from the endoplasmic reticulum14,15. To date, no biologically significant sequons have been identified for 
any class of O-linked glycosylation16. Whether it occurs in the cytosol or the Golgi compartment, O-linked gly-
cosylation occurs post-translationally so that only some potential glycosylation sites would be available to the 
glycosyltransferases that mediate this PTM11. Likewise, only a sub-set of all Asn-X-Ser/Thr sequences will be 
accessed by the glycosyltransferases that catalyze N-linked glycosylation17. In addition to the accessibility cri-
terion limiting O- and N-glycosylation11, it was suggested that sequences surrounding a potential glycosylation 
site and/or distances to the next glycosylation site can impact whether an acceptor Asn-X-Ser/Thr sequence is 
actually N-glycosylated18,19.

Mass spectrometry is perhaps now the predominant experimental method to detect protein glycosylation 
sites20,21. In recent years, other techniques that can perform medium and high-throughput identification and 
quantification of glycosylation sites (including glycan structures and glycan occupancy) have been developed 
and applied22–24, including flow cytometry25, solid-phase extraction26 and lectin-based methods27,28. All of these 
experimental approaches require considerable time and effort. This hinders their ability to keep pace with data 
generated from high-throughput sequencing endeavors, given the enormous volume of proteomic data generated 
by these and other new technologies. Compared with other important types of PTM, such as phosphorylation, 
acetylation, and ubiquitination, bioinformatics-based prediction of glycosylation has lagged behind29.

In light of this, computational approaches to address this issue are attractive options, particularly with 
advances in data-mining and machine-learning algorithms. Current computational tools for protein-glycosylation 
prediction (e.g., GlycoMine30, NetNGlyc31, NetOGlyc32, EnsembleGly33, and GPP34) were constructed based on 
sequence features, which have been widely used as a basic feature for the construction of computational mod-
els. Sequence-based features generally include physical/chemical properties (e.g., hydrophobicity and AAindex), 
statistical features (e.g., position-specific scoring matrices (PSSMs)), predicted features by third-party computa-
tional methods (e.g., protein secondary structure), and functional annotations from publicly available databases.

Protein structural features have not been systematically examined or incorporated for glycosylation pre-
diction. An interplay between N-linked glycosylation sites and secondary structures was revealed, suggesting 
that secondary structure features are important for distinguishing glycosylation sites from non-glycosylation 
sites19,35. To the best of our knowledge, NGlycPred35 is the only tool that has incorporated protein structural 
features for N-linked glycosylation prediction. The balanced predictive performance of NGlycPred based on 
10-fold cross-validation in terms of accuracy (ACC) was 68.7%. Furthermore, NGlycPred is limited to N-linked 
glycosylation-site prediction. These underline the necessity for developing an improved approach considering 
both sequence-derived and three-dimensional protein-structure information.

Here, we proposed a novel computational framework, GlycoMinestruct, for N- and O-linked glycosylation-site 
prediction that integrates both protein-sequence and protein-structural features. This is the only computa-
tional framework to date that assembles protein-sequence and protein-structural features for both N- and 
O-glycosylation-site prediction. Effective feature-selection methods, combining linear support vector machine 
(SVM)-based feature selection and incremental feature selection, were applied to extract the most informative 
sequence-based and structural features for N- and O-linked glycosylation prediction. In empirical studies, our 
proposed method achieved outstanding predictive performance in terms of area under the curve (AUC; 0.948 
and 0.923) for N- and O-linked glycosylation sites, respectively, using a benchmark dataset and outperformed 
NGlycPred on an independent test dataset. Additionally, we applied GlycoMinestruct to scan the entire human 
structural proteome to identify N- and O-glycosylation sites, thereby providing a comprehensive dataset to the 
community for further in-depth glycosylation studies and experimental investigations.

Results
Methodology overview. A flowchart describing GlycoMinestruct is illustrated in Fig. 1, with the four major 
steps denoted by different colors: dataset collection and preprocessing (blue), feature extraction (yellow), feature 
analysis and selection (red), and model evaluation (green). The first step involves data collection and extraction 
from publicly available resources. During the second step, a variety of sequence-based and structural features 
are extracted using third-party software. A two-step feature-selection procedure is introduced in the third step, 
where linear SVM-based feature selection36 is first used, followed by incremental feature selection (IFS)37 to char-
acterize the feature subsets that contribute the most information for N- and O-linked glycosylation-site pre-
diction. During the final stage, random forest (RF)-based classifiers are trained using the final selected optimal 
feature subsets (OFS) for N- and O-linked glycosylation-site prediction. The performance of RF classifiers was 
extensively evaluated using both cross-validation and independent tests. During this stage, we also compared 
the performance of our method with that of NGlycPred35, which is the only predictor currently integrating both 
sequence and structural features for N-linked glycosylation-site prediction.
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Residue enrichment of sequence motifs for both N- and O-linked glycosylation sites. We first 
analyzed the amino-acids specificity and enrichment of N- and O-linked glycosylation sites in our curated bench-
mark datasets. The sequons of N- and O-linked glycosylation sites were presented with a local window size of 14 
residues flanking the glycosylation sites (seven residues upstream and downstream of each glycosylation site). 
pLogo38 was then applied to calculate and draw the sequence logos for N-linked (Fig. 2a) and O-linked (Fig. 2b) 
glycosylation sites using the human-protein dataset as background for statistical purposes. The sequence logos 
in Fig. 2 demonstrate the significantly overrepresented and underrepresented amino acids (p =  0.05) for each 
position of the sequons in the benchmark N- and O-linked glycosylation-site datasets.

N-linked and O-linked glycosylation sites show different preferences for neighbouring amino acids (Fig. 2). 
As expected, for N-linked glycosylation the central position is dominated by asparagine (N) residues; while thre-
onine (T) and serine (S) are preferable residues at the central position of O-linked glycosylation sites. N- and 
O-linked glycosylation sites further showed different residue preferences at other positions. While threonine 
(T) and serine (S) were overrepresented in sequence motifs associated with N-glycosylation sites at position  
+ 2 (downstream of the N-glycosylation site9), no specific amino acids were found to be overrepresented at other 
O-linked glycosylation-site positions. The amino acid preferences shown in Fig. 2 represent patterns important 
for distinguishing N- and O-linked glycosylation sites.

Optimized feature set (OFS). In addition to reducing the computational complexity of classifiers, effective 
feature-selection methods can improve the predictive performance of classifiers by eliminating noisy and redun-
dant features. A total of 385 sequence-derived features and 14 structural features were initially extracted using a 
variety of computational tools for both N- and O-glycosylation. The ‘Methods’ section and Supplementary Table S3  
present a detailed description of these features. Applying the proposed two-step feature-selection method led to 
selection of 14 contributing features for N-linked glycosylation sites, and 11 contributing features for O-linked 
glycosylation sites. The IFS curves displaying the changes in AUC values during the second step of IFS are 
shown in Supplementary Fig. S1. The 14 N-linked and 11 O-linked optimal features were selected by five-fold 
cross-validation using the benchmark datasets. We also performed an independent test using these optimal fea-
tures and showed that models trained using the two optimal feature sets accurately identified the N- and O-linked 
glycosylation sites. Tables 1 and 2 provide the lists of selected optimal features for N- and O-glycosylation, respec-
tively. For N-linked glycosylation, the final optimal features included nine sequence-derived features and five 
structural features, while for O-linked glycosylation, the final optimal features included eight sequence-derived 
features and three structural features.

The ‘Num’ column in Tables 1 and 2 indicates the order of the selected features in the OFS, which were ranked 
by the linear SVM during the first feature selection step to quantify the importance of each individual features. 
The ‘Position’ column in Tables 1 and 2 indicates the position of a corresponding feature in the local sliding win-
dow. Refer to the subsection ‘Feature window’ of ‘Methods’ for the definition of the local sliding window. Among 

Figure 1. Overview of the GlycoMinestruct framework. Four major steps are denoted by different colors: dataset 
collection and preprocessing (blue), feature extraction (yellow), feature analysis and selection (red), model 
evaluation (green).
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the selected sequence-derived features, PSSM-relevant features for different positions were chosen in the OFS for 
both N- and O-linked glycosylation sites. PSSM is widely used to characterize the variability of each amino acid 
in given protein sequences based on multiple-sequence alignment. Previous studies on predicting protein PTM 
sites, such as phosphorylation39 and ubiquitination40, demonstrated the importance and contribution of PSSM 
to prediction performance. Similarly, the feature-selection results documented in Tables 1 and 2 revealed that 
PSSM also plays crucial roles in predicting glycosylation sites, which is consistent with finding from our previous 
study30. Other sequence-based features were then extracted from the AAindex. A recent study showed that an 

Figure 2. Residue specificity and enrichment of sequons. (a) N- and (b) O-linked glycosylation sites with 
the “human protein dataset” selected as the background set. Sequence logos and statistical test (binomial 
probabilities and Bonferroni correction) were generated using the pLogo program38.

Num. Feature Position Software

V1 Normalized average hydrophobicity scales P10 AAindex81

V2 Absolute accessibility of non-polar side-chain P1 NACCESS84

V3 PSSM P250 PSI-BLAST79

V4 PSSM P235 PSI-BLAST79

V5 Standard deviation of side-chain depth index P1 PSAIA88

V6 Conformational parameter of beta-turn P10 AAindex81

V7 PSSM P173 PSI-BLAST79

V8 Absolute accessibility of main chain P1 NACCESS84

V9 Mean polarity P8 AAindex81

V10 Log-odds ratio P1 DiscoTope87

V11 Average flexibility indices P7 AAindex81

V12 Mean polarity P10 AAindex81

V13 Absolute accessibility of all-atoms P1 NACCESS84

V14 PSSM P274 PSI-BLAST79

Table 1.  The selected optimal features for N-linked glycosylation. Features highlighted in italic indicate 
structural features, while other features not highlighted are sequence-derived features or amino acid properties.
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appropriate degree of hydrophobicity in a glycosylation site is crucial for protein-folding mechanism, indicating 
a strong relationship between glycosylation and residue hydrophobicity (V1 in Table 1)41.

A conformational parameter involving the β -turn is another feature derived from the AAindex captured as 
a contributive feature for both N- and O-linked glycosylation prediction. Structural studies showed that turns 
and bends are regions favorable for harboring glycosylation sites as compared to other secondary structural  
elements19,42,43. Our feature selection results are consistent with these biological findings.

Tables 1 and 2 show both similarity and diversity of N- and O-linked glycosylation sites in terms of selected 
structural features. Absolute-accessibility features for different positions calculated by NACCESS (http://www.bio-
inf.manchester.ac.uk/naccess/) were selected as important features for both N- and O-linked glycosylation sites. 
Absolute accessibility describes a residue being conformationally accessible as a prerequisite for glycosylation44.  
Importantly, this study revealed log-odds ratios representing the epitope propensity for B cells as important 
attributes for N-linked glycosylation prediction. Glycosylated protein antigens play important roles in the immu-
nologic process45 through binding between epitope and B cell. The log-odds ratios presented in Table 1 suggested 
that epitope propensity was strongly correlated with protein glycosylation. Furthermore, B factors associated with 
protein structural dynamics were evaluated as being contributory features for O-linked glycosylation prediction 
(Table 2). Given that glycosylation profoundly affects the protein folding and stability46, the B factor representing 
thermal motion and used to measure the protein stability, was revealed in our feature-selection results as strongly 
correlated with protein glycosylation.

Analysis of the composition of selected optimal features indicated that both sequence and structural features 
contributed to N- and O-linked glycosylation prediction. In the OFS of N-linked glycosylation, a total of 14 
optimal features were selected, including nine sequence-derived features and five structural features. Among 
the nine sequence features, there were five (5/60 =  8.33%) AAindex features and four (4/360 =  1.11%) PSSM 
features. In the OFS of O-linked glycosylation, eight sequence features and three structural features were finally 
selected: the eight sequence-derived features include three AAindex (3/60 =  5%) features and five (5/300 =  1.67%) 
PSSM features. In comparison, sequence-derived features only accounted for 2.3% (9/385) and 2.1% (8/385) of 
the final selected features for N- and O-linked glycosylation, respectively, while structural features represented 
~36% (5/14) and ~21% (3/14), respectively, in the final OFS. Even though the absolute number of the selected 
sequence-derived features was larger than that of the selected structural features, the relative percentage of the 
latter was larger than that of the former for both N- (~36%) and O-linked (~21%) glycosylation. This was because 
the number of initially extracted sequence features was much larger than that of structural features (385 vs. 14). 
Altogether, these findings suggested that structural features are indispensable and crucial for N- and O-linked 
glycosylation prediction.

Feature importance and contribution in OFS. Given that the selected features in Tables 1 and 2 may 
or may not be equally important for glycosylation prediction, we evaluated the importance of individual optimal 
features in the OFS in terms of their relative contribution to the performance of N- and O-linked glycosylation 
prediction. Specifically, the importance of each of the features was assessed and ranked based on the average 
decrease in accuracy of the RF models trained using the independent test after removal of the correspoding fea-
ture from the OFS. The results are shown in Fig. 3.

The top two features for N-linked glycosylation-site prediction. The two most important structural features for 
N-linked glycosylation-site prediction (Table 1) were the log-odds ratio (V10, calculated by DiscoTope, which 
is for discontinuous B cell epitopes prediction) and the absolute accessibility of non-polar side chains (V2, cal-
culated by NACCESS). Removal of each of the two features from the OFS led to the decrease in accuracy of 
3.78% and 3.76%, respectively (Fig. 3a). Box plots of these two structural features between N-glycosylation 
and non-N-glycosylation sites (Supplementary Figs S2j and S2b) showed that N-glycosylation sites had larger 
average log-odds ratios (− 9.596), while non-N-glycosylation sites had an average value of − 11.365, suggesting 
the importance of glycosylation in immunological process. The difference of the average log-odds-ratio values 
between N-glycosylation sites and non-N-glycosylation sites was statistically significant (p =  0.039). Similarly, in 
the case of the absolute accessibility of non-polar side chains, N-glycosylation sites also had large average values 

Num. Feature Position Software

V1 Conformational parameter of beta-turn P8 AAindex81

V2 PSSM P38 PSI-BLAST79

V3 B factor P1 PDB file53

V4 Normalized average hydrophobicity scales P8 AAindex81

V5 Standard deviation of side-chain depth index P1 PSAIA88

V6 PSSM P293 PSI-BLAST79

V7 PSSM P248 PSI-BLAST79

V8 PSSM P8 PSI-BLAST79

V9 PSSM P128 PSI-BLAST79

V10 Absolute accessibility of main chain P1 NACCESS84

V11 Mean polarity P8 AAindex81

Table 2.  The selected optimal features for O-linked glycosylation. Features highlighted in italic indicate 
structural features, while other features not highlighted are sequence-derived features or amino acid properties.

http://www.bioinf.manchester.ac.uk/naccess/
http://www.bioinf.manchester.ac.uk/naccess/
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of 19.504, while non-N-glycosylation sites had lower average values of 17.359, which agree with finding that 
non-N-glycosylation sites tend to be predicted as solvent-inaccessible. The distribution of the absolute acces-
sibility of non-polar side chains between N-glycosylation sites and non-N-glycosylation sites was also found to 
be statistically significant (p =  0.003). The boxplots displaying differences between N-linked glycosylation and 
non-N-glycosylation sites for features listed in Table 1 are shown in Supplementary Fig. S2.

The top two features for O-linked glycosylation-site prediction. Feature importance-ranking analysis indicated 
that PSSM_P38 (V2, generated by BLAST) and the standard deviation of the side-chain-depth index (V5, cal-
culated by PSAIA) were the two most important features for O-linked glycosylation-site prediction (Fig. 3b). 
The box plots of these two features for O-glycosylation sites and non-O-glycosylation sites are shown in 
Supplementary Fig. S3b,e. For the first feature, the distributions of PSSM_P38 values between O-glycosylation 
and non-O-glycosylation sites were significantly different, (p =  4.98 ×  10−8, Supplementary Fig. S3b). The stand-
ard deviation of the side-chain-depth index is an important structural feature for O-linked glycosylation-site 
prediction (Table 2). The box plot in Supplementary Fig. S3e showed that the average depth-index values for 
O-glycosylation and non-O-glycosylation sites differed significantly (p =  0.003). The larger average depth-index 
values (0.373) for non-O-glycosylation sites relative to those of O-glycosylation sites (0.297) may be partly 
explained by tendency of non-O-glycosylation sites to be solvent inaccessible and buried within the protein struc-
ture. The boxplots displaying the distributions of other optimal sequence and structural feature values (Table 2) 
for O-linked glycosylation sites can be found in Supplementary Fig. S3.

Figure 3 was generated based on the ‘Average Accuracy Decrease’ calculated by the Random Forest algorithm 
after removing a certain feature from the OFS. Supplementary Figs S2 and S3, on the other hand, were drawn 
based on the t-test to illustrate whether the features from the OFS can significantly distinguish glycosylation 
sites from non-glycosylation sites (i.e., whether the distribution of the individual feature values among glyco-
sylation sites and non-glycosylation sites was statistically different). It is important to note that these two meas-
ures are substantially different and focus on different aspects of the prediction. The t-test focuses exclusively on 
an individual feature’s capability of discriminating glycosylation sites from non-glycosylation sites; while the 
Random Forest measures the prediction accuracy decrease after removing the current features and combining 
the rest as the feature set for retraining the classifiers. Random Forest is a sophisticated algorithm that is capa-
ble of calculating information entropy and/or Gini index for accurately classifying the samples. Therefore, the 
prediction performance of Random Forest does not simply rely on the discriminatory power of an individual 
feature, but more so on the combination and correlation of all the available features. By way of example, although 
the hydrophobicity_P10 feature (V1) was capable of distinguishing glycosylation sites from non-glycosylation 
sites (p-value =  2.35E-43; Supplementary Fig. S2) for N-linked glycosylation, Random Forest could still achieve 
a better prediction performance (i.e. lower accuracy decrease; Fig. 3a) in the absence of the hydrophobicity_
P10 feature (V1) by combining all other available features. Conversely, the lack of the log-ratio feature (V10; 
p-value =  0.039; Supplementary Fig. S2) for N-linked glycosylation resulted in a worse correlation during the 
model training using Random Forest and led to the largest average accuracy decrease of 0.0378 (Fig. 3a). In 
summary, we suggest that these two ranking schemes are both important and that they each focus on and capture 
different aspects of the prediction.

Figure 3. The relative importance and ranking of the selected optimal features. (a) N-linked glycosylation 
and (b) O-linked glycosylation based on the average accuracy decrease of models trained after removal of a 
correspoding feature from the feature set.
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Performance comparison with other tools. We evaluated and compared site-prediction performance 
using the OFS, only sequence features, or only structural features based on five-fold cross-validation and inde-
pendent tests using the benchmark datasets. The AUC values of the models trained with different features for 
N- and O-glycosylation-site prediction are shown in Fig. 4a. GlycoMinestruct achieved the highest AUC values by 
combining both structural and sequence features, which suggested that both features played important roles in 
predicting N- and O-linked glycosylation sites.

The Receiver Operating Characteristic (ROC) curves and the corresponding AUC values showed that the 
models trained using the combination of sequence and structural features improved prediction of both N- and 
O-linked glycosylation sites as compared with models trained using only structural or sequence features. To 
further illustrate the predictive performance of GlycoMinestruct, we performed an independent test using the 
OFS and compared the results with those from NGlycPred35, for N-glycosylation-site prediction. The ROC 
curves and AUC values of the two methods are shown in Fig. 4b. GlycoMinestruct outperformed NGlycPred for 
N-linked glycosylation-site prediction. The detailed prediction results in terms of AUC, Matthews correlation 
coefficient (MCC), ACC, specificity, sensitivity, and precision on both the benchmark and independent data-
sets are presented in Supplementary Table S1. The performance using the independent test dataset suggested 

Figure 4. ROC curves. (a) Different GlycoMinestruct models trained with OFSs selected from all features, 
sequence features only, and structural features only, for N- and O-linked glycosylation sites. (b) N- and 
O-linked glycosylation-site predictions from GlycoMinestruct (trained with the OFS) and NGlycPred using the 
independent test dataset.
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that GlycoMinestruct outperformed NGlycPred in predicting N-linked glycosylation sites with known structural 
information.

Case study. A case study involving the prediction of N-linked glycosylation sites in two proteins not included 
in the benchmark dataset illustrated the predictive capability of GlycoMinestruct. The first protein was Toll-like 
receptor 8 (TLR8; PDB ID: 3WN447; UniProt ID: Q9NR97; Fig. 5a), a key component of innate and adaptive 
immunity that controls host immune response against pathogens through recognition of molecular patterns spe-
cific to microorganisms47. The second protein was α -L-iduronidase (IDUA; PDB ID: 4MJ248; UniProt ID: P35475; 
Fig. 5b), which contains a complicated structural fold consisting of a triosephosphate isomerase barrel domain 
harbouring the catalytic site, a β -sandwich domain, and a fibronectin-like domain, and plays an important role in 
hydrolyzing unsulfated alpha-L-iduronosidic linkages in dermatan sulfate49. Maita et al.50 noted that the crystal 
structure of α -L-iduronidase indicated that the protein was glycosylated on several sites, but that it contained one 
consensus asparagine residue in the Asn-X-Ser/Thr motif (Asn-336) that was not glycosylated. The prediction 
results of GlycoMinestruct and NGlycPred (Fig. 5) demonstrated that GlycoMinestruct correctly identified all experi-
mentally verified glycosylation sites in the two proteins, while NGlycPred failed to predict glycosylation sites Asn-
29351 of TLR8 (3WN4, chain A) and Asn-11052 of IDUA (4MJ2, chain A). The N-glycan attached to one predicted 
IDUA functional site (Asn-372) is crucial to protein function, as it enables the interaction with iduronate analogs 
in the active site and is required for enzymatic activity48. The consensus Asn-336, which is not glycosylated50, 
was predicted as such by GlycoMinestruct. A final consensus Asn-X-Ser/Thr residue (Asn-190) that was below the 
prediction threshold set by GlycoMinestruct was shown to be subject to only partial glycosylation50.

Proteome-wide prediction of N- and O-linked glycosylation substrates and sites. In order to 
test the capability of GlycoMinestruct on systems-level mapping, we performed proteome-wide glycosylation-site 
prediction. In order to identify novel N- and O-glycosylation substrates and sites, we downloaded and screened 
the human structural proteome comprising a total of 20,538 human protein structures with resolution better than 
3 Å from the PDB database53. To obtain high-confidence prediction results, the N- and O-glycosylation models 
trained using the corresponding optimal features on the complete training dataset were used, with prediction 
thresholds adjusted to a 99% specificity level. A summary of the predicted N-linked and O-linked glycosylated 
substrates and glycosylation sites are shown in Supplementary Table S2. A total of 3386 and 5298 proteins were 
predicted to be N- and O-glycosylated substrates, respectively, containing 4996 predicted N- and 10529 O-linked 
glycosylation sites, respectively. As a resource for the community, these proteome-wide results can be down-
loaded from the GlycoMinestruct website, enabling users to obtain the proteome-wide N- and O-glycosylation-site 
prediction results for their experimental verification.

Functional enrichment analysis of predicted N- and O-linked glycosylated proteins at the  
proteome level. To better understand the functional enrichment and systems impact of N- and O-linked 
glycosylation at the structural proteome level, we used the DAVID software54,55 to perform in-depth bioinformat-
ics analysis of the significantly enriched gene ontology (GO), Kyoto Encyclopedia of Gene and Genomes (KEGG) 
pathways, and functional annotations in terms of cellular component (GO_CC), biological process (GO_BP), 
molecular function (GO_MF), and key functional pathways (KEGG_PATHWAY), for N- and O-linked glyco-
sylated proteins, respectively. The overlap between the two lists of N- and O-linked glycosylated proteins indicates 
that some proteins were predicted to contain both N- and O-linked glycosylation sites. The top 10 significantly 
enriched GO_CC, GO_BP, GO_MF and KEGG_PATHWAY terms are displayed in Fig. 6a,b. We found that a 
suitably number of proteins were located within the “extracellular region” and “cytosol” (in terms of GO_CC). 
During their biogenesis extracellular proteins are first translocated into the endoplasmic reticulum where they 
may be subject to N-linked glycosylation10, and trafficked via the Golgi compartments where they may be subject 
to O-linked glycosylation56. The cytosol is another common “cellular component” for glycosylated proteins, being 
the sub-cellular compartment in which many O-GlcNAc transferases57 and glycosylated enzymes1 reside. We 
note that for most proteins there exist more than one subcellular location and/or cell component annotations. 
For example, the cellular component and subcellular location of a protein can be annotated as in the cytoplasm, 
membrane and nucleus. While this may sometimes reflect experimental difficulties in defining sub-cellular com-
partments, in at least some cases protein localization changes in response to cellular signals, either regulatory 
or in disease scenarios, such as is the case for mucin glycoproteins in human cancers, and other factors regu-
lating cell death58. When performing statistical analysis of the GO term enrichment, such multi-location (i.e. 
“multi-component”) proteins will also be taken into account. It is of particular interest that both N- and O-linked 
glycosylated proteins were commonly enriched in several KEGG pathways involving complement and coagu-
lation cascades, as well as bladder cancer. There also exist other cancer types that were specifically enriched for 
N-linked (e.g., pancreatic and prostate) and O-linked (melanoma and renal cell carcinoma) glycosylated proteins. 
Accordingly, several previous studies also outlined the roles of protein glycosylation and its implications in cancer 
pathways6, especially prostate cancer59, bladder cancer60 and pancreatic cancer61.

In terms of the biological processes, we found that regulation of cell death (p =  2.20 ×  10−16 and 
p =  1.00 ×  10−23 for N- and O-linked glycosylated proteins, respectively) and immune response (p =  3.50 ×  10−14 
and p =  5.30 ×  10−20 for N- and O-linked glycosylated proteins, respectively) were two commonly enriched bio-
logical processes shared by N- and O-linked glycosylated proteins. This observation is consistent with a number 
of immunological studies suggesting that glycosylation plays an essential role in activating and maintaining the 
immune response62. Additionally, glycosylation was characterized as an important regulator for cell growth and 
death63, which has been confirmed by our GO-term enrichment analysis. Moreover, we found that phospho-
rylation (p =  5.50 ×  10−18 for N-glycosylated proteins) and related processes were significantly enriched. This 
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highlights the potential for large-scale cross-regulation between glycosylation and phosphorylation in related 
pathways as previously reported64.

Regarding molecular function, terms related to binding activity were commonly shared by N- and O-linked 
glycosylated proteins. For example, “purine nucleoside binding” (p =  1.10 ×  10−17) and “cofactor binding” 
(p =  1.60 ×  10−17) were the most significant GO_MF terms for N- and O-linked glycosylated proteins, respec-
tively. Binding activities, such as nucleoside binding65, protein binding/inhibiting1,66, and adenosine triphos-
phate binding67,68 were experimentally validated as being closely associated with glycosylation. Additionally, 
glycosylation was implicated in the catalytic activities of dipeptidyl-peptidase IV69 and tripeptidyl-peptidase I70, 
both annotated as “peptidase activity” associated with O-linked glycosylated proteins in Fig. 6b. Analysing the 

Figure 5. Predicted N-linked glycosylation sites from two case-study proteins using GlycoMinestruct. (a) Toll-
like receptor 8. (b) α -L-iduronidase. Predicted N-glycosylation sites from both GlycoMinestruct and NGlycoPred 
are colored in yellow, while the sites that were correctly predicted by GlycoMinestruct, but were not predicted 
by NGlycPred are coloured in red. The illustrations of Pfam domains and N-glycosylation sites of these two 
proteins shown at the bottom of each panel were rendered using the IBS program98.
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distribution of glycosylated proteins classified based on the number of predicted N- and O-linked glycosylation 
sites (Fig. 6c,d) revealed that the majority of the glycoproteins contained only one predicted glycosylation site, 
while a limited number of proteins contained more than six glycosylation sites.

Discussion
Glycosylation is a crucial and ubiquitous type of protein PTM by which carbohydrates are covalently attached 
to functional groups of a target protein. A better understanding of the most important determinants of protein 
glycosylation at both the sequence and structure levels required for highly accurate mapping of the human glyco-
proteome. In this study, we developed a novel bioinformatics tool termed GlycoMinestruct for improved prediction 
of N- and O-linked glycosylation. It utilizes a variety of complementary sequence-derived and structural features 
to enable accurate predictions of glycosylation. Using an efficient two-step feature-selection strategy, 14 and 11 
optimal features at both the sequence and structural levels were systematically characterized as crucial features for 

Figure 6. Functional enrichment analysis and classification of N-linked and O-linked glycoproteomes 
 in terms of protein subcellular location, KEGG pathway, molecular function and biological process  
based on GO annotations. (a) Subcellular locations and GO terms enriched in N-linked glycosylated proteins. 
(b) Subcellular locations and GO terms enriched in O-linked glycosylated proteins. (c,d) Distributions of 
N-linked and O-linked glycosylated proteins categorized based on the numbers of predicted glycosylation sites.
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N- and O-linked glycosylation prediction, respectively. The performance of GlycoMinestruct was extensively eval-
uated using both benchmark and independent test datasets. Five-fold cross-validation and independent testing 
showed that GlycoMinestruct outperformed NGlycPred, the only available N-linked glycosylation predictor incor-
porating structural information. Additionally, GO-term analysis revealed commonly and differentially enriched 
subcellular locations, biological processes, molecular functions, and functional pathways shared between the 
N- and O-linked glycoproteome. Furthermore, we applied GlycoMinestruct to accurately predict N- and O-linked 
glycosylation substrates and sites in the human structural proteome. Overall, this study provided a foundation 
for accurate prediction of the two important types of glycosylation sites in the human proteome. More generally, 
the techniques and framework of GlycoMinestruct should be also applicable to other types of PTM sites in proteins 
with available structural information.

A remaining limitation of the current GlycoMinestruct algorithm is that it cannot consider the stoichiometry of 
modification, i.e. the extent to which any given Asn, Ser or Thr residue will be modified with a glycan. There have 
been several studies for investigating the stoichiometries of protein phosphorylation71–73 and glycosylation24,74,75. 
However, to the best of our knowledge, there are no systematic datasets for quantitatively modified sites of both 
N- and O-linked glycosylation in association with the protein stoichiometry, which makes it very challenging to 
consider such knowledge into the glycosylation predictors at this stage. One note of hope in this regard comes 
from the case study of α -L-iduronidase where the consensus Asn-190 residue, which is known to be subject to 
only partial glycosylation50, was predicted as glycosylated by GlycoMinestruct but with a score below the prediction. 
Perhaps with sufficient data on sites subject to partial occupancy by glycan a dual threshold might be set on pre-
dictions to recover “high-stoichiometry” and “partial” extents of glycosylation in the predictor.

Another limitation is that the current algorithm does not consider the biosynthesis pathways as a feature dur-
ing the model training process, due to the limited availably of annotated entries and the difficulty of extracting 
such annotations from other third-party databases. We anticipate that with the increasing availability of such 
biosynthesis pathway data particularly for O-linked glycosylation, further improvement of the performance of 
our algorithm will become possible.

As an implementation of GlycoMinestruct, an online web server was developed to facilitate high-throughput 
prediction of N- and O-linked glycosylation sites in human proteins having available structural information. The 
server is configured using Tomcat 7 (Apache Software Foundation, Forest Hill, MD, USA) and JavaServer Pages 
(Sun Microsystems, Santa Clara, CA, USA) and is operated under the Linux environment with a 4-TB hard disk 
and 8 GB memory. The glycosylation site-prediction models used by the server were trained with OFSs on the 
complete training data used in this study. The server requires users to upload a protein structure file (a. pdb file 
is preferred), specify the chain name and glycosylation type and provide email addresses. Each submitted job 
normally takes 4 minutes to complete, and the server will send an email to users once the task is finished (see 
Supplementary Fig. S4 for the user interface and example prediction output). We hope that this novel approach 
along with the predicted N- and O-linked glycosylation sites from the human structural proteome address 
the concerns of the research community29 and provide a solid foundation for development of more accurate 
glycosylation-site predictors and prioritization of glycosylated candidates for follow-up functional validation.

Methods
Dataset construction. The annotations of C-, N-, and O-linked glycosylation sites were extracted from 
four major public resources, including UniProt76, PhosphoSitePlus77, SysPTM78, and O-GlycBase (version 6.0). 
Only experimentally verified glycosylation sites in the human proteins were retained30. To ensure the quality 
of the curated datasets, any glycosylation sites annotated as “Probable”, “Potential” or “By similarity” were dis-
carded when extracting sequences from UniProt30. All remaining sequences were mapped to the PDB database53 
using PSI-BLAST79. PDB entries were selected using the following criteria: (1) X-ray structures only, while 
nuclear magnetic resonance and electron microscopy structures were excluded; (2) X-ray resolution better than 
2.5 Å; (3) structures with missing atoms were removed; and (4) the structure with the highest resolution was 
selected for protein sequences with more than one mapped PDB structure. The CD-HIT program80 was applied 
to cluster homologous sequences and reduce sequence redundancy at sequence-identity threshold of 70%35. We 
obtained 208 N-linked and 29 O-linked glycosylated PDB structures, which corresponded to 570 N-linked and 
47 O-linked glycosylation sites, respectively. Initially, we also sought C-linked glycosylation sites within our frame 
of reference; however, as there was only one PDB structure containing C-linked glycosylation in the datasets, we 
removed this protein from our analysis and focused on N-linked and O-linked glycosylation prediction.

Regarding the selection of negative data, we extracted information on the relevant amino acid residues (i.e. 
Asn, Ser and Thr) that were not annotated as glycosylation sites, but that were present in those proteins that con-
tain experimentally verified glycosylation sites. This effort to enhance the reliability of selection of negative sites 
is based on three criteria: (i) these proteins are biosynthetically relevant to the glycosylation machinery, in that 
they must be co-located with the relevant machinery i.e. in order to have one or more O-linked glycosylation sites 
the protein must share sub-cellular location together with an O-glycosidase, (ii) the expression of these glyco-
proteins must be temporally and developmentally coordinated with the expression of an appropriate glycosidase, 
and (iii) the experimental data validating glycosylation on at least one site of the given protein is the closest thing 
available to an experimental validation of non-glycosylation on the other potential sites. However, we also noticed 
that it was challenging to definitely determine whether the non-glycosylation sites would be glycosylated after 
being secreted. To the best of our knowledge, there is currently lack of sizable experimental datasets with such 
annotations.

Another important issue was highly imbalanced datasets, i.e., non-glycosylation sites greatly outnumbered 
glycosylation sites. If this imbalanced set had been used for model training, the trained models would be highly 
biased and classify each site in a protein as a non-glycosylation site. To address this imbalance, we used an 
under-sampling strategy, that enable all experimentally verified N- an O-linked glycosylation sites to be used as 
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positive samples, while the same portion of amino acid residues (i.e., N, S and T) that had not been experimen-
tally verified as glycosylation sites were randomly selected as negative samples from the positive PDB chains (this 
resulted in positive-to-negative ratio of 1:1). The datasets were further divided into two subsets consisting of 
benchmark and independent test datasets, which were ~20% of the size of the complete dataset. The benchmark 
dataset was used for performing five-fold cross-validation and feature selection, while the independent test data-
set was used for validation of model performance.

Feature extraction. A variety of sequence and structural features were calculated and extracted in this 
study. A full list of features can be found in the Supplementary Table S3.

Sequence features. AAindex: hydrophobicity, flexibility, polarity, and β -turn values were extracted from the 
AAindex database81.

Physicochemical properties: physicochemical properties of proteins were calculated using BioJava82; these 
properties included pK1 (-COOH), pK2 (-NH3 +  ), pKR (R group), pI, hydropathy index, percentage occurrence 
in proteins, percentage of buried residues, average volume, accessible surface area, van der Waals volume, ranking 
of amino acid polarities, side-chain polarity, conformational preferences of amino acids (α -helix), and conforma-
tional preferences of amino acids (β -strand).

Position-specific scoring matrices (PSSMs): these were calculated by PSI-BLAST79 searches against UniRef90, 
with three iterations and e-value of 0.00183.

Residue-conservation score: conservation score was derived from the PSSM generated by PSI-BLAST79 and 
is defined as follows:

∑= −
=

Score p log p ,
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i j i j
1

20

, 2 ,

where pi,j is the frequency of amino acid j at position i30.

Structural features. Surface accessibility: surface-accessible area of each protein was calculated by NACCESS84 
using a probe of radius = 3 Å35. Five classes of surface-accessible area were contained in the output of NACCESS84 
and used as structural features in this study, including all-atoms, non-polar side chains, polar side chains, total 
side chains and main chains.

Secondary structure: secondary structure features were calculated by DSSP85. These included ACC, phi, and 
psi, and were selected from the output of DSSP as the input features. ACC denotes the solvent accessibility of 
amino acid residue in terms of the number of water molecules in contact with the corresponding residue, while 
phi and psi represent two types of International Union of Pure and Applied Chemistry backbone-torsion angles.

Log-odds ratio: log-odds ratio86 is a statistical feature calculated by DiscoTope87.
Depth index: the PSAIA program88 was used to calculate a series of features for depth index, including the 

average depth index (denoted as ave_dpx), standard deviation of the depth index (sd_dpx), side-chain average 
depth index (s-ch_ave_dpx), and standard deviation of the side-chain depth index (sd_s-ch_dpx).

B-factor: for each residue, we extracted the B-factor scores of all atoms from protein structure files and calcu-
lated their average value89.

Feature window. The location of glycosylation sites may be influenced by surrounding residues at both the 
sequence and structure level. Therefore, we used sequence and structure windows to encode such features and 
capture potentially useful information.

Sequence window: to extract the sequence context information surrounding the glycosylation sites, we 
employed a local sliding window with 2N +  1 = 15 (N = 7, where N denotes the half-window size) residues to 
represent glycosylation sites. This was used in our previous work and proved to be effective30. In terms of feature 
nomenclature, each residue was named as PX, where X presents the X-th position of the feature in the local sliding 
window. The centered glycosylated residue was then denoted as P8. Accordingly, PSSM features, which have a 
total dimensionality of 15 ×  20 = 300, were denoted as P1, P2, … , P300, respectively. Consequently, a total of 385 
sequence-based features for each glycosylation and non-glycosylation site were obtained.

Structure window: we adopted a structure window to extract features of spatially neighbouring residues of a 
potential glycosylation site from protein structures89 using a sphere radius R (R = 10 Å). All spatially proximal 
residues were included in the structure window if the distance between any atoms of such residues and any atoms 
of the target residue of interest were less than a threshold, R. After extracting all 14 structural features from each 
of the spatial residues in the structure window, we then calculated the average values of all structural features for 
all residues involved within the structure window for each glycosylation/non-glycosylation residue. As a result, a 
total of 14 structural features for each glycosylation site were obtained.

Feature selection. The proposed feature-encoding schemes led to a high-dimensionality feature vectors, 
requiring considerable computational time and memory to process. Meanwhile, the initial feature set may contain 
noisy, redundant and irrelevant features, which will have a potentially negative impact on model performance. In 
light of this, it was necessary to apply feature-selection methods to reduce the dimensionality of feature vectors by 
removing redundant and non-contributing features. We used a two-step feature-selection procedure to rank and 
select the most informative features.
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Linear SVM-based feature selection. The first step of feature selection was performed using the linear SVM 
feature-selection method, which is competitive with traditional feature-selection methods, such as odds ratio and 
information gain36. For linear-kernel SVMs, the class predictor can be denoted as

∑α= +
=
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where the absolute value |wj| is used as the weight of a feature j. The larger the absolute value of a feature coef-
ficient wj is, the more useful the feature is for the classification36. We used LibSVM90 to calculate |wj|. The top 
ranked 300 features were then used as the optimal feature candidates (OFCs).

Incremental Feature Selection (IFS). To determine the final optimal features from the OFCs at the second step of 
feature selection, an IFS strategy based on a random forest (RF)91 classifier was applied to the benchmark dataset 
by performing five-fold cross-validation to assess the relative importance and contribution of all OFCs. The IFS 
procedure can be briefly described as follows. First, it constructs n (n = |OFCs|) feature subsets by adding one 
feature at a time from OFCs to the candidate feature subset F. Then, the performance of the RF classifier that was 
trained based on the updated F in each round was evaluated using five-fold cross-validation to avoid over-fitting 
each time. This process was repeated for 20 rounds, and the average performance was calculated. The i-th feature 
subset is defined as F = {f | f1, f2, …, fi}30, where fi is the i-th feature from the OFCs. As a result, the feature set with 
the highest area-under-the-curve (AUC) value amongst the 300 AUC values was selected as the optimal feature 
set (OFS).

Model training and performance evaluation. We employed the RF algorithm implemented in the R package92 
to build glycosylation-site prediction models. RF is an ensemble machine-learning approach based on decision 
trees and has been successfully applied in many different tasks in protein bioinformatics, such as prediction of 
RNA-binding sites93, phosphorylation sites94, protease-cleavage sites95 and functional effects of single amino acid 
variants96. To evaluate the performance of RF classifiers, six performance measures were used, including sensitiv-
ity, specificity, precision, accuracy (ACC), the Matthews correlation coefficient (MCC), and AUC. Additionally, 
the receiver operating characteristic (ROC) curves were also generated, which plotted true-positive rate (TPR) 
against the false-positive rate (FPR). The ROC curves were drawn and the corresponding AUC values were calcu-
lated using the ROCR package97. Refer to the Supplemental Methods for a detailed description of these measures.

References
1. Spiro, R. G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. 

Glycobiology 12, 43R–56R (2002).
2. Moharir, A., Peck, S. H., Budden, T. & Lee, S. Y. The role of N-glycosylation in folding, trafficking, and functionality of lysosomal 

protein CLN5. PLoS One 8, e74299, doi: 10.1371/journal.pone.0074299 (2013).
3. Marino, K., Bones, J., Kattla, J. J. & Rudd, P. M. A systematic approach to protein glycosylation analysis: a path through the maze. Nat 

Chem Biol 6, 713–723, doi: 10.1038/nchembio.437 (2010).
4. Moremen, K. W., Tiemeyer, M. & Nairn, A. V. Vertebrate protein glycosylation: diversity, synthesis and function. Nature reviews. 

Molecular cell biology 13, 448–462, doi: 10.1038/nrm3383 (2012).
5. Kiermaier, E. et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science 351, 186–190, doi: 

10.1126/science.aad0512 (2016).
6. Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nature reviews. Cancer 15, 540–555, doi: 

10.1038/nrc3982 (2015).
7. Park, D. S., Poretz, R. D., Stein, S., Nora, R. & Manowitz, P. Association of alcoholism with the N-glycosylation polymorphism of 

pseudodeficient human arylsulfatase A. Alcoholism, clinical and experimental research 20, 228–233 (1996).
8. Schedin-Weiss, S., Winblad, B. & Tjernberg, L. O. The role of protein glycosylation in Alzheimer disease. The FEBS journal 281, 

46–62, doi: 10.1111/febs.12590 (2014).
9. Gavel, Y. & von Heijne, G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: 

implications for protein engineering. Protein engineering 3, 433–442 (1990).
10. Aebi, M. N-linked protein glycosylation in the ER. Biochimica et biophysica acta 1833, 2430–2437, doi: 10.1016/j.bbamcr.2013.04.001 

(2013).
11. Van den Steen, P., Rudd, P. M., Dwek, R. A. & Opdenakker, G. Concepts and principles of O-linked glycosylation. Critical reviews in 

biochemistry and molecular biology 33, 151–208, doi: 10.1080/10409239891204198 (1998).
12. Li, B. & Kohler, J. J. Glycosylation of the nuclear pore. Traffic 15, 347–361, doi: 10.1111/tra.12150 (2014).
13. Halim, A. et al. Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast. Proceedings of the National Academy of 

Sciences of the United States of America 112, 15648–15653, doi: 10.1073/pnas.1511743112 (2015).



www.nature.com/scientificreports/

1 4Scientific RepoRts | 6:34595 | DOI: 10.1038/srep34595

14. Hurtado-Guerrero, R. Recent structural and mechanistic insights into protein O-GalNAc glycosylation. Biochemical Society 
transactions 44, 61–67, doi: 10.1042/BST20150178 (2016).

15. Bard, F. & Chia, J. Cracking the Glycome Encoder: Signaling, Trafficking, and Glycosylation. Trends in cell biology 26, 379–388, doi: 
10.1016/j.tcb.2015.12.004 (2016).

16. Thanka Christlet, T. H. & Veluraja, K. Database analysis of O-glycosylation sites in proteins. Biophysical journal 80, 952–960 (2001).
17. Apweiler, R., Hermjakob, H. & Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT 

database. Biochimica et biophysica acta 1473, 4–8 (1999).
18. Nilsson, I. M. & von Heijne, G. Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic 

reticulum membrane. The Journal of biological chemistry 268, 5798–5801 (1993).
19. Petrescu, A. J., Milac, A. L., Petrescu, S. M., Dwek, R. A. & Wormald, M. R. Statistical analysis of the protein environment of 

N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14, 103–114, doi: 10.1093/glycob/cwh008 
(2004).

20. Morelle, W. & Michalski, J. C. Analysis of protein glycosylation by mass spectrometry. Nature protocols 2, 1585–1602, doi: 10.1038/
nprot.2007.227 (2007).

21. Zhang, S. & Williamson, B. L. Characterization of protein glycosylation using chip-based nanoelectrospray with precursor ion 
scanning quadrupole linear ion trap mass spectrometry. Journal of biomolecular techniques: JBT 16, 209–219 (2005).

22. Wollscheid, B. et al. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nature 
biotechnology 27, 378–386, doi: 10.1038/nbt.1532 (2009).

23. Shubhakar, A. et al. High-Throughput Analysis and Automation for Glycomics Studies. Chromatographia 78, 321–333, doi: 10.1007/
s10337-014-2803-9 (2015).

24. Sun, S. & Zhang, H. Large-Scale Measurement of Absolute Protein Glycosylation Stoichiometry. Analytical chemistry 87, 6479–6482, 
doi: 10.1021/acs.analchem.5b01679 (2015).

25. Jayakumar, D., Marathe, D. D. & Neelamegham, S. Detection of site-specific glycosylation in proteins using flow cytometry. 
Cytometry. Part A: the journal of the International Society for Analytical Cytology 75, 866–873, doi: 10.1002/cyto.a.20773 (2009).

26. Tian, Y., Zhou, Y., Elliott, S., Aebersold, R. & Zhang, H. Solid-phase extraction of N-linked glycopeptides. Nature protocols 2, 
334–339, doi: 10.1038/nprot.2007.42 (2007).

27. Li, Y. et al. Detection and verification of glycosylation patterns of glycoproteins from clinical specimens using lectin microarrays and 
lectin-based immunosorbent assays. Analytical chemistry 83, 8509–8516, doi: 10.1021/ac201452f (2011).

28. Kuno, A. et al. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nature methods 2, 
851–856, doi: 10.1038/nmeth803 (2005).

29. Walt, D. et al. The National Academies Collection: Reports funded by National Institutes of Health (National Academies Press, 2012).
30. Li, F. et al. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. 

Bioinformatics 31, 1411–1419, doi: 10.1093/bioinformatics/btu852 (2015).
31. Gupta, R. & Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific 

Symposium on Biocomputing. Pacific Symposium on Biocomputing 310–322 (2002).
32. Steentoft, C. et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. The EMBO journal 

32, 1478–1488, doi: 10.1038/emboj.2013.79 (2013).
33. Caragea, C., Sinapov, J., Silvescu, A., Dobbs, D. & Honavar, V. Glycosylation site prediction using ensembles of Support Vector 

Machine classifiers. Bmc Bioinformatics 8, 438, doi: 10.1186/1471-2105-8-438 (2007).
34. Hamby, S. E. & Hirst, J. D. Prediction of glycosylation sites using random forests. Bmc Bioinformatics 9, 500, doi: 10.1186/1471-2105-

9-500 (2008).
35. Chuang, G. Y. et al. Computational prediction of N-linked glycosylation incorporating structural properties and patterns. 

Bioinformatics 28, 2249–2255, doi: 10.1093/bioinformatics/bts426 (2012).
36. Brank, J. & Grobelnik, M. Feature selection using linear support vector machines (2002).
37. Liu, H. A. & Setiono, R. Incremental feature selection. Appl Intell 9, 217–230, doi: 10.1023/A:1008363719778 (1998).
38. O’Shea, J. P. et al. pLogo: a probabilistic approach to visualizing sequence motifs. Nature methods 10, 1211–1212, doi: 10.1038/

nmeth.2646 (2013).
39. Biswas, A. K., Noman, N. & Sikder, A. R. Machine learning approach to predict protein phosphorylation sites by incorporating 

evolutionary information. BMC bioinformatics 11, 273, doi: 10.1186/1471-2105-11-273 (2010).
40. Chen, Z., Zhou, Y., Zhang, Z. & Song, J. Towards more accurate prediction of ubiquitination sites: a comprehensive review of current 

methods, tools and features. Briefings in bioinformatics 16, 640–657, doi: 10.1093/bib/bbu031 (2015).
41. Lu, D., Yang, C. & Liu, Z. How hydrophobicity and the glycosylation site of glycans affect protein folding and stability: a molecular 

dynamics simulation. The journal of physical chemistry. B 116, 390–400, doi: 10.1021/jp203926r (2012).
42. Mazumder, R., Morampudi, K. S., Motwani, M., Vasudevan, S. & Goldman, R. Proteome-wide analysis of single-nucleotide 

variations in the N-glycosylation sequon of human genes. PloS One 7, e36212, doi: 10.1371/journal.pone.0036212 (2012).
43. Avanov, A. [Conformational aspects of glycosylation]. Molekuliarnaia biologiia 25, 293–308 (1991).
44. Lam, P. V. et al. Structure-based comparative analysis and prediction of N-linked glycosylation sites in evolutionarily distant 

eukaryotes. Genomics, proteomics & bioinformatics 11, 96–104, doi: 10.1016/j.gpb.2012.11.003 (2013).
45. Wolfert, M. A. & Boons, G. J. Adaptive immune activation: glycosylation does matter. Nat Chem Biol 9, 776–784, doi: 10.1038/

nchembio.1403 (2013).
46. Jayaraman, A. et al. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors. The Biochemical journal 

444, 429–435, doi: 10.1042/BJ20112101 (2012).
47. Kokatla, H. P. et al. Structure-based design of novel human Toll-like receptor 8 agonists. ChemMedChem 9, 719–723, doi: 10.1002/

cmdc.201300573 (2014).
48. Bie, H. Y. et al. Insights into mucopolysaccharidosis I from the structure and action of alpha-L-iduronidase. Nat Chem Biol 9, 739-+ , 

doi: 10.1038/Nchembio.1357 (2013).
49. Bie, H. et al. Insights into mucopolysaccharidosis I from the structure and action of α -L-iduronidase. Nature chemical biology 9, 

739–745 (2013).
50. Maita, N. et al. Human alpha-L-iduronidase uses its own N-glycan as a substrate-binding and catalytic module. Proceedings of the 

National Academy of Sciences of the United States of America 110, 14628–14633, doi: 10.1073/pnas.1306939110 (2013).
51. Tanji, H., Ohto, U., Shibata, T., Miyake, K. & Shimizu, T. Structural reorganization of the Toll-like receptor 8 dimer induced by 

agonistic ligands. Science 339, 1426–1429, doi: 10.1126/science.1229159 (2013).
52. Chen, R. et al. Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide 

chemistry. Journal of proteome research 8, 651–661, doi: 10.1021/pr8008012 (2009).
53. Berman, H. M. et al. The Protein Data Bank. Nucleic acids research 28, 235–242 (2000).
54. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics 

resources. Nature protocols 4, 44–57, doi: 10.1038/nprot.2008.211 (2009).
55. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional 

analysis of large gene lists. Nucleic acids research 37, 1–13, doi: 10.1093/nar/gkn923 (2009).
56. Gill, D. J., Chia, J., Senewiratne, J. & Bard, F. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. 

The Journal of cell biology 189, 843–858, doi: 10.1083/jcb.201003055 (2010).



www.nature.com/scientificreports/

1 5Scientific RepoRts | 6:34595 | DOI: 10.1038/srep34595

57. Comer, F. I. & Hart, G. W. O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and 
O-phosphate. The Journal of biological chemistry 275, 29179–29182, doi: 10.1074/jbc.R000010200 (2000).

58. Traven, A., Huang, D. C. & Lithgow, T. Protein hijacking: key proteins held captive against their will. Cancer cell 5, 107–108 (2004).
59. Drake, R. R., Jones, E. E., Powers, T. W. & Nyalwidhe, J. O. Altered glycosylation in prostate cancer. Advances in cancer research 126, 

345–382, doi: 10.1016/bs.acr.2014.12.001 (2015).
60. Costa, C. et al. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and 

Targeted Therapeutics. PloS One 10, e0141253, doi: 10.1371/journal.pone.0141253 (2015).
61. Bassaganas, S. et al. Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of alpha2beta1 

integrin and E-cadherin function. PLoS One 9, e98595, doi: 10.1371/journal.pone.0098595 (2014).
62. Yamamoto-Hino, M. et al. Dynamic regulation of innate immune responses in Drosophila by Senju-mediated glycosylation. 

Proceedings of the National Academy of Sciences of the United States of America 112, 5809–5814, doi: 10.1073/pnas.1424514112 
(2015).

63. Lichtenstein, R. G. & Rabinovich, G. A. Glycobiology of cell death: when glycans and lectins govern cell fate. Cell death and 
differentiation 20, 976–986, doi: 10.1038/cdd.2013.50 (2013).

64. Hart, G. W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in 
signaling, transcription, and chronic disease. Annual review of biochemistry 80, 825–858, doi: 10.1146/annurev-biochem-060608-102511 
(2011).

65. Hogue, D. L., Hodgson, K. C. & Cass, C. E. Effects of inhibition of N-linked glycosylation by tunicamycin on nucleoside transport 
polypeptides of L1210 leukemia cells. Biochemistry and cell biology = Biochimie et biologie cellulaire 68, 199–209 (1990).

66. Margraf-Schonfeld, S., Bohm, C. & Watzl, C. Glycosylation affects ligand binding and function of the activating natural killer cell 
receptor 2B4 (CD244) protein. The Journal of biological chemistry 286, 24142–24149, doi: 10.1074/jbc.M111.225334 (2011).

67. Perego, P., Gatti, L. & Beretta, G. L. The ABC of glycosylation. Nature reviews. Cancer 10, 523, doi: 10.1038/nrc2789-c1 (2010).
68. Beers, M. F. et al. Disruption of N-linked glycosylation promotes proteasomal degradation of the human ATP-binding cassette transporter 

ABCA3. American journal of physiology. Lung cellular and molecular physiology 305, L970–L980, doi: 10.1152/ajplung.00184.2013 (2013).
69. Aertgeerts, K. et al. N-linked glycosylation of dipeptidyl peptidase IV (CD26): effects on enzyme activity, homodimer formation, 

and adenosine deaminase binding. Protein science: a publication of the Protein Society 13, 145–154, doi: 10.1110/ps.03352504 (2004).
70. Golabek, A. A. et al. Biosynthesis, glycosylation, and enzymatic processing in vivo of human tripeptidyl-peptidase I. The Journal of 

biological chemistry 278, 7135–7145, doi: 10.1074/jbc.M211872200 (2003).
71. Wu, R. et al. A large-scale method to measure absolute protein phosphorylation stoichiometries. Nature methods 8, 677–683, doi: 

10.1038/nmeth.1636 (2011).
72. Johnson, H., Eyers, C. E., Eyers, P. A., Beynon, R. J. & Gaskell, S. J. Rigorous determination of the stoichiometry of protein 

phosphorylation using mass spectrometry. Journal of the American Society for Mass Spectrometry 20, 2211–2220, doi: 10.1016/j.
jasms.2009.08.009 (2009).

73. Witze, E. S., Old, W. M., Resing, K. A. & Ahn, N. G. Mapping protein post-translational modifications with mass spectrometry. 
Nature methods 4, 798–806, doi: 10.1038/nmeth1100 (2007).

74. Rexach, J. E. et al. Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nature chemical biology 
6, 645–651, doi: 10.1038/nchembio.412 (2010).

75. Clark, P. M., Rexach, J. E. & Hsieh-Wilson, L. C. Visualization of O-GlcNAc glycosylation stoichiometry and dynamics using 
resolvable poly(ethylene glycol) mass tags. Current protocols in chemical biology 5, 281–302, doi: 10.1002/9780470559277.ch130153 
(2013).

76. Hinz, U. & UniProt, C. From protein sequences to 3D-structures and beyond: the example of the UniProt knowledgebase. Cellular 
and molecular life sciences: CMLS 67, 1049–1064, doi: 10.1007/s00018-009-0229-6 (2010).

77. Hornbeck, P. V. et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally 
determined post-translational modifications in man and mouse. Nucleic acids research 40, D261–D270, doi: 10.1093/nar/gkr1122 
(2012).

78. Li, H. et al. SysPTM: a systematic resource for proteomic research on post-translational modifications. Molecular & cellular 
proteomics: MCP 8, 1839–1849, doi: 10.1074/mcp.M900030-MCP200 (2009).

79. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research 
25, 3389–3402 (1997).

80. Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. 
Bioinformatics 26, 680–682, doi: 10.1093/bioinformatics/btq003 (2010).

81. Kawashima, S. et al. AAindex: amino acid index database, progress report 2008. Nucleic acids research 36, D202–D205, doi: 10.1093/
nar/gkm998 (2008).

82. Holland, R. C. et al. BioJava: an open-source framework for bioinformatics. Bioinformatics 24, 2096–2097, doi: 10.1093/
bioinformatics/btn397 (2008).

83. Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. 
Bioinformatics 31, 926–932, doi: 10.1093/bioinformatics/btu739 (2015).

84. Hubbard, S. J. & Thornton, J. M. Naccess. Computer Program, Department of Biochemistry and Molecular Biology, University College 
London 2 (1993).

85. Joosten, R. P. et al. A series of PDB related databases for everyday needs. Nucleic acids research 39, D411–D419, doi: 10.1093/nar/
gkq1105 (2011).

86. Senn, S. Review of Fleiss, statistical methods for rates and proportions. Research synthesis methods 2, 221–222, doi: 10.1002/jrsm.50 
(2011).

87. Andersen, P., Nielsen, M. & Lund, O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein 
science: a publication of the Protein Society 15, 2558–2567, doi: 10.1110/ps.062405906 (2006).

88. Mihel, J., Sikic, M., Tomic, S., Jeren, B. & Vlahovicek, K. PSAIA - protein structure and interaction analyzer. BMC structural biology 
8, 21, doi: 10.1186/1472-6807-8-21 (2008).

89. Ren, J., Liu, Q., Ellis, J. & Li, J. Tertiary structure-based prediction of conformational B-cell epitopes through B factors. Bioinformatics 
30, i264–i273, doi: 10.1093/bioinformatics/btu281 (2014).

90. Chang, C.-C. & Lin, C.-J. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 
(TIST) 2, 27 (2011).

91. Breiman, L. Random forests. Mach Learn 45, 5–32, doi: 10.1023/A:1010933404324 (2001).
92. Liaw, A. & Wiener, M. Classification and regression by randomForest. R news 2, 18–22 (2002).
93. Liu, Z. P., Wu, L. Y., Wang, Y., Zhang, X. S. & Chen, L. Prediction of protein-RNA binding sites by a random forest method with 

combined features. Bioinformatics 26, 1616–1622, doi: 10.1093/bioinformatics/btq253 (2010).
94. Fan, W. et al. Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and 

random forest. Amino acids 46, 1069–1078, doi: 10.1007/s00726-014-1669-3 (2014).
95. Li, B. Q., Cai, Y. D., Feng, K. Y. & Zhao, G. J. Prediction of protein cleavage site with feature selection by random forest. PloS One 7, 

e45854, doi: 10.1371/journal.pone.0045854 (2012).
96. Wang, M. et al. FunSAV: predicting the functional effect of single amino acid variants using a two-stage random forest model. PloS 

One 7, e43847, doi: 10.1371/journal.pone.0043847 (2012).



www.nature.com/scientificreports/

1 6Scientific RepoRts | 6:34595 | DOI: 10.1038/srep34595

97. Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 3940–3941, 
doi: 10.1093/bioinformatics/bti623 (2005).

98. Liu, W. et al. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 31, 3359–3361, doi: 
10.1093/bioinformatics/btv362 (2015).

Acknowledgements
This work was supported by grants from the National Health and Medical Research Council of Australia 
(NHMRC) (1092262), National Natural Science Foundation of China (61202167, 61303169) and the Hundred 
Talents Program of the Chinese Academy of Sciences (CAS). GIW is a recipient of Discovery Outstanding 
Research Award (DORA) of the Australian Research Council (ARC). JS is a recipient of the Hundred Talents 
Program of CAS. TL is an ARC Australian Laureate Fellow.

Author Contributions
S.J., L.T. and Z.Y. conceived, designed and performed the project; L.F. and L.C. performed data collection, feature 
selection, modelling analyses and implemented the web server; R.J., W.G.I. and L.J. contributed to the discussion 
of data analysis; All authors wrote and revised the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Li, F. et al. GlycoMinestruct: a new bioinformatics tool for highly accurate mapping of the 
human N-linked and O-linked glycoproteomes by incorporating structural features. Sci. Rep. 6, 34595;  
doi: 10.1038/srep34595 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	GlycoMinestruct: a new bioinformatics tool for highly accurate mapping of the human N-linked and O-linked glycoproteomes by ...
	Results
	Methodology overview. 
	Residue enrichment of sequence motifs for both N- and O-linked glycosylation sites. 
	Optimized feature set (OFS). 
	Feature importance and contribution in OFS. 
	The top two features for N-linked glycosylation-site prediction. 
	The top two features for O-linked glycosylation-site prediction. 

	Performance comparison with other tools. 
	Case study. 
	Proteome-wide prediction of N- and O-linked glycosylation substrates and sites. 
	Functional enrichment analysis of predicted N- and O-linked glycosylated proteins at the proteome level. 

	Discussion
	Methods
	Dataset construction. 
	Feature extraction. 
	Sequence features. 
	Structural features. 
	Feature window. 

	Feature selection. 
	Linear SVM-based feature selection. 
	Incremental Feature Selection (IFS). 
	Model training and performance evaluation. 


	Acknowledgements
	Author Contributions
	Figure 1.  Overview of the GlycoMinestruct framework.
	Figure 2.  Residue specificity and enrichment of sequons.
	Figure 3.  The relative importance and ranking of the selected optimal features.
	Figure 4.  ROC curves.
	Figure 5.  Predicted N-linked glycosylation sites from two case-study proteins using GlycoMinestruct.
	Figure 6.  Functional enrichment analysis and classification of N-linked and O-linked glycoproteomes in terms of protein subcellular location, KEGG pathway, molecular function and biological process based on GO annotations.
	Table 1.   The selected optimal features for N-linked glycosylation.
	Table 2.   The selected optimal features for O-linked glycosylation.



 
    
       
          application/pdf
          
             
                GlycoMinestruct: a new bioinformatics tool for highly accurate mapping of the human N-linked and O-linked glycoproteomes by incorporating structural features
            
         
          
             
                srep ,  (2016). doi:10.1038/srep34595
            
         
          
             
                Fuyi Li
                Chen Li
                Jerico Revote
                Yang Zhang
                Geoffrey I. Webb
                Jian Li
                Jiangning Song
                Trevor Lithgow
            
         
          doi:10.1038/srep34595
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep34595
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep34595
            
         
      
       
          
          
          
             
                doi:10.1038/srep34595
            
         
          
             
                srep ,  (2016). doi:10.1038/srep34595
            
         
          
          
      
       
       
          True
      
   




