
Detection of grapevine viral 

diseases in Australian vineyards 

using remote sensing and 

hyperspectral technology 

Yeniu (Mickey) Wang 

BAgSc, MAgrSc 

Thesis submitted for the degree of Doctor of Philosophy 

School of Agriculture, Food and Wine 

The University of Adelaide 

Adelaide, Australia 

October 2023 



Panel of supervisors 

 

 

Dr. Vinay Pagay 

Senior Lecturer, School of Agriculture, Food and Wine 

The University of Adelaide 

 

Dr. Bertram Ostendorf 

Associate Professor, School of Biological Sciences 

The University of Adelaide 

 



Table of Contents 

Declaration ................................................................................................................. I 

Acknowledgements .................................................................................................. II 

List of Abbreviations ............................................................................................... IV 

Thesis Summary ..................................................................................................... VI 

Chapter 1. Background and research goals .............................................................. 1 

1.1. Background ................................................................................................... 1 

1.2. Research goals ............................................................................................. 4 

1.3. Significance of the project ............................................................................. 6 

Chapter 2. Plant Viral Disease Detection: From Molecular Diagnosis to Optical 

Sensing Technology—A Multidisciplinary Review .................................................... 8 

Chapter 3. Evaluating the potential of high-resolution RGB remote sensing to 

detect Shiraz Disease in grapevines ...................................................................... 35 

Chapter 4. Detecting grapevine virus infections in red and white winegrape 

canopies using proximal hyperspectral sensing ..................................................... 46 

Chapter 5. Seeing the unseen: Detecting plant viral diseases using high-

resolution hyperspectral imagery ........................................................................... 65 

Chapter 6. Concluding and future perspectives ....................................................... 93 

6.1. Concluding remarks ....................................................................................... 93 



6.2. Remaining challenges .................................................................................... 96 

6.2.1. The complexity of grapevine virus diseases ............................................ 96 

6.2.2. Lack of abundant reliable ground-truthing data ........................................ 98 

6.2.3. The technical limitations .......................................................................... 99 

6.2.4. The economical challenge ..................................................................... 100 

6.3. Suggestions and further research ................................................................ 101 

Reference ………………………………………………………………………………105 



I 

26/06/2023 

Declaration

I certify that this work contains no material which has been accepted for the award of 

any other degree or diploma in my name, in any university or other tertiary institution 

and, to the best of my knowledge and belief, contains no material previously published 

or written by another person, except where due reference has been made in the text. 

In addition, I certify that no part of this work will, in the future, be used in a submission 

in my name, for any other degree or diploma in any university or other tertiary 

institution without the prior approval of the University of Adelaide and where applicable, 

any partner institution responsible for the joint-award of this degree. 

I acknowledge that copyright of published works contained within this thesis resides 

with the copyright holder(s) of those works. 

I also give permission for the digital version of my thesis to be made available on the 

web, via the University’s digital research repository, the Library Search and also 

through web search engines, unless permission has been granted by the University to 

restrict access for a period of time. 

I acknowledge the support I have received for my research through the provision of an 

Australian Government Research Training Program Scholarship. 

----------------------              ------------------ 

Yeniu Wang   Date 



II 
 

Acknowledgements 
 

 

I would like to express my heartfelt gratitude to my principal supervisor, Dr. Vinay 

Pagay, and my co-supervisor, Dr. Bertram Ostendorf, for their exceptional mentorship 

and patient guidance throughout my PhD journey. I consider myself incredibly 

fortunate to have been offered this incredible opportunity by Vinay, and I am grateful 

to both supervisors for providing me with a conducive research environment and the 

freedom to pursue independent study. Over the course of these four years, my PhD 

study has been a truly rewarding experience, allowing me to develop extensive 

knowledge and valuable skills that will benefit me in my future career. 

I extend my sincere thanks to all those who have assisted me during my PhD study. I 

am grateful to Dr. Nuredin Habili for generously sharing his knowledge and experience 

in plant virology, which greatly contributed to the success of my research. I appreciate 

the technical support provided by Steven Andriolo from the Unmanned Research 

Aircraft Facility in troubleshooting drone technology. Special thanks go to Dr. Deepak 

Gautam for his guidance in spectral calibration and GIS software. I am also grateful to 

Miaochun Yang, a master's student, for assisting me with fieldwork and sample 

processing in the laboratory. I would like to acknowledge the valuable support and 

tutoring in molecular biology lab skills provided by Dr. Dilrukshi Nagahatennafor 

providing guidance with tissue testing for viruses and general lab assistance. 

I express my gratitude to the industry collaborators K1 Wines, Kies Family Wines, and 

CCW Co-operative Limited. Additionally, I am thankful to all the vineyard owners and 

managers, including Geoff Hardy, Bronson Kies, Matt, and Omer Najar, for their 

kindness and willingness to facilitate my research on their properties. 

I would like to acknowledge the funding bodies that have supported my research: the 

South Australian Vine Improvement Association, the Riverland Wine Industry 

Development Council, and Wine Australia. Furthermore, I am grateful for the support 

from The University of Adelaide. 

Last but certainly not least, I want to express my special thanks to my supportive family: 

my parents, in-laws, and most importantly, my loving wife, Monica. I consider myself 



III 
 

incredibly fortunate to have such a wonderful wife who not only provided financial 

support for our family but also took on the major responsibility of caring for our two 

sons (3 and 6 years old) during my PhD study period. Without the unwavering support 

from my incredible wife, I would not have been able to accomplish my PhD. 

  



IV 
 

List of Abbreviations 
 

3D 3-dimensional 
ACCA Ant colony clustering algorithm 
AR Augmented reality 
BOM Bureau of Meteorology  
cDNA Complementary Deoxyribonucleic acid 
Chl-Fl Chlorophyll fluorescence 
CNN Convolutional neural networks 
CV Computer vision 
CV Cross validation 
DA Discriminant analysis 
DEM Digital elevation model 
DN Digital number  
DNA Deoxyribonucleic acid 
DSM Digital surface model 
ELISA Enzyme-linked immunosorbent assay 
FCM Flow cytometry 
FISH Fluorescence in situ hybridisation 
FN False negatives 
FOV Field of view 
FP False positives 
GAN Generative adversarial nets 
GCP Ground control point 
GDD Growing degree days  
GLD Grapevine Leafroll Disease  
GLRaVs Grapevine leafroll-associated viruses  
GPS Global positioning system 
GSD Ground sample distance 
GVA Grapevine virus A 
GVCV Grapevine vein clearing virus 
IF Immunofluorescence 
IMU Inertial measurement unit 
IPM Integrated pest management 
IR Infrared 
KNN k-nearest neighbours 
LAMP Loop-mediated isothermal amplification 
LDA Linear discriminant analysis 
LFD Lateral flow device 
LIDAR Light detection and ranging 
LV Latent variable 
LWI Long-wave infrared 
MCC Matthews correlation coefficient 
MJT Mean January temperature 
MLC Maximum likelihood classifier 



V 
 

NB Naive Bayes 
NDVI Normalized difference vegetation index 
NIR Near-infrared 
NMR Nuclear magnetic resonance 
OCT Optical coherence tomography 
PCA Principal component analysis 
PCR Polymerase chain reaction 
PLA Projected leaf area  
PLS Partial least squares 
PLS-DA Partial least squares-discriminant analysis  
Q-DA Quadratic discriminant analysis 
qPCR Quantitative polymerase chain reaction 
RF Random forest 
RGB Red green blue 
RNA Ribonucleic acid 
ROC Receiver operating characteristic 
RT-PCR Reverse transcription polymerase chain reaction 
SA South Australia 
SAM Spectral angle mapper 
SD Shiraz Disease  
SNV Standard normal variate 
SVM Support vector machines 
SWIR Short-wave infrared 
TMV Tobacco mosaic virus 
TN True negatives 
TP True positives 
UAV Unmanned aerial vehicle 
UV Ultraviolet 
VIs Vegetation indices 
VNIR Visible and near-infrared  
VOC Volatile organic compound 

 

  



VI 
 

Thesis Summary 
Grapevine viral diseases cause substantial productivity and economic losses in the 

Australian viticulture industry. Two economically significant grapevine viral diseases - 

Grapevine Leafroll Disease (GLD) and Shiraz Disease (SD) - affect numerous 

vineyards across major wine regions in Australia. Accurate and quick diagnosis of the 

virus infection would greatly assist disease management for growers. Current 

detection methods include visual assessment and laboratory-based tests that are 

expensive and labour-intensive. Low-cost and rapid alternative methods are desirable 

in the industry. Recent advances in low-altitude remote sensing platforms such as 

unmanned aerial vehicles (UAVs or “drones”) in conjunction with high-resolution multi- 

and hyper-spectral cameras now enable large spatial-scale surveillance of plant 

stresses. My thesis therefore focuses on developing fast and reliable methods for GLD 

and SD detection on a vineyard scale using optical sensors including RGB and 

hyperspectral and low-altitude remote sensing technology. 

The thesis is constituted by a review article and three result parts, it begins with a 

general introduction for the background and is followed by the research goals and 

significance of the project that is described in Chapter 1. In order to be familiar with 

all possible technologies that can be potentially used for GLD and SD detection, 

Chapter 2 includes a comprehensive overview of methodologies for the detection of 

any plant viruses reviewed from laboratory-based, destructive molecular and 

serological assays, to state-of-the-art non-destructive methods using optical sensors 

and machine vision, including use of hyperspectral cameras. A key contribution of the 

review is that, for the first time, a detailed economic analysis or cost comparison of the 

various detection methodologies for plant viruses is provided. 

In my research, various detection methods with different degrees of complexity were 

attempted for GLD and SD detection. Firstly, a simple and novel detection method 

using the projected leaf area (PLA) calculated from UAV RGB images is proposed in 

Chapter 3 for the disease symptom that alters the growth of the vine such as SD in 

Shiraz. The PLA is closely related to the canopy size. There are significant differences 

in PLA between healthy and SD-infected vines in spring due to retarded growth caused 
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by SD, which offers a simple, rapid and practical method to detect SD in Shiraz 

vineyards. However, for diseases that cannot be easily detected by RGB images such 

as GLD in the white grape cultivars, different approaches are needed. 

Hyperspectral technology provides a wide spectrum of light with hundreds of narrow 

bands compared to RGB sensors. The advanced technology can detect imperceptible 

spectral changes from the disease and is particularly valuable for asymptomatic 

disease detection. A new approach using proximal hyperspectral sensing is described 

in Chapter 4. Using a handheld passive (sunlight is the radiation source) hyperspectral 

sensor to detect GLD in the vineyard presents a simple and rapid measurement 

method to detect the diseases using the spectral information from the canopy. An 

assessment was done for the disease's spectral reflectance throughout the grape 

growing season for both red and white cultivars. The partial least squares-discriminant 

analysis (PLS-DA) was used to build a classification model to predict the disease. 

Prediction accuracies of 96% and 76% were achieved for Pinot Noir and Chardonnay, 

respectively. The proximal hyperspectral sensing technique is readily applicable to a 

low-altitude remote sensing method to capture high-resolution hyperspectral images 

for large-scale viral disease surveillance in vineyards. The subsequent study in 

Chapter 5 presents an advanced method to quickly detect disease using an UAV 

carried hyperspectral sensor. The study evaluated the feasibility of UAV-based 

hyperspectral sensing in the visible and near-infrared (VNIR) spectral bands to detect 

GLD and SD in four popular wine grapevine cultivars in Australian vineyards. The 

method combined the spectral and spatial analysis to classify disease for individual 

pixels from the hyperspectral image. The model predictions for red- and white-berried 

grapevine cultivars achieved accuracies of 98% and 75%, respectively. For each viral 

disease, unique spectral regions and optimal detection times during the growing 

season were identified. The spectral difference between virus-infected and healthy 

vines closely matched the spectral signal from the proximal sensing method in Chapter 

4, which demonstrated the reliability of the low-altitude hyperspectral sensing for 

grapevine disease detection. 

Lastly, a summary of the outcomes and remaining challenges and limitations of the 

existing technology is discussed in Chapter 6, followed by suggestions for further 

research for further improvement. 



Chapter 1
Background and research goals 

1.1. Background 

Grapevine viral diseases contribute to significant productivity and economic losses to 

the viticulture and wine industry globally (Alabi et al. 2016; Meng et al. 2017). In 

Australian vineyards, Grapevine Leafroll Disease (GLD) and Shiraz Disease (SD) are 

two major viral diseases that concern the industry (Wu et al. 2020).  

GLD is widely spread globally and can affect both red and white grapevine cultivars 

(Chooi et al. 2022; Pietersen et al. 2013). Grapevine leafroll-associated viruses 

(GLRaVs) including GLRaV-1, -2, -3, GLRaV-4 and its strains and GLRaV-7 are 

associated with GLD (Habili et al. 2007; Naidu, R et al. 2014). GLD symptoms include 

rolling leaf edges in red and white cultivars, as well as reddening leaves with green 

veins in red cultivars during the later stages of growth (Naidu, R et al. 2014). GLD 

infections can cause significant yield losses of around 30% - 50% and result in a 10% 

penalty due to poor fruit quality (Atallah et al. 2012). If left uncontrolled, GLD can lead 

to long-term economic losses (Walker et al. 2004). In Australian vineyards, GLRaV-1, 

-3, and -4 strains have been more frequently detected than other GLRaV strains

(Constable et al. 2014). 
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SD is another destructive viral disease, initially discovered in South Africa, but later 

identified in Australian vineyards. (Goszczynski et al. 2012; Habili et al. 2016). SD can 

delay bud bursts and restrict spring growth, disturb the lignification on canes, and 

delay senescence in winter, consequently, significantly affecting vine health and 

reducing the yield (Goszczynski 2007; Habili 2013). However, SD symptoms only 

appear in a few sensitive cultivars including some popular cultivars like Shiraz and 

Merlot (Goszczynski et al. 2008). Grapevine virus A (GVA) is associated with SD 

(Habili et al. 2016; Wu et al. 2020), particularly the GVA Group II variants (Goszczynski 

et al. 2012; Goszczynski et al. 2003). Co-infection of GVA and GLRaVs is commonly 

found in grapevines (Blaisdell et al. 2020; Credi 1997; Digiaro et al. 1994; Hommay 

2008; Wu et al. 2023). 

The transmission of grapevine viruses within and between vineyards is facilitated by 

insects such as scales and mealybugs, which act as vectors for the viruses (Douglas 

et al. 2008; Fortusini et al. 1997). These insects can spread the viruses locally within 

the vineyard by feeding on infected plants and then moving to healthy plants. In 

addition to insect transmission, the propagation of grapevines plays a significant role 

in the rapid and widespread spread of viruses (Maree et al. 2013; Wu et al. 2020). If 

the source materials used for propagation are already infected with a virus, the 

resulting cuttings or plant material will also be contaminated with the virus. This 

contaminated material can then be transported over long distances to new regions, 

introducing the virus to previously uninfected areas. Preventing the introduction and 

spread of viruses in the nursery industry is a high priority. Nurseries invest significant 

amounts of money to test the virus status of their plant material. 

While nearly all fungal diseases of the grapevine can be managed by spraying organic 

or synthetic chemicals, viral diseases currently have no effective methods for treating 
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the vine (Hull 2014). Currently, grapevine viral disease management strategies are 

preventative, including the control of the vectors such as the insects, rouging 

(removing) the infected vines, and planting with virus-free materials (Almeida et al. 

2013; Ricketts et al. 2015). Although no methods of treatment are currently available 

for virus infections, early and full-scale disease detection in whole vineyards will allow 

grape growers to rogue infected vines and replant with virus-free certified planting 

material, to minimise disease spread within the vineyard. This roguing and replanting 

strategy has been successfully used in several countries including South Africa and 

New Zealand to manage the symptomatic disease such as GLRaV-3 infection in red 

cultivars (Bell et al. 2017).  

The most commonly used methods for detecting plant viruses are reverse transcription 

polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay 

(ELISA) (Olmos et al. 2007; Sankaran et al. 2010). However, these laboratory-based 

techniques can be prohibitively expensive, making it impractical to test every single 

vine in a vineyard. Alternatively, visual assessment by trained individuals based on 

disease symptoms can be employed for large-scale virus detection. Unfortunately, 

virus infections do not always manifest visible symptoms, such as in the case of GVA 

infection in white grape cultivars or early-stage GLRaVs infections. This poses a 

challenge for visual-based methods. 

Advanced optical sensing technologies, such as hyperspectral sensors, offer the 

capability to measure light beyond the range of human vision. Several previous studies 

have utilised these sensors for the detection of grapevine viruses in field conditions. 

For instance, hyperspectral approaches have been employed to detect Grapevine 

Leafroll Disease (GLD) in red cultivars  (Naidu, RA et al. 2009). In a study conducted 

in California, a surveillance aircraft equipped with a hyperspectral camera 
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demonstrated a remarkable 94% accuracy in detecting GLRaV-3 in Cabernet 

Sauvignon (MacDonald et al. 2016). More recently, hyperspectral cameras mounted 

on grape harvest machines were employed in Germany to detect GLD in both red and 

white cultivars, achieving notable results  (Bendel et al. 2020). These studies 

demonstrate the feasibility of non-destructive disease detection in vineyards. 

However, there is still untapped potential in fully exploring the innovative optical 

sensing technology for viral disease detection on a larger scale. Recent advancements 

in remote sensing platforms, such as unmanned aerial vehicles (UAVs or "drones"), 

coupled with high-resolution multi- and hyperspectral cameras, now allow for 

extensive surveillance of vineyards, enabling monitoring of both biotic and abiotic 

stresses in grapevines (Jones 2014; Vanegas et al. 2018). These airborne approaches 

enable the characterization of vineyards at a broader scale, going beyond individual 

vines. Moreover, by quantifying the temporal dynamics of the disease, it becomes 

possible to enhance disease management strategies (Nutter 1997). Leveraging fast 

and cost-effective detection methods, the temporal spread of diseases across 

vineyard blocks can be effectively monitored. 

1.2. Research goals 

My PhD study aimed to achieve rapid and non-destructive detection of GLD and SD 

in Australian vineyards through the utilisation of various optical sensing technologies 

and the development of simplified algorithms for hyperspectral datasets. Furthermore, 

the project aimed to predict the spatial distribution of disease spread within vineyards 

and enhance the sampling strategy to increase confidence in disease status 
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assessment and improve disease management practices. To address these 

objectives, the following specific goals were defined: 

• Assessing the suitability of different optical sensing technologies for simple and

reliable detection of various viral diseases in vineyards.

• Determining the optimal detection parameters for the sensors, including

identifying the best development stage to detect the diseases, determining the

optimal time of day for applying the technology, establishing the ideal distance

and angle for canopy measurement, and optimizing camera settings.

• Investigating the spectral signals captured by both proximal and drone-

mounted hyperspectral cameras to identify significant wavelengths in the

visible-near-infrared (VNIR) range for disease identification.

• Analysing and comparing the spectral differences between different locations

and seasons to understand the variations in disease signals.

• Developing an effective disease modelling methodology using statistical or

machine learning approaches to predict disease presence and spread.

• Validating the prediction results obtained from the newly developed sensing

methods by ELISA and RT-PCR tests.

• Generating disease prediction maps that accurately indicate the disease status

at the individual vine level.

By pursuing these goals, the study aimed to contribute to the advancement of disease 

detection and prediction methods, providing valuable insights for the effective 

management of grapevine viral diseases in Australian vineyards. 
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1.3. Significance of the project 

The rapid and non-destructive detection of virus-infected grapevines through my PhD 

research will provide grape growers with a cost-effective tool to ensure the productivity 

and quality of their vineyards. By surveying large vineyards, even with minor virus 

symptoms, growers can benefit in several ways: 

1. Adjusting management practices: The utilisation of predicted disease maps

allows growers to modify their management practices and minimise the

negative impact on vine stress and grape maturation. This proactive approach

is instrumental in maintaining vineyard health and optimizing crop quality.

2. Roguing infected vines: By accurately identifying and removing infected vines,

growers can effectively minimise the risk of disease transmission through

potential vectors. This proactive step helps prevent the further spread of viruses

within the vineyards.

3. Supporting grapevine propagators: This research enables grapevine

propagators, including nurseries and vine improvement groups, to conduct

cost-effective and efficient surveys of entire source blocks. This comprehensive

approach offers additional information on a large spatial scale, thereby ensuring

the production of virus-free planting materials.

4. Informing top-working decisions: Prior to grafting or top-working vineyard

blocks, knowing the virus infection status is crucial. My research provides

growers with a valuable tool for assessing established vineyard blocks,

empowering them to make informed decisions, e.g., graft sensitive cultivars like

Shiraz to an asymptomatic infection such as GVA-infected white cultivar.
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Moreover, the temporal change over time could allow for to prediction of the future 

spatial patterns of virus spreading in vineyards empowering growers to develop 

effective risk management plans. By understanding the movement of spreading 

viruses and controlling known vectors, growers can mitigate the spread of diseases 

and enhance their financial management. 

Overall, this project aims to improve viticultural management strategies for grapevine 

viral diseases in Australia, offering growers valuable tools for early detection, 

prevention, and risk management, ultimately enhancing the sustainability and success 

of the wine industry. 
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Chapter 2 
Plant Viral Disease Detection: From 
Molecular Diagnosis to Optical Sensing 
Technology—A Multidisciplinary Review 

Wang, Y.M.; Ostendorf, B.; Gautam, D.; Habili, N.; Pagay, V. 

Preamble: 

This chapter provides an overview of the methodology employed for the detection of 

plant viral diseases. Encompassing direct and indirect methods, as well as traditional 

and state-of-the-art non-destructive techniques, this comprehensive review serves as 

a foundation to inspire subsequent studies conducted during my Ph.D. The inclusion 

of a financial (cost) comparison between these methods also offers valuable insights 

for industry professionals, enabling them to evaluate and select the most suitable 

approach for virus detection. This review article is published in the open journal - 

Remote Sensing, MDPI, 2022, 14(7), 1542. 

doi.org/10.3390/rs14071542 
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Abstract: Plant viral diseases result in productivity and economic losses to agriculture, necessitat-
ing accurate detection for effective control. Lab-based molecular testing is the gold standard for
providing reliable and accurate diagnostics; however, these tests are expensive, time-consuming,
and labour-intensive, especially at the field-scale with a large number of samples. Recent advances
in optical remote sensing offer tremendous potential for non-destructive diagnostics of plant viral
diseases at large spatial scales. This review provides an overview of traditional diagnostic methods
followed by a comprehensive description of optical sensing technology, including camera systems,
platforms, and spectral data analysis to detect plant viral diseases. The paper is organized along
six multidisciplinary sections: (1) Impact of plant viral disease on plant physiology and consequent
phenotypic changes, (2) direct diagnostic methods, (3) traditional indirect detection methods, (4) op-
tical sensing technologies, (5) data processing techniques and modelling for disease detection, and
(6) comparison of the costs. Finally, the current challenges and novel ideas of optical sensing for
detecting plant viruses are discussed.

Keywords: plant viruses; remote sensing; hyperspectral imaging; disease prediction modelling;
machine learning

1. Introduction

Plant diseases have plagued agricultural production since antiquity. It is estimated
that 20–40% of crop yield losses worldwide are caused by plant diseases, of which plant
viruses are the second most significant contributor [1,2]. Viral diseases affect crop growth,
reduce yield, influence the survival of scions, and impact fruit quality, consequently causing
significant economic losses [3].

Major crop viral disease incidents and economic consequences have been reported
worldwide [4–6]. In 1993–1994, tomato yellow leaf curl virus decreased tomato production
by 75% and cost more than USD 10 million in the Dominican Republic [7]. Cotton leaf curl
virus caused nearly 30% cotton yield loss worth USD 5 billion in Pakistan between 1992 and
1997 [8]. Rice tungro disease is a devastating viral disease that affects rice production in
many countries in southeast Asia; a USD 1.5 billion annually economic loss was estimated
due to this disease [5]. For woody perennial crops like fruit trees and grapevines, yield
losses are not confined to one season, but multiple seasons. A 14-year field study in New
Zealand found that apple tree yield and fruit size decreased gradually over this period
due to apple mosaic virus infection, and up to two-thirds of yield loss was observed in the
severely infected trees [9]. Atallah et al. [10] reported that Grapevine leafroll disease (GLD)
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could have a negative long term economic impact if the viral infection is not managed.
The same study estimated that losses of between USD 25,000 and USD 40,000 ha−1 could
be incurred over 25 years in a vineyard in New York State (USA). In addition, indirect
damages contributing to the economic loss include the cost of roguing vines, leaving
the vineyard fallow for 3–5 years to remove vectors harbouring in the rhizosphere (e.g.,
nematodes), and the time between replanting to the recovery to full productivity also
needs to be considered [11]. Plant viruses affect not only crop yield but also the quality of
downstream products. A study showed that red wine colour intensity is reduced by GLD,
which may lower the wine’s price and the financial return to the winery [12]. In addition,
numerous unreported and undiscovered plant viral infections make the true extent of yield
loss difficult to ascertain. Viruses may cause far more significant economic losses than what
is usually recognised.

Managing viral disease in the field can be challenging due to its insidious and persis-
tent nature. Unlike other pathogens, plant viruses are incorporated in the plant genome
and therefore cannot be eliminated using chemicals [13]. Infected plants are unlikely to be
cured; hence they must be removed and destroyed to minimise further spreading. Viruses
can be rapidly transmitted between plants in the field by vectors like insects and nematodes
or spread through human activities. Insecticides have some degree of control for vectors to
limit the spread of viruses; however, it is not a preferred solution due to the cost associated
with ecosystem damage and concerns regarding human health risks and the possibility
of vectors developing resistance [14,15]. Thus, most viral disease management strategies
are preventative, including using certified virus-free planting materials, breaking down
the disease cycle by removing infected plants, vector control, and breeding virus-resistant
plants [14].

As part of an effective disease control strategy, detection and diagnosis perform
vital roles. Traditionally, direct and indirect plant viral disease detection methods have
been distinguished. Direct methods are lab-based testing methods that are either based on
detecting DNA, RNA, or virus proteins. While these methods are reliable and accurate, they
are expensive, time-consuming, and destructive, mandating alternative options [16–18].
Indirect methods, including visual assessment and biological indexing methods, have been
used to overcome cost and logistic limitations. However, visual assessment by human
eyes is unreliable due to the different levels of experience of the surveyors, whereas
biological indexing using indicator plants for viral disease diagnosis is excessively time-
consuming [19].

Recent advances in imaging and data processing technologies have accelerated the de-
velopment of rapid virus detection methods based on remote and proximal optical sensors.
It is thus timely and opportune to review recent developments. This paper reviews optical
sensing methodologies, data processing, and disease classification modelling methods from
a multidisciplinary perspective. A multidisciplinary approach has the advantage that it
utilises a diverse array of tools ranging from traditional molecular biology approaches to
state-of-the-art sensing and detection methods, providing analysis and insight that would
not be possible with any of these tools individually. We believe that this approach has not
been thoroughly reviewed in the literature on plant viruses.

We begin by giving a brief overview of how viruses affect plants and then discuss
current direct diagnostic techniques and traditional indirect methods. We then describe
optical sensing technology and disease prediction modelling methods for virus detection,
followed by a comparison of the economics associated with using different sensing methods.
We conclude with a discussion of the current challenges and outstanding opportunities for
enhancing methods for plant viral disease detection.

2. Detection of Viruses
2.1. Background-Physiological and Phenotypic Changes of Plants Affected by Viruses

Unlike living organisms that possess a cellular structure, viruses only consist of a set
of one or more nucleic acid template molecules (DNA or RNA) which are covered by a coat
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protein [20]. They lack the protein-coding capacity of living cells and thus need to parasitise
a host to utilise the host cells’ transcription machinery to replicate [13]. Replication can
occur in most cells—mesophyll, epidermis, parenchyma, phloem companion, and bundle
sheath [21]. Infections result in various physiological and biochemical changes that can
lead to disease. Viral disease has been observed to alter amino acids and phytohormone
levels, cause cell structure distortion, degrade chloroplasts to lower leaf photosynthetic
capacity, and decrease nutrient uptake to retard plant growth and development [22,23].
These physiological changes can be visualised and detected as disease symptoms. For
example, Gutha et al. [24] showed that a typical symptom-reddish-purple colour in red
grape cultivars was caused by grapevine leafroll associated virus 3 (GLRaV-3) mainly due
to the accumulation of anthocyanin in grape leaves. They also found that chlorophyll and
carotenoid content were 20% less in the infected leaves than in the healthy plants, which
may enhance the symptoms. Other studies suggested that insect-borne plant viruses could
modify the plant pigments level to attract the vectors to spread the viruses [25,26]. More-
over, other phytochemicals that can be influenced by plant viruses include carbohydrates,
polyphenols, and oxidative enzymes such as peroxidase, catalase, ascorbate peroxidase,
and superoxide dismutase [27]. These chemicals can be indirectly and non-destructively
estimated by eyes or optical sensors as an indication of virus infection (Figure 1).
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Fundamentally, plant viruses can be either directly detected by finding their genomic
sequence and viral protein or indirectly assessed via the plant phenotypic response to
the virus (Figure 1). Numerous plant virus detection methods have been developed to
date. The rapid development of molecular and biochemical technologies has ushered in a
new era of virus detection over the last few decades. Today, various lab-based diagnosis
methods are available for plant virus detection [16,18,28,29]. These methods are generally
sensitive and reliable and have been widely used for plant virus diagnostics.

Indirect methods that assess the plant response include traditional methods to detect
virus symptoms visually in the field and novel approaches to assess the altered phenotype
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using optical sensors. The key advantages of these three major detection methods are
related to reliability and the ability to provide efficient sampling (Figure 1).

2.2. Direct Methods

There are two major direct diagnostic methods: serological and nucleic acid. Serologi-
cal methods developed in the mid-1960s use antibodies produced from an animal’s immune
system to detect plant viruses [30,31]. The enzyme-labelled antibodies that bind to specific
viral proteins (antigens) are readily observable and measurable through spectrophotome-
try [30,32]. In 1977, using the ‘double-antibody sandwich’ (DAS) form of enzyme-linked
immunosorbent assay (ELISA), Clark and Adams [33] demonstrated the efficiency of the
DAS-ELISA method to quantify virus concentration in plants. This method is economical
and suitable for a quantity of testing compared to many other lab-based methods and con-
tinues to be widely used for plant viral disease detection. Another convenient serological
diagnostic tool is the lateral flow device (LFD). It uses the virus antibodies attached to
nitrocellulose membrane strip with coloured nanoparticles to produce results [34–36]; it has
been used as a rapid, in-field detection method for plant viruses. Immunofluorescence (IF)
is a technique commonly used in microbiology. Using fluorescent dye-labelled antibodies
to bind the antigens, IF allows for the visualisation of plant viruses via microscopy that
provides valuable information on the intracellular distribution of viruses [37,38].

Nucleic acid-based methods have been used for plant virus detection since 1979 and
directly target viral DNA or RNA fragments [39]. In 1985, the revolutionary nucleic acid-
based polymerase chain reaction (PCR) method was developed by Saiki et al. [40], which
significantly improved plant virus diagnosis. After multiple amplification cycles in two
hours, PCR can duplicate a single DNA strand up to 109-fold, which dramatically increases
the sensitivity and effectiveness of the virus detection [41]. Based on PCR, many modifica-
tions and improvements were subsequently developed and extensively used in plant virus
detection, including reverse transcription PCR (RT-PCR), quantitative PCR (qPCR), and
loop-mediated isothermal amplification (LAMP). As most plant viruses are RNA viruses,
and RNA degrades rapidly under ambient conditions, it is common to reverse-transcribe
unstable RNA to more stable complementary DNA (cDNA), which are then amplified
using PCR [42]. Today, RT-PCR is the most used method for plant virus diagnosis due to its
capability to detect viruses at low concentrations or titer levels [43,44]. Several studies have
shown that RT-PCR is more sensitive than ELISA for plant virus detection, with fewer false-
negative results [44–50]. The qPCR, also referred to as real-time PCR, can quantify the virus
titre level in the samples by measuring the DNA concentration after each amplification
step during the PCR process [51,52]. The loop-mediated isothermal amplification (LAMP)
technique is a promising method developed in 2000 by Notomi et al. [53]. Comparing
conventional PCR, LAMP does not require a high precision thermocycler to amplify DNA.
It is simpler, faster, lower-cost, and has increased popularity in plant virus detection.

Other nucleic acid-based methods have recently been developed to study and detect
plant viruses. Next-generation sequencing (NGS), also known as high-throughput sequenc-
ing, is a powerful technology that can rapidly sequence the entire viral genome [28,54,55].
NGS provides a comprehensive methodology for detecting and studying plant viruses and
has been instrumental in discovering previously unknown viruses and hosts for known
viruses [56–58]. Fluorescence in situ hybridisation (FISH) uses fluorescent-labelled probes
to detect the target virus nucleic acid [59]. FISH can detect and localise the viruses in
plants and vectors tissues, which provides a better understanding of virus epidemiology
within plant tissues, therefore potentially implicated for disease management [60,61]. Flow
cytometry (FCM) can detect multiple plant viruses simultaneous in a sample [62]. It uses a
laser beam to excite the fluorescence-labelled antibodies or nucleic acid probes in a fluid
stream. By analysing the pass through fluorescence and scattered laser light, FCM can
detect specific viruses and measure genome size and gene expression [63].

Lab-based methods remain the gold standard for the detection of plant viruses. They
are highly sensitive, accurate, and reliable. They directly target the virus and do not require
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a plant response, and thus, they can be used for early warning of the disease. However,
these methods require special attention to plant tissue sampling and sample processing
to avoid cross-contamination, which is labour intensive and time-consuming. Several
detection methods also require sophisticated equipment and expensive materials [64]. In
light of these costs, it is economically unviable for large numbers of plants, and hence, it
cannot be used to obtain representative samples of viruses at the scale of large industrial
production farms. Instead, a small proportion of plants are sampled randomly, standard
field patterns like X or W patterns, or strategically according to visual assessment to
represent the overall disease status in a field [65,66]. However, an insufficient test rate
could cause hit-and-miss situations; this is especially unacceptable for critical industries
such as nurseries.

2.3. Traditional Indirect Methods

Identifying disease symptoms by eye is the simplest indirect method to detect viruses.
Due to physiological changes, viruses-infected plants can show typical symptoms such
as mosaic patterns on the leaf, yellowing, leaf rolling, ring spots, necrotic tissues, wilting,
and nodulating [13]. Accordingly, most names of plant viruses are related to the typical
symptom(s) caused to their major host. Visually identifying these typical symptoms is a
quick and simple disease detection method. However, the ease of utilising this approach
comes with the drawback of low accuracy for reasons that include individual variability
of the surveyors, different infection rates, the developmental stage of disease, and com-
plexity of symptoms [67]. Similar symptoms can manifest from various biotic and abiotic
stresses such as nutrient deficiency, fungal or bacterial diseases, environmental factors, or
mechanical damage to the plants, further reducing the accuracy.

Virus infections do not always produce apparent visual symptoms in the host plants,
making accurate disease detection challenging. Biological indexing was a method devel-
oped to address this challenge; it relies on specific indicator plants that have been selected to
help identify the disease symptoms. The indicator plants are susceptible species or varieties
that usually develop typical symptoms once inoculated with the pathogenic viruses [68].
Biological indexing is able to confirm the potential virus that does not produce symptoms
in certain plants, discover an unusual host plant for the virus, and quantify the virus [68].
Biological indexing continues to be used as a complementary method to lab-based testing
methods [69]. However, the major disadvantage of using indicator plants is the long du-
ration from inoculation to the development of disease symptoms; this process could take
several weeks to months [19]. In addition, symptoms of indicator plants may also vary
based on environmental conditions. Constable et al. [70] found that rugose wood symptoms
on Rupestris St George indicator plants could not be observed in a cold climate, but could
be detected in a hot climate. In contrast, the GLD symptoms appeared in Cabernet Franc in
a cool climate, but no symptom was found in the hot climate site for the same treatments,
limiting the suitability of this variety as an indicator.

Nowadays, various studies use optical sensors instead of traditional detection methods.
Such sensing technology has the advantage of detecting a broader range of spectrums than
the human eye, and recently, it was mimicked using computer vision to detect disease in
the human brain.

2.4. Optical Sensing Technologies in Plant Viral Disease Detection

Optical sensors measure the frequency and intensity of light, both of which can be
interpreted as meaningful information using multivariate statistical techniques. The sensing
process is similar to that of human vision, but it has the ability to detect wavelengths of
light beyond the visible spectrum detectable by the human eye [71]. The different sensors
can measure specific regions of the electromagnetic spectrum, from ultraviolet (UV) to long-
wave infrared (LWI). Using optical sensing technologies, subtle phenotype changes caused
by the disease are detectable. The sensing technology presents rapid and non-destructive
alternatives to the molecular techniques of plant disease detection [17,18] and increases
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the objectivity of field-based visual assessment. There is a wide variety of optical sensing
methods that can be classified by their platforms and associated scale of imagery, as well as
by their spectral characteristics [72–76]. Figure 2 illustrates various sensing technologies,
their spectral ranges, and platforms that can be used for plant viral disease detection.
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At the finest scale, optical sensors can be used directly on contact on leaves, proximally
on ground vehicles and hand-held. Some non-imaging sensors like chlorophyll fluorimeter,
GreenSeeker, laser thermometer, and spectroradiometer are usually used proximally or
directly in contract with the leaf [77]. By increasing the sensing distance, imaging sensors
can be used proximally (e.g., mounted on tractors) or remotely (e.g., airborne platforms
such as unmanned aerial vehicles (UAV), airplanes, and satellites) to support regional
disease management [78]. Generally, increasing sensing distance results in decreasing
spatial resolution. Satellite images provide the broadest land coverage but have the lowest
spatial resolution. Manned airplanes can capture higher spatial resolution in a moderate
area compared to satellite images. UAVs or drones can carry light-weight optical sensors
flying as low as a few meters above ground [79–81], potentially providing millimetre spatial
resolution images for plant viral disease detection.

In the order of increasing spectral detail, we find the RGB (red, green, and blue),
multispectral, and hyperspectral systems. RGB systems have similar sensitivity as the
human eye and thus produce images that can be readily interpreted [82]. Modern RGB
cameras are user-friendly and readily available to the public, which means they can bring
a large number of datasets available for plant disease identification. Community shared
databases of plant disease infected images have been used for plant disease identification
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in recent studies using computer vision techniques [83,84]. In addition, low altitude, high-
resolution aerial photos from UAV have produced a high-popularity in-field plant disease
detection [18,85,86].

Multispectral sensors measure specific spectral wavelength regions across the electro-
magnetic spectrum; different regions or bands can be selected depending on the purpose of
usage [87]. Multispectral cameras have been commonly used in remote sensing to explore
land use, characterise vegetation, and monitor the environment and urban structures [88]. For
agricultural purposes, the spectral bands in multispectral cameras are selected based on the
vegetation characteristics of light absorption and reflection at different wavelengths. Typi-
cally, RGB, combined with the unique vegetative reflectance regions, red edge (690–740 nm)
and near-infrared (NIR) (700–1300 nm) bands, are used in multispectral sensors [89,90].
This information enables the computation of specific vegetation indices (VIs) that can be
used to evaluate different characteristics of the vegetation. For example, by contrasting the
absorption and reflectance in red and NIR spectral regions, the well-known normalized
difference vegetation index (NDVI) can be calculated [91,92].

Hyperspectral sensors capture hundreds of contiguous narrow bands (2–20 nm) across
a range of spectra (UV, visible, near-infrared (VNIR) to short-wave infrared (SWIR)) instead
of few discrete broad bands as do multispectral sensors [93]. The highest spectral detail
is obtained by sensing single point spectroradiometers rather than imaging, for example,
ASD FieldSpec 4 and Ocean Optics USB4000. These sensors are mostly used proximally
or directly in contract with the plants. Various studies have shown that spectral reflection
signals change with plant viral infections and have demonstrated the method’s potential for
early or asymptomatic stage detection [94–98]. A hyperspectral imaging system provides
both spatial and spectral information to produce a 3-dimensional (3D) data cube [99].
Hyperspectral imaging data present a potentially significant advantage in plant disease
studies at broader scales. MacDonald et al. [100] were able to detect GLD in vineyards
using an aircraft-mounted hyperspectral system. They achieved a prediction accuracy of
94.1% on average compared to visual survey results using specific leaf reflectance spectra
using a spectroradiometer reported by Naidu et al. [95]. Wang et al. [101] used proximal
sensing hyperspectral images to predict tomato spotted wilt virus infected region on the bell
pepper plant. This study achieved 96.2% accuracy on plant level detection by evaluating
the healthy and diseased pixel ratio, which demonstrated the potential of the hyperspectral
image to predict viral infections on asymptomatic leaves.

Chlorophyll fluorescence (Chl-Fl) and infrared (IR) thermal sensors have also been
used for plant virus detection. Chl-Fl is an important parameter for plant health and stress
expression [102,103]. Many studies have used Chl-Fl as the laboratory’s analysis tool for
plant virus infection and demonstrated the likelihood of using Chl-Fl to detect plant virus
infection at an early disease stage [104–109]. The passive method that uses solar radiation to
measure fluorescence rate (known as solar-induced chlorophyll fluorescence) remotely for
vegetation stress has also been attempted for plant stress detection [110–116]. The thermal
sensor is predominantly used in precision agriculture to detect and monitor crop biotic and
abiotic stress [80,117]. Spatial and temporal thermography patterns have shown potential
for the early detection of viral disease. For example, Chaerle et al. [118] demonstrated that
a resistant response (cell death) to tobacco mosaic virus (TMV) infection on the tobacco
leaves could be detected by thermography rapidly after inoculation, eight hours before
visible symptoms were apparent. Similarly, Zhu et al. [119] successfully distinguished
the tomato mosaic disease plants five days before the visual symptom appeared using
thermal imaging.

Besides those field applicable sensors, other technologies like Raman spectroscopy, Nu-
clear Magnetic Resonance (NMR) spectroscopy, and optical coherence tomography (OCT)
have been used in the lab to detect plant virus diseases. Raman spectroscopy has been used
for chemical analysis for decades. Various studies have demonstrated that Raman spec-
troscopy has the capability to detect plant virus infection at an early stage [120–122]. Some
portable Raman spectroscopy is also available for in-field use [123]. NMR spectroscopy is
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used to determine the chemical and physical properties of matter. Some studies used NMR
spectroscopy to detect plant metabolic changes caused by virus infection [124,125]. An
OCT system can see through the material and detect the morphological structure of cells.
Various studies have used OCT to detect plant virus infection in leaves and seeds [126–128].

3. Analysis and Modelling Techniques for Optical Sensing Data

The indirect nature of optical sensing technologies in plant viral disease detection
implies the need to develop mathematical relationships between sensing information and
ground-truthed information (e.g., lab test results or visual assessment). Such disease
classification models allow the prediction of diseases from optical sensing data from
proximally and remotely sensed spectral data. Model quality is typically validated against
reliable ground truth data.

The pipeline for optical disease detection includes data collection, data processing,
modelling, and ground-truthing (Figure 3). Different data imply different processing and
modelling needs ranging from statistics to machine learning [129,130]. Below, we describe
some commonly used methods in plant viral disease modelling.
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Figure 3. Workflow chart for plant viral disease prediction at different scales. Proximal sensing can
obtain detailed spectral information at a point scale or leaf phenotypes at the leaf scale. Airborne
remote sensing can be conducted at different spatial and spectral detail to be used for spatial mapping.
Different data types involve various classification methods, including object-based methods like
computer vision, spectral signal analysis, and pixel-based for multi and hyperspectral images. Indirect
methods rely on ground-based information for model development and predictions.

3.1. Using Computer Vision for Leaf-Based Viral Disease Detection

As described in Section 2.1, viruses alter leaf phenotype. This principle has tradi-
tionally been used in field-based reconnaissance of viruses. It has also been adopted in
computer vision, which has become popular in recent years due to its excellent performance,
such as object detection, facial recognition, and medical diagnosis [131–133]. With a large
set of training data (annotated images), computer vision systems can rapidly learn and
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recognise an object in a new, previously unseen image. This technology has the potential
to increase the efficiency of traditional field-based virus detection by examining leaves.
Mohanty et al. [83] correctly identified 26 plant diseases across 14 crops by using images
from the PlantVillage project dataset [134] of 54,306 leaf images and obtained a prediction
accuracy of over 99%. Ferentinos [84] tested five different convolutional neural networks
(CNN) architectures (AlexNet, AlexNetOWTBn, GoogLeNet, Overfeat, and VGG). Using
87,848 open database images containing 25 different plants and 58 diseases, the authors
reported a prediction accuracy of >99%. Ramcharan et al. [135] used GoogLeNet to detect
five major pests and diseases in cassava plants, including cassava mosaic virus and cassava
brown streak virus. This study used 13,500 images to train the model and achieved 93%
accuracy in 1500 test images. Polder et al. [136] used a pre-trained region-based CNN
(R-CNN) model to detect tulip breaking virus from multispectral images. They reported
that the deep-learning model could identify 82% of the diseased plants, which favourably
compared to the judgement of experienced crop inspectors.

UAV based RGB imaging at high spatial resolution has been the basis for successful
virus detection of plants. Gomez Selvaraj et al. [137] used UAV-RGB images to detect
Banana bunchy top disease (BBTD) and Xanthomonas wilt of banana disease (BXW). This
study collected images at 50–100 m above ground, providing 1–3 cm spatial resolution. By
training 2477 annotated images in a CNN architecture RetinaNet, the authors achieved
98% precision. Using a similar method but lower altitude, Sugiura et al. [138] captured
imagery at the height of 5–10 m above ground, with 2–4 mm spatial resolution to study
potato virus Y infection. Using 1800 training images, the model achieved 96% accuracy for
the training and 84% for the test dataset, respectively.

The above examples demonstrate the feasibility of using leaf-level RGB images in the
CV framework for plant disease detection. However, training image recognition models
requires a large number of annotated images at different times, environments, and locations
for reliable prediction. Image annotation requires labour, time, and experience; a paucity of
annotated images is one of the limitations of the technique [139,140]. Additional challenges
arise from the quality of images used for training the model; poor resolution or inadequate
annotation can negatively affect accuracy.

3.2. Use of Multispectral Imagery for Plant Viral Disease Detection

Multispectral imagery is a simple, cheap, readily available method for plant surveil-
lance. It has established methodologies focused on spectral analysis of individual pixels,
which is different from object-based detection like CV using entire images or subsets of
images. The relationship between spectral reflectance and vegetation properties is well
established and is to a large degree based on chlorophyll a and b spectral properties. Ab-
sorption bands are around 440 nm and 650 nm for chlorophyll a and b, respectively, with
high reflectance in green and near-infrared spectral ranges [141,142]. There are more than
150 published vegetation indices (VI), and different relationships with plant cell structure,
biochemistry, physiology, and stress have been established [143,144]. Commonly used
VIs for plant stress studies include NDVI, Chlorophyll Index, Water Index, and Red-edge
Vegetation Stress Index [145]. Multispectral sensors can focus on these important spectral
bands and produce a variety of indices that have been examined for disease detection.

The potential physiological effects of viruses on the photosynthetic apparatus in leaves
imply that multispectral images contain information on virus detection. For example, Mirik
et al. [146] used Landsat 5 TM satellite multispectral images for wheat streak mosaic virus
detection on a broad scale. Six bands were used in the maximum likelihood classifier (MLC)
to classify the disease pixels in the study, and they achieved overall accuracies of 96% and
99% and were obtained on two different dates compared to ELISA test results. Another
study by Hou et al. [147] generated seven VIs using four bands (R, G, B, and NIR) in a
satellite image for GLD detection. All 11 feature vectors (seven VIs and four bands) were
fed in a clustering analysis model Ant colony clustering algorithm (ACCA) [148] for disease
detection. They achieved 75% accuracy for plants with mild symptoms and 84% for plants
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with severe symptoms. A nine-band multispectral field radiometer was used by Steddom
et al. [149] to detect beet necrotic yellow vein virus at canopy level (0.75 m diameter field of
view). Using a logistic regression algorithm with Vis, the authors obtained an accuracy of
88% for symptomatic plants; however, they could not separate the asymptomatic plants
from healthy plants using their model.

3.3. Use of Hyperspectral Sensing

The success of multispectral approaches has encouraged using more spectral detail
through hyperspectral imaging. However, the complexity and volume of hyperspectral im-
agery imply the need for data reduction as part of the workflow [150]. Different approaches
either select spectral bands known to change with physiological plant changes or empiri-
cally detect spectral ranges that are affected by the disease using data mining [93,151,152].
Band selection is often used as an initial step. It chooses only those that contribute to the
accurate prediction of the disease and remove the redundant bands without losing the key
information [93]. In most plant diseases detection studies, the optimum bands in hyper-
spectral data need to be evaluated and determined for each disease case or development
stage. Many methods have been suggested to determine the unique bands for the dataset,
such as lambda-by-lambda R-squared to assess pairwise band correlations [93], partial least
squares (PLS) [153], successive projections algorithm (SPA) [154], and stepwise discriminant
analysis (SDA) [155]. Naidu et al. [95] used SDA to separate infected and healthy GLRaV-3
infected grape leaves. They achieved an overall 81% accuracy and 75% for asymptomatic
leaves based on a combination of selected bands and VIs. Zhu et al. [156] used successive
projections algorithm (SPA) to determine eight effective wavelengths from 434 variables
in hyperspectral imaging for TMV detection. Unsupervised machine learning methods
like principal component analysis (PCA) also be used for clustering [97] and reducing
dimensions for spectral data [157]. A comprehensive review of the various hyperspectral
band selection algorithms has been provided by Sun and Du [158].

For viral disease classification modelling, various statistical and machine learning
algorithms can be used. Commonly used methods include linear discriminant analysis
(LDA), naive Bayes (NB), random forest (RF), support vector machines (SVM), k-nearest
neighbours (KNN), partial least square (PLS) and spectral angle mapper (SAM). Grisham
et al. [98] used an SD-2000 Ocean Optics spectrometer to measure the change in chlorophylls
and carotenoids in asymptomatic sugarcane leaves infected with sugarcane yellow leaf
virus. The authors used the LDA model to predict the infected and non-infected plants at
64% and 72% accuracy, respectively. Sinha et al. [96] used a hand-held spectroradiometer
to identify GLD. Two statistical algorithms quadratic discriminant analysis (Q-DA) and NB
were used for the spectral data analysis. They obtained the results with 93–99% accuracy
using Q-DA and 71–99% using NB. Using PLS discriminant analysis, Pagay et al. [159]
detected virus infection in three grape varieties (Pinot noir with GLRaV-3, Shiraz with
grapevine virus A (GVA) + GLRaV-3, and Riesling with GVA) with 96%, 91%, and 88%
accuracy using an ASD FieldSpec-3 spectroradiometer. Polder et al. [160] compared four
types of sensors (RGB, spectrophotometer, hyperspectral imaging, and Ch-Fl imaging)
versus visual assessment to classify tulip breaking virus infection. Using an LDA classifier,
they found the best performance was from the hyperspectral image data, with 73%, 77%,
and 87% accuracy in three tulip varieties. Griffel et al. [94] differentiated spectral reflectance
curves of Potato Virus Y infected plants. This study used NIR and SWIR bands to achieve an
accuracy of approx. 90% taking the visual assessment as a reference. Al-Saddik et al. [161]
used two methods discriminant analysis (DA) and SVM to classify grapevine yellows
phytoplasma disease with different combinations of VIs. The result showed that SVM
had an accuracy of approx. 97%, and this model performed better than DA, which had
an accuracy of 95%. Afonso et al. [97] studied asymptomatic citrus tristeza virus infected
plants using time series leaf hyperspectral data. They obtained prediction accuracies
ranging from 60–90% across four treatments using the KNN algorithm. A study by Bendel
et al. [162] evaluated a hyperspectral camera system in both glasshouse and field situations
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to detect GLD from symptomatic and asymptomatic plants. In this study, four methods
were used for spectral data analysis: LDA, PLS, multi-layer perceptron (MLP), and radial
basis function network with relevance (rRBF). Comparison of results showed that MLP
had better classification accuracy in the VNIR range (400–1000 nm), and rRBF had better
performance in the SWIR range (1000–2500 nm). This study achieved accuracies up to 100%
for the symptomatic plants; it also achieved 100% classification accuracy on asymptomatic
Aligote variety and 85% on Pinot Noir variety, which demonstrated the potential of using
the hyperspectral camera to detect asymptomatic diseases.

Some recent studies in plant viral disease detection used neural networks for hyper-
spectral image analysis. Zhu et al. [156] compared six different algorithms PLS, SVM,
RF, least squares SVM (LS-SVM), extreme learning machine (ELM), and backpropagation
neural network (BPNN) for TMV detection. The overall prediction accuracy ranged from
75% to 97%, with the best performance by two machine learning methods, ELM and BPNN,
respectively. Another study by Wang et al. [101] aimed to detect tomato spotted wilt virus
infection at an early stage with hyperspectral imaging. In this study, a new deep learning
algorithm, Outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN),
modified from the GAN network, was used to classify the hyperspectral data. This net-
work was trained to classify three groups healthy, diseased, and background at the pixel
level from the hyperspectral image. OR-AC-GAN performed better than 1D-CNN and
normal AC-GAN methods with an accuracy of 98%. Moreover, the study showed that this
new model was an improvement over classical band selection methods such as maximum
variance principal component analysis (MVPCA), fast density-peak-based clustering, and
similarity-based unsupervised band selection. The 3D convolutional neural networks (3D
CNN) use 3D kernels to produce feature maps that can perform better than traditional clas-
sification methods in hyperspectral images [163]. Recently, several studies used 3D CNN
algorithms to classify land types based on public satellite hyperspectral data to improve
accuracy compared to traditional machine learning methods [164–167]. However, very few
studies have been conducted in plant viral disease detection. Nguyen et al. [168] demon-
strated that the early detection of grapevine vein-clearing virus could be achieved using a
proximal sensing hyperspectral camera, Specim IQ. They compared the conventional 2D
CNN to 3D CNN, which utilises the spatial and spectral information simultaneously from
the hyperspectral image for modelling and showed that the accuracy of the 3D CNN is
higher than the 2D CNN.

Table 1 provides a summary of the studies using optical sensing technologies and the
modelling methods for plant viral disease detection.

Table 1. Examples of studies on detecting plant viral disease using different optical sensing technolo-
gies and modelling methods.

Sensing System Platforms/Device Disease Modelling
Methods Plant Virus Ground Truthing

Methods Reference

RGB imaging Handheld/Digital
cameras

CNN, SVM, KNN,
GoogLeNet Multiple diseases Labelled in dataset [135]

RGB imaging Handheld/Digital
cameras AlexNet, VGG16net Multiple diseases Labelled in dataset [169]

RGB imaging A rail system/
Digital cameras R-CNN Tulip breaking

virus ELISA [136]

RGB; Multispectral
imaging

UAV/DJI P4,
SlantRange 3P ANN Tomato yellow leaf

curl virus PCR [170]
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Table 1. Cont.

Sensing System Platforms/Device Disease Modelling
Methods Plant Virus Ground Truthing

Methods Reference

RGB; multispectral
imaging

UAV and Satellite/DJI
P4, Sony QX1,

MicaSense RedEdge,
WorldView2,

PlanetScope, Sentinel 2

RetinaNet, SVM,
Random forest

Banana bunchy
top virus Visual assessment [137]

Multispectral
imaging Satellite/Landsat 5 TM MLC Wheat streak

mosaic virus
Visual assessment

and ELISA [146]

Multispectral
imaging Satellite/(N/A) ACCA

Grapevine
leafroll-associated

virus 3
Visual assessment [147]

Multispectral;
hyperspectral

Handheld/ASD
FieldSpec FR Logistic regression Beet necrotic

yellow vein virus ELISA [149]

Hyperspectral Handheld/ASD
Field Spec 3 SDA

Grapevine
leafroll-associated

virus 3
RT-PCR [95]

Hyperspectral
Indoor proximal
setting/SD-2000

fiber optic
LDA Sugarcane yellow

leaf virus RT-PCR [98]

Hyperspectral
imaging

Aircraft/Headwall
Photonics VNIR E Series

Classification and
regression tree

(CART)

Grapevine
leafroll-associated

virus 3

Visual assessment
and ELISA and

RT-PCR
[100]

Hyperspectral Handheld/Ocean
USB4000 PCA, KNN Citrus tristeza

virus RT-PCR and qPCR [97]

Hyperspectral Handheld/ASD
FieldSpec 3 PLS-DA

Grapevine
leafroll-associated

virus 3, and
Grape virus A

RT-PCR [159]

Hyperspectral Handheld/ASD
FieldSpec 4 SVM Potato virus Y Visual assessment

and RT-PCR [94]

Hyperspectral
Handheld/SVC
HR–1024i, SVC

Spectra Vista
PLSR, SMLR

Grapevine
leafroll-associated

virus 3
RT-PCR [96]

Hyperspectral
imaging

Indoor proximal
setting/V10E

Specim ImSpector

OR-AC-GAN,
MVPCA, FDPC

Tomato Spotted
Wilt Virus Inoculated virus [101]

Hyperspectral
imaging

Harvest machine
mounted/HySpex

VNIR & SWIR
LDA, PLS, MLP,

rRBF

Grapevine
leafroll-associated

virus 1, 3

Visual assessment
and ELISA and

RT-PCR
[162]

Hyperspectral Handheld/ASD
FieldSpec 3 PLS

Grapevine
leafroll-associated

virus 3
qPCR [171]

Hyperspectral
imaging Handheld/SPECIM IQ SVM, RF, 2D CNN,

and 3D CNN
Grapevine vein
clearing virus

Tested in the
previous study [168]

RGB, Chl-Fl,
hyperspectral

Handheld/Nikon D70,
ASD FieldSpec Pro FR LDA Tulip breaking

virus
Visual assessment

and ELISA [160]

Chl-Fl imaging
Indoor proximal
setting/Chl-Fl
image system

VI: Fm/Fm’-1 Abutilon mosaic
virus Visual assessment [104]

Chl-Fl imaging
Indoor proximal

setting/Customized
Chl-Fl imaging

LDA Pepper mild
mottle virus Inoculated virus [105]

Chl-Fl,
hyperspectral,

thermal imaging

Indoor proximal setting
and handheld/

ImSpector V10E
SPAD-meter

VARIOSCAN 3201

LDA, SDA
Cucumber green

mottle mosaic
virus

Inoculated virus
and Visual
assessment

[172]
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4. Comparison of the Cost for Virus Detection Methods

Costs associated with plant virus testing is a major consideration for growers when
selecting detection options for viral disease management. In Table 2, we used a typical
Australian vineyard as an example to compare the cost-effectiveness of different existing
methods for grapevine virus detection. Detection methods include traditional methods
visual and indicator plant assessment; commonly used lab-based methods ELISA and
RT-PCR; proximal sensing methods RGB image, Chl-Fl sensor, Thermal image, and spectro-
radiometer; remote sensing with multispectral satellite images, manned aircraft that can
capture RGB, multispectral and thermal images simultaneously; and, finally, UAV platform
RGB, multispectral, hyperspectral, and thermal images.

The assumption is based on single virus detection in a vineyard with 3 m row spacing
and 2 m vine spacing, resulting in approx. 1700 vines ha−1. Assuming the block size is
10 ha, there are approx. 17,000 vines in total. The currency is Australian dollars. Due to
the extremely high lab costs (a commercial lab charges around AUD 100 per RT-PCR test
and AUD 50 per ELISA test) and indicator plant test methods (an estimated cost for one
indicator plant is AUD 20 per test, that includes grafting, growing, and biological index
assessment), only 1% of vines are randomly sampled for testing. In contrast, the visual
assessment and optical sensing technologies measure all vines in the block. The total cost
consists of labour for samples or data collection and testing or data processing costs for
the 10 ha block. Only operational costs are compared in this scenario; the costs of capital
assets, skill training, travelling, disease model development, and other sunk costs are not
included. Labour costs are between AUD 40 and AUD 80/hour, depending on skill. The
total cost is based on 10 ha (~17,000 vines).

Cost estimates of various virus monitoring techniques shown in Table 2 indicate that
lab-based methods are the most expensive, even at the low testing rate of 1%. However, the
methods have the highest accuracy and are generally considered “gold standards” of plant
disease detection. Satellite images provide the lowest cost option; however, due to the low
resolution of the images, their accuracy is also the lowest of the methods considered here.
In general, there is a negative correlation between the sensing distance and the accuracy
of sensing technology. In terms of the simplicity of the methods, visual assessment is
the simplest and least expensive, but the reliability varies between the inspectors and is
only feasible on symptomatic plants. Indicator plants provide relatively high accuracy but
require a long time from grafting to the development of symptoms. Hyperspectral methods
are the most complex, requiring trained operators for both data acquisition and processing.
The technique also requires longer data processing times, but it provides more spectral
information for disease modelling. In comparing remote and proximal sensing techniques,
the major difference is that, although operationally simpler, data collection time and costs
are much higher for proximal sensing per hectare for large blocks, which increases the total
cost. In terms of data type, RGB (or visible imagery) is the simplest and least expensive,
but as in the case of visual assessment, it is unable of detecting asymptomatic diseases
directly; indirect assessments through changes in phenotype may be detected, however. It
is noteworthy that the reliability of visual assessments can be improved by confirmation
of lab tests, and the robustness of the disease models can be enhanced with larger ground
truth datasets; however, lab tests cost extra.
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Table 2. Cost comparison between detection methods based on a typical Australian vineyard.

Method Type Reliability
Capability for
Asymptomatic

Detection
Sensing

Resolution Testing Rate Sample/Data
Collection Cost

Sample/Data
Collection Time

(Man Hours)
Sample/Data

Processing Cost
Sample/Data

Processing Time Total Cost

Traditional
Visual assessment Low-Medium No N/A 100% AUD 1600 40 0 0 AUD 1600

Indicator Plants Medium Yes N/A 1% AUD 320 8 AUD 3400 Months AUD 3720

Lab-based testing
ELISA High Yes N/A 1% AUD 320 8 AUD 8500 2–3 days AUD 8820

RT-PCR Very High Yes N/A 1% AUD 320 8 AUD 17,000 2–3 days AUD 17,320

Proximal sensing

RGB Low-Medium No <Single leaf 100% AUD 640 16 AUD 1280 2 days AUD 1920

Chl-Fl Low Yes Single leaf 100% AUD 4800 80 AUD 1280 2 days AUD 6080

Thermal Low Yes Single leaf 100% AUD 2400 40 AUD 1280 2 days AUD 3680

Hyperspectral Medium Yes Single leaf 100% AUD 4800 80 AUD 2560 4 days AUD 7360

Remote sensing
(Satellite) Multispectral Very Low Yes >Single plant 100% AUD 10/image AUD 1280 2 days AUD 1290

Remote sensing
(Manned Airplane)

RGB +
Multispectral +

Thermal
Low Yes Single plant 100% AUD 100 <0.5 h AUD 1280 2 days AUD 1380

Remote sensing
(UAV)

RGB Low No <Single leaf 100% AUD 200 2 AUD 1280 2 days AUD 1480

Multispectral Low Yes Single leaf 100% AUD 300 3 AUD 1920 3 days AUD 2220

Hyperspectral Medium Yes Single leaf 100% AUD 400 6 AUD 3200 5 days AUD 3600

Thermal Low Yes Single leaf 100% AUD 300 3 AUD 1280 2 days AUD 1580
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5. Current Challenges and Future Perspectives
5.1. Current Challenges of Plant Viral Disease Detection

Despite significant advances in the detection of plant viral disease, there remain numer-
ous challenges that can be addressed with emerging technologies. Current understanding
of plant viruses has increased due to advances in molecular diagnostic methods; however,
ascertaining the plant phenotypes resulting from virus infections remains challenging due
to the complex interactions between viruses, host genomes, and environmental factors, and
symptoms are often not distributed evenly throughout the plant [13]. The viral disease
produces variable impacts; some do not produce any symptoms, while others lead to rapid
plant decline [56]. Viruses may not necessarily cause disease in the infected plant. Some
infected plants have been shown to recover even though the virus remains in the host, sug-
gesting a level of virus tolerance, which has not received much attention to date. All these
complexities associated with viruses in plants make disease detection a challenging task.

Viral disease symptoms can be highly variable due to multiple host–pathogen–environment
interactions. Multiple pathogens can cause co-infection in plants and make the detection of
viruses more difficult. Viral disease symptoms can also be mistaken for other pathogens
like fungi, bacteria, nematodes, and viroids; or mislead by abiotic stresses from nutrient
deficiencies (e.g., phosphorous or potassium) or water stress. Environmental impacts such
as air temperature, soil type, and edge effects also need to be considered. Mechanical
and chemical damage such as herbicide injury could cause similar stress responses on
plants as the viral disease. These complex combinations of factors could confound the
accurate detection of viruses. Thus, a complete understanding of the condition of the
plants and continuous monitoring over time is needed to improve the accuracy of viral
disease detection.

Building a robust viral disease prediction model with optical sensing technology
relies largely on the availability of accurate ground truth data from different times, disease
severities, and regions. Acquiring large amounts of data remains a challenge, requiring time,
labour, and resources. A simple method like visual assessment can gather sufficient ground
truth data for model training. However, its reliability is unsatisfactory as some infected
plants do not display visual symptoms and may lead to false negatives. Lab-based testing
methods are accurate and essential for ground-truthing; yet, the high cost limits the size of
ground truth data, which may reduce the robustness of the model. Nevertheless, none of the
diagnostic methods can guarantee 100% accuracy. For example, Pietersen and Harris [173]
discovered that even RT-PCR failed to detect GLRaV-3 in the grapevine rootstock-Richter
99 (V. berlandieri × V. rupestris). In this study, the authors found asymptomatic basal shoots
(sucker) grown from the GLRaV-3 symptomatic grapevines from an abandoned vineyard
in South Africa. They tested the scion and rootstock materials from the same vines. All
scion materials with obvious disease symptoms tested positive, but RT-PCR results of the
rootstock tissue tested negative. Therefore, understanding limitations and potential sources
of error are critical for any detection method.

5.2. Future Prospects for Optical Sensing Technology in Plant Viral Disease Detection

Speed, coverage, accuracy, and cost determine the choice of viral disease detection
methods. The complexity of the host–virus–environment interactions makes optical detec-
tion extremely challenging and requires robust models developed using reliable ground
truth data. Novel approaches provide improved ground-truthing, sensing data collection,
and data processing.

For ground-truthing, various technologies have been developed for virus diagnosis
in recent years. The COVID-19 global pandemic (since 2019) has seen an emergence of
rapid and novel testing methods, for example, the integration of plasmonic thermocy-
cling and fluorescence detection in a portable device by Cheong et al. [174], a field-effect
transistor (FET)-based biosensing devices developed by Seo et al. [175], and a microwave
immunosensor cavity resonator developed by Elsheakh et al. [176]. Some of the novel de-
vices may be applicable to plant virus diagnosis for rapid detection. The improved genomic
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sequencing and innovative bioinformatics technologies could help rapid identification of
previously unknown plant viruses and strains, which can help us better understand the
causes of symptomology, as well to build a global database of virus genomes that can
better prepare us for future outbreaks of these viruses. Field deployable testing devices are
useful for quickly determining viruses on suspected symptoms, which will aid in sample
collection efficiency and increase the confidence of visual assessment for adequate and
reliable ground-truthing. For example, a portable gene sequencing device developed by
Oxford Nanopore Technologies MinION can be used for fast plant virus detection in the
field. Various newly developed portable diagnostic tools using LAMP and LFD technology
are promising for rapid field testing [177–179].

For optical sensing data collection, understanding the symptomology of viral disease
is critical. Establishing optimal crop developmental stages and time of day to capture the
optical data, e.g., at a specific incident angle of the sun, are simple approaches to increase
detection accuracy. Consistent sensing distance and stabilised sensor movement during
the data collection are important for obtaining consistent data. Sensing platforms like
autonomous UAVs, ground-based vehicles, and robots are rapidly advancing, offering
heavier payload capacities, higher endurance (longer operation duration and range), and
high positional accuracy, all of which would help collect quality sensing data while main-
taining high consistency. Optical sensors have also steadily improved in resolution, form
factor, and weight. Due to the increased demand for low altitude and proximal sensing
technology, global manufacturers compete to make higher spatial and spectral resolution
optical sensors that are lighter weight and user-friendly. Currently, due to the complexity
of the hyperspectral camera system, most high spectral resolution sensors are push-broom
type, which requires a very stable condition to operate and needs high positional accura-
cies, requiring extra processing steps to produce image data. A simple and user-friendly
hyperspectral sensor is desirable for disease detection.

In addition to the sensors introduced in Section 2, other types of sensors can be used
simultaneously to provide more information to aid in accurate disease detection. For
example, a light detection and ranging (LIDAR) sensor has been used with hyperspectral or
multispectral systems to reconstruct the image data to aid the accuracy of the positioning.
The combination of the sensors can produce a hyperspectral 3D point cloud for plant
disease classification [180–182]. A stereoscopic camera uses two or more lenses to capture
images from multiple angles in a short distance, which produces the high-resolution 3D
structure of the leaf shape and size [183]. Microwave sensors are active sensors that can
detect the object at any time of day [184]. Non-optical sensors such as chemical sensors
can also be used. For example, volatile organic compounds (VOCs) emitted by plants
can be used to indicate a diseased state. The emission of VOCs can be altered due to
virus infection. Mauck et al. [185] showed that cucumber mosaic virus infected plants
produce about 50% more total volatiles than healthy plants to attract the vectors helping the
virus invading other healthy plants. Methyl salicylate volatile emissions were increased in
TMV infected tobacco plants to warn neighbouring plants, thereby inducing their defence
mechanisms [186]. Although disease detection using VOCs is mainly undertaken on a small
scale, such as in growth chambers or small glasshouses, novel technologies can provide
early warning in large glasshouses or the field [187,188].

For data processing, novel ML algorithms for band selection and new Vis from hy-
perspectral data can improve the accuracy of disease detection. Considering that spectral
signals change over time at different disease development stages, the disease model should
contain large datasets over different periods and be updated regularly to improve the
robustness of the models. Optimising the 3D CNN algorithm for hyperspectral image
data could improve the model accuracy for hyperspectral data. As computational power
increases, onboard mobile devices could speed up data processing, so the analysis occurs
on-the-go. The disease information can be provided to growers in near real-time using a
combination of miniature sensors and onboard computers on land vehicles or wearable
smart devices with augmented reality (AR) technology such as Microsoft Hololens.
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Overall, further development of technology in molecular diagnosis, sensors, platforms,
and data processing methods will improve plant virus detection, ultimately aiding in the
efficient management of plant viral disease.

6. Conclusions

Plant viral diseases have been shown to negatively impact crop health and, conse-
quently, decrease crop yields and global food production. The dearth of control options
makes it ever more imperative to utilise a diverse array of tools ranging from molecular
detection to optical, non-destructive approaches that provide rapid, spatial scale detection.
This combines the scientific rigour of laboratory methods with the spatial representation
and detectability of pattern of infections using spatial methods. An ongoing challenge with
the use of optical sensing technology is the increased complexity of data; this issue can be
addressed by using high-performance computers in conjunction with novel algorithms
in data processing to improve disease prediction accuracy. Additional challenges will
present themselves including the threat of emerging viruses and their variants, which
will require ongoing development of detection methodologies that vary in both cost and
accuracy. Our detailed economic analysis suggests that aerial visible imaging is the most
cost-effective approach for detection provided that symptoms are manifested on the plant.
This information gives a dollar value reference to practitioners to manage viral diseases in
their crops.
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Chapter 3 
Evaluating the potential of high-resolution 
RGB remote sensing to detect Shiraz 
Disease in grapevines 

Wang, Y.M.; Ostendorf, B.; Pagay, V.

Preamble: 

In the last chapter, the review article highlighted the availability of various non-

destructive methods for disease detection. Among these methods, a simple approach 

utilizing small UAVs and high-resolution RGB cameras offers detailed information on 

grapevines, including size, shape, and colour. This information proves invaluable in 

the rapid detection of obvious symptoms such as SD in Shiraz. In this chapter, a simple 

method is described, wherein the high-resolution RGB images are utilised to calculate 

the size of the projected canopy area for SD detection. The findings from this study 

have been published in the open journal - Australian Journal of Grape and Wine 

Research, Hindawi, 2023, 7376153. 
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Background and Aims. Shiraz disease (SD) is a viral disease associated with Grapevine virus A that causes signifcant yield loss in
economically important grape cultivars in Australia such as Shiraz and Merlot. Current diagnostic methods are time-consuming
and costly.Tis study evaluates an alternative methodology using visible remote sensing imagery to detect SD in Shiraz grapevines.
Methods and Results. High-resolution visible remote sensing images were captured of Shiraz grapevines in two South Australian
viticultural regions over two seasons.Te projected leaf area (PLA) of individual grapevines was estimated from the images. Virus-
infected vines had signifcantly lower PLA than healthy vines in the early season but fewer diference after veraison.Te lower PLA
was only observed in grapevines coinfected with grapevine leafroll-associated viruses (GLRaVs) and Grapevine virus A (GVA).
Shiraz vines infected with either GLRaVs or GVA had similar PLA to healthy vines. Conclusions. High-resolution RGB remote
sensing technology has the potential to rapidly estimate SD infection in Shiraz grapevines. Our observations of shoot devi-
gouration only in coinfected vines calls into question the etiology of SD. Further validation of the PLA technique incorporating
diferent regions, seasons, cultivars, and combinations of viruses is needed for improving the robustness of the method. Sig-
nifcance of the Study. Tis preliminary study presents a new rapid and low-cost surveillance method to estimate SD infections in
Shiraz vineyards, which could signifcantly lower the cost for growers who conduct on-ground SD visual assessments or lab-based
tissue testing at the vineyard scale.

1. Introduction

Shiraz disease (SD) is a devastating viral disease of grapevines
that was frst reported on Merlot from South Africa [1]. SD
disrupts the physiological development of grapevines and
causes signifcant yield loss in specifc cultivars, including
Shiraz, Merlot, Malbec, and Sumoll [2]. Te symptoms of SD
infection in Shiraz include delayed budburst with restricted
spring growth, lack of lignifcation on some canes, and
delayed leaf senescence well into the dormant season [3, 4].
SD symptoms are latent (no symptoms) in tolerant cultivars
such as Chardonnay and Cabernet Sauvignon; however, the
viruses can be transmitted to susceptible cultivars (Shiraz and
Melot) by mealybugs and soft scales [5, 6]. Grapevine virus A

(GVA) group II variants were associated with SD [7, 8]. GVA
also causes a rugose wood disease known as “Kober stem
grooving” [9]. GVA often coexists with grapevine leafroll-
associated viruses (GLRaVs) [6, 10–12], which is a group of
viruses that causes Grapevine leaf disease (GLD) [13]. In
Australia, GLRaV-1, GLRaV-3, and GLRaV-4 strain 9
(GLRaV-9) are commonly associated with GVA in SD-
infected vines [14]. Tere are only a few efective methods
to control grapevine viral diseases including roguing infected
vines, replanting with certifed, virus-free material, and
controlling the vectors to stop the virus from spreading
[15, 16]. It is therefore critical to accurately detect the patterns
and extent of viral infections in vineyards to stop the virus
from spreading further.
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Standard detection methods for SD include serological
methods, nucleic acid-based methods, and visual assessment
[17, 18]. Lab-based methods are costly, thus limiting the
number of grapevines tested and, consequently, an un-
derestimation of the true incidence of virus infection in
vineyards [17, 19]. Currently, the recommended minimum
test rate by commercial diagnostic labs is fve vines per
thousand (0.5%) across the block [20]. Conducting on-
ground visual assessments is labour-intensive, subjective,
and sometimes unreliable. Low-altitude airborne remote
sensing enables the capture of high detail with greater po-
tential to rapidly survey the vineyards. Various optical
sensors including red-green-blue (RGB), multispectral,
hyperspectral, and thermal sensors have been used on the
ground or platforms like unmanned aerial vehicles (UAVs)
and manned fxed-wing aircraft for grapevine disease de-
tection [21–26]. RGB imagery acquired through UAV-based
remote sensing was used for the current study due to its
relative simplicity compared to multi and hyperspectral
images. A vertical projection of the canopy from the aerial
image, the projected leaf area (PLA), for each vine was
calculated from the image to compare the canopy size be-
tween healthy and SD-infected vines. PLA acquired from
remote sensing imagery has a positive correlation to the
canopy area. For example, Raj et al. [27] achieved an R2 of
0.84 and RMSE of 0.36 by using PLA calculated from UAV
RGB image and compared to leaf area index of maize.

In this study, we used high-resolution RGB remote
sensing imagery to systematically assess PLA of individual
healthy and diseased vines to predict SD infection in Shiraz
grapevines in the feld. Te specifc objectives of this study
were: (1) to develop a simple remote sensing methodology
that can consistently assess grapevine canopy size (using
PLA as a surrogate) as a visual indicator of SD infection; (2)
to confrm PLA-based disease status classifcation with lab-
based tissue analysis; (3) to evaluate the time series of remote
sensing imagery in order to conduct a spatial-within-season
temporal analysis of canopy size diferences between healthy
and infected vines; and (4) to evaluate the temporal con-
sistency of seasonal patterns of canopy development across
multiple growing seasons. Our overarching goal was to
develop a rapid and low-cost surveillance platform for SD
detection at the vineyard scale.

2. Materials and Methods

2.1. Study Sites and Visual Estimation of Virus Infection.
Two virus-infected Shiraz blocks (some vines previously tested
positive with GVA and GLRaVs) were selected in diferent
climatic wine regions in South Australia (SA) for this study.Te
frst vineyard was inMonash, located in the warm inland region
of Riverland (34°13′28″S, 140°33′01″E). A block of 1.5 ha of
Shiraz was selected for the study. Te soil type of vineyard was
sand over limestone. Te block was drip-irrigated with
7.5ml·ha−1 of water per year. Approximate 50 kgha−1N and
50kg·ha−1 P fertiliser were applied through fertigation annually.
Te vines were consistently machine spur pruned with a same
size box shape each winter. Vineyard management was con-
sistent between seasons. Integrated pest management was as per

convention in this region, which generally has low disease
pressure due to its warm-to-hot climate. Te second vineyard
was in the Barossa region, located in Lyndoch, SA (34°35′28″S,
138°53′01″E). A 1.5ha block was chosen for the study. Te soil
type of the blockwas Calcic on red Sodosol. It was drip-irrigated
with approximate 1ml·ha−1 water per year. Both solid fertiliser
and fertigation were applied at the rate of 130kg·ha−1 N,
55kg·ha−1 P, and 9kg·ha−1K annually. Shiraz was consistently
two-bud spur pruned to 20 buds per m each winter. Details of
the study sites (vineyards) are provided in Table 1.

2.2. Virus Testing. Laboratory-based tissue testing was used
for ground-truthing (Figure 1(b)). Tissue samples were col-
lected based on visual symptoms for virus testing, of which
half the vines were symptomatic and half were asymptomatic.
Leaf petioles were sampled near harvest time [28]. Te leaves
were carefully selected from the base of the shoots to avoid
errors associated with sampling from a potential long shoot
coming through from a neighbour vine. Four petioles near the
base of the shoots (two from each side of the canopy) were
sampled and transported with chilled ice packs.

All samples were virus-tested in the lab using an enzyme-
linked immunosorbent assay (ELISA) [29]. Te ELISA test
kits produced by Bioreba (Reinach, Switzerland) were used
to test GVA, GLRaV-1, GLRaV-3, and GLRaV-4 strains.
20% of these leaves samples were tested with reverse-
transcription polymerase chain reaction (RT-PCR)
[17, 30] for confrmation of the ELISA results. Te RT-PCR
test was conducted by a commercial diagnostics lab that
routinely tests for grapevine viruses. Six commonly occur-
ring grapevine viruses in Australia [31] were tested: GVA,
GLRaV-1, GLRaV-3, GLRaV-4, GLRaV-4 strain 6, and
GLRaV-4 strain 9. Te result showed a 100% match between
PCR and ELISA, confrming the reliability of the ELISA test.
Te number of vines in each class is shown in Table 2.
Because GLRaV-1, -3, and -4 complexes cause similar GLD
symptoms in grapevines, vines infected with either a single
or combination of any GLRaVs were treated as a GLRaV
infection. In total, there were four classes: (i) healthy, (ii)
GVA only, (iii) GLRaVs only, and (iv) GVA+GLRaVs.

2.3. High-Resolution Remote Sensing: Data Collection and
Processing. DJI Mavic 2 Pro (SZ DJI Technology Co., Ltd,
Shenzhen, China) was used for image collection in this study
(Figure 1(a)). Te UAV uses a Hasselblad RGB camera with
a 28mm focal length and f/2.8–f/11 aperture. Te feld of view
is approximate 77° and the image size is 5472× 3648. Flight
planning was automated by the Pix4D app (Pix4D S.A., Prilly,
Switzerland) with the setting of nadir view, side and forward
overlapping at approximate 80%, altitude at 45m above ground
level, and forward fight direction. Te calculated spatial res-
olution of the images was approximate 1 cm pixel−1.

Aerial image data were collected between October to
April in S1 and September to April in S2. Data were captured
at approximate monthly intervals (one fight per month)
based on weather conditions (low wind and sunny) which
resulted in six fights in Riverland and ten fights in Barossa
(Table 1).
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All remote sensing imagery was captured under sunny
and cloudless conditions between 11:00 to 15:00 h. In each
fight, 288 images were taken for the Riverland block and 290
images for the Barossa block.

UAV Image mosaicking was conducted with Agisoft
Metashape Professional, Version 1.6.2. (Agisoft LLC, St.
Petersburg, Russia) to generate projected images with geo-
information for each vineyard at each time point. Based on
fight altitude and the resolution of the DJI Mavic 2 Pro

camera, the mosaicked images produced a 1 cm pixel−1

ground sampling distance. Te image geo-processing was
conducted with ArcGIS Pro V2.8 (Esri, Redlands, California,
US). Individual vines were geolocated using the image at
dormancy when the shadow of vine trunks was clearly
visible. Grapevine locations were manually digitised, and
square bufers were created along with the orientation of row
lines (Figure 1(c)). Te size of the bufer was adjusted to
about 90% of vine spacing to avoid the overlapping area

ELISA RT-PCR

Disease Classification

Random forest classifier

(a) (c)

(d)

(b)

Figure 1: Te workfow for disease classifcation with UAV images. (a) UAV data collection; (b) tissue sampling (petiole) and virus testing;
(c) geo-locating and bufer creation for individual vines using the image at dormancy; and (d) grapevine canopy classifcation using random
forest classifer.
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between vines. Te vine spacing was larger in the Riverland
Shiraz block (3.5× 3.5m vine and row spacing) compared to
Barossa and Adelaide Hills vineyards (spacing 1.5× 3.0m),
which results in a larger canopy therefore a larger bufer area
per vine. Orthomosaics from each date were georeferenced
to the dormancy image in order to accurately coalign vines.

Te grapevine canopy was mapped using a supervised
random forest classifer [32] (also called the random tree
method in ArcGIS Pro). We used the ArcGIS Pro V2.8
random trees method with a maximum number of trees of 30
and a maximum tree depth of 15. Pixels in the image were
classifed as “Grapevine,” “Soil,” “Shadow,” and Weeds.” We
manually labelled 5–7 training polygons in each training class
and found the training data was sufcient to train Random
Tree for classifying all pixels in the images. Te “Soil,” “
Shadow,” and “Weeds” classes were combined into a “non-
grapevine” class to obtain a binary image for canopy area
calculation (Figure 1(d)). To improve classifcation accuracy,
diferent training data sets were created for early, middle, and
later seasons as changing colour in the canopy over time. As
undervine weeds were well controlled in all blocks, the
grapevine was visually clearly distinguishable from the
nongrapevine. Te classifcation results were visually assessed
by comparing the RGB and classifed images, and results were
consistent in all images, thus quantitative accuracy assessment
of classifcation results was not required.

Te projected leaf area (PLA) per individual vine was
calculated as the sum of pixels that classifed to “Grapevine”
within square reference areas that were adapted to the vine
and row spacing of the diferent vineyards. We used a square
area of 3× 3m in Riverland, and 1.4×1.4m in Barossa.

2.4. Statistical Analysis. Two-way ANOVA was used for
statistical analysis using GraphPad Prism v9.0.0 (San Diego,
CA, US).Te PLA value of all virus-tested vines was used for
analysis. Mean PLA values between each class (healthy, GVA
only, GLRaVs only, and GVA+GLRaVs) at each time point
were compared. Tukey’s multiple comparisons test was used
as a post hoc test (p< 0.05).

3. Results and Discussion

3.1. Symptoms of Shiraz Disease. Te ground visual obser-
vations showed that SD-infected Shiraz vines had delayed
budburst by approximate 15–20 days and smaller canopies
in spring as indicated visually (Figure 2(a)). However, by

midsummer (approximate fruitset stage), healthy and in-
fected vines had indistinguishable canopies (Figure 2(b)).
However, the canes of infected vines showed a lack of lig-
nifcation, as shown in Figure 2(c). SD-infected vines were
clearly identifed in winter due to delayed leaf fall (delay
approximate 15–20 days), which shows red leaves attached
to the vine, while healthy vines had no leaves (Figure 2(d)).
Te SD symptoms consistently showed in two seasons and
locations, this matched with observations in other studies
[2, 4, 33].

3.2. PLA Diference between SD Symptomatic and Asymp-
tomatic Canopy. Te average PLA was calculated for each
class (healthy, GVA only, GLRaVs only, and GVA+GLRaVs)
in both blocks and seasons at each time point (Figure 3). In
Riverland, the average size of coinfected (GVA+GLRaVs)
vines was consistently approximate 1m2 smaller than healthy
vines at 25 days after budburst (2.24m2 for healthy and
1.32m2 for coinfected vines) and fowering stage (4.42m2 for
healthy and 3.62m2 for coinfected vines) in S1 (Figure 3(a)).
Te statistical analysis showed the GVA+GLRaVs classes
were signifcantly (p< 0.0001) diferent from healthy in the
early season. However, the diference in PLA between the two
classes decreased after fowering. Figure 3(b) shows PLA of
coinfected vines was approximate 1.3m2 smaller than healthy
vines at 24 days after budburst (1.92m2 for healthy and
0.72m2 for coinfected vines) and fowering stage (4.26m2 for
healthy and 2.82m2 for coinfected vines) in S2. Similar to S1,
the diference in S2 between healthy and coinfected vines
decreased after fowering; however, it still has a signifcant
diference before veraison (with p< 0.0001).

In the Barossa vineyard, the PLA of coinfected Shiraz
was also signifcantly smaller than that of healthy in the early
season, especially at the fowering stage. In S1, the average
PLA of the healthy and coinfected vines at the fowering
stage was approximate 1.5m2 and 1.0m2 (p< 0.0001), re-
spectively, thus coinfection resulted in 33% smaller PLA
(Figure 3(c)). However, the diference between the two
classes started to decrease at veraison and no signifcant
diferences were observed in PLA in the latter part of the
growing season. Te PLA diference between diseased and
healthy vines was reduced by veraison although still sig-
nifcant (p � 0.0307). Te p-values for the diference be-
tween healthy and coinfected vines were more signifcant
around the fowering stage than at other times in both
seasons.

Te results indicated the symptomatic SD infection in
Shiraz could be predicted using PLA calculated from RGB
remote sensing images. Te PLA of healthy and SD-infected
vines had the highest diference between 20 and 70 days after
bud burst, which unveils the optimum time window for SD
detection as symptoms could be easily identifed due to the
signifcantly smaller PLA of the diseased vines. Te PLA of
SD-infected vines were 30%–70% smaller than the average
healthy vines. We suggest setting a PLA threshold of 70% in
healthy vines to classify as an SD infection in Shiraz.
Terefore, PLA values at or less than 70% are classifed as
being SD infected. Tis threshold works between 15–45 days

Table 2: Te ELISA test results. Samples classifed as “healthy”
tested negative for GVA, GLRaV-1, -3, and -4; GVA only is
grapevine virus A positive (single infection) but GLRaVs negative;
GLRaVs only is single or any combination of grapevine
leafroll-associated virus-1, -3, or -4 positive but GVA negative;
GVA+GLRaVs is coinfection of both GVA and one or more
GLRaV-1, -3 or -4.

Healthy GVA
only

GLRaVs
only GVA+GLRaVs Total

Riverland 23 3 0 16 42
Barossa 19 7 6 14 46
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after the budburst in the Riverland region and between
30–60 days after the budburst in the Barossa region. From
veraison onwards, this method appeared to be less efective
as canopy size diferences between infected and healthy vines
become smaller. However, our early PLA results could not
distinguish SD from Grapevine trunk disease (GTD), a de-
bilitating fungal disease that afects grapevines worldwide,
causing devigourated shoots, and sometimes dead cordons
[34]. Te PLA of GTD-infected vines would likely remain
low throughout the season since dieback results in very few
growing shoots and death of the cordons [35, 36]. In
contrast, SD-infected vines appear similar in growth to
GTD-infected vines, but in contrast to GTD vines, have
fully-developed canopies by the veraison stage; this key
diference can be used to diferentiate SD infection from
GTD or dead vines. Te PLA of SD-infected vines were 5%–
15% smaller than the average healthy vines at this stage.
Tus, we suggest that an 85% PLA threshold be used at the
veraison stage to distinguish between SD-and GTD-infected
or dead vines. Terefore, if the PLA is at or below 85% of the
PLA of healthy vines between 90–120 days after budburst,
the vine could possibly have GTD or be dead. Terefore,
a minimum of two data collection timepoints are suggested
per season, one in the early season and one in the mid-to-late
season for determining SD using remote sensing. However,
as the technique is an indirect detection method, which
measures the canopy response to the virus, we cannot ex-
clude the possibility that various other factors could be
altering the phenotype. For example, other biotic stresses

(fungal diseases), abiotic stresses (drought, salinity, heat
stress, and mechanical damage), and virus strains and
coinfections could infuence vegetative growth and alter PLA
[37]. Terefore, this remote sensing technique is indicative
but not a conclusive method for SD infection. Te current
results were based on two study sites and years, the further
assessments and virus testing validations are needed for the
diferent regions, years, the age of vines, and cultivars. As
additional information is acquired, diferent recommenda-
tions of the PLA threshold can be used for vineyards that
have similar conditions.

If validated, this method can potentially be scaled to
larger regions using RGB imaging from manned aircraft, or
even satellite imagery in the future as their camera reso-
lutions continue to increase.

3.3. Diference between Coinfection and Single Infections.
Canopy development of coinfected vines (GVA +GL-
RaVs) lagged behind healthy vines due to delayed bud-
burst in spring. Tis pattern was consistent in both
vineyards and seasons (Figure 3). In comparison, the
development of GVA and GLRaV (single infection) in-
fected vines had no signifcant diference from healthy
vines in both blocks or seasons. Despite previous studies
showing that GVA and its variants are associated with SD
[8], there is little systematic information between coin-
fection and SD symptoms. As the coinfection of GLRaVs
and GVA is commonly found in vines, it is important to

Infected
Healthy

(a)

Infected
Healthy

(b)

Healthy Infected

(c)

Infected
Healthy

(d)

Figure 2: Symptoms of SD-infected Shiraz. (a) Restricted spring growth with delayed bud burst in Shiraz; (b) Shiraz canopies fully
developed in midsummer at fruit set (EL-27); (c) canes of infected Shiraz show a lack of lignifcation at véraison (EL-35); and (d) red leaves
remain on infected Shiraz vines while healthy vines drop all leaves during the dormant season.
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consider both coinfection as well as environmental factors
when studying disease symptoms.

Te study found that SD symptoms in both Shiraz blocks
only occur in vines that are coinfected with GVA and one or
more GLRaVs, which in the vineyards we surveyed, were
found to be mostly GLRaV-1 or GLRaV-4 strain 9 (GLRaV-
9). We did not observe any typical SD symptoms when
Shiraz vines were infected with GVA only (i.e., without
GLRaVs). Similarly, Goszczynski and Habili [8] reported
that SD symptoms in Shiraz were always associated with
GVA group II and GLRaV-3 in South Africa. Consistent
with the results of the present study, the same authors also
observed that some vines did not exhibit any SD symptoms
when infected with GVA group II alone; however, only
visual evidence, but no quantitative evidence, was provided.

GVA variants of group II have been closely associated with
SD, but not groups I and III [3]. As the ELISA serological
method is unable to discriminate between virus variants, the
asymptomatic GVA-infected vines in our study could belong
to group I and/or III. A previous study also reported that the
variant GTR1-2 in GVA group II did not produce SD
symptoms in Shiraz; however, other group II variants
(BMO32-1, KWVMo4-1, and P163M5) produced SD
symptoms in both Shiraz andMerlot [33].Te GVA variants
in our study were unknown because the GVA primers used
for the RT-PCR test in our study were not variant-specifc.
However, if the GVA variants in the present study did not
belong to either group I or III, or the GTR1-2 variant (in
group II), we could then infer that coinfection of GVA and
GLRaVs is a requisite for SD symptoms in Shiraz. We are
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Figure 3: Average PLA for each lab-tested class at diferent times for both seasons in two vineyards.Te p-value of healthy vs GVA+GLRaV
shows in the graph, with ∗p≤ 0.05, ∗∗p≤ 0.01, ∗∗∗p≤ 0.001, ∗∗∗∗p≤ 0.0001, and nonsignifcant with a blank. (a, b) Riverland Shiraz in S1
and S2; (c, d) Barossa Shiraz in S1 and S2.
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unaware of any systematic studies that have been done to
understand the relationship between SD symptoms and the
combination of various viruses and their variants. Tis
hypothesis requires a comprehensive investigation, poten-
tially by using next-generation sequencing techniques to
screen all GVA and GLRaVs strains in the samples.

4. Conclusion

Reliable detection of grapevine viruses in the feld remains
challenging due to varying symptomology. Tis study sys-
tematically compared the canopy growth response of SD-
infected vines to healthy vines and proposed a rapid method
to predict the SD infection in the Shiraz blocks using visible
remote sensing technology. Tis technique has the potential
to rapidly detect SD in the feld, thereby providing prompt
guidance for sampling locations for tissue testing of viruses
as well as vineyard management. Further validation studies
including various sites, seasons, cultivars, and virus strains
are needed for this emerging technology. An additional, but
important fnding was that coinfection of GVA and GLRaVs
results in signifcant vine devigoration in Shiraz, which does
not occur with GVA or GLRaV alone. Tis observation was
consistent across diferent soils and seasons under diferent
weather conditions.
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Chapter 4 
 

 

Detecting grapevine virus infections in red and 
white winegrape canopies using proximal 
hyperspectral sensing 
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Preamble: 

Grapevine viral diseases often do not exhibit readily noticeable symptoms on the 

leaves, particularly in the case of white cultivars, which poses limitations on the 

detectability by RGB sensors. However, hyperspectral technology offers a solution by 

providing detailed spectral information that extends beyond the RGB spectral range of 

wavelengths. In this chapter, a ground-based approach was implemented, employing 

a proximal sensing method by using a handheld NIR spectroradiometer for the 

detection of GLD in both red and white cultivars. The findings of this study have been 

published in the open journal - Sensors, MDPI, 2023, 23(5), 2851.  

doi.org/10.3390/s23052851 
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Winegrape Canopies Using Proximal Hyperspectral Sensing
Yeniu Mickey Wang 1,2 , Bertram Ostendorf 3 and Vinay Pagay 1,*

1 School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, PMB 1,
Glen Osmond, SA 5064, Australia

2 CSIRO Manufacturing, 13 Kintore Ave, Adelaide, SA 5000, Australia
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Abstract: Grapevine virus-associated disease such as grapevine leafroll disease (GLD) affects grapevine
health worldwide. Current diagnostic methods are either highly costly (laboratory-based diagnostics)
or can be unreliable (visual assessments). Hyperspectral sensing technology is capable of measuring
leaf reflectance spectra that can be used for the non-destructive and rapid detection of plant diseases.
The present study used proximal hyperspectral sensing to detect virus infection in Pinot Noir (red-
berried winegrape cultivar) and Chardonnay (white-berried winegrape cultivar) grapevines. Spectral
data were collected throughout the grape growing season at six timepoints per cultivar. Partial
least squares-discriminant analysis (PLS-DA) was used to build a predictive model of the presence
or absence of GLD. The temporal change of canopy spectral reflectance showed that the harvest
timepoint had the best prediction result. Prediction accuracies of 96% and 76% were achieved for Pinot
Noir and Chardonnay, respectively. Our results provide valuable information on the optimal time
for GLD detection. This hyperspectral method can also be deployed on mobile platforms including
ground-based vehicles and unmanned aerial vehicles (UAV) for large-scale disease surveillance
in vineyards.

Keywords: GLRaV-1; GVA; GLD; disease detection; proximal sensing; spectroradiometer; PLS-DA

1. Introduction

Virus-associated disease such as grapevine leafroll disease (GLD) affects grapevine
health worldwide [1]. GLD has native impacts on both grape quality and yield, for example,
lower anthocyanin accumulation rate resulting in poor colour development in red berries,
fewer total soluble solids leading to lower ◦Brix, and smaller cluster size resulting in low
yield [1–4]. This viral disease is vectored by sap-feeding insects including mealybugs and
soft scales in vineyards [5,6] and causes long-term economic loss if left uncontrolled [4,7,8].

Grapevine leafroll-associated viruses (GLRaVs) such as GLRaV-1, -2, -3, -4, and -7
cause GLD in grapevines [9]. In Australian vineyards, GLRaV-1, -3, and -4 have been
frequently found [10]. Co-infection could also happen in an individual vine such as
infection with multiple GLRaVs (e.g., GLRaV-1 and GLRaV-3), different strains or variants
of one GLRaV, or with multiple grapevine viruses. As an example of the latter, grapevine
virus A (GVA) is often found to co-exist with GLRaV in vines, as GLRaVs act as a helper
virus for GVA transmission by insect vectors [11]. In certain cultivars including Shiraz,
Merlot, and Malbec, the co-infection of GLRaVs and GVA could lead to another devastating
disease—Shiraz disease [12].

As there is no cure for virus-infected vines, preventive disease management methods
such as quarantine, pest control, and roguing infected vines are the only effective methods
to control viral diseases in vineyards [13,14]. However, roguing requires accurate diagnos-
tic results for guidance. Laboratory-based diagnostic methods including the serological
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method—enzyme-linked immunosorbent assay (ELISA)—and molecular method—reverse
transcription polymerase chain reaction (RT-PCR)—often provide accurate results for virus
detection; however, testing rates are hampered by their high costs. Visual assessment is a
phenotypic detection method relying on the disease symptoms, which can be an alternative
detection method and relatively cost-effective. For example, GLD in red-berried cultivars
shows symptoms of reddening on leaves with green veins and rolling leaf edges, while in
white cultivars, the same virus shows symptoms of leaf rolling at the edge, and subtle leaf
rolling, which is not consistent and more difficult to detect visually compared to red-berried
cultivars [15]. Thus, symptom-based detection of GLD is only relatively reliable for red
cultivars and for specific leafroll viruses such as GLRaV-3 [16]. The variable reliability of
the visual method stems from the varying levels of experience of the surveyors [17].

Hyperspectral technology has the proven capability of detecting plant diseases and, in
some cases, even on asymptomatic leaves, as it measures spectra beyond those of human
vision [18]. Various studies have used the proximal hyperspectral sensing method for GLD
detection directly in contact with grapevine leaves or under a controlled environment in
a laboratory [19–23]. However, these studies used active sensors, which rely on artificial
illumination [24]. The benefit of active sensors is their consistent incident light levels and
spectra that are unaffected by the external light environment. The drawback of using these
types of sensors is that they can be time-consuming, as only a small portion of single leaves
are measured in the field or leaf samples have to be taken to the laboratory for measure-
ments. To address the speed limit of traditional proximal hyperspectral sensors, Bendel
et al. [25] used an over-the-row grape harvester equipped with an active hyperspectral
sensor for GLD detection in a vineyard. This method of detection was relatively quick;
however, the setup of the system was complicated and impractical for growers to use on a
routine basis without significant technical expertise.

In contrast to active sensors, passive sensors use natural light (solar radiation) for the
illumination of leaves to measure their reflectance spectra. The detection area is generally
larger in size depending on the measure distance, and the measurement can be relatively
fast and simple to handle in practice [26]. However, very few studies have used passive
hyperspectral sensors to detect grapevine viral disease at a canopy scale. Nguyen et al. [27]
used a proximal sensing hyperspectral camera—Specim IQ—to detect grapevine vein
clearing virus (GVCV) infections; however, the camera was a line scanner imaging sensor
that required a fixed position and ca. 0.5 min for each hyperspectral image collection, which
was time-consuming.

Various machine-learning algorithms have been used for disease classification in hy-
perspectral data, such as partial least squares (PLS), support vector machines, random
forests, convolutional neural networks, and more recently deep learning algorithms [27–29].
PLS is the gold standard for binary classification; it is computationally inexpensive com-
pared to other algorithms [30]. The principle of PLS is similar to principle component
analysis, but it is a supervised method that uses the known information as input to train
the model [31]. PLS relates two data matrices X (spectral dataset for all samples) and Y
(disease status for all samples) to maximise the co-variance between components from
the two data sets [32,33]. The output of PLS analysis is a linear model that is used for dis-
crimination problems, also called partial least squares-discriminant analysis (PLS-DA) [34].
Various studies have used the PLD-DA method to analyse spectral data for plant disease
classification [35–39].

The present study used a hand-held passive spectroradiometer for the proximal
detection of virus infection in grapevines, and PLS-DA was used for modelling. Our aim
was to (1) evaluate the potential of passive proximal hyperspectral sensors to detect virus
infection on both red- and white-berried grape canopies in field conditions; (2) optimise the
hyperspectral data processing workflow to produce a robust modelling method for disease
prediction using the PLS-DA algorithm; and (3) determine the optimal growth stage for
disease detection using this approach. This study could provide valuable guidance for using
proximal sensing such as detection time, measuring direction, appropriate environmental
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conditions, and measurement distance. Moreover, this method is readily applicable to both
ground-based mobile platforms as well as low-altitude remote sensing platforms such as
unmanned aerial vehicles (UAV) and airplanes for large-area disease surveillance.

2. Materials and Methods
2.1. Experimental Site and Plant Virus Testing

This study was conducted in a commercial vineyard located in the Adelaide Hills
wine region—Kuitpo, SA, Australia (35◦13′ S, 138◦39′ E). Spectral data collection and plant
tissue sampling were performed in the growing season 2020/21, from September 2020
to April 2021. Two grape cultivars—Pinot Noir (red cultivar) and Chardonnay (white
cultivar) were selected for the study. Both cultivars were planted in 1988, own-rooted,
on a podsol soil type. The vineyard was drip irrigated at 1.8 ML per hectare per season.
Vines were spur pruned to 26 buds per metre, and the canopy was uniform in size in the
block. Two sulphur sprays per season to control the pest were based on recommendations
by a local viticulture consultant. The grapevines did not have any visible symptoms of
nutrient deficiencies or diseases other than GLD. A ground-based visual inspection for GLD
symptoms (leaf reddening on Pinot Noir and leaf rolling on Chardonnay) was conducted
during the previous growing season, 2019/20, which showed a ca. 40% infection rate in the
Pinot Noir block, and ca. 60% infection rate in the adjacent Chardonnay block.

Two rows of vines of each grape cultivar were selected for measurement for a total of
173 Pinot Noir and 174 Chardonnay vines. Each vine was tested with ELISA for ground
truthing (presence or absence of leafroll virus). The leaf petiole tissue was sampled as
suggested by Monis and Bestwick [40] at the harvest stage (March 2021). Virus testing was
conducted with the DAS-ELISA (double antibody sandwich-enzyme-linked immunosor-
bent assay) test kits produced by Bioreba (Reinach, Switzerland). The test method strictly
followed the procedure produced by Bioreba [41]. Four viruses (GLRaV-1, -3, -4, and
GVA) were tested for each sample as per the manufacturer’s instructions. To confirm
the accuracy of ELISA results, 10 of the ELISA-tested positive samples and 20 negative
samples were tested with RT-PCR (GLRaV-1, -3, -4, -4 strain 6, -4 strain 9, and GVA) in a
NATA-accredited commercial laboratory—Affinity Labs (Adelaide, SA, Australia). The
RT-PCR results matched all ELISA-tested results. Based on the test results, the samples
were grouped into two classes: disease (GLRaV-1 + GVA positive) and healthy (tested
negative for GLRaV-1, -3, -4, and GVA).

2.2. Spectral Data Collection

Leaf spectral reflectance data were collected using a portable hand-held spectrora-
diometer (ASD FieldSpec® HandHeld 2, Malvern Panalytical Ltd., Malvern, UK). The
instrument is a silicon array-based sensor that measures light spectra between 325–1075 nm
at 1 nm spectral resolution. The optical input has a 25◦ conical field of view (FOV). Data col-
lection was conducted under sunny conditions at each timepoint. A Labsphere Spectralon®

white reference panel (Halma plc, Amersham, UK) was used as the calibration target. The
spectroradiometer was calibrated with the white reference (reflectance = 1) immediately
before the measurement and was re-calibrated every 10 min to account for the chang-
ing illumination due to the sun angle. The instrument was held horizontally (parallel to
the ground plane) and pointed to the centre of the canopy, perpendicular to the vertical
canopy wall, as shown in Figure 1. The measurement distance was approx. 0.5 m from
the canopy, which represented a ca. 20 cm diameter circle on the canopy (approx. three to
four fully expanded and mature leaves).
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Figure 1. Spectral data measurement. The yellow shaded area shows the circular field of view of 

diameter of approx. 20 cm based on the approx. 0.5 m horizontal measurement distance. 
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six timepoints. 
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Figure 1. Spectral data measurement. The yellow shaded area shows the circular field of view of
diameter of approx. 20 cm based on the approx. 0.5 m horizontal measurement distance.

Since the measurement used solar radiation as the light source, consistency in incident
light was critical. Different instrument positions relative to the canopy were tested at the
beginning of the season, including holding the sensor vertically and horizontally to measure
the top and side of the canopy as well as the sunlit and sunshade sides of the canopy. After
several test measurements, we determined that the horizontal position (perpendicular to
the canopy wall) at the sunlit side of the canopy provided the most consistent results. All
vines in each of the two rows were measured within the time window of 12:00–14:00 h. One
spectrum measurement per vine was collected at a monthly interval between the months
of November and April. The measurements started from the flowering development stage
(EL-23) in November until post-harvest (April), which resulted in six timepoints.

2.3. Data Processing and Modelling

The spectral data processing and modelling were performed as described below using
the PLS_Toolbox software plugin (v.9.0, Eigenvector Research, Inc., Manson, WA, USA) within
the MATLAB R2021b (The MathWorks Inc., Natick, MA, USA) software environment.

2.3.1. Spectral Data Pre-Processing

To compensate for variations in the leaf angle, sun angle, and instrument holding
position during field measurement, the raw spectral data was pre-processed. Pre-processing
allows for noise removal, light scattering correction, spectral deviation compensation, and
scale optimisation [42,43]. The transformed spectral data improved the prediction model
and increased robustness.

Pre-processing in this study included three steps: smoothing, normalisation, and
scaling. Firstly, the raw data were smoothed using a Savitzky-Golay Filter (SavGol) [44]
with the filter width w = 7. The high-frequency noise was smoothed from the raw data,
especially for the wavelengths below 400 nm and above 900 nm, due to the sensitivity of the
sensor being lower in these regions. Secondly, the smoothed spectral data were normalised
with the standard normal variate (SNV) method [45]. The normalised data overcomes
multiplicative and baseline effects caused by a difference in leaf angles, measurement
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distance and angles. Thirdly, the data were scaled using the mean centre method [46],
which brought all wavelengths to the same magnitude and improved the models in the
current study. Figure 2 demonstrates an example of pre-processing for 173 spectral data
derived from Pinot Noir vines.
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Figure 2. Spectral data pre-processing steps for Pinot Noir at the February 2021 timepoint. The raw
spectral data is smoothed using the SavGol algorithm with seven bandwidths, then normalised using
the standard normal variate algorithm and, lastly, scaled using the Mean Centring algorithm for
750 bands.

2.3.2. Outlier Removal

The grapevine canopy wall sometimes has gaps and holes that can cause outliers in the
dataset. An outlier removal step is necessary, as the outliers could significantly influence
the model when the sample number is not large. The Hotelling’s T2 and Q residuals plot
was used for outlier identification [47]. The abnormally high values in either Hotelling’s T2

or Q residuals were considered outliers and were removed from the dataset; for example,
either the Hotelling’s T2 value or Q residual values larger than 10 were considered outliers
in the data set, which resulted in two outliers being removed from the April 2021 timepoint
from the Chardonnay data set and one outlier being removed from the April 2021 timepoint
from the Pinot Noir data set.
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2.3.3. Cross-Validation

Cross-validation (CV) is a practical method for assessing the performance of the model,
particularly for small sample sizes such as in this study [48]. The Venetian blinds method
was used for the CV method [49]. The data was split into 10 divisions (blinds), and one
sample per blind was taken for validation. Thus, the model was built with 90% of the data
and validated with 10% of the data. The process was repeated 10 times to cover all data in
the training data.

2.3.4. Modelling

PLS-DA was used for the classification modelling in this study due to its simplicity
and its computationally efficient and interpretable results [50]. Similar to the components
in principle component analysis, latent variables (LVs) represent the linear combination
of variables in PLS-DA models [51]. The number of LVs selected for the PLS-DA model
could affect the performance of the model. Typically, increasing the number of LVs in a
model results in lower prediction error (Equation (1)). However, redundant LVs could
result in overfitting, thus the CV error was considered in determining the appropriate
number of LVs to use in the model. The sum of error in CV was calculated for selected LVs;
this procedure is known as Wold’s R criterion [52]. To build a robust model, additional
LVs should be selected only when the CV error decreases significantly, which may not
necessarily occur at the lowest error. A scree plot of the calibration and CV errors aids the
LVs selection.

Error =
FP + FN

FP + FN + TP + TN
(1)

where FP is the number of false positives (healthy that were incorrectly classified disease),
FN is the number of false negatives (disease that was incorrectly classified as healthy), TP is
the number of true positives (disease that was correctly identified), and TN is the number
of true negatives (healthy that were classified correctly).

The PLS-DA model used LVs to calculate each data point (one spectral measurement)
and project the result to a linear model—PLS predicted value (disease). The higher the
value, the more likely the sample was to be in the predicted (disease) class. Then, a
threshold was calculated to discriminate between the two classes. The threshold was based
on a balance between sensitivity (Equation (2)) and specificity (Equation (3)) to minimise
the error. The receiver operating characteristic (ROC) curve was used to determine the
threshold, and the PLS-predicted value at the intersection of sensitivity and specificity was
selected as the threshold (Figure 3a). Figure 3b visually illustrates the prediction for the
Chardonnay model at the March 2021 timepoint. The samples that lie above the threshold
were predicted as ‘Disease’ while samples below the threshold were predicted as ‘Healthy’.

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

The PLA-DA models were developed for each cultivar from spectral data collected
at each timepoint. The performance of each model was evaluated based on the binary
confusion matrix of calibration and CV results (TP, TN, FP, and FN); the sensitivity and
F1 score (Equation (4)); the accuracy (Equation (5)), and Matthews correlation coefficient
(MCC) [53] (Equation (6)).

F1 score =
2·TP

2·TP + FP + FN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
= 1− Error (5)

MCC =
TP·TN− FP·FN√

(TP + FP)·(TP + FN)·(TN + FP)·(TN + FN)
(6)
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A regression vector plot for each model was generated to identify the important
wavelengths required for modelling. Lastly, each model was used for predicting the data
from other timepoints for each cultivar.
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Figure 3. PLS-DA threshold determination. (a) ROC curve for disease class; (b) plot of PLS predicted
value for disease class for Chardonnay in March 2021. The threshold was 0.698 in this model.

3. Results
3.1. Virus Test Results

The laboratory test results showed that all of the virus-infected vines were co-infected
with two viruses, GLRaV-1 and GVA, for which 206 out of 347 samples tested positive. All
vines tested negative for GLRaV-3 and -4. In addition, 141 vines tested negative for each of
the viruses (GLRaV-1, -3, -4, and GVA). The sample sizes of each group for Chardonnay
and Pinot Noir are shown in Table 1.

Table 1. ELISA test results for both cultivars.

Diseased
(GLRaV-1 + GVA) Healthy Total

Chardonnay 134 40 174
Pinot Noir 72 101 173

3.2. Disease Symptomology

The disease symptoms for Chardonnay were difficult to visualise. There was no visual
difference between healthy and diseased vines at the early flowering stage (EL-23; Figure 4a)
and pea-size berry stage (EL-31; Figure 4b). Leaves of the diseased vines started to show
mild yellowing before harvest (Figure 4c). Approx. 5% of leaves in the GLD-infected
canopy showed leaf-rolling symptoms (Figure 4d). In Pinot Noir, disease symptoms did
not appear before the flowering stage (Figure 4e). A few reddening spots appeared on
mature leaves after the fruit setting stage (EL-27; Figure 4f). The red leaf and green veins
became obvious at the veraison stage (EL-35; Figure 4g). The red leaf disease symptoms
were most evident from harvest through post-harvest (Figure 4h).
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Figure 4. The GLD-infected vines at different development stages. Chardonnay in (a) November—
flowering stage (EL-17); (b) December— pea-size berries; (c) February—veraison; (d) April—post-
harvest. Pinot Noir in (e) November—flowering; (f) December—pea-size berries; (g) February—
veraison; (h) April—post-harvest.
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3.3. Critical Spectral Regions for Disease Classification

The difference between normalised average spectra of diseased and healthy vines was
compared at each timepoint for the two cultivars as shown in Figure 5. An overall increase
in reflectance difference over time in the diseased vines was observed in Chardonnay,
which had the highest relative reflectance in March 2021. However, the difference decreased
between the diseased and healthy vines in April. Between 690 to 730 nm in the red-edge
region had a higher difference, and between 530 to 630 nm in the visible region showed a
small increased reflectance in diseased Chardonnay. This matched the visual symptoms that
diseased leaves were slightly yellower than healthy leaves, especially at later growth stages.
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Figure 5. The difference of normalised averaged spectral reflectance of diseased to healthy vines
(value at 0) for each timepoint.

In Pinot Noir, the diseased vines showed a similar pattern as Chardonnay in the early
season (November and December). However, beginning in January (around the veraison
stage), the diseased vine showed a significantly lower reflectance at a peak around 550 nm.
Similar to Chardonnay, the red-edge region in Pinot Noir had much higher reflectance
compared to healthy vines. In April, the spectral reflectance of diseased vines showed
the highest difference to healthy vines compared to other timepoints, which had a higher
reflectance at around 650 nm and between 690–730 nm, and lower reflectance at 550 nm.

3.4. The Model Results

The comprehensive results, including the confusion matrix, sensitivity, F1-score, ac-
curacy, and MCC for each model, are shown in Table 2 (Chardonnay) and Table 3 (Pinot
Noir). In Chardonnay, the model built at the earliest timepoint had the lowest accuracy
but gradually improved over time. The best model result was in March, with a sensitivity
of 0.76 and F1-score of 0.83 for the disease class; an accuracy of 0.76 and an MCC of 0.47
in the calibration set; and sensitivity and F1-score for the disease class of 0.74 and 0.81, an
accuracy of 0.74, and an MCC of 0.41 in the validation set.

In Pinot Noir, the models did not well perform in the early season (November and
December). However, the model improved dramatically beginning in January. The accuracy
of the model was 0.89 and MCC was 0.78 as the diseased leaf started showing reddening
symptoms. The best model was after harvest in April. The sensitivity and F1-score for the
disease class were 0.92 and 0.95, respectively, the accuracy was 0.96, and MCC was 0.92
in the calibration set; the sensitivity and F1 score for the disease class were 0.92 and 0.94,
respectively, the accuracy was 0.95, and MCC was 0.89 in the validation set.
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Table 2. PLS-DA results for Chardonnay. Sample number: Disease = 134, Healthy = 40.

Calibration Model Results Cross-Validation Results

Confusion Matrix Confusion Matrix

Time LVs Predicted Actual
Disease

Actual
Healthy

Sensi-
tivity

F1-
Score

Accu-
racy MCC Actual

Disease
Actual
Healthy

Sensi-
tivity

F1-
Score

Accu-
racy MCC

Nov 2
Disease 80 15 0.60 0.70

0.60 0.19
77 14 0.57 0.68

0.59 0.19Healthy 54 25 0.63 0.42 57 26 0.65 0.42

Dec 3
Disease 95 12 0.71 0.79

0.71 0.35
92 13 0.69 0.77

0.68 0.31Healthy 39 28 0.70 0.52 42 27 0.68 0.50

Jan 3
Disease 96 10 0.72 0.80

0.72 0.40
91 15 0.68 0.76

0.67 0.26Healthy 38 30 0.75 0.56 43 25 0.63 0.46

Feb 3
Disease 98 11 0.73 0.81

0.73 0.40
96 16 0.72 0.78

0.69 0.28Healthy 36 29 0.73 0.55 38 24 0.60 0.47

Mar 4
Disease 102 9 0.76 0.83

0.76 0.47
99 11 0.74 0.81

0.74 0.41Healthy 32 31 0.78 0.60 35 29 0.73 0.56

Apr 4
Disease 88 11 0.66 0.76

0.67 0.32
86 15 0.64 0.73

0.64 0.22Healthy 46 28 0.72 0.50 48 24 0.62 0.43

Table 3. PLS-DA results for Pinot Noir. Sample number: Disease = 72, Healthy = 101.

Calibration Model Results Cross-Validation Results

Confusion Matrix Confusion Matrix

Time LVs Predicted Actual
Disease

Actual
Healthy

Sensi-
tivity

F1-
Score

Accu-
racy MCC Actual

Disease
Actual
Healthy

Sensi-
tivity

F1-
Score

Accu-
racy MCC

Nov 1
Disease 43 40 0.60 0.55

0.60 0.20
43 46 0.60 0.53

0.57 0.14Healthy 29 61 0.60 0.64 29 55 0.54 0.59

Dec 3
Disease 48 33 0.68 0.63

0.67 0.35
45 34 0.63 0.60

0.65 0.29Healthy 23 68 0.67 0.71 26 67 0.66 0.69

Jan 2
Disease 63 10 0.88 0.87

0.89 0.78
64 12 0.89 0.86

0.88 0.77Healthy 9 91 0.90 0.91 8 89 0.88 0.90

Feb 2
Disease 61 3 0.85 0.90

0.92 0.84
58 2 0.81 0.88

0.91 0.81Healthy 11 98 0.97 0.93 14 99 0.98 0.93

Mar 3
Disease 54 9 0.75 0.80

0.84 0.68
56 12 0.78 0.80

0.84 0.67Healthy 18 92 0.91 0.87 16 89 0.88 0.86

Apr 5
Disease 66 1 0.92 0.95

0.96 0.92
66 3 0.92 0.94

0.95 0.89Healthy 6 100 0.99 0.97 6 98 0.97 0.96

Due to the unbalanced samples, the F1 score was different between disease and healthy
classes in Chardonnay. A low sample number in the healthy class resulted in a low F1 score
because it did not count TN.

One advantage of the PLS-DA model is the explainable linear relationship between
classes [34]. As the spectral signal changes over time, the evidence shows in the PLS
predicted value in the combined violin and box plots (Figure 6). The vertical histograms
show the sample distribution of both classes in the predicted value axis. Increased sep-
aration between healthy and disease classes can be observed over time in the plots. In
the Chardonnay plot (Figure 6a), the samples in disease and healthy were close to each
other in November and started to separate in December, and the largest separation was
in March. In Pinot Noir, two classes overlapped in the first two timepoints; however, a
noticeably higher PLS predicted value could be observed in disease samples from January,
with the largest difference in April (Figure 6b). This plot matched the visual symptoms
and the model results (Tables 1 and 2) that provide a visual and subjective basis for the
model performance.
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Figure 6. The combined violin plot and box plot of the predicted value of disease from the PLS-DA
model for (a) Chardonnay, and (b) Pinot Noir at each timepoint. The larger the value, the higher
the probability of a sample belonging to a diseased vine, and the smaller the value, the lower the
probability of a diseased vine. In this binary model, a low value means the sample more likely
belongs to a healthy vine. The greater the separation between actual disease and healthy samples, the
better the performance of the classification model.

3.5. Model Prediction Matrix

The model built at each timepoint was used to predict the data at other times for each
cultivar, and MCC was used to assess the prediction performance. MCC can overcome the
issue of the imbalanced data set in binary classifications (disease or healthy), which made
a better comparison for model performance in both cultivars at the same scale compared
to other parameters (accurate, F1-score, and sensitivity) [54]. The matrices of MCC results
of the model at each timepoint that were used to predict all other times are presented in
Figure 7. In Chardonnay (Figure 7a), only the January model could reasonably predict the
data in February; no other models were useful for predictions at different times. In Pinot
Noir (Figure 7b), the model built from January data can forward predict February, and
February can backward predict January very well. The March model backward predicted
both January and February data. The April model had the best forward prediction overall;
however, this model did poorly in predicting earlier timepoints.
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4. Discussion

The current study systematically assessed virus-infected (GLRaV-1 + GVA) vines in
both red (Pinot Noir) and white (Chardonnay) winegrape cultivars from flowering to
post-harvest stages, both visually as well as with a proximal spectroradiometer, under field
conditions. Visual assessments did not allow us to distinguish between virus-infected and
healthy vines in the early season (before January in either cultivar). Typical GLD symptoms
manifested as reddening on leaves in Pinot Noir and leaf edge rolling in Chardonnay and
commenced in the virus-infected vines around late December. The severity of symptoms
gradually increased and became visually more evident over time. This indicates that the
virus may be multiplying in the vines and increasing the virus concentration or titre level
during the growing season [55]. Another study also found there was a higher virus titre
in symptomatic vines than in asymptomatic vines [56]. However, the symptomatology
of virus infection is complicated and depends on various factors including environment,
growth stage, virus isolate, cultivars, and infection ages [15,57]. It is therefore challenging
to detect viral diseases with only visual symptomology, especially for the white cultivars,
as their symptoms are less visually obvious compared to red cultivars. Montero et al. [58]
found the GLRaV-3-infected Malvasia de Banyalbufar grapevine (white cultivar) did not
show visual symptoms; however, the leaf net carbon dioxide assimilation and electron
transport rates of infected vines were lower compared to healthy vines. This indicates the
virus could affect plant growth and physiology even if it is asymptomatic. A systematic
investigation of the symptomology of virus-inoculated vines over a period of time for white
cultivars should be conducted, similar to the study done on GLRaV-3 infected red cultivars
in New Zealand [16,59].

Our study showed that the average spectral reflectance of GLRaV-1 + GVA-infected
vines was different to healthy vines in certain spectral regions. In the visible spectrum
region (400–700 nm) in Pinot Noir, the green (550 nm) and red regions (630–650 nm) showed
a large difference between virus-infected and healthy vines at the later stage, consistent with
the findings by Naidu et al. [19], who measured the GLRaV-3-infected leaves in Cabernet
Sauvignon and Merlot (both red cultivars) with leaf contact-based spectroradiometer. Gutha
et al. [60] demonstrated that the red leaf symptom in GLRaV-3-infected Merlot (red cultivar)
was largely caused by the accumulation of anthocyanin in leaves as a response to the stress.
The authors also found that infected vines’ leaves contained approx. 20% less chlorophyll
and carotenoids than healthy leaves. As anthocyanins mainly absorb green and yellow
light, the leaves appear red when anthocyanin content is high [61]. Anthocyanins absorb
the spectral wavelength between 500 and 600 nm and especially at 550 nm [62]. This can be
observed from January to April in Pinot Noir (Figure 5), a peak low reflectance was around
the 550 nm spectral region. As anthocyanin pigments appear red in colour, the red spectral
region (620–650 nm) in the virus-infected Pinot Noir had a higher reflectance compared
to the healthy vines. In comparison, the virus-infected Chardonnay had poor expression
of visual symptoms due to the lack of anthocyanin biosynthesis in white cultivars [63,64].
Thus, it was expected that there would be less difference between healthy and diseased
vines in the blue and red spectral regions. We found that virus-infected Chardonnay
had a higher average reflectance in the 530–630 nm region, which may be due to lower
chlorophyll content in the leaves. In the red-edge region, both virus-infected red and white
cultivars showed a high reflectance between 690 and 730 nm, indicating that the plant
was under stress. Various studies have shown that the red-edge spectrum has a linear
relationship with the chlorophyll content in leaves and is sensitive to stress [65–68]. This
was clearly observed in our study (Figure 5) and suggests that the red-edge spectrum is
useful for virus infection detection in both red- and white-berried grapevines. Based on
the spectral difference between healthy and diseased vines, a multispectral sensor offers
a simpler solution compared to hyperspectral sensing with a red-edge and green bands;
e.g., MicaSense RedEdge P and Sentera 6X multispectral cameras could be used for viral
disease detection in grapevines.
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From the PLS-DA-predicted value plots and the model results, we observed increasing
model accuracy over time for both red and white cultivars, which can be related to the
development of disease symptoms in grapevines and the associated changes in spectral
reflectance. The model prediction results (MCC) matrix (Figure 7b) showed that Pinot Noir
models in both January and February could reliably predict each other’s data, indicating
that the spectral signatures of virus-infected vines are similar during this period. The best
model for Pinot Noir was in April with an accuracy of 0.96 and an MCC of 0.92. This result
indicates that the later part of the growing season (post-harvest) is the best time for viral
disease detection in red cultivars if using the current proximal sensing method. However,
if the vines are machine-harvested, resulting in considerable damage to the canopy, the
current method may be unreliable, as the physical damage could change the spectral
reflectance of the leaves. In our study, the grapes were hand-harvested with minimum
alteration to the canopy, i.e., virtually no damage to the leaves. The accuracy of Chardonnay
was low in April; this may be due to the onset of leaf senescence that creates gaps and holes
in the canopies, which results in some background noise during the measurement. The
best model for virus-infection prediction in Chardonnay was in March (at harvest time)
with an accuracy of 0.76 and MCC of 0.47. The result was not considered high compared to
Pinot Noir. Future studies could use sensors with different spectral ranges, e.g., shortwave
infrared (SWIR). Bendel et al. [25] used a SWIR (1000–2500 nm) hyperspectral sensor to
detect viral diseases in grapevines. The authors achieved an accuracy between 0.82 to 0.89
for GLRaV-1 detection, and 0.82 to 1.00 accuracy for GLRaV-3 detection on symptomatic
white cultivars (Aligoté, Gewürztraminer, and Silvaner) in the vineyard.

In the present study, only the PLS-DA algorithm was used for modelling, as the
purpose of this study was not to compare different statistical and machine learning al-
gorithms, but rather to assess the temporal spectral difference and changes for reliable
detection of virus-infected vines. PLS-DA is computationally efficient, relatively fast, and
provides easy-to-interpret results that can quickly compare the model results from each
timepoint. The model results showed high accuracy in the classification of virus-infected
and healthy vines in Pinot Noir and moderate accuracy for Chardonnay. However, various
other classification techniques can be used for high dimensional datasets, including linear
discriminant analysis, k-nearest neighbours, support vector machine, and artificial neural
networks [69]. Many studies compared different modelling techniques for plant disease
detection [25,27,70,71]. It is worth testing other discrimination techniques in future studies
to improve the accuracy for white cultivars, such as the deep learning method, which has
been shown to reliably classify plant species and diseases with both proximal and remote
sensing hyperspectral data [72,73].

Our study demonstrated that the proximal spectroradiometer in the field with a solar
radiation source is a practical method for predicting viral disease in grapevines. The spec-
tral difference of diseased Pinot Noir showed a similar pattern to other GLD-infected red
cultivars that were measured with an active sensor (leaf contacted), which demonstrated the
reliability of the proximal sensing. The proximal sensing method collected data relatively
simply and rapidly compared to on-leaf, contact-based sensors. The method developed
from the present study could be readily applicable to different sensing platforms for future
studies, such as a land vehicle platform for fast disease detection in vineyards [74], or
using remote sensing platforms such as UAV or airplane platform for large-scale disease
surveillance in vineyards. For example, MacDonald et al. [75] used remote-sensing hyper-
spectral images from an airplane platform for GLRaV-3 detection in Cabernet Sauvignon in
the vineyards.
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5. Conclusions

Detecting viral diseases in grapevines is achievable using a proximal hyperspectral
sensor. The current study used a hand-held spectroradiometer to assess spectral differences
between virus-infected and healthy vines under field conditions. The PLS-DA model was
used to classify the diseased and healthy vines; this model proved to be a suitable method
for viral disease detection in grapevines. The model result showed an optimal time window
for detecting viruses in Pinot Noir and Chardonnay. Comparing the spectral reflectance
between healthy and diseased vines, the red-edge spectral region was found to be an
important region for GLD symptom detection in both Pinot Noir and Chardonnay. The
550 nm spectral region is important, particularly in red cultivars. This indicates that a mul-
tispectral sensor with green and red-edge bands could be used for viral disease detection
in red cultivars. The proximal sensing method used in this study applies to other platforms
such as ground-based vehicles or low-altitude remote-sensing platforms. Although the
detection of viral diseases in white-berried grape cultivars remains challenging, this may
be addressed in future studies through advances in sensing technology with a wider range
of spectra and data processing methods and algorithms.
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Chapter 5 
Seeing the unseen: Detecting plant viral 
diseases using high-resolution 
hyperspectral imagery 

Wang, Y.M.; Ostendorf, B.; Pagay, V. 

Preamble: 

Proximal hyperspectral sensing offers the capability to detect disease symptoms that 

are challenging to visualise. However, compared to remote sensing methods, it is 

relatively slow, making it difficult to efficiently detect diseases in large vineyards. To 

overcome this limitation, low-altitude flying UAVs can be equipped with small 

hyperspectral cameras to conduct vineyard-scale scanning. This technology provides 

distinct advantages, including high spatial and spectral resolution hyperspectral 

images, which enable the rapid detection of unnoticeable grapevine viral disease 

symptoms on a large scale. This chapter presents a study that leveraged UAV-based 

hyperspectral remote sensing data to detect GLD and SD in three Australian vineyards. 

This chapter has been submitted for publication on 5 May 2023 and is currently under 

review for publication in the journal - ISPRS Open Journal of Photogrammetry and 

Remote Sensing. 
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Abstract 16 

Plant viral diseases cause substantial productivity and economic losses to crops globally. Current 17 
disease detection methods are expensive and labour-intensive. Low-altitude hyperspectral remote 18 
sensing provides high spectral and spatial resolutions required for precise disease detection of crops, 19 
and is particularly useful in cropping systems that have inter-row vegetation such as orchards and 20 
vineyards. However, no studies to date have applied this method for the detection of viral diseases in 21 
grapevine (Vitis spp.). The present study evaluates the feasibility of unmanned aerial vehicle (UAV)-22 
based hyperspectral sensing in the visible and near-infrared (VNIR) spectral bands to detect two 23 
economically significant viral diseases – Grapevine Leafroll Disease (GLD) and Shiraz Disease (SD) – in 24 
four popular wine grapevine cultivars in Australian vineyards. The partial least squares discriminant 25 
analysis (PLS-DA) method was used to discriminate between diseased and healthy pixels from the 26 
hyperspectral image. The diseased vines were classified with Receiver Operating Characteristics (ROC) 27 
curve using the disease pixel ratio. The model predictions for red- and white-berried grapevine 28 
cultivars achieved an accuracy of 98% and 75%, respectively. For each viral disease, unique spectral 29 
regions and optimal detection times during the growing season were identified. Our work 30 
demonstrates the value of hyperspectral remote sensing for the detection of viral disease infection 31 
patterns in vineyards within both red and white grape cultivars.  32 

 33 

Keywords: Grapevine Leafroll Disease; Shiraz Disease; low-altitude remote sensing; GLRaVs; GVA; PLS-34 
DA; virus surveillance 35 

 36 

 37 
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1. Introduction38 

Grapevine viral diseases cause substantial productivity and economic losses in the viticulture industry 39 
globally (Basso et al., 2017; Martelli, 2017). Virus infections alter the physiology of the vines, which 40 
affects carbohydrate metabolism, unbalances plant hormones, reduces chlorophyll content, and 41 
accumulates soluble sugar in the leaves thereby reducing the sugar translocated to the fruit (Hull, 42 
2014b; Naidu et al., 2015). The latter leads to lower total soluble solids in berries, decreased 43 
anthocyanin in berry skin, and reduced yield of the grapes (Alabi et al., 2016; Lee et al., 2009; Naidu 44 
et al., 2014). Long-term economic losses have been reported in vineyards if viral diseases are 45 
neglected (Atallah et al., 2012). Grapevine Leafroll Disease (GLD) is an economically significant viral 46 
disease in Australia (Habili et al., 2007). GLD can affect many grapevines including both red and white 47 
cultivars (Chooi et al., 2022; Pietersen et al., 2013). Several grapevine leafroll-associated viruses 48 
(GLRaVs) have been linked with GLD (Habili et al., 2007; Naidu et al., 2015). GLRaV-1, -3, and -4 strains 49 
were more frequently detected than other GLRaV strains in Australian vineyards (Constable and 50 
Rodoni, 2014). Shiraz Disease (SD) is another debilitating viral disease that delays bud burst, restricts 51 
the spring growth of shoots, and delays the lignification of canes as well as leaf senescence 52 
(Goszczynski and Habili, 2012; Habili, 2013). SD symptoms have been observed in only a few sensitive 53 
grapevine cultivars including Shiraz, Merlot, and Malbec (Goszczynski et al., 2008). Grapevine virus A 54 
(GVA) is associated with SD (Habili et al., 2016; Wu et al., 2020), particularly the GVA Group II variants 55 
(Goszczynski and Habili, 2012; Goszczynski and Jooste, 2003). In a recent survey of Australian 56 
vineyards, Wu et al. (2023) found that all three variants (Group I, II, and III) of GVA were present and 57 
that Group II variants were the only ones that were symptomatic. Co-infection of GVA and GLRaVs are 58 
commonly found in grapevines (Blaisdell et al., 2020; Credi, 1997; Digiaro et al., 1994; Hommay, 2008). 59 

Unlike bacterial or fungal diseases that can be controlled by chemical applications, no such methods 60 
are available for the treatment of virus infections (Hull, 2014a; Rubio et al., 2020). Thus, the 61 
management of grapevine viral diseases is predominantly preventive, such as planting certified (virus-62 
free) material, controlling the spread of vectors such as mealybugs and soft scale insects, and roguing 63 
(removing) infected vines from vineyards (Bell et al., 2017; Douglas and Krüger, 2008; Hommay et al., 64 
2022). Roguing relies on accurate disease detection, which presently includes the visual assessment 65 
of symptoms, and laboratory-based tissue testing using the serological method, such as enzyme-linked 66 
immunosorbent assay (ELISA) and nucleic acid-based method, such as Reverse-transcription 67 
polymerase chain reaction (RT-PCR) (Naidu and Hughes, 2003; Zherdev et al., 2018). However, the 68 
visual assessment is labour intensive and can be subjective; the laboratory-based methods are highly 69 
costly therefore limiting the test rate. The cost of different detection methods was compared by Wang 70 
et al. (2022). 71 

Advanced optical sensing technology, such as hyperspectral sensors, has shown potential for non-72 
destructive plant disease detection (Zhang et al., 2020). Hyperspectral sensors can measure a 73 
continuous narrow range of spectral wavelengths from visible and near-infrared (VNIR) to short-wave 74 
infrared (SWIR) that can provide detailed spectral signal changes related to leaf health and potentially 75 
caused by plant diseases (Thenkabail et al., 2011; Thomas et al., 2018). Various studies have used 76 
hyperspectral sensing for plant disease detection (Nguyen et al., 2021; Wang et al., 2019; Zhang et al., 77 
2019; Zhu et al., 2017). For GLD detection, a direct leaf contact spectroradiometer (spectral range 350 78 
– 2500 nm) was used to measure GLRaV-3 infection in Cabernet Sauvignon (Sinha et al., 2019);79 
classification accuracy of 93-98% was achieved. The proximal sensing with a handheld hyperspectral 80 
sensor (spectral range 325-1075 nm) was used to detect GLD in Pinot Noir and Chardonnay with 96% 81 
and 76% prediction accuracies respectively (Wang et al., 2023a). An over-the-row grape harvester-82 
mounted hyperspectral camera (spectral range 400-2500 nm) was used to detect GLD in four grape 83 
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cultivars (Bendel et al., 2020). The authors achieved classification accuracies of 84-96% in red cultivars 84 
and 76-93% in white cultivars. These direct contact and proximal sensing method can give relatively 85 
high spatial resolution, however, are time-consuming, labourious, and therefore expensive compared 86 
to remote sensing methods making them impractical for large vineyards (Wang et al., 2022). 87 

Remote sensing can provide information over large areas rapidly and there has been much recent 88 
development, but there is little information about the necessary spatial and spectral detail needed for 89 
viral disease detection in grapevines. An aircraft-mounted hyperspectral camera (with a spectral range 90 
of 400-1000 nm and 0.25-0.50 m spatial resolution) was used to detect GLRaV-3 infection in Cabernet 91 
Sauvignon with 94% disease detection sensitivity (MacDonald et al., 2016). An accuracy of 87% was 92 
achieved when distinguishing between noninfected and asymptomatic GLRaV-3 infected vines using 93 
a hyperspectral camera mounted on an airplane (Galvan et al., 2023), the camera had a spectral range 94 
of 380-2510 nm and a spatial resolution of 3 meters. Multispectral satellite imagery (red, green, blue, 95 
and near-infrared bands with 50 m spatial resolution) was used to detect GLD in Merlot and Cabernet 96 
Sauvignon with 75-94% classification accuracies (Hou et al., 2016). The high operating altitudes of 97 
manned aircraft and satellites result in relatively low spatial resolution compared to unmanned aerial 98 
vehicles (UAV), which lowers their accuracy of disease detection. The low spatial resolution limitation 99 
has been overcome recently through the use of UAV with various optical sensors, which are now 100 
frequently employed for grapevine disease detection (Albetis et al., 2017; Vanegas et al., 2018; Wang 101 
et al., 2023b; Zia-Khan et al., 2022). However, there is little information about how transferrable 102 
findings are in space, time, and for different varieties, and the benefit of combining high spectral detail 103 
with high spatial resolution is unknown. 104 

In this study, we assess the potential of a UAV-based hyperspectral camera in the VNIR spectral range 105 
to detect GLD- and SD-infected grapevines in four popular winegrape (Vitis vinifera L.) cultivars, 106 
including both red and white cultivars, from three viticulture regions in South Australia. The specific 107 
objectives of this study are: (1) develop a workflow to classify healthy and diseased vines from high-108 
resolution hyperspectral remote sensing images; (2) investigate spectral reflectance differences 109 
between the healthy and virus-infected vines across different cultivars and locations; (3) build a 110 
prediction model to classify diseased vines from healthy vines using PLS-DA method; (4) assess the 111 
prediction accuracy to determine the optimal growing stage for disease detection; and, (5) evaluate 112 
the robustness of model with data from different seasons and locations. To the best of our knowledge, 113 
this study is the first to use a UAV-based hyperspectral sensor for grapevine viral disease detection. 114 

115 

2. Materials and Methods116 

2.1. Study sites and weather 117 

Three virus-infected vineyards in South Australia were selected for this study (Fig. 1). The first vineyard 118 
was in Adelaide Hills wine region, located in Kuitpo, SA (35°13'31"S, 138°39'40"E). Three blocks in this 119 
vineyard were selected for the study, including 0.8 ha of Chardonnay, 1.6 ha of Pinot Noir, and 1.4 ha 120 
of Cabernet Sauvignon. The Chardonnay and Pinot Noir were planted in 1987, and Cabernet Sauvignon 121 
was planted in 1988. All vines were own-rooted and planted at 3.0 x 1.5 m (row x vine) spacing. The 122 
soil type of the vineyard was podsol over sandstone. The vineyard was drip-irrigated at approx. 0.8 ML 123 
ha-1 annually. Ryegrass and clover were planted inter-rows as the cover crop. Integrated pest 124 
management (IPM) was as per convention in this region. The vines were sprayed two to three times 125 
with sulphur and copper-based chemical to prevent pest and fungi disease. 126 
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The second vineyard was in the Barossa wine region, located in Lyndoch, SA (34°35'28"S, 138°53'01"E). 127 
A 3 ha block was chosen for the study with 24 rows of own-rooted Cabernet Sauvignon grapevines 128 
planted in 1997. Half of the block (12 rows) was top-worked (grafted) with Shiraz in 2015. The block 129 
had 3.0 x 1.5 m (row x vine) spacing that sits on a deep red clay loam soil. It was drip-irrigated at 130 
approx. 1.5 ML ha-1 per year. Convention regional IPM practices were applied to the vineyard. Sulphur-131 
based fungicide was used to prevent mildew diseases. Barley was planted in winter as a cover crop in 132 
the middle rows. 133 

The third vineyard was located in the Riverland region, in Monash, SA (34°13'28"S, 140°33'01"E). A 134 
block of 1.5 ha of grafted Shiraz grapevines was selected for the study. The Shiraz (on K51-40 rootstock) 135 
was planted in 1998 with 3.5 x 3.5 m (row x vine) spacing. The soil type of vineyard is sand soil over 136 
limestone. The block was drip-irrigated at approx. 7.5 ML ha-1 per year. No cover crop was growing in 137 
the vineyard. Generally low disease pressure in this wine region due to the dry and warm climate. 138 
Usually, two to three sulphur-based fungicides were sprayed per season. 139 

140 

Fig. 1. Location of the study sites in South Australia 141 

Each of the vineyards chosen for the study was in a different climatic region. The Adelaide Hills 142 
vineyard had relatively cooler weather (Mean January Temperature (MJT) is 18.9 °C) and higher 143 
rainfall (annual rainfall is 835 mm). Barossa vineyard was in a warm weather region (MJT is 22.1 °C) 144 
and had lower rainfall (annual rainfall is 438 mm). The Riverland vineyard was in a hot and dry region. 145 
The temperature in Riverland was the highest (MJT is 25.9 °C) and rainfall was the lowest (annual 146 
rainfall is 269 mm) in the three locations. Seasonal weather data obtained from the closest weather 147 
station to each vineyard site is provided in Table 1. 148 

Table 1 149 
Summary of weather data from 1st Oct to 31st Mar in each vineyard in the 2020-21 season (S1), and 2021-22 150 
season (S2) for Adelaide Hills. The data was gathered from the weather stations of the Australian Bureau of 151 
Meteorology – Kuitpo Forest Reserve (Bureau of Meteorology (BOM) Station ID 023887) for Adelaide Hills, 152 
Nuriootpa PIRSA (BOM Station ID 023373) for Barossa, and Loxton Research Centre (BOM Station ID 024024) for 153 
Riverland. 154 

Vineyards Barossa Riverland Adelaide Hills 
Season S1 S1 S1 S2 
Average maximum temperature (°C) 26.4 29.0 22.8 22.4 
Average minimum temperature (°C) 8.5 9.5 11.9 12.1 
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Average maximum relative humidity (%) 93.0 80.0 90.2 91.6 
Average minimum relative humidity (%) 24.0 19.0 42.8 44.5 
Average solar radiation (MJ m-2) 22.6 23.3 21.5 21.6 
Accumulated evapotranspiration (mm) 1,009 1,153 864 845 
Accumulated rainfall (mm) 129 80 246 190 
GDD (°C)1 1,633 1,959 1,343 1,319 
     
1 GDD = growing degree days (base 10°C) 155 

 156 

2.2. Visual assessment and lab testing for the viral diseases 157 

A visual assessment was conducted in each block in the 2020-21 season (S1) and 2021-22 season (S2) 158 
for the Adelaide Hills vineyard. In the early season, e.g., at the flowering stage (E-L 23), no disease 159 
symptoms were observed in Chardonnay, Pinot Noir, and Cabernet Sauvignon in any vineyards. The 160 
GLD symptoms (reddening on leaves with green veins) could be observed on some leaves around the 161 
veraison stage (E-L 35) in Pinot Noir and Cabernet Sauvignon in both Adelaide Hills and Barossa 162 
vineyard. The GLD symptoms gradually became more obvious later in the season (Fig. 2 a, b). In 163 
comparison to red cultivars, the disease symptoms of Chardonnay were not as obvious as white 164 
cultivars do not produce anthocyanin pigments (Burger et al., 2017; Rustioni et al., 2015). Chardonnay 165 
only showed a rolling edge and slight chlorosis on some of the leaves from the veraison stage (Fig. 2 166 
d). For Shiraz vines, SD symptoms (delayed growth with a shorter shoot and smaller canopy) were 167 
observed in spring in both Barossa and Riverland vineyards. By mid-summer (approx. fruit set stage, 168 
E-L 27), healthy and infected vines had indistinguishable canopy sizes. However, in the virus-infected 169 
vines, there were noticeable bright green young leaves developed from the tip of the mature shoot 170 
throughout the season even after harvest. Most mature leaves of SD-infected vines became 171 
anthocyanic as the season progressed, turning from dark green to a dark red colour, including veins 172 
(in contrast to GLD). These changes make the young bright green colour leaves more visually distinct 173 
(Fig. 2 d). In comparison, healthy Shiraz grapevines stopped developing the young leave after the 174 
veraison stage. The estimated disease incidence rate for each block is summarised in Table 2. 175 

Table 2. Virus infection status in each block used in this study. Disease incidence was estimated by 176 
visual assessment. Positive test results of any combination of GLRaVs and GVA virus were categorised 177 
as ‘diseased’ while negative results for all GLRaV-1, -3, -4 strains and GVA were categorised as ‘healthy’. 178 

Vineyard 
and cultivars 

Total number 
of vines per 
block 

Estimated 
disease 
incidence at 
harvest 

Number of 
vines tested  

Number of 
positive tests 

Number of  
negative tests 

Adelaide Hills - 
Chardonnay 

2,640 50% 194 144 50 

Adelaide Hills – 
Pinot Noir 

4,302 20% 192 84 108 

Adelaide Hills – 
Cabernet 
Sauvignon 

3,664 5% 80 39 41 
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Barossa - 
Cabernet 
Sauvignon 

2,700 10% 72 36 36 

Barossa - Shiraz 2666 15% 72 38 34 

Riverland - 
Shiraz 

1185 5% 42 19 23 

179 

180 

Fig. 2. Grapevine viral disease symptoms at harvest stage (E-L 38). GLD symptoms on (a) Cabernet 181 
Sauvignon, (b) Pinot Noir, and (c) Chardonnay; (d) SD symptoms on Shiraz (the red arrow shows 182 
young leaves still developing at the harvest time). 183 

For ground-truthing, the laboratory-based tissue testing was conducted in S1 in each vineyard and 20% 184 
of the random sample was resampled for confirmation test in S2 in Adelaide Hills vineyard. The 185 
sampling was based on visual symptoms. Even numbers of symptomatic and asymptomatic vines were 186 
randomly and scatteredly collected across each block. Each sampled vine had an ID with row and vine 187 
number. Leaf petioles were sampled near harvest time for virus testing as the virus titre level is usually 188 
high in petiole tissues in the later season (Monis and Bestwick, 1996). The leaves were selected from 189 
shoots located near the trunk of the vine to ensure that neighbouring vines were not inadvertently 190 
sampled. Four petioles near the base of the shoots were sampled for testing. 191 

All samples were virus-tested in the lab using the ELISA test kits produced by Bioreba (Reinach, 192 
Switzerland). GVA, GLRaV-1, GLRaV-3, and GLRaV-4 strains were conducted for each sample. The 193 
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GLRaV-4 strains test kit can detect GLRaV-4, and GLRaV-4 strains 5, 6, and 9 (Bioreba_AG, 2017). To 194 
validate the ELISA test results, approx. 20% of ELISA-tested samples from each block (125 samples in 195 
total) were tested with RT-PCR (Gambino, 2015; Zherdev et al., 2018). The petiole samples were sent 196 
to a commercial grapevine virus diagnostics lab (Affinity Labs, Adelaide) for the RT-PCR test. GVA, 197 
GLRaV-1, GLRaV-3, GLRaV-4, and GLRaV-4 strains 6 and 9 were tested as these grapevine viruses were 198 
most frequently been found than other viruses in Australian vineyards (Constable and Rodoni, 2014). 199 
The RT-PCR test results matched 99% of the ELISA results, which confirms the reliability of the ELISA 200 
tests. The ELISA test closely correlated with visual assessments in both seasons. In all cases where 201 
vines displayed symptoms, the ELISA test yielded positive results, and in 98% of cases where vines 202 
were asymptomatic, the ELISA test produced negative results. When comparing the seasonal 203 
difference, visual assessments and virus testing results between S1 and S2 in Adelaide Hills were 95% 204 
and 100% matching respectively. 205 

The virus test results showed that 95% of virus infections were co-infected with GLRaV-1 and GVA in 206 
the Adelaide Hills vineyard, and the rest of the infected vines had mixed infections with GLRaV-1, -4s, 207 
or -9 and GVA in this vineyard. In the Barossa vineyard, the majority (90%) of virus infection in 208 
Cabernet Sauvignon was the co-infection with GLRaV-1, -4s or -9, and GVA, and about 10% of vines 209 
were co-infected with GLRaV-4s or -9 and GVA. For Shiraz, most of the virus-infected vines were 210 
GLRaV-1, -4s or -9, and GVA, except two vines were co-infected with GLRaV-1, -3, -4s and GVA in 211 
Barossa. The infection in the Riverland vineyard was mostly GLRaV-4s or -9 with GVA, except for three 212 
vines infected with only GVA.  The detailed test result shows in Appendix A (Table 1). Since these 213 
GLRaV strains are associated with GLD symptoms in Chardonnay, Pinot Noir, and Cabernet Sauvignon 214 
(Naidu et al., 2014), and GVA were associated with SD symptoms in Shiraz (Goszczynski and Habili, 215 
2012), the vines that were infected with any combination of GLRaVs or GVA infection (single or co-216 
infection) were treated as the diseased vine. The vines that tested negative for all these viruses were 217 
considered healthy vines. The summarised virus test results for each block are shown in Table 2. 218 

219 

2.3. UAV data collection 220 

The hyperspectral images were collected by Resonon airborne hyperspectral system (Resonon Inc. 221 
Bozeman, USA). The system includes the Resonon Pika L camera, an IMU/GPS unit, and an onboard 222 
computer. The system was mounted on a three-axis gimbal carried by DJI Matrice 600 UAV (SZ DJI 223 
Technology Co., Ltd, Shenzhen, China). The hyperspectral camera was a push-broom type sensor 224 
(Fowler, 2014). The sensor detects spectral wavelengths between 400 – 1000 nm at a 3.3 nm spectral 225 
resolution with 12-bit colour depths and 900 spatial pixels swath. The focal length of the lens was 17 226 
mm and the f-number was 2.4 which gives a 17.6-degree field of view. The framerate was set at 150 227 
fps. To avoid over-exposure, the exposure time was set before each flight by auto-exposure of the 228 
camera to the 21% flat reflectance panel. The exposure time was usually between 4 to 6 ms with zero 229 
gain under full sunlight conditions. A geo-fence with three meters buffer around each block was set 230 
for the camera system that triggered the recording when the system entered the geofenced region. 231 
The flying missions were operated using the DJI GS Pro app (SZ DJI Technology Co., Ltd, Shenzhen, 232 
China). The missions used lawnmower patterns aligned to vine rows and covered whole blocks with 233 
ten meters buffers. The altitude of the flights was 60 m above ground level (AGL). The flying speed 234 
was 3 m s-1, which was calculated using the Resonon airborne calculator based on the framerate, 235 
altitude, and field of view to produce the images with an aspect ratio close to one. The resulting spatial 236 
resolution of the hyperspectral image was approx. 4 cm px-1. The side overlap was 50% to avoid gaps 237 
between flight paths. The airborne system wrote the data and generate one hyperspectral data cube 238 
every ten seconds. Each flight captured between 32 to 48 hyperspectral data cubes depending on the 239 
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block size. There were between 6 to 12 flying paths per block depending on the width of the block. 240 
Each UAV path contained 4 to 9 hyperspectral data cubes depending on row length. 241 

For hyperspectral radiometric correction, custom-made grey-scale flat reflectance calibration panels 242 
(at 19% and 21% reflectances) were used (Sanches et al., 2009). The spectral reflectance of the 243 
calibration panel was measured proximally with an ASD Handheld 2 spectroradiometer (Malvern 244 
Panalytical Ltd, Malvern, UK) that was calibrated with the white Spectralon® diffuse reflectance 245 
material (>99% reflectance). The grayscale panel was included in the scenes of the hyperspectral 246 
image as the known spectral reflectance target in each flight.  247 

Concurrently with each hyperspectral data collection mission, UAV-based high-resolution RGB 248 
imagery was also collected for geo-referencing the hyperspectral images. DJI Mavic 2 Pro UAV (SZ DJI 249 
Technology Co., Ltd, Shenzhen, China) was used for RGB image collection. The camera had a 77-degree 250 
field of view with 5472 × 3648 pixels in image size. The flight path was automated by Pix4Dcapture 251 
(Pix4D, Prilly, Switzerland). The side and forward overlap was set at 80 %, and an altitude of 45 m AGL. 252 
The calculated spatial resolution or ground sample distance (GSD) of the images was approx. 1 cm. 253 

UAV data was collected at three phenological stages of grapevine development: flowering (November), 254 
veraison or onset of fruit ripening (January), and harvest (March) in Adelaide Hills and Barossa 255 
vineyards in S1. In the Riverland vineyard, data were collected at two time points, November 2020 256 
and March 2021, in the same season. In S2, data were collected at only one time point in the Adelaide 257 
Hills vineyard in March 2022 (harvest). All UAV data was collected under sunny and cloudless 258 
conditions between 11:00 to 15:00 h. 259 

 260 

2.4. UAV image processing 261 

2.4.1. Geo-locating individual vines with RGB UAV images 262 

All the vineyards in this study were planted in rows. When the canopy of the vine fully developed, it 263 
was difficult to determine the individual vine from the projected remote sensing image. In order to 264 
accurately confirm the canopy of the virus-tested vines from the remote sensing images, precise 265 
relative geolocation of each vine was required. A high-resolution orthomosaic RGB UAV image was 266 
generated for each block using Agisoft Metashape Professional, Version 1.6.2. (Agisoft LLC, St. 267 
Petersburg, Russia). The geo-referenced orthomosaic image from the dormancy period (when trunk 268 
shadows can be clearly observed) was used as the reference map. A shape file of a fishnet grid with 269 
centre label points was created for each block in ArcGIS Pro V2.8 (Esri, Redlands, California, US). The 270 
centre points were manually adjusted to the starting point of the trunk shadow, which represented 271 
the base of the vine trunk (Fig. 3a). A square bounding box was created from each centre point to 272 
cover the individual vine. The box size was set at about 90 % of vine spacing to avoid potentially 273 
overlapping regions between neighbouring vines within a row. In the Adelaide Hills and Barossa 274 
vineyards (with 1.5 m vine spacing), the box size was 1.4 x 1.4 m. The box size of Riverland vineyard 275 
(with 3.5 m vine spacing) was 3 x 3 m. 276 

For each time point, a high-resolution orthomosaic image from the RGB UAV images was created and 277 
manually geo-referenced to the dormancy image (Fig. 3b) by using the end post from each corner of 278 
the block as the ground control points (GCP). The hyperspectral could then be registered to the 279 
orthomosaic image in order to accurately align individual vines for an accurate data process.  280 
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 281 

(a)                                                                                     (b) 282 

Fig. 3. Geo-locating individual vines using high-resolution RGB UAV images. (a) Top view of the 283 
vineyard at dormancy that the shadow of the trunk is clearly showing. Red dots highlight the trunk 284 
location (base), which was the starting point of the shadow of the trunk. The 1.4 x 1.4 m bounding 285 
box (shape file) was created for each vine; (b) bounding boxes were used to delineate individual 286 
grapevine canopies in the hyperspectral orthomosaic.  287 

 288 

2.4.2. Hyperspectral image processing 289 

The hyperspectral image processing was conducted in Spectronon software (Resonon Inc. Bozeman, 290 
USA). The raw hyperspectral data were radiometrically corrected using the average spectral radiance 291 
of the grey scale calibration panel in the scene. The radiometric correction process transformed the 292 
digital number (DN) into a reflectance value (range 0-1). The hyperspectral data was then geo-rectified 293 
using the IMU/GPS data with a digital elevation model that was created from the point cloud from the 294 
high-resolution UAV RGB images in Agisoft Metashape. Each georectified hyperspectral image covered 295 
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an area of approx. 50 x 16 m (L x W) with a GSD of 4 cm. The hyperspectral images were then 296 
mosaicked using the ‘Seamless Mosaic’ tool in ENVI (L3Harris Geospatial, Colorado, US) to create a 297 
single strip hyperspectral image per each UAV path. Then the registration for each hyperspectral strip 298 
image was conducted using the ‘Image to Map Registration’ tool in ENVI. The end posts of vine rows 299 
were used as the GCPs for manually registering the hyperspectral strips to the geo-referenced 300 
orthomosaic UAV RGB image that was collected on the same day. The resampling method for the 301 
registration process was the nearest neighbour (Olivier and Hanqiang, 2012). Finally, all strips were 302 
mosaicked to generate a single hyperspectral image for the whole block with the geo-location of 303 
individual vines that could be accurately identified. 304 

The raw hyperspectral image had 150 bands from 380 – 1015 nm. However, spectral bands below 400 305 
nm and above 920 nm were removed due to the high noise caused by low camera sensitivity in these 306 
regions, which resulted in 123 useful bands from 400 – 920 nm (Fig. 4b). 307 

In this study, the grape canopy is the region of interest. A mask was created to eliminate the non-308 
grapevine canopy regions, e.g. inter-row areas, by using the classification tool in ENVI. The spectral 309 
angle mapper algorithm (Yuhas et al., 1992) was used in the supervised classification tool to classify 310 
grapevine canopy from the non-canopy area (soil, shadow, and grass). A final clean-up step used a 311 
smooth kernel (three kernel sizes) and an aggregation method (nine aggregate minimum sizes) to 312 
refine the pixel-level classification. 313 

The canopy of virus-tested vines was manually labelled in a bounding box in the classified image based 314 
on vine ID (Fig. 4c). Twenty healthy and twenty diseased vines (refer to section 2.8) was randomly 315 
selected from each block for the calibration model except Riverland vineyard (ten healthy and ten 316 
diseased vines due to fewer samples).  317 
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 318 

Fig. 4. Workflow for hyperspectral image processing. (a) UAV data collection in the vineyard; (b) pre-319 
processed hyperspectral image; (c) registered and classified image, pixels of 40 virus-tested vines 320 
were selected to train the PLS-DA model; (d) the prediction result - canopy pixels in the block 321 
predicted as either ‘disease’ (red pixels) or ‘healthy’ (green pixels). 322 

  323 

2.5. Pixel level classification 324 

Classification modelling was conducted in the PLS Toolbox plugin (v.9.0, Eigenvector Research, Inc., 325 
Manson, WA USA) in the MATLAB R2021b (The MathWorks Inc., Natick, MA, USA) environment.  326 

The hyperspectral image was loaded into PLS Toolbox with class names for each pixel (Healthy, Disease, 327 
Grape canopy, or unclassified = 0). Each pixel was treated as one spectral sample in the PLS-DA model. 328 
On average per vine, the Adelaide Hill and Barossa vineyards (1.4 x 1.4 m bounding box) contained 329 
approx. 300 – 700 canopy pixels and Riverland vineyard (3 x 3 m bounding box) contained 1,500- 2,400 330 
canopy pixels depending on the development stage of the vine, cultivar, and the canopy training 331 
system. For Adelaide Hill and Barossa vineyards, 40 vines resulted in 3,000-7,000 spectral samples 332 
(pixels) for the calibration model. There were 15,000-24,000 spectral samples for the Riverland 333 
vineyard. 334 
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The spectral data were firstly pre-processed with smoothing, normalisation, and scaling steps. 335 
Savitzky-Golay Filter (Savitzky and Golay, 1964) with five filter widths was used to reduce the noise in 336 
the spectral data. Then, Standard Normal Variate (SNV) (Barnes et al., 1989) was used to normalise 337 
the spectral data in order to compensate for the difference in leaf angles and the vine position in the 338 
field of view (centre or edge in the image). Lastly, the data was brought to the same magnitude by 339 
mean centering (Hofer, 2017) for modelling. 340 

PLS-DA (Barker and Rayens, 2003) classification model was used to classify disease and healthy pixels. 341 
The spectral information was set in the X matrix and the disease and healthy classes were set in the Y 342 
matrix within PLS Toolbox’s PLS-DA model. Cross-validation (CV) was used to avoid overfitting the 343 
model. The contiguous block method was selected for the CV method with a number of data split = 344 
20 (Valavi et al., 2019), which means the data set was spatially split into 20 contiguous divisions and 345 
one division was left out as the test set. A plot of the cumulative CV error rate was used for latent 346 
variable (LV) number selection in the PLS-DA model (Ballabio and Consonni, 2013). The point at which 347 
CV errors decreased significantly was the optimum number of LVs selected for the model. The disease 348 
discrimination threshold was then set in based on the Receiver Operating Characteristics (ROC) curve 349 
to discriminate between diseased and healthy samples from PLS predicted value (Ballabio and 350 
Consonni, 2013). 351 

 352 

2.6. Vine level classification 353 

The pixel classifications were not 100 % accurate. As shown in Fig. 4d, some vines had mixed ‘healthy’ 354 
and ‘disease’ pixels in the same boundary box. To evaluate whether a whole vine belongs to a healthy 355 
or diseased vine, the ratio of classified ‘disease’ pixels per bounding box was used. The higher ratio 356 
the more likely a diseased vine. The sum of diseased and healthy pixels in each bounding box was 357 
calculated by the ‘Zonal Statistics’ tool in ArcGIS Pro. The ratio of diseased pixels from the 40 vines for 358 
modelling was used for the evaluation. An optimal threshold to discriminate healthy and diseased vine 359 
was calculated based on the balance between sensitivity (Eqn. 1) and specificity (Eqn. 2) which is the 360 
nearest point to the top-left corner of the ROC curve (Hoo et al., 2017). Fig.5 shows the threshold 361 
calculated from the ROC curve for Pinot Noir in Adelaide Hills at the harvest stage in Season 1. The 362 
threshold is 0.178 based on a sensitivity of 0.895 and a specificity of 0.943. Therefore, based on the 363 
threshold, if the diseased pixel ratio was higher than 17.8%, the vine would be predicted as a ‘diseased’ 364 
vine, whereas if it was lower than this ratio, it would be predicted as a ‘healthy’ vine.  365 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑇𝑇𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝐹𝐹𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
 (1) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑇𝑇𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝐹𝐹𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
 (2) 

where TPvine is the number of diseased vines correctly predicted, FNvine is the number of diseased vines 366 
incorrectly predicted, TNvine is the number of healthy vines correctly predicted, and FPvine is the number 367 
of healthy vines incorrectly predicted. 368 
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 369 

(a)                                                                                     (b) 370 

Fig. 5. Vine-level prediction results for Adelaide Hills Pinot Noir at the harvest stage in Season 1. (a) 371 
ROC curve, the red dot shows the optimal threshold, AUC stand for ‘Area under the ROC curve’; (b) 372 
diseased pixel ratio results for the training data, the threshold is calculated from the ROC curve. In 373 
this example, the percentage of predicted diseased pixels higher than the threshold (17.8%) are 374 
predicted to be a ‘diseased’ vine, and pixels lower than the threshold are predicted to be a ‘healthy’ 375 
vine.  376 

 377 

2.8. Assessing the minimum number of vines needed for the calibration model 378 

The minimal number of vines needed for the calibration model was evaluated using Pinot Noir at 379 
harvest in S1. The different number of vines (balanced number in classes) were selected for the 380 
calibration model, and the rest of the virus test vines were used as the validation data. Fig. 5 shows 381 
the model became stable and no significant improvement in prediction accuracy for more than 40 382 
vines (20 healthy and 20 diseased vines) selected for the training data. For the other blocks in the 383 
study, 20 diseased and 20 healthy vines were selected for modelling for consistency. 384 

 385 
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Fig. 6. Accuracy at vine level for the different number of vines selected for modelling. The model 386 
became stable and the prediction accuracy did not increase if more than 40 vines (half disease and 387 
half healthy) were selected for modelling.  388 

 389 

2.7. Accuracy Assessment 390 

A comprehensive result included the confusion matrix accuracy (Eqn. 3), F1 score (Eqn. 4), and 391 
Matthews correlation coefficient (MCC; Eqn. 5) (Baldi et al., 2000). Eqn. 3 was used to assess the 392 
performance of the model at pixel and vine level. Accuracy and F1 score are commonly used metrics 393 
to assess the performance of the classification model (Goutte and Gaussier, 2005; Sokolova et al., 394 
2006). MCC only evaluate binary classifications, but it provides a reliable assessment of an imbalanced 395 
data set (Boughorbel et al., 2017; Chicco and Jurman, 2020). In our case, the Adelaide Hills Chardonnay 396 
block was a relatively imbalanced data set that had 144 diseased and 50 healthy vines. 397 

 398 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (3) 

𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 1
2(𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)

 (4) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑇𝑇𝑇𝑇 ∙ 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝐹𝐹 ∙ 𝐹𝐹𝐹𝐹

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) ∙ (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) ∙ (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) ∙ (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 (5) 

where the TP is true positive - diseased pixels correctly predicted; TN is true negative - healthy pixels 399 
correctly predicted; FP is false positive - healthy pixels incorrectly predicted as diseased; FN is false 400 
negative - diseased pixels incorrectly predicted as healthy.  401 

 402 

 403 

3. Results 404 

3.1. Spectral difference between healthy and diseased vines 405 

The normalised average spectrum of the diseased vines (relative to healthy vines) for each block and 406 
time point is plotted in Fig. 6. The majority of spectral differences between healthy and diseased vines 407 
were in the red edge region (700-740 nm), green region (~ 550 nm), and red region (620-640 nm).  408 

In contrast to the red cultivars, virus-infected Chardonnay vines had few differences from healthy 409 
vines, and the difference was primarily in the red edge region. In Pinot Noir, diseased vines had higher 410 
reflectance in the red and red edge region, and lower reflectance in the green region compared to the 411 
healthy vines. That had a similar pattern to the Cabernet Sauvignon from two different vineyards. The 412 
diseased Shiraz had higher reflectance in the red edge, as well the green and red regions. The Shiraz 413 
from two different vineyards also showed a similar pattern. In terms of the difference in the 414 
development stage, the spectral difference between diseased and healthy vines was less in the early 415 
season (flowering) and gradually increase and become the largest at the end of the season (harvest). 416 
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 417 

Fig. 7. Difference of normalised average diseased pixels spectral reflectance relative to the healthy. 418 
The average spectra were from pixels of 20 diseased and 20 healthy vines at each time point in each 419 
block (10 diseased and 10 healthy vines for Riverland Shiraz). Healthy vines at zero line. 420 

 421 

3.2. Pixel level classification results 422 

The PLS-DA model performance was assessed at each development stage for each block, and the 423 
accuracy of CV for each model is plotted in Fig. 8. In the early development stage (flowering), the 424 
accuracy of Chardonnay, Pinot Noir, and Cabernet Sauvignon are low. The accuracy gradually 425 
increased and was highest at the harvest stage. In Shiraz, the accuracy at the different stages is 426 
relatively close (between 0.76 and 0.83). The highest accuracy was at the veraison stage. 427 
Unfortunately, we did not collect the data at the veraison stage for Riverland Shiraz for both seasons. 428 

Compared to the red cultivars, the white cultivar Chardonnay had the lowest accuracy (0.74 at harvest). 429 
Pinot Noir and Cabernet Sauvignon in Adelaide Hills had a relatively good performance (accuracy = 430 
0.87). Barossa Cabernet Sauvignon had an accuracy of 0.81 at harvest. The best model for Shiraz was 431 

81 / 108



at the veraison stage (accuracy = 0.83), and accuracy of 0.81 at the harvest stage for both Barossa and 432 
Riverland vineyard. 433 

The model built from the second season data at the harvest stage in Adelaide Hills also shows in Fig. 434 
7 (yellow bars). The accuracy was 0.69, 0.70, and 0.84 for Chardonnay, Pinot Noir, and Cabernet 435 
Sauvignon, respectively. Detailed model results include the latent variable selected for the model, the 436 
confusion matrix, F1 score, accuracy, and MCC for both calibration and CV can be found in Appendix 437 
A (Table 2). 438 

 439 

Fig. 8. The accuracy of CV results at the pixel level. Each model is built from the pixel of 20 diseased 440 
and 20 healthy vines. 441 

 442 

 443 

3.3. Vine level classification 444 

At vine level prediction, the diseased pixel ratio for each virus-tested vine (for each block and time 445 
point) was assessed. The model and prediction accuracy results at the vine level are presented in Table 446 
3. The more detailed result shows in Appendix A (Table 3). 447 

Table 3. The accuracy at the vine level for each time point for each block.   448 

Block Season & 
Time point 

Model Prediction 

Accuracy F1 score 
Matthews 
correlation 
coefficient  

Accuracy F1 score 
Matthews 
correlation 
coefficient 

Ade Hills  
Chardonnay 

S1 Flowering 0.58 0.59 0.15 0.55 0.66 0.08 
S1 Veraison 0.73 0.73 0.45 0.68 0.77 0.26 
S1 Harvest 0.80 0.80 0.60 0.75 0.82 0.47 
S2 Harvest 0.73 0.72 0.45 0.69 0.77 0.39 

Ade Hills   
Pinot Noir 

S1 Flowering 0.58 0.56 0.15 0.50 0.40 -0.03 
S1 Veraison 0.68 0.67 0.35 0.68 0.63 0.34 
S1 Harvest 0.93 0.92 0.85 0.91 0.90 0.83 
S2 Harvest 0.78 0.78 0.55 0.76 0.75 0.54 

Ade Hills   
Cab Sav 

S1 Flowering 0.60 0.58 0.20 0.48 0.40 -0.06 
S1 Veraison 0.90 0.90 0.80 0.95 0.95 0.90 
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S1 Harvest 0.93 0.93 0.85 0.98 0.97 0.95 
S2 Harvest 0.93 0.92 0.85 0.93 0.93 0.86 

Barossa 
Cab Sav 

S1 Flowering 0.60 0.62 0.20 0.56 0.56 0.13 
S1 Veraison 0.88 0.88 0.75 0.84 0.86 0.70 
S1 Harvest 0.93 0.93 0.85 0.94 0.94 0.88 

Barossa 
Shiraz 

S1 Flowering 0.83 0.82 0.65 0.81 0.83 0.62 
S1 Veraison 0.93 0.92 0.85 0.94 0.94 0.88 
S1 Harvest 0.93 0.93 0.85 0.88 0.89 0.75 

Riverland 
Shiraz 

S1 Flowering 0.85 0.86 0.70 0.86 0.84 0.73 
S1 Harvest 0.90 0.90 0.80 0.91 0.90 0.83 

 449 

3.4. Predict the disease between seasons and locations 450 

To test whether the model could be robust enough to predict between seasons, the models built for 451 
S1 and S2 were used to predict the data from each other. At the pixel level, the pixels of 40 vines 452 
selected vine from the earlier process was used in the prediction. For vine level, disease pixel ratio 453 
based on pixel level prediction and threshold from vine level model was used for all virus-tested vines. 454 
Only Adelaide Hills vineyard had two seasons’ data at the harvest stage. Table 4 shows the prediction 455 
results. The results showed that Chardonnay and Pinot Noir poorly predicted the data between S1 and 456 
S2 either at pixel or vine level. The Cabernet Sauvignon model built for S1 could well predict the data 457 
in S2 with an accuracy of 0.91, F1 score of 0.90, and MCC of 0.83 at the vine level. Inversely, the model 458 
built for S2 could well predict the data from S1. 459 

 460 

Table 4. Model prediction results between two seasons in Adelaide Hills vineyard. 461 

  S1 model predict S2 data S2 model predict S1 data 

  Accuracy F1 score 
Matthews 
correlation 
coefficient 

Accuracy F1 score 
Matthews 
correlation 
coefficient 

Pixel 
level 

Chardonnay 0.64 0.59 0.27 0.66 0.68 0.33 
Pinot Noir 0.63 0.55 0.26 0.69 0.71 0.39 
Cab Sav 0.84 0.83 0.69 0.82 0.83 0.64 

Vine 
level 

Chardonnay 0.58 0.66 0.21 0.64 0.75 0.16 
Pinot Noir 0.61 0.44 0.18 0.62 0.65 0.29 
Cab Sav 0.91 0.90 0.83 0.89 0.89 0.78 

 462 

Moreover, the models built from the same cultivar from different vineyards were used to predict each 463 
other. The results are in Table 5. Shows that the GLD in Cabernet Sauvignon and SD in Shiraz could 464 
predict each other between locations with the highest accuracy at 0.85 and 0.88 for Cabernet 465 
Sauvignon and Shiraz at vine level respectively. 466 

 467 

Table 5. Model prediction results between locations. 468 

 Model Prediction Accuracy F1 
score 

Matthews 
correlation 
coefficient 
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Pixel 
level 

Ade Hills - Cab Sav  Barossa - Cab Sav  0.76 0.75 0.53 
Barossa - Cab Sav  Ade Hills - Cab Sav  0.80 0.81 0.60 
Barossa - Shiraz  Riverland - Shiraz  0.82 0.82 0.64 
Riverland - Shiraz  Barossa - Shiraz  0.79 0.80 0.58 

Vine 
level 

Ade Hills - Cab Sav  Barossa - Cab Sav  0.82 0.81 0.65 
Barossa - Cab Sav  Ade Hills - Cab Sav  0.85 0.86 0.72 
Barossa - Shiraz  Riverland - Shiraz  0.88 0.88 0.77 
Riverland - Shiraz  Barossa - Shiraz  0.86 0.86 0.73 

 469 

 470 

4. Discussion 471 

The present study assessed the capability of UAV-based high-resolution hyperspectral images for 472 
grapevine viral disease detection in Australian vineyards. The advantage of the high spatial and 473 
spectral resolution allows us to compare the spectral signals between healthy and diseased vines to 474 
better understand the spectral difference in disease symptoms. The spectral signal of the GLD 475 
symptomatic Pinot Noir and Cabernet Sauvignon from the airborne hyperspectral data closely 476 
matched the ground studies that used the hyperspectral proximal sensing or directed leaf contact 477 
sensors for GLD detection (Junges et al., 2020; Naidu et al., 2009; Wang et al., 2023a), which 478 
demonstrated the reliability of the hyperspectral remote sensing from the low-altitude UAV system 479 
for grapevine viral disease detection. The spectral difference between diseased and healthy vines 480 
showed progressively increasing spectral differences from the early development stage (flowering) 481 
towards the later season (harvest), which matched the development of the visual disease symptoms 482 
over time; the late season had the most intense symptoms. It was noticeable at harvest time that the 483 
red-edge region (700-740 nm) had higher reflectance in all cultivars. The red edge spectral region is 484 
very sensitive to plant stress (Filella and Penuelas, 1994; Horler et al., 1983; Smith et al., 2004), which, 485 
in our case, was most likely the stress from the virus infections. However, the spectral differences in 486 
other parts of the spectrum were variable depending on cultivars. The Pinot Noir and Cabernet 487 
Sauvignon showed a similar spectral pattern, which had higher reflectance in the red and red-edge 488 
regions, and lower reflectance in the green region. This is mainly due to the biosynthesis of 489 
anthocyanins in the leaves (Gutha et al., 2010). Anthocyanin reflects red light and has high absorption 490 
at 500 to 600 nm spectrums with a peak at 550 nm. In comparison, the diseased Shiraz had higher 491 
reflectance at 550 nm. This could be because the SD symptomatic Shiraz had many newly developed 492 
young leaves throughout the season. The bright young leaves usually reflect more green light than the 493 
healthy mature leaves (Gausman, 1974; Moura et al., 2017). The SD symptomatic mature leaves on 494 
Shiraz also showed reddening, which was mixed with the young leaves in the pixels and showed high 495 
reflectance between 600-650 nm. The diseased vines also had lower reflectance in the 400-500 nm 496 
region in Cabernet Sauvignon and Shiraz, which could be due to the lower chlorophyll and carotenoid 497 
contents in the leaves (Gutha et al., 2010). Compared to the red cultivars, the white cultivar 498 
Chardonnay had less spectral difference between healthy and diseased vines in all VNIR regions, 499 
except the red-edge region. These minimal differences could explain the lack of symptoms in white 500 
cultivars as they are beyond human vision, i.e. in the red edge region (Campbell and Gubisch, 1966).  501 

The PLS-DA model performance was closely related to the visual symptom and spectral difference in 502 
the study. Comparing different developmental stages for the accuracy of GLD in Chardonnay, Pinot 503 
Noir, and Cabernet Sauvignon, higher accuracies were found later season compared to the early 504 
season, which is consistent with other studies on GLD detection (Bell, 2015; MacDonald et al., 2016). 505 
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In comparison, the accuracy for SD prediction in Shiraz at the early stage had a relatively small 506 
difference to the later season, and the highest was in the veraison stage in Barossa. That was because 507 
the SD symptoms in Shiraz started at the beginning of the season (Habili, 2013; Wu et al., 2020). In 508 
terms of the models' performance between cultivars, the PLS-DA models could well predict the virus 509 
infection in the red cultivars including GLD symptoms in Pinot Noir and Cabernet Sauvignon and SD 510 
symptoms in Shiraz across different vineyards with best accuracy of 0.91 to 0.98 at vine level. In the 511 
white cultivars, even though the vine did not show obvious disease symptoms, we achieved an 512 
accuracy of 0.75 to predict the diseased Chardonnay. In the current study, by comparing a different 513 
number of vines used for modelling, we found 20 diseased and 20 healthy vines were adequate to 514 
build a robust model. However, if the canopy in the vineyard is inconsistent due to various biotic or 515 
abiotic stresses, more samples would likely be needed. The models were built from a single block that 516 
works well within the same block in the present study, however, the robustness of the model varied 517 
between seasons, cultivars, and locations. In the same vineyard, the model built for Chardonnay and 518 
Pinot Noir in each season at the same stage (harvest) could not predict each other, despite having 519 
similar weather in S1 and S2. However, the model for Cabernet Sauvignon in S1 and S2 could predict 520 
each other well with an accuracy of 0.89-0.91. Cabernet Sauvignon also performed well with an 521 
accuracy of 0.82-0.85 to predict the disease in a different vineyard. This indicated that our method 522 
could predict GLD in Cabernet Sauvignon across seasons and locations. Moreover, the model for SD 523 
on Shiraz also had a good accuracy of 0.82-0.88 at the vine level for predicting the disease in different 524 
vineyards even though the climate was very different between Barossa and Riverland vineyards.  525 

Although the current study demonstrated the feasibility of high-resolution hyperspectral technology 526 
for grapevine viral disease detection, it is worthwhile noting that the method is an indirect method 527 
for disease detection. Disease detection is based on the symptom and stress response to the virus. 528 
Symptoms of grapevine viral diseases can be influenced by the environment, biotic stress such as other 529 
pathogens, and abiotic stress such as water stress (Guță and Buciumeanu, 2020; Perrone et al., 2017). 530 
Viral disease symptoms can also be confused with nutrient deficiency and mechanical damage (Budoi, 531 
2003; Charles et al., 2006; Rustioni et al., 2018). The current study selected the vineyards that are all 532 
well uniformly managed, including soil, irrigation, fertilization, and canopy management, to minimise 533 
potential variation. However, further studies need to include more regions and different locations as 534 
well as more seasons for building a reliable and robust model for disease detection. In addition, the 535 
viruses in grapevines are very complicated. The infection ages, viral strains, and co-infection of 536 
different viruses, and cultivars could alter the symptoms (Maliogka et al., 2015; Naidu et al., 2015; Wu 537 
et al., 2023). The virus testing in the current study only included the most commonly seen grapevine 538 
viruses in an Australian vineyard, which does not guarantee other viruses can exist in the vineyard. 539 
Ideally, a full scan of viruses with next-generation sequencing to detect all viruses in the sample can 540 
help to understand the symptomology, however high cost will be associated.  541 

Another challenge of the detection is that the shoot of the grapevine is very long that could grow to 542 
the neighbouring vines’ space, which could influence the prediction results. The diseased pixel ratio 543 
could help compensate for the issue to some degree, however, different size bounding boxes could 544 
be used to minimize the impact. MacDonald et al, (MacDonald et al., 2016) used remote sensing 545 
images for GLD detection. They used a round buffer for individual vines. By comparing different buffer 546 
sizes, the authors got different prediction results.  547 

The average spectral difference between diseased healthy vines indicated that a multi-spectral camera 548 
with the critical spectral region could use for viral disease detection. Multispectral cameras are usually 549 
cheaper and easier to operate compared to hyperspectral cameras. Many companies make small 550 
UAVs with multispectral cameras, which can easily and quickly be used by grape growers. The method 551 
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developed from the current study could also apply to other crops and stress detections for precision 552 
agriculture applications. 553 

The current study only used PLS-DA for pixel level modelling due to its advantage in high-dimensional 554 
data processing and computational efficiency. However, there are many other machine learning 555 
algorithms that can be used to improve the model performance at the pixel level. For example, 556 
support vector machine, random forest, and neural networks. Especially, many recent studies used 557 
deep learning algorithms for remote sensing hyperspectral images (Audebert et al., 2019; Li et al., 558 
2019). The model accuracy could be improved with 3-D deep learning algorithms (Zhong et al., 2018). 559 

While the current study showed good prediction results in red cultivars, there remain opportunities 560 
for improvement in white cultivars. Other spectral regions such as SWIR (900-1700 nm) or longwave 561 
infrared (thermal; 8-13 μm) wavelengths can be investigated in future studies. The SWIR hyperspectral 562 
camera has demonstrated a better performance in detecting GLD in white grapevines compared to a 563 
VNIR camera with a proximal sensing method (Bendel et al., 2020). 564 

5. Conclusions 565 

High spatial and spectral resolution hyperspectral imagery is a powerful tool for grapevine viral disease 566 
detection. The results demonstrate that this remote sensing method provides a realistic pattern of 567 
virus infection, allowing the targeting of grapevines for laboratory testing with associated cost savings. 568 
Furthermore, the difference in spectral reflectance between diseased and healthy grapevine varieties 569 
is consistent across regions, which demonstrates that the technology provides the opportunity to 570 
rapidly and reliably detect viral diseases at the vineyard scale without prior empirical ground-based 571 
data. However, the results also show that detectability varies with the growth stage; timing of imaging 572 
is critical for detection success. Clearly, larger datasets that span multiple seasons, locations, and 573 
especially white cultivars will undoubtedly result in a more robust virus detection model in the future. 574 
The results indicate that remote sensing has the potential to become a reliable alternative to 575 
traditional methods such as visual assessment and random sampling for laboratory tests, saving time 576 
and cost for grape growers to help them to make prudent disease management decisions. 577 

  578 

 579 

 580 

Declaration of competing Interest:  581 

The authors declare that they have no known competing financial interests or personal relationships 582 
that could have appeared to influence the work reported in this paper. 583 

 584 

Acknowledgments:  585 

We acknowledge the funding bodies: South Australian Vine Improvement Association, Riverland Wine, 586 
and Wine Australia. We also appreciate the growers and vineyard managers for collaboration. 587 

 588 

Appendix A. Supplementary data 589 

 590 

86 / 108



 591 

 592 

 593 

References 594 

Alabi, O.J., Casassa, L.F., Gutha, L.R., Larsen, R.C., Henick-Kling, T., Harbertson, J.F., Naidu, R.A., 2016. 595 
Impacts of Grapevine leafroll disease on fruit yield and grape and wine chemistry in a wine grape 596 
(Vitis vinifera L.) cultivar. PLoS One 11, e0149666. 597 

Albetis, J., Duthoit, S., Guttler, F., Jacquin, A., Goulard, M., Poilvé, H., Féret, J.-B., Dedieu, G., 2017. 598 
Detection of Flavescence dorée Grapevine Disease using unmanned aerial vehicle (UAV) 599 
multispectral imagery. Remote Sensing 9, 308-328. 600 

Atallah, S., Gomez, M., Fuchs, M., Martinson, T., 2012. Economic impact of grapevine leafroll disease 601 
on Vitis vinifera cv. Cabernet franc in Finger Lakes vineyards of New York. American Journal of 602 
Enology and Viticulture 63, 73-79. 603 

Audebert, N., Le Saux, B., Lefevre, S., 2019. Deep learning for classification of hyperspectral data: A 604 
comparative review. IEEE Geoscience and Remote Sensing Magazine 7, 159-173. 605 

Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H., 2000. Assessing the accuracy of 606 
prediction algorithms for classification: an overview. Bioinformatics 16, 412-424. 607 

Ballabio, D., Consonni, V., 2013. Classification tools in chemistry. Part 1: linear models. PLS-DA. 608 
Analytical Methods 5, 3790-3798. 609 

Barker, M., Rayens, W., 2003. Partial least squares for discrimination. Journal of Chemometrics 17, 610 
166-173. 611 

Barnes, R.J., Dhanoa, M.S., Lister, S.J., 1989. Standard normal variate transformation and de-trending 612 
of near-infrared diffuse reflectance spectra. Applied Spectroscopy 43, 772-777. 613 

Basso, M.F., Fajardo, T.V.M., Saldarelli, P., 2017. Grapevine virus diseases: Economic impact and 614 
current advances in viral prospection and management. Revista Brasileira de Fruticultura 39. 615 

Bell, V.A., 2015. An integrated strategy for managing Grapevine leafroll-associated virus 3 in red 616 
berry cultivars in New Zealand vineyards. Open Access Te Herenga Waka-Victoria University of 617 
Wellington. 618 

Bell, V.A., Blouin, A.G., Cohen, D., Hedderley, D.I., Oosthuizen, T., Spreeth, N., Lester, P.J., Pietersen, 619 
G., 2017. Visual symptom identification of grapevine leafroll-associated virus 3 in red berry cultivars 620 
supports virus management by roguing. Journal of Plant Pathology 99, 477-482. 621 

Bendel, N., Kicherer, A., Backhaus, A., Köckerling, J., Maixner, M., Bleser, E., Klück, H.-C., Seiffert, U., 622 
Voegele, R.T., Töpfer, R., 2020. Detection of Grapevine leafroll-associated virus 1 and 3 in white and 623 
red grapevine cultivars using hyperspectral imaging. Remote Sensing 12. 624 

Bioreba_AG, 2017. Product Information: DAS-ELISA - Grapevine leafroll-associated virus generic 4 625 
strains (GLRaV-4 strains). 626 

87 / 108



Blaisdell, G.K., Zhang, S., Rowhani, A., Klaassen, V., Cooper, M.L., Daane, K.M., Almeida, R.P.P., 2020. 627 
Trends in vector-borne transmission efficiency from coinfected hosts: Grapevine leafroll-associated 628 
virus-3 and Grapevine virus A. European Journal of Plant Pathology 156, 1163-1167. 629 

Boughorbel, S., Jarray, F., El-Anbari, M., 2017. Optimal classifier for imbalanced data using Matthews 630 
Correlation Coefficient metric. PLOS ONE 12, e0177678. 631 

Budoi, G., Berca, M., Penescu, A., Soare, M. , Gavriluta, I., Dana, D., Bireescu, L., Alexandru, D., 2003. 632 
Similarities and differences between visual symptoms of nutrient disorders and plant diseases–633 
criteria to avoid confusions. ESNA UIR, 108-113. 634 

Burger, J.T., Maree, H.J., Gouveia, P., Naidu, R.A., 2017. Grapevine leafroll-associated virus3, in: 635 
Meng, B., Martelli, G.P., Golino, D.A., Fuchs, M. (Eds.), Grapevine viruses: Molecular biology, 636 
diagnostics and management. Springer International Publishing, Germany, pp. 167-195. 637 

Campbell, F.W., Gubisch, R.W., 1966. Optical quality of the human eye. The Journal of Physiology 638 
186, 558-578. 639 

Charles, J.G., Cohen, D., Walker, J.T.S., Forgie, S.A., Bell, V.A., Breen, K.C., 2006. A review of the 640 
ecology of grapevine leafroll associated virus type 3 (GLRaV3). New Zealand Plant Protection 59, 641 
330-337. 642 

Chicco, D., Jurman, G., 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 643 
score and accuracy in binary classification evaluation. BMC Genomics 21, 6. 644 

Chooi, K.M., Bell, V.A., Blouin, A.G., Cohen, D., Mundy, D., Henshall, W., MacDiarmid, R.M., 2022. 645 
Grapevine leafroll-associated virus 3 genotype influences foliar symptom development in New 646 
Zealand vineyards. Viruses 14. 647 

Constable, F.E., Rodoni, B.C., 2014. Grapevine leafroll-associated viruses. Wine Australia, Adelaide, 648 
Australia. 649 

Credi, R., 1997. Characterization of Grapevine Rugose Wood Disease sources from Italy. Plant Dis. 650 
81, 1288-1292. 651 

Digiaro, M., Bedzrob, M.P., D'Onghia, A.M., Boscia, D., Savino, V.N., 1994. On the correlation 652 
between grapevine virus A and rugose wood. Phytopathologia Mediterranea 33, 187-193. 653 

Douglas, N., Krüger, K., 2008. Transmission efficiency of Grapevine leafroll-associated virus 3 (GLRaV-654 
3) by the mealybugs Planococcus ficus and Pseudococcus longispinus (Hemiptera: Pseudococcidae). 655 
European Journal of Plant Pathology 122, 207-212. 656 

Filella, I., Penuelas, J., 1994. The red edge position and shape as indicators of plant chlorophyll 657 
content, biomass and hydric status. International Journal of Remote Sensing 15, 1459-1470. 658 

Fowler, J.E., 2014. Compressive pushbroom and whiskbroom sensing for hyperspectral remote-659 
sensing imaging, 2014 IEEE International Conference on Image Processing (ICIP), pp. 684-688. 660 

Galvan, F.E.R., Pavlick, R., Trolley, G., Aggarwal, S., Sousa, D., Starr, C., Forrestel, E., Bolton, S., Alsina, 661 
M.d.M., Dokoozlian, N., Gold, K.M., 2023. Scalable Early Detection of Grapevine Viral Infection with 662 
Airborne Imaging Spectroscopy. Phytopathology®, PHYTO-01-23-0030-R. 663 

88 / 108



Gambino, G., 2015. Multiplex RT-PCR method for the simultaneous detection of nine grapevine 664 
viruses. Methods in Molecular Biology 1236, 39-47. 665 

Gausman, H.W., 1974. Leaf reflectance of near-infrared. Photogrammetric Engineering 40, 183-191. 666 

Goszczynski, D.E., du Preez, J., Burger, J.T., 2008. Molecular divergence of Grapevine virus A (GVA) 667 
variants associated with Shiraz disease in South Africa. Virus Res. 138, 105-110. 668 

Goszczynski, D.E., Habili, N., 2012. Grapevine virus A variants of group II associated with Shiraz 669 
disease in South Africa are present in plants affected by Australian Shiraz disease, and have also 670 
been detected in the USA. Plant Pathology 61, 205-214. 671 

Goszczynski, D.E., Jooste, A.E.C., 2003. Identification of divergent variants of Grapevine virus A. 672 
European Journal of Plant Pathology 109, 397-403. 673 

Goutte, C., Gaussier, E., 2005. A Probabilistic Interpretation of Precision, Recall and F-Score, with 674 
Implication for Evaluation, in: Losada, D.E., Fernández-Luna, J.M. (Eds.), Advances in Information 675 
Retrieval. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 345-359. 676 

Guță, I.C., Buciumeanu, E.C., 2020. The behaviour of grapevine under virus infection and drought 677 
stress combination. AgroLife Scientific Journal 9. 678 

Gutha, L.R., Casassa, L.F., Harbertson, J.F., Naidu, R.A., 2010. Modulation of flavonoid biosynthetic 679 
pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC 680 
Plant Biology 10, 187. 681 

Habili, N., 2013. Australian Shiraz Disease: an emerging virus disease of Vitis vinifera cv. Shiraz. Wine 682 
and Viticulture Journal 28, 59-61. 683 

Habili, N., Komínek, P., Little, A., 2007. Grapevine leafroll-associated virus 1 as a common grapevine 684 
pathogen. Plant Viruses 1. 685 

Habili, N., Wu, Q., Pagay, V., 2016. Virus-associated Shiraz Disease may lead Shiraz to become an 686 
endangered variety in Australia. Wine and Viticulture Journal V31N1, 47-50. 687 

Hofer, M., 2017. Mean centering, The International Encyclopedia of Communication Research 688 
Methods, pp. 1-3. 689 

Hommay, G., 2008. Grapevine virus A transmission by larvae of Parthenolecanium corni. European 690 
journal of plant pathology 121, pp. 185-188-2008 v.2121 no.2002. 691 

Hommay, G., Beuve, M., Herrbach, E., 2022. Transmission of grapevine leafroll-associated viruses 692 
and grapevine virus A by vineyard-sampled soft scales (Parthenolecanium corni, Hemiptera: 693 
Coccidae). Viruses 14. 694 

Hoo, Z.H., Candlish, J., Teare, D., 2017. What is an ROC curve? Emergency Medicine Journal 34, 357-695 
359. 696 

Horler, D.N.H., Dockray, M., Barber, J., 1983. The red edge of plant leaf reflectance. International 697 
Journal of Remote Sensing 4, 273-288. 698 

Hou, J., Li, L., He, J., 2016. Detection of grapevine leafroll disease based on 11-index imagery and ant 699 
colony clustering algorithm. Precision Agriculture 17, 488-505. 700 

89 / 108



Hull, R., 2014a. Ecology, epidemiology, and control of plant viruses, Plant Virology, pp. 809-876. 701 

Hull, R., 2014b. Virus–plant interactions in non-permissive and permissive hosts, Plant Virology, pp. 702 
605-668. 703 

Junges, A.H., Almança, M.A.K., Fajardo, T.V.M., Ducati, J.R., 2020. Leaf hyperspectral reflectance as a 704 
potential tool to detect diseases associated with vineyard decline. Trop. Plant Pathol. 45, 522-533. 705 

Lee, J., Keller, K.E., Rennaker, C., Martin, R.R., 2009. Influence of grapevine leafroll associated viruses 706 
(GLRaV-2 and -3) on the fruit composition of Oregon Vitis vinifera L. cv. Pinot noir: Free amino acids, 707 
sugars, and organic acids. Food Chemistry 117, 99-105. 708 

Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., Benediktsson, J.A., 2019. Deep learning for 709 
hyperspectral image classification: An overview. IEEE Transactions on Geoscience and Remote 710 
Sensing 57, 6690-6709. 711 

MacDonald, S.L., Staid, M., Staid, M., Cooper, M.L., 2016. Remote hyperspectral imaging of 712 
grapevine leafroll-associated virus 3 in Cabernet Sauvignon vineyards. Computers and Electronics in 713 
Agriculture 130, 109-117. 714 

Maliogka, V.I., Martelli, G.P., Fuchs, M., Katis, N.I., 2015. Chapter Six - Control of Viruses Infecting 715 
Grapevine, in: Loebenstein, G., Katis, N.I. (Eds.), Advances in Virus Research. Academic Press, pp. 716 
175-227. 717 

Martelli, G.P., 2017. An overview on grapevine viruses, viroids, and the diseases they cause, in: 718 
Meng, B., Martelli, G.P., Golino, D.A., Fuchs, M. (Eds.), Grapevine Viruses: Molecular Biology, 719 
Diagnostics and Management. Springer International Publishing, Cham, pp. 31-46. 720 

Monis, J., Bestwick, R.K., 1996. Detection and localization of Grapevine Leafroll Associated 721 
Closteroviruses in greenhouse and tissue culture grown plants. American Journal of Enology and 722 
Viticulture 47, 199. 723 

Moura, Y., Galvão, L., Hilker, T., Wu, J., Saleska, S., Amaral, C., Nelson, B., Lopes, A., Wiedemann, K., 724 
Prohaska, N., Oliveira Junior, R., Bueno Machado, C., Aragão, L., Paulson, J., 2017. Spectral analysis 725 
of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis 726 
observations. ISPRS Journal of Photogrammetry and Remote Sensing 131, 52-64. 727 

Naidu, R., Rowhani, A., Fuchs, M., Golino, D., Martelli, G.P., 2014. Grapevine leafroll: A complex viral 728 
disease affecting a high-value fruit crop. Plant Dis. 98, 1172-1185. 729 

Naidu, R.A., Hughes, J.D.A., 2003. Methods for the detection of plant virus diseases, Plant Virology in 730 
Sub-Saharan Africa: Proceedings of a Conference Organized by IITA: 4-8 June 2001, International 731 
Institute of Tropical Agriculture, Ibadan, Nigeria. IITA, p. 233. 732 

Naidu, R.A., Maree, H.J., Burger, J.T., 2015. Grapevine leafroll disease and associated viruses: a 733 
unique pathosystem. Annual review of phytopathology 53, 613-634. 734 

Naidu, R.A., Perry, E.M., Pierce, F.J., Mekuria, T., 2009. The potential of spectral reflectance 735 
technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape 736 
cultivars. Computers and Electronics in Agriculture 66, 38-45. 737 

Nguyen, C., Sagan, V., Maimaitiyiming, M., Maimaitijiang, M., Bhadra, S., Kwasniewski, M.T., 2021. 738 
Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors 21. 739 

90 / 108



Olivier, R., Hanqiang, C., 2012. Nearest neighbor value interpolation. International Journal of 740 
Advanced Computer Science and Applications 3. 741 

Perrone, I., Chitarra, W., Boccacci, P., Gambino, G., 2017. Grapevine–virus–environment 742 
interactions: an intriguing puzzle to solve. New Phytologist 213, 983--987. 743 

Pietersen, G., Spreeth, N., Oosthuizen, T., van Rensburg, A., van Rensburg, M., Lottering, D., 744 
Rossouw, N., Tooth, D., 2013. Control of grapevine leafroll disease spread at a commercial wine 745 
estate in South Africa: A case study. American Journal of Enology and Viticulture 64, 296. 746 

Rubio, L., Galipienso, L., Ferriol, I., 2020. Detection of plant viruses and disease management: 747 
Relevance of genetic diversity and evolution. Frontiers in Plant Science 11. 748 

Rustioni, L., Grossi, D., Brancadoro, L., Failla, O., 2018. Iron, magnesium, nitrogen and potassium 749 
deficiency symptom discrimination by reflectance spectroscopy in grapevine leaves. Scientia 750 
Horticulturae 241, 152-159. 751 

Rustioni, L., Rocchi, L., Failla, O., 2015. Effect of anthocyanin absence on white berry grape (Vitis 752 
vinifera L.).  54, 239-242. 753 

Sanches, I.D., Tuohy, M.P., Hedley, M.J., Bretherton, M.R., 2009. Large, durable and low‐cost 754 
reflectance standard for field remote sensing applications. International Journal of Remote Sensing 755 
30, 2309-2319. 756 

Savitzky, A., Golay, M.J.E., 1964. Smoothing and Differentiation of Data by Simplified Least Squares 757 
Procedures. Analytical Chemistry 36, 1627-1639. 758 

Sinha, R., Khot, L.R., Rathnayake, A.P., Gao, Z., Naidu, R.A., 2019. Visible-near infrared 759 
spectroradiometry-based detection of grapevine leafroll-associated virus 3 in a red-fruited wine 760 
grape cultivar. Computers and Electronics in Agriculture 162, 165-173. 761 

Smith, K.L., Steven, M.D., Colls, J.J., 2004. Use of hyperspectral derivative ratios in the red-edge 762 
region to identify plant stress responses to gas leaks. Remote Sensing of Environment 92, 207-217. 763 

Sokolova, M., Japkowicz, N., Szpakowicz, S., 2006. Beyond accuracy, F-score and ROC: a family of 764 
discriminant measures for performance evaluation, Australasian joint conference on artificial 765 
intelligence. Springer, pp. 1015-1021. 766 

Thenkabail, P.S., Lyon, J.G., Huete, A., 2011. Advances in hyperspectral remote sensing of vegetation 767 
and agricultural croplands, in: Thenkabail, P.S., Lyon, J.G., Huete, A. (Eds.), Hyperspectral remote 768 
sensing of vegetation. CRC Press, Boca Raton, FL, pp. 3-35. 769 

Thomas, S., Kuska, M.T., Bohnenkamp, D., Brugger, A., Alisaac, E., Wahabzada, M., Behmann, J., 770 
Mahlein, A.-K., 2018. Benefits of hyperspectral imaging for plant disease detection and plant 771 
protection: a technical perspective. Journal of Plant Diseases and Protection 125, 5-20. 772 

Valavi, R., Elith, J., Lahoz-Monfort, J.J., Guillera-Arroita, G., 2019. blockCV: An r package for 773 
generating spatially or environmentally separated folds for k-fold cross-validation of species 774 
distribution models. Methods in Ecology and Evolution 10, 225-232. 775 

Vanegas, F., Bratanov, D., Powell, K., Weiss, J., Gonzalez, F., 2018. A novel methodology for 776 
improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial 777 
data. Sensors 18. 778 

91 / 108



Wang, D., Vinson, R., Holmes, M., Seibel, G., Bechar, A., Nof, S., Tao, Y., 2019. Early detection of 779 
Tomato Spotted Wilt Virus by hyperspectral imaging and outlier removal auxiliary classifier 780 
generative adversarial nets (OR-AC-GAN). Sci Rep 9, 4377. 781 

Wang, Y.M., Ostendorf, B., Gautam, D., Habili, N., Pagay, V., 2022. Plant viral disease detection: from 782 
molecular diagnosis to optical sensing technology—A multidisciplinary review. Remote Sensing 14. 783 

Wang, Y.M., Ostendorf, B., Pagay, V., 2023a. Detecting grapevine virus infections in red and white 784 
winegrape canopies using proximal hyperspectral sensing. Sensors 23. 785 

Wang, Y.M., Ostendorf, B., Pagay, V., 2023b. Evaluating the potential of high-resolution visible 786 
remote sensing to detect Shiraz Disease in grapevines. Australian Journal of Grape and Wine 787 
Research 2023, 7376153. 788 

Wu, Q., Habili, N., Constable, F., Al Rwahnih, M.A., Goszczynski, D.E., Wang, Y., Pagay, V., 2020. Virus 789 
pathogens in Australian vineyards with an emphasis on Shiraz Disease. Viruses 12. 790 

Wu, Q., Habili, N., Kinoti, W.M., Tyerman, S.D., Rinaldo, A., Zheng, L., Constable, F.E., 2023. A 791 
metagenomic investigation of the viruses associated with Shiraz Disease in Australia. Viruses 15. 792 

Yuhas, R.H., Goetz, A.F., Boardman, J.W., 1992. Discrimination among semi-arid landscape 793 
endmembers using the spectral angle mapper (SAM) algorithm, JPL, Summaries of the Third Annual 794 
JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop. 795 

Zhang, N., Yang, G., Pan, Y., Yang, X., Chen, L., Zhao, C., 2020. A review of advanced technologies and 796 
development for hyperspectral-based plant disease detection in the past three decades. Remote 797 
Sensing 12. 798 

Zhang, X., Han, L., Dong, Y., Shi, Y., Huang, W., Han, L., González-Moreno, P., Ma, H., Ye, H., Sobeih, 799 
T., 2019. A deep learning-based approach for automated Yellow Rust Disease detection from high-800 
resolution hyperspectral UAV images. Remote Sensing 11. 801 

Zherdev, A.V., Vinogradova, S.V., Byzova, N.A., Porotikova, E.V., Kamionskaya, A.M., Dzantiev, B.B., 802 
2018. Methods for the diagnosis of grapevine viral infections: A review. Agriculture 8, 195. 803 

Zhong, Z., Li, J., Luo, Z., Chapman, M., 2018. Spectral–Spatial Residual Network for Hyperspectral 804 
Image Classification: A 3-D Deep Learning Framework. IEEE Transactions on Geoscience and Remote 805 
Sensing 56, 847-858. 806 

Zhu, H., Chu, B., Zhang, C., Liu, F., Jiang, L., He, L., 2017. Hyperspectral imaging for presymptomatic 807 
detection of tobacco disease with successive projections algorithm and machine-learning classifiers. 808 
Scientific Reports 7. 809 

Zia-Khan, S., Kleb, M., Merkt, N., Schock, S., Müller, J., 2022. Application of infrared imaging for early 810 
detection of Downy Mildew (Plasmopara viticola) in grapevine. Agriculture 12. 811 

 812 

92 / 108



Chapter 6 
 

 

Conclusions and future perspectives 
 

 

6.1. Concluding remarks 

This PhD research focused on developing rapid detection methods for two grapevine 

viral diseases – SD and GLD – on a large scale using optical sensors and remote 

sensing technology. Below, several key results and findings from the research are 

highlighted.  

Firstly, a rapid detection method for SD in Shiraz vineyards was developed based on 

high-resolution RGB imagery. This imagery allowed for the rapid identification of 

diseased grapevines using the delayed budburst symptom of SD. This study found 

that the difference in canopy size between diseased and healthy vines at optimal times 

(pre-flowering and veraison stages) is closely related to SD infection in the vineyards. 

The proposed method is practical and easily adopted by growers. With the increasing 

affordability and user-friendliness of small UAVs and mapping applications, growers 

can capture high-resolution remote sensing images with minimal training. The timely 

data from growers can effectively estimate disease incidence in the vineyard, reduce 

the cost of disease detection, and aid in disease management strategies. 

Secondly, a successful demonstration showed the efficacy of passive hyperspectral 

proximal sensing for the detection of GLD in both red and white cultivars. This 

approach offers a significant advantage in identifying subtle disease symptoms, 
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particularly in white cultivars. By using a handheld spectroradiometer in the VNIR 

spectrum range, an impressive detection accuracy of 96% was achieved for Pinot Noir 

and 76% for Chardonnay. Furthermore, the spectral reflectance differences observed 

between GLD-infected and healthy red cultivars closely aligned with previous studies 

that employed leaf-contact hyperspectral sensors to detect GLD in red grapevines. 

These results strongly affirm the reliability of hyperspectral proximal sensing for the 

detection of viral diseases in grapevines. Additionally, the chemometrics analytical 

method (PLS-DA) used in this study for spectral data modelling is computationally 

effective and can be used for further comparative studies, such as a quick comparison 

of the spectral difference between diseases and cultivars, and also benchmarking 

different algorithms when other modelling methods are used. 

Thirdly, using the advantage of both low-altitude remote sensing and hyperspectral 

imagery technology, a new detection method for GLD and SD at the vineyard scale 

was developed based on my two previous findings. The utilisation of UAV-based 

hyperspectral imagery provided high-resolution images encompassing both spectral 

and spatial domains. The PhD research successfully demonstrated the feasibility of 

employing high-resolution hyperspectral imagery within the VNIR spectral range to 

detect GLD and SD in both red and white grapevine cultivars within Australian 

vineyards. The differences in spectral wavelength regions between healthy and GLD-

infected vines were consistent with the proximal sensing method utilised previously. 

This study further solidified the reliability of the low-altitude remote sensor UAV 

hyperspectral sensing method for grapevine viral disease detection. While the 

detection of SD in Shiraz can be accomplished through canopy size measurements 

employing RGB UAV methods, as mentioned in Chapter 3, the inclusion of spectral 
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differences provides supplementary information for disease identification during 

various developmental stages. For instance, the spectral disparities facilitate the 

detection of variations in both canopy colour and size throughout the growing season, 

which may not be perceptible to an RGB sensor alone. Consequently, this 

augmentation in data enhances the overall confidence in the results obtained. The 

conclusive outcomes yielded disease maps containing precise geo-locations, defining 

the position of diseased vines within rows and vine numbers in blocks. Such specific 

geo-information serves as an invaluable tool for growers, enabling precise disease 

management by facilitating the identification and removal of infected vines. 

More importantly, the processed hyperspectral data obtained from both proximal and 

low-altitude remote sensing methods consistently revealed significant spectral 

differences between virus-infected and healthy vines. These findings underscore the 

relevance of specific spectral regions for effective viral disease detection, with 

particular emphasis on the red-edge band, which proves valuable in discriminating 

disease presence in both red and white grapevine cultivars. 

Additionally, acquiring all the necessary data for this PhD research was a significant 

endeavour. This encompassed a wide range of data, including virus test results, visual 

assessments, handheld spectroradiometer data, and UAV remote sensing data 

collected over multiple seasons and viticultural regions. These data, and also the 

know-how in data acquisition and processing obtained during this research, can 

greatly benefit future students and researchers undertaking similar investigations. 

Nevertheless, several challenges persist in this research endeavour. The subsequent 

section will delve into these challenges and explore potential solutions to address them. 
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6.2. Remaining challenges 

6.2.1. The complexity of grapevine virus diseases  

Fundamentally, the optical sensing technology used in disease detection is an indirect 

method that relies on measuring the plant's physiological response to viral infections. 

However, it is important to note that other stresses, such as nutrient deficiency and 

mechanical damage, can trigger similar responses in grape leaves. When viral 

diseases and other biotic or abiotic stresses occur simultaneously in a vine, it becomes 

more challenging to accurately detect the specific disease using these indirect 

methods. 

Despite decades of research in plant virology, there are still many mysteries that 

remain to be understood. For instance, the symptoms of grapevine viral diseases can 

be influenced by environmental factors (Perrone et al. 2017), leading to confusion in 

disease detection. In this PhD study, the intensity of disease symptoms varied across 

different seasons, which resulted in lower prediction accuracy based on spectral 

reflectance between seasons.   

Besides, the variants of viruses have a significant impact on the observed symptoms. 

For example, only GVA phylogroup II variants are associated with the SD symptom in 

Shiraz, while other variants such as those in GVA phylogroups I and III do not cause 

SD symptoms (Wu et al. 2023). Unfortunately, distinguishing between virus variants 

can only be confirmed through costly processes like RT-PCR. 

Furthermore, it is common for multiple viruses and virus variants to co-infect the same 

vine (Blaisdell et al. 2020; Credi 1997; Hommay 2008). The mixture of virus infections 

can further complicate symptom expression. In some study vineyards, the vines with 
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multiple virus infections generally exhibited more severe symptoms. For instance, a 

Shiraz vine infected with GLRaV-1, GLRaV-3, strain 9 of GLRaV-4, and GVA showed 

more severe SD symptoms compared to a vine infected with only GLRaV-1 and GVA 

in the same vineyard block. Additionally, older vines, such as those in the Barossa 

Valley, tend to have a higher prevalence of mixed virus infections compared to newly 

established blocks in my study sites. The presence of mixed multiple virus infections 

within the same block poses challenges for modelling and prediction. 

Moreover, disease symptoms can vary widely among different grapevine cultivars. It 

is well-known that GLD in white grapevine cultivars does not exhibit the same obvious 

symptoms as in red cultivars due to the lack of anthocyanins in the latter, leading to 

lower accuracy in disease detection (Gutha et al. 2010; Rustioni et al. 2015). However, 

the tolerance to certain virus infections in different cultivars also adds to the complexity 

and difficulty of detection. For example, in the Barossa vineyard, a few Shiraz vines 

grafted onto Cabernet Sauvignon rootstock exhibited two different disease symptoms 

on the same vine. The Shiraz portion displayed typical SD symptoms, while the water 

shoots (suckers) from the Cabernet Sauvignon rootstock exhibited GLD symptoms, 

despite virus testing indicating the presence of GVA and GLRaV-1 in both cultivars on 

the same vine. The presence of mixed symptoms can affect the accuracy of remote 

sensing detection for the disease.  Although previous studies have stated that SD only 

appears in sensitive cultivars like Shiraz and Merlot, but not in Cabernet Sauvignon 

(Goszczynski et al. 2008), the underlying reasons for the cultivar specificity of the 

disease remain unclear.  
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6.2.2. Lack of abundant reliable ground-truthing data 

A common challenge in remote sensing studies is the lack of adequate ground-truth 

data, which is essential for ensuring the reliability and accuracy of the model and its 

results. The most reliable ground-truthing method in this study is RT-PCR testing; 

however, its high cost limits the number of samples that can be used for modelling. 

The ELISA test method, although relatively cheaper, still incurs a considerable cost, 

allowing for a larger number of samples to be used for modelling and validation. On 

the other hand, visual assessment can provide a wealth of ground-truthing data. For 

instance, visual assessment has been successfully employed for GLRaV-3 detection 

in red cultivars such as Cabernet Sauvignon, Merlot, and Shiraz in New Zealand and 

South Africa, showing a high degree of correlation with ELISA test results (Bell et al. 

2017). However, the reliability of visual assessment for other viruses and cultivars, 

particularly white cultivars, remains uncertain. Striking the right balance between 

reliability and a higher number of samples for ground-truthing is a challenging task. 

Moreover, it is important to acknowledge that lab testing results are not infallible. The 

virus titer level can vary at different development stages and locations within the vine, 

leading to potential false negative results. Sampling at different times and parts of the 

vine may produce varying outcomes (Blouin et al. 2017). For instance, the ELISA 

testing results from the PhD study for GLRaV-1 infected vines sampled during early 

development stages (e.g., flowering) are less reliable (could result in false negatives) 

compared to later stages such as veraison and harvest. Additionally, cane samples 

taken from the tip of the shoot were found to be less reliable than those taken from the 

base of the shoots in ELISA testing. Furthermore, human error is an unavoidable factor. 

Leaves may be mistakenly sampled from the wrong vine as grapevine shoots can grow 

extensively and enter neighbouring spaces. Cross-contamination could happen during 
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sample handling and processing. Even a simple mistake, such as incorrectly recording 

the sample ID, can significantly alter the test results. The incorrect ground-truth data 

can significantly impact the performance of the model, particularly when working with 

a limited number of samples. 

6.2.3. Technical limitations 

Each sensor offers distinct advantages and drawbacks. For instance, RGB sensors 

provide cost-effective solutions for disease detection, but are limited to detecting 

symptomatic diseases. On the other hand, multispectral and hyperspectral sensors 

can detect the spectrum beyond human vision, enabling the detection of asymptomatic 

diseases. However, these sensors entail higher costs, demand greater expertise, and 

involve longer data processing times. 

Despite the growing popularity of UAV-based hyperspectral technology in agricultural 

applications (Adão et al. 2017), the development of a user-friendly airborne 

hyperspectral system is still in progress. Unlike UAVs equipped with RGB cameras, 

which typically have simple interfaces and are easy to use, hyperspectral UAV 

systems are more complex. The collection and processing of hyperspectral data 

require careful attention to factors such as sensor calibration, data acquisition 

parameters, and spectral calibration targets. These complexities necessitate a higher 

level of expertise and attention to detail when operating hyperspectral UAV systems. 

In my study, the RGB-based UAV I used was a plug-and-play device that could be 

easily adopted by anyone for data collection. In contrast, the airborne hyperspectral 

system I employed involved a more intricate setup process and was susceptible to 

operational mistakes and technical issues. During the first year of the research, the 

study encountered several technical issues with the hyperspectral airborne system. 
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For instance, interference from the onboard computer affected the GPS cables, 

resulting in a failure to georeference the data. These issues resulted in missed data 

capture opportunities during the 2019/20 season. 

However, with the increasing demand for high-resolution hyperspectral technology, 

companies such as Headwall Photonics, Specim, Cubert GmbH, and Resonon are 

competing to manufacture simpler hyperspectral systems for UAV applications. I am 

optimistic that airborne hyperspectral systems will become more user-friendly and 

reliable in the near future. 

There are other common challenges associated with UAV operations. These include 

the limited flying time due to battery constraints, the impact of extreme weather on 

flights, and restrictions imposed by regulatory bodies such as Civil Aviation Safety 

Authority (CASA) on the UAV's operating height, distance, and location. These factors 

need to be considered when planning and conducting UAV-based hyperspectral data 

collection for disease detection in vineyards. 

6.2.4. The economic challenge 

This PhD research aims to assist growers in reducing the costs associated with 

detecting viral diseases, thereby optimising disease management. However, 

managing these diseases is a significant expense. As previously mentioned, there is 

currently no effective treatment for virus-infected vines, so the only option is to remove 

the infected vines and replant with clean materials. This process is both labour-

intensive and costly. Additionally, some virus infections, such as GLRaV-1 in white 

cultivars or GVA in Cabernet Sauvignon, typically do not cause noticeable yield loss. 

As a result, growers are often hesitant to take action and remove infected vines unless 

the disease clearly affects vine health and productivity, as observed with SD in Shiraz. 
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Throughout this research, only two growers opted to replant a few rows of Shiraz due 

to the persistently low productivity caused by SD over several years. 

The overall cost of managing viral diseases significantly influences growers' attitudes 

and actions. After speaking with several growers, it became clear that replanting is 

viewed as an expensive undertaking. If the vines are still productive, the process of 

removing infected vines may not be prioritised. Consequently, growers question the 

need to spend money on expensive virus testing. However, if this research could 

provide a cost-effective and rapid assessment of the viral infection status across the 

entire vineyard, they would be more inclined to invest in such technology. 

Nevertheless, the optical sensing method is not yet economically viable due to the 

high costs associated with equipment, logistics, and skilled labour. There is still work 

to be done in commercialising this service for growers. 

 

6.3. Suggestions for further research 

Future research could aim to address the above challenges that are suggested as 

follow: 

Firstly, fundamental studies should continue to improve the understanding of viral 

diseases. Obtaining a deeper understanding of the interaction between symptomology 

and different environments, as well as the effects of different combinations of viruses 

or viral strains, can significantly enhance virus detection capabilities. The challenge of 

reliably detecting single or multiple viruses in a grapevine is complicated by various 

factors, including environment, cultivar, age, and phenological stage, amongst others, 

which can change the spectral responses. This challenge can be addressed by higher 

dimensionality in experimental designs, for example, considering the impacts of 
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environmental factors and nutrient deficiencies in conjunction with various 

combinations of virus infections within a single experiment. 

Secondly, it is crucial to enhance the reliability of virus testing by improving ground-

truthing. The growers should follow sampling protocols from the diagnostic laboratory 

(e.g. determining when and where to sample and the sample rate and frequency). 

Recording visual symptoms during sampling is recommended. It can provide 

confidence in testing results. If the test results are questionable, conducting additional 

confirmatory tests or testing the vines using multiple methods, such as ELISA and RT-

PCR is advisable. Providing more training to vineyard source block inspectors to 

ensure accurate visual assessments is also important. Paying attention to unique 

characters, such as non-lignified canes and rolling leaf edges rather than only looking 

for colour changes can provide more confidence to identify the diseases. These 

suggestions also apply to the industry who regularly conducts virus testing using lab 

testing and visual assessment methods. 

Further research should encompass greater diversity, including different locations, 

various grapevine varieties, vine ages, and different mixtures of virus infections. 

Investigating the important spectral signals for each situation is necessary. While the 

preliminary research blocks chosen for the studies were well-managed and uniformly 

controlled to minimise the impact of other factors on the symptomology of viral 

diseases, future studies can focus on more complex scenarios. As an example, 

simultaneously detecting virus infections alongside other stress factors—be they biotic 

or abiotic, such as leaf nutrient levels, fungal presence, and leaf moisture—can further 

enhance the robustness of the sensing methods.  
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The sensing technology used for disease detection should not be limited to RGB and 

VNIR hyperspectral sensors. Other types of sensors, such as SWIR (shortwave 

infrared) and far-infrared thermal sensors, should be considered. For instance, SWIR 

sensors have shown high accuracy in detecting GLD in white cultivars using active 

proximal sensing methods (Bendel et al. 2020). Since important spectral bands like 

  

the red-edge region have been found crucial for disease detection in my study, using 

a multi-spectral camera that includes these spectral regions can be beneficial in terms 

of cost reduction and simplifying data processing for effective viral disease detection. 

Thermal cameras and chlorophyll fluorescence cameras have also demonstrated 

capabilities in early disease detection and water stress detection (Chaerle et al. 2004; 

Gautam et al. 2020; Ishimwe et al. 2014). It would be worthwhile to test these 

technologies in grapevine viral disease detection under remote sensing in field 

conditions. 

Regarding remote sensing data processing, it is suggested to explore alternative 

image processing methods to improve efficiency. One specific issue is the 

misclassification between weeds and grapevines during the initial stages of image 

processing. While under-vine weeds were effectively managed in the vineyards during 

the current study, the promotion of under-vine cover crops in recent years (Marks et 

al. 2022) can pose challenges to the classification process. Some cover crops may 

exhibit similar spectral reflectance to grapevine leaves. In such cases, utilising the 

height of the canopy obtained from the digital elevation model (DEM) and digital 

surface model (DSM) can serve as a mask to eliminate non-canopy areas (Gautam et 

al. 2021). This approach can help improve the accuracy of classification. In addition to 
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data processing, various statistical and machine learning algorithms mentioned in 

Chapter 2 of the review paper can be employed for disease classification and 

modelling. Future studies can leverage these algorithms to enhance the classification 

model, thereby improving disease detection and identification. 

Educating growers about grapevine viral diseases is essential to raise awareness of 

their significance. It is crucial to remind growers that diseases can spread from 

asymptomatic vines to other sensitive cultivars. Therefore, minor virus infections in 

vineyards should not be disregarded.  

Conducting comprehensive virus disease inspections in all cultivars across major wine 

regions in Australia is highly recommended to gain a comprehensive understanding of 

the virus infection status. To achieve this goal, implementing larger-scale disease 

detection platforms is advisable. For example, utilising long-duration and long-

distance solar-powered fixed-wing UAVs (such as the SolarXOne UAV from XSUN) or 

manned surveillance airplanes (Galvan et al. 2023) can significantly enhance 

coverage capabilities. Machine learning algorithms can be applied to analyse similar 

spectral signals from hyperspectral images obtained from high-resolution, low-altitude 

remote sensing platforms and lower-resolution satellite imagery. By leveraging these 

algorithms, it is possible to facilitate broader area disease detection throughout a wine 

region using satellite images.  Ultimately, the integration of surveillance data with 

precise laboratory test results will facilitate the swift and thorough delivery of 

information to growers, assisting them in effectively eliminating viruses from their 

vineyards. 

  

104 / 108



Reference 

Adão, T, Hruška, J, Pádua, L, Bessa, J, Peres, E, Morais, R & Sousa, J 2017, 'Hyperspectral Imaging: A 
review on UAV-based sensors, data processing and applications for agriculture and forestry', Remote 
Sensing, vol. 9, no. 11. 

 
Alabi, OJ, Casassa, LF, Gutha, LR, Larsen, RC, Henick-Kling, T, Harbertson, JF & Naidu, RA 2016, 'Impacts 
of Grapevine leafroll disease on fruit yield and grape and wine chemistry in a wine grape (Vitis vinifera 
L.) cultivar', PLoS One, vol. 11, no. 2, p. e0149666. 

 
Almeida, R, Daane, K, Bell, V, Blaisdell, GK, Cooper, M, Herrbach, E & Pietersen, G 2013, 'Ecology and 
management of grapevine leafroll disease', Frontiers in Microbiology, vol. 4, 2013-April-24, pp. 1-13. 

 
Atallah, S, Gomez, M, Fuchs, M & Martinson, T 2012, 'Economic impact of grapevine leafroll disease 
on Vitis vinifera cv. Cabernet franc in Finger Lakes vineyards of New York', American Journal of Enology 
and Viticulture, vol. 63, 03/01, pp. 73-79. 

 
Bell, VA, Blouin, AG, Cohen, D, Hedderley, DI, Oosthuizen, T, Spreeth, N, Lester, PJ & Pietersen, G 2017, 
'Visual symptom identification of grapevine leafroll-associated virus 3 in red berry cultivars supports 
virus management by roguing', Journal of Plant Pathology, vol. 99, no. 2, pp. 477-482. 

 
Bendel, N, Kicherer, A, Backhaus, A, Köckerling, J, Maixner, M, Bleser, E, Klück, H-C, Seiffert, U, Voegele, 
RT & Töpfer, R 2020, 'Detection of Grapevine leafroll-associated virus 1 and 3 in white and red 
grapevine cultivars using hyperspectral imaging', Remote Sensing, vol. 12, no. 10. 

 
Blaisdell, GK, Zhang, S, Rowhani, A, Klaassen, V, Cooper, ML, Daane, KM & Almeida, RPP 2020, 'Trends 
in vector-borne transmission efficiency from coinfected hosts: Grapevine leafroll-associated virus-3 
and Grapevine virus A', European Journal of Plant Pathology, vol. 156, no. 4, 2020/04/01, pp. 1163-
1167. 

 
Blouin, AG, Chooi, KM, Cohen, D & MacDiarmid, RM 2017, 'Serological methods for the detection of 
major grapevine viruses', in B Meng, GP Martelli, DA Golino & M Fuchs (eds), Grapevine Viruses: 
Molecular Biology, Diagnostics and Management, Springer International Publishing, Cham, pp. 409-
429. 

 
Chaerle, L, Hagenbeek, D, De Bruyne, E, Valcke, R & Van Der Straeten, D 2004, 'Thermal and 
chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage', Plant and 
Cell Physiology, vol. 45, no. 7, pp. 887-896. 

 
Chooi, KM, Bell, VA, Blouin, AG, Cohen, D, Mundy, D, Henshall, W & MacDiarmid, RM 2022, 'Grapevine 
leafroll-associated virus 3 genotype influences foliar symptom development in New Zealand vineyards', 
Viruses, vol. 14, no. 7. 

 

105 / 108



Constable, FE & Rodoni, BC 2014, Grapevine leafroll-associated viruses, Wine Australia, Adelaide, 
Australia. 

Credi, R 1997, 'Characterization of Grapevine Rugose Wood Disease sources from Italy', Plant Disease, 
vol. 81, no. 11, Nov, pp. 1288-1292. 

Digiaro, M, Bedzrob, MP, D'Onghia, AM, Boscia, D & Savino, VN 1994, 'On the correlation between 
grapevine virus A and rugose wood', Phytopathologia Mediterranea, vol. 33, pp. 187-193. 

Douglas, N & Krüger, K 2008, 'Transmission efficiency of Grapevine leafroll-associated virus 3 (GLRaV-
3) by the mealybugs Planococcus ficus and Pseudococcus longispinus (Hemiptera: Pseudococcidae)',
European Journal of Plant Pathology, vol. 122, no. 2, 2008/10/01, pp. 207-212.

Fortusini, A, Scattini, G, Prati, S, Cinquanta, S & Belli, G 1997, 'Transmission of grapevine leafroll virus 
1 (GLRaV-1) and grapevine virus A (GVA) by scale insects', paper presented at Proceedings of 12th 
Meeting of ICVG, Lisbon. 

Galvan, FER, Pavlick, R, Trolley, G, Aggarwal, S, Sousa, D, Starr, C, Forrestel, E, Bolton, S, Alsina, MdM, 
Dokoozlian, N & Gold, KM 2023, 'Scalable Early Detection of Grapevine Viral Infection with Airborne 
Imaging Spectroscopy', Phytopathology®, pp. PHYTO-01-23-0030-R. 

Gautam, D, Ostendorf, B & Pagay, V 2021, 'Estimation of Grapevine Crop Coefficient Using a 
Multispectral Camera on an Unmanned Aerial Vehicle', Remote Sensing, vol. 13, no. 13, p. 2639. 

Gautam, D & Pagay, V 2020, 'A review of current and potential applications of remote sensing to study 
the water status of horticultural crops', Agronomy, vol. 10, no. 1. 

Goszczynski, DE 2007, 'Single-strand conformation polymorphism (SSCP), cloning and sequencing 
reveal a close association between related molecular variants of Grapevine virus A (GVA) and Shiraz 
disease in South Africa', Plant Pathology, vol. 56, no. 5, pp. 755-762. 

Goszczynski, DE, du Preez, J & Burger, JT 2008, 'Molecular divergence of Grapevine virus A (GVA) 
variants associated with Shiraz disease in South Africa', Virus Research, vol. 138, no. 1-2, Dec, pp. 105-
110. 

Goszczynski, DE & Habili, N 2012, 'Grapevine virus A variants of group II associated with Shiraz disease 
in South Africa are present in plants affected by Australian Shiraz disease, and have also been detected 
in the USA', Plant Pathology, vol. 61, no. 1, pp. 205-214. 

Goszczynski, DE & Jooste, AEC 2003, 'Identification of divergent variants of Grapevine virus A', 
European Journal of Plant Pathology, vol. 109, no. 4, pp. 397-403. 

106 / 108



Gutha, LR, Casassa, LF, Harbertson, JF & Naidu, RA 2010, 'Modulation of flavonoid biosynthetic 
pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves', BMC 
Plant Biology, vol. 10, no. 1, p. 187. 

Habili, N 2013, 'Australian Shiraz Disease: an emerging virus disease of Vitis vinifera cv. Shiraz', Wine 
and Viticulture Journal, vol. 28, no. 1, pp. 59-61. 

Habili, N, Komínek, P & Little, A 2007, 'Grapevine leafroll-associated virus 1 as a common grapevine 
pathogen', Plant Viruses, vol. 1, no. 1. 

Habili, N, Wu, Q & Pagay, V 2016, 'Virus-associated Shiraz Disease may lead Shiraz to become an 
endangered variety in Australia', Wine and Viticulture Journal, vol. V31N1, no. 1, 02/02, pp. 47-50. 

Hommay, G 2008, 'Grapevine virus A transmission by larvae of Parthenolecanium corni', European 
Journal of Plant Pathology, vol. 121, no. 2, 2008-06, pp. pp. 185-188-2008 v.2121 no.2002. 

Hull, R 2014, 'Ecology, epidemiology, and control of plant viruses', in Plant Virology, pp. 809-876. 

Ishimwe, R, Abutaleb, K & Ahmed, F 2014, 'Applications of thermal imaging in agriculture—A review', 
Advances in Remote Sensing, vol. 03, no. 03, pp. 128-140. 

Jones, RA 2014, 'Trends in plant virus epidemiology: opportunities from new or improved 
technologies', Virus Res, vol. 186, Jun 24, pp. 3-19. 

MacDonald, SL, Staid, M, Staid, M & Cooper, ML 2016, 'Remote hyperspectral imaging of grapevine 
leafroll-associated virus 3 in Cabernet Sauvignon vineyards', Computers and Electronics in Agriculture, 
vol. 130, pp. 109-117. 

Maree, HJ, Almeida, RP, Bester, R, Chooi, KM, Cohen, D, Dolja, VV, Fuchs, MF, Golino, DA, Jooste, AE, 
Martelli, GP, Naidu, RA, Rowhani, A, Saldarelli, P & Burger, JT 2013, 'Grapevine leafroll-associated virus 
3', Front Microbiol, vol. 4, p. 82. 

Marks, JNJ, Lines, TEP, Penfold, C & Cavagnaro, TR 2022, 'Cover crops and carbon stocks: How under-
vine management influences SOC inputs and turnover in two vineyards', Science of The Total 
Environment, vol. 831, 2022/07/20/, p. 154800. 

Meng, B, Martelli, GP, Golino, DA & Fuchs, M 2017, Grapevine Viruses: Molecular Biology, Diagnostics 
and Management, 1st ed. edn, Springer International Publishing : Imprint: Springer. 

Naidu, R, Rowhani, A, Fuchs, M, Golino, D & Martelli, GP 2014, 'Grapevine leafroll: A complex viral 
disease affecting a high-value fruit crop', Plant Disease, vol. 98, no. 9, 2014/09/01, pp. 1172-1185. 

107 / 108



Naidu, RA, Perry, EM, Pierce, FJ & Mekuria, T 2009, 'The potential of spectral reflectance technique 
for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars', 
Computers and Electronics in Agriculture, vol. 66, no. 1, pp. 38-45. 

Nutter, FW 1997, 'Quantifying the temporal dynamics of plant virus epidemics: a review', Crop 
Protection, vol. 16, no. 7, 1997/11/01/, pp. 603-618. 

Olmos, A, Capote, N, Bertolini, E & Cambra, M 2007, 'Molecular diagnostic methods for plant viruses', 
in ZK Punja, Boer, S. H. de, Sanfaçon, H. (ed.), Biotechnology and plant disease management, CAB 
International, pp. 227-249. 

Perrone, I, Chitarra, W, Boccacci, P & Gambino, G 2017, 'Grapevine–virus–environment interactions: 
an intriguing puzzle to solve', New Phytologist, vol. 213, no. 3, pp. 983--987. 

Pietersen, G, Spreeth, N, Oosthuizen, T, van Rensburg, A, van Rensburg, M, Lottering, D, Rossouw, N 
& Tooth, D 2013, 'Control of grapevine leafroll disease spread at a commercial wine estate in South 
Africa: A case study', American Journal of Enology and Viticulture, vol. 64, no. 2, p. 296. 

Ricketts, KD, Gomez, MI, Atallah, SS, Fuchs, MF, Martinson, TE, Battany, MC, Bettiga, LJ, Cooper, ML, 
Verdegaal, PS & Smith, RJ 2015, 'Reducing the economic impact of Grapevine leafroll disease in 
California: Identifying optimal disease management strategies', American Journal of Enology and 
Viticulture, vol. 66, no. 2, p. 138. 

Rustioni, L, Rocchi, L & Failla, O 2015, 'Effect of anthocyanin absence on white berry grape (Vitis 
vinifera L.)', vol. 54, 01/01, pp. 239-242. 

Sankaran, S, Mishra, A, Ehsani, R & Davis, C 2010, 'A review of advanced techniques for detecting plant 
diseases', Computers and Electronics in Agriculture, vol. 72, no. 1, pp. 1-13. 

Vanegas, F, Bratanov, D, Powell, K, Weiss, J & Gonzalez, F 2018, 'A novel methodology for improving 
plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data', 
Sensors, vol. 18, no. 1. 

Walker, J, Charles, J, Froud, K & Connolly, P 2004, 'Leafroll Virus in Vineyards: Modelling the Spread 
and Economic Impact', HortResearch Client report, vol. 12795, 01/01. 

Wu, Q, Habili, N, Constable, F, Al Rwahnih, MA, Goszczynski, DE, Wang, Y & Pagay, V 2020, 'Virus 
pathogens in Australian vineyards with an emphasis on Shiraz Disease', Viruses, vol. 12, no. 8, Jul 28. 

Wu, Q, Habili, N, Kinoti, WM, Tyerman, SD, Rinaldo, A, Zheng, L & Constable, FE 2023, 'A metagenomic 
investigation of the viruses associated with Shiraz Disease in Australia', Viruses, vol. 15, no. 3. 

108 / 108


	Chapter 1
	1.1. Background
	1.2. Research goals
	1.3. Significance of the project

	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	6.1. Concluding remarks
	6.2. Remaining challenges
	6.2.1. The complexity of grapevine virus diseases
	6.2.2. Lack of abundant reliable ground-truthing data
	6.2.3. Technical limitations
	6.2.4. The economic challenge

	6.3. Suggestions for further research
	Reference

	Ch2_remotesensing-14-01542.pdf
	Introduction 
	Detection of Viruses 
	Background-Physiological and Phenotypic Changes of Plants Affected by Viruses 
	Direct Methods 
	Traditional Indirect Methods 
	Optical Sensing Technologies in Plant Viral Disease Detection 

	Analysis and Modelling Techniques for Optical Sensing Data 
	Using Computer Vision for Leaf-Based Viral Disease Detection 
	Use of Multispectral Imagery for Plant Viral Disease Detection 
	Use of Hyperspectral Sensing 

	Comparison of the Cost for Virus Detection Methods 
	Current Challenges and Future Perspectives 
	Current Challenges of Plant Viral Disease Detection 
	Future Prospects for Optical Sensing Technology in Plant Viral Disease Detection 

	Conclusions 
	References

	Ch4_sensors-23-02851-v2.pdf
	Introduction 
	Materials and Methods 
	Experimental Site and Plant Virus Testing 
	Spectral Data Collection 
	Data Processing and Modelling 
	Spectral Data Pre-Processing 
	Outlier Removal 
	Cross-Validation 
	Modelling 


	Results 
	Virus Test Results 
	Disease Symptomology 
	Critical Spectral Regions for Disease Classification 
	The Model Results 
	Model Prediction Matrix 

	Discussion 
	Conclusions 
	References

	3_Front.pdf
	Declaration
	Acknowledgements
	List of Abbreviations
	Thesis Summary




