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Optimal Design of Induction Motors Over
Driving Cycles for Electric Vehicles
Emad Roshandel , Member, IEEE, Amin Mahmoudi , Senior Member, IEEE,

Wen L. Soong , Senior Member, IEEE, and Solmaz Kahourzade , Member, IEEE

Abstract—Consideration of the overload (OL) performance of
electric machines designed for EVs enables increasing the power
density of the propulsion system. This paper aims to show the
characteristics and advantages of the optimal IMs which have
the capability of handling OL. A subdomain model (SDM) with
the capability of the saturation prediction is developed and vali-
dated using experimental data. A lumped thermal model is devel-
oped to predict the transient temperature variation of the IMs. The
thermal model is validated using the Motor-CAD transient thermal
analysis. The fast speed and accuracy of the applied SDM allows to
select twelve variables in a large search space for the optimization
purpose. Initially, an optimization procedure is proposed to design
three IMs over three different driving cycles. The optimal designs
are validated from the electromagnetic and thermal aspects by
the finite element analysis. IMs are then designed optimally with
consideration of the OL capability. A transient thermal analysis
is carried out to validate the designs. The optimal designs with
and without consideration of OL are compared in terms of the
machine parameters and geometry to understand how dimensions
and equivalent circuit parameters of the IMs vary according to
the driving cycles. The comparison allows more intuition about the
consideration of OL capability in design.

Index Terms—Driving cycle, electric vehicle, induction motor,
lumped thermal model, machine design, optimization, subdomain
model, thermal analysis.

LIST OF ABBREVIATIONS AND SYMBOLS

AFIM Axial flux induction machine.
CIPS California Instrument CSW series AC power source
CT Constant torque
EffM Efficiency map
EV Electric vehicle
FEA Finite element analysis
FEM Finite element model
FW Field weakening
HEV Hybrid electric vehicle
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IEC International Electrotechnical Commission
IM Induction motor
MEC Magnetic equivalent circuit
MSE Mean square error
NEMA National Electrical Manufacturers Association
NYCC New York City cycle
OL Overload
PM Permanent magnet
PMSM Permanent magnet synchronous machine
PSO Particle swarm optimization
RMSE Root mean square error
SDM Subdomain model
UDDC Urban dynamometer driving cycle
VFD Voltage frequency drive

List of Symbols
δ Skin depth
θW ,max Maximum winding hotspot temperature
ρ Conductor resistivity
μ0 Air permeability
μr Relative permeability of a material
A Area of material normal to the heat flow direction
CF 1 First cost function
CF 2 Second cost function
Cp Specific heat of the mass of material
Di Inner diameter
DO Outer diameter
Dsh Shaft diameter
gOC Global optimal cost
gr Gear ratio
Her Height of the rotor end ring
it Iteration number
itmax Maximum number of iterations
J Current density
Jmax Maximum current density
Jrated Rated current density
kcd Thermal conductivity of each material
kcon Convection factor
l Axial length of the area of each part in thermal

model
Lls Stator leakage inductance
L

′
lr Rotor leakage inductance referred to the stator side

Lst Stack length
m Material mass
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Nbar Number of rotor bars
NCT Number of operating points in the CT region outside

the torque-speed envelope
Ndr Total number of operating points within a driving

cycle
NFW Number of operating points in the FW region out-

side the torque-speed envelope
NTs Number of turns per slot
Nu Nusselt number

Npop Population size
OF Objective function
pbest Best particle position in an iteration.
PCT Penalty volume in the CT region
P FW Penalty volume in the FW region
Pr Prandt Number
Q Heat flow
r Radius of each part in thermal model
rairgap Airgap radius
rBF−H Front bearing to case radius
rBR−F Rear bearing to flange radius
rR−b Rotor to bearing radius
rst−H Stator to housing radius
rw−st Winding to stator radius
rw Wheel radius
RBI Rotor back-iron
Rc Core resistance
Re Reynolds number
Rs Winding resistance @ 60°C
R

′
r Rotor resistance referred to stator side @ 60°C

RSh Rotor bar height
RSp Rotor slot pitch
S Effective area of each motor component
Sη Average efficiency over driving cycle
SBI Stator back-iron
SSh Stator slot height
SSp Stator slot pitch
T Temperature
TA Temperature at layer A
TA Temperature at layer B
Th Material thickness between layers A and B
t Time
ν Vehicle linear speed
V olm Volume of the IM
W er Width of the rotor end ring

Xls Stator leakage reactance referred to stator side @
50 Hz

Xmn Magnetizing reactance @ 50 Hz
Xrp Rotor leakage reactance referred to stator side @ 50

Hz

II. INTRODUCTION

INDUCTION motors could be a suitable choice for utilization
in the propulsion systems of electric vehicles EV and HEVs.

The absence of rare-earth PM materials in the IMs leads to
reduction of the machine cost in comparison to the PMSMs
[1]. The literature shows that the performance parameters and

efficiency of IMs during operation in the constant power region
is comparable or even better than PMSMs [2].

The design of the IMs for the industrial line-starting or single
point operation applications is a well-established subject. Un-
like operation over a wide speed range, NEMA and IEC have
standardized the design of IMs for line-start applications [3], [4].
The optimum geometry and dimensions to achieve the required
performance in line-starting applications has been described in
the literature.

The literature has introduced sizing equations of IMs for vari-
ous geometries and power ratings [5]. These empirical formulae
are prone to errors due to poor estimation of IM equivalent circuit
parameters. On the other hand, these equations are developed
based on the machine performance during operation at a single
operating point (i.e., certain saturation level). So, the obtained
model based on these equations is not valid for a wide range
of operating points when saturation phenomenon in iron parts
is involved. Consequently, the previous optimization studies,
which have utilized sizing equations, were not able to provide
an optimal IM for operation over a wide range of loads.

FEM-based motor optimization techniques have been the sub-
ject of extensive research. For PM machine optimization, FEA
and electric equivalent circuits were used for optimal design of
PM machines using a differential evolution algorithm [6]. The
authors optimize a coreless linear PM machine using FEA and
a genetic algorithm in a multi-objective optimization study [7].
Multi-objective optimization problems were simplified using the
aggregation tree method, as suggested in [8]. The dependency
of these articles on FEA is the main drawback because of their
computational burden.

Surrogate models like the Gaussian Process (Kriging), which
are a type of supervised machine learning, has been used as
an effective tool in the design of electric machines [9], [10],
[11]. These models have been used for reduction of the time
of optimization study while using FEA [12]. These models
require the previously collected data to predict the behavior of
an electric machine. A number of FEA simulations are executed
to gather the initial data from a case study [10]. Then, the
collected data is used to predict the performance parameters in
different geometries. The trained model by the surrogate model
is used in a single- or multi-objective optimization problem to
design the target machine based on the OF ) and constraints
[13], [14], [15]. In [16], a comprehensive study on the robust
optimization of the electric machine were conducted. The au-
thors showed that the robust optimization allows finding the
optimum design which meets all the constraints with greater
computational cost compared to the conventional optimization
methods. The preparation of the required sample data for the
surrogate models is computationally expensive because it needs
the execution of a larger number of simulations. To reduce the
number of simulations, previous studies have limited the number
of the variables and their range of variation. The limited range of
search however produces a design which may not be the global
optima in the entire search space.

The use of analytical models like MEC [17], [18] and SDMs
[19], [20] can be considered as a substitute for FEA to decrease
the computational time of the optimization study. A MEC model
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will become more accurate if the number of considered perme-
ances are increased in the airgap and iron parts [21]. The increase
of the number of elements leads to the increase of computational
time. Most of the previously introduced MECs and SDMs ignore
the saturation effect during the machine modelling [22], [23],
[24]. The ignorance of the saturation reduces their accuracy
for predicting the performance parameters over a driving cycle,
particularly in the overload condition.

There are several references which introduced an approach
for saturation modelling in SDMs [25], [26], [27], [28], [29],
[30]. Only in [27], [30], the saturation model of the axial flux
IM (AFIM) was employed in the optimization problems. The
optimal design of line-start AFIMs have been discussed in [27]
which means the results are not optimal for operation over
driving cycles. In [30], the authors have considered a limited
region near the nominal points for saturation modelling. Hence,
the predicted performance cannot be reliable for all operating
points in a driving cycle. The maximum torque per ampere
control has been employed for the optimization in [30]. The
maximum torque per ampere control cannot find the maximum
efficiency points in the constant power region [31]. So, the
designed AFIMs in [30] are not the optimal designs from the
maximum efficiency perspective.

The effect of rotor losses on the machine temperature is
another important factor which has been ignored in [27], [30].
Rotor losses in induction machines are often high which leads
to a higher rotor temperature rise. The optimization studies in
[30] assume a cooling system similar to the radial flux machines
for their designs. Even if the assumed cooling system works
successfully for the stator of the axial flux IMs, it cannot be
used for the cooling of the rotor. This is because the available
contact surface between the cooling channel and rotor in AFIM
is less than the radial rotors, but also as the heat distribution on
the disk (AFIM rotor) is different to a cylinder (radial flux IM
rotor).

The contributions of this paper can be divided into the fol-
lowing major and minor categories:
� Major Contributions:√

Development and experimental validation of SDM con-
sidering iron saturation suitable for design of IMs over
a driving cycle.√
Development of a lumped thermal model using the
thermal modules in MATLAB/SIMULINK integrated
with the proposed SDM model to predict the transient
temperature variation of IMs.

� Minor Contributions:√
A comparative study of the IM designs with and without
consideration of the OL capability.√
A detailed discussion on the consideration of OL capa-
bility for IM designs indicating the tradeoffs between
size and performance.

The fast speed of the SDM allows choosing twelve different
variables in the optimization study. A similar cooling system
as the 150 kW e-mobility IM [32], [33] is assumed for the
design process. In the optimization study, the maximum loss
of the rotor and stator are set as constraints to guarantee the
success of the cooling system at the rated condition. The loss

TABLE I
STUDIED IM ELECTRICAL CHARACTERISTICS AND GEOMETRY

constraint is determined based on the maximum loss per outer
stack of the stator and rotor of the benchmark design (i.e., 150
kW e-mobility IM). A single-speed transmission system with a
gear ratio of 9.6 is assumed between the motor shaft and wheels.
An optimization problem to obtain the maximum efficiency over
the driving cycle in the minimum volume is defined. The optimal
designs are validated against the FEA results in terms of their
electromagnetic and thermal performance. In the second stage,
the proposed optimization procedure is utilized to design IMs
with consideration of the OL capability over the driving cycle.
The developed lumped model is used to predict the hotspot
temperature of the winding in the optimization study to check
the temperature limit. The obtained results clarify how the OL
capability consideration can reduce the IM volume while the
thermal constraints over the studied driving cycle are met.

The experimental validation of the SDM model is carried
out in Section III. The proposed lumped thermal model is dis-
cussed and validated in Section IV. The considered optimization
problems and their procedures is described in Section V. The
introduced optimization problems are executed on three different
driving cycles in Section VI. The discussion on the difference
of the optimal designs with and without investigation of OL are
provided in Section VI.

III. SDM MODEL PREPARATION AND VALIDATION

A subdomain model which calculates the Maxwell equations
in five subdomains in IMs was introduced in [23]. The perfor-
mance parameter prediction capability was improved by adding
modeling of the saturation level in the iron parts at different
loadings. In [25], the model accuracy was validated using 2-D
and 3-D FEA results. In this section, this model is developed
and validated using experimental results.

A 2.2 kW, 4 pole, 415 V induction machine is considered for
the validation of the SDM. The dimensions and characteristics
of this machine are tabulated in Table I. This is a commercial
machine and information was not available about the B-H curve
and loss curve of the lamination material and so M250 steel
is assumed. Fig. 1 shows the prepared experimental setup in-
cluding a dynamometer motor, test motor, dynamometer, and
high precision power analyzer. The dynamometer motor acts as
a load for the motor and is controlled with a voltage frequency
drive (VFD). The dynamometer provides the torque and speed
feedback for the VFD as well as the measurement data for the
power analyzer.
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Fig. 1. The experimental setup for verification of the proposed SDM model.
A 2.2kW IM is used for validation.

TABLE II
EQUIVALENT CIRCUIT PARAMETERS FOR THE STUDIED 2.2KW MACHINE

OBTAINED FROM NO-LOAD AND LOCKED ROTOR TESTS IN EXPERIMENT, FEA
ANALYSIS, AND THE PROPOSED MODEL

The test motor is supplied by an autotransformer. The input
power of the test machine is measured using a Voltech power
analyzer (PM3000ACE) [34]. This accepts the speed and torque
inputs in addition to the electrical signals for measurement of
the output mechanical power.

Table II presents the experimentally obtained equivalent cir-
cuit parameters from the no-load and locked rotor tests. The
results of the analytical model are in a good agreement with
the experimentally calculated equivalent circuit parameters. The
experimental data has been collected when the stator and rotor
winding temperatures were at about 60 °C. The SDM resistances
are also calculated at 60 °C. In the 2-D FEA model, the measured
resistance from the stator is chosen for the simulation. Also, the
60°C temperature is considered for calculation of the end-ring
resistance according to [25].

The capability of the model to predict the saturation curve of
the studied motor is validated by collecting the no-load test data
at 1500 rpm with line voltages up to 500 V. Fig. 2 compares
the experimental, proposed SDM, and FEA results in the no-
load operating condition. The measured and calculated current
at different voltage levels is presented in Fig. 2(a). Fig. 2(b)
shows the error of the estimated current by the proposed model.
In the worst-case voltage, the error of the proposed model is
about 40%. The calculated MSE for current prediction using
SDM and FEA models are respectively 0.0685 and 0.0293.
It means the maximum RMSE for these models are 0.26 and

Fig. 2. No-load experimental results: (a) no-load current vs voltage,
(b) no-load current error vs voltage using SDM versus FEA, (c) stator inductance
variation at different frequencies vs. no-load current, (d) the inductance error
vs. current using SDM versus FEA.

0.17, respectively. Such errors are considered acceptable for
2.15A rated magnetizing current. The difference between the
B-H curve characteristics of the assumed steel and the utilized
steel and the difference between the real and simulated airgap
lengths contributes to these errors.

The motor is next driven by a California Instrument CSW
series AC power source (CIPS) which produces variable fre-
quency sinusoidal waveforms. The machine is supplied with 40
Hz, 50 Hz, and 60 Hz by the CIPS in the no-load condition.
The obtained stator inductance in the no-load test at these
frequencies as a function of current is plotted in Fig. 2(c). This
figure demonstrates the proposed model capability of predicting
the machine inductance. Note that due to the large slip at the
lower supply voltage levels, the experimentally collected induc-
tance shows small errors at low currents. Fig. 2(d) shows the
maximum error of the estimated inductance which are about
6% and 16% for the proposed SDM and FEA models. The
maximum error of the FEA occurs at high saturation levels
where the machine does not normally operate. The proposed
SDM and FEA RMSE values are 14.4 and 17.5, respectively.
These values are acceptable for the inductance range of 165 mH
to 483 mH.

The collected experimental data as a function of load torque
is compared with proposed model in Fig. 3. The supply current,
shaft speed, output power, and efficiency of the machine shown
have an acceptable agreement with the calculated values. The
maximum error of the current does not exceed 6% (around
the rated load of 14.5 Nm). The error of the estimated speed
and power are less than 1%, except in the low power region.
The maximum error of the 5.5% happens at 14.8Nm point
in the efficiency curve. This efficiency error likely resulted
from the larger current flowing through the winding and rotor
cage.
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Fig. 3. Loaded performance validation: (a) and (b) current and current error
variations vs. load; (c) and (d) speed and speed error variations vs. load; (e) and
(f) output power and output power error variations vs. load; (g) and (h) efficiency
and efficiency variations error vs. load.

IV. THERMAL MODEL AND VALIDATION

A. Thermal Model for Temperature Prediction

A lumped parameter model, shown Fig. 4, is developed to
predict the thermal behavior of the induction machine over the
driving cycle. The generated heat because of the stator winding
loss, stator core loss, and rotor cage and iron losses are repre-
sented by the heat flow sources in the model. The convection heat
transfer, thermal conductance, and thermal masses are utilized
to develop the thermal model.

The thermal mass which is the material’s capability in ab-
sorbing and releasing the thermal heat is used for different parts

Fig. 4. The developed lumped thermal model for the transient thermal analysis
of the induction machine.

TABLE III
THE THERMAL PARAMETERS USED FOR THE THERMAL ANALYSIS

of the machine including winding, stator iron, motor housing,
rotor iron, bearings, and flange. A conduction path is consid-
ered between those parts which are physically connected with
each other. Convection heat transfer is used where the heat is
transferred through the air.

The heat flow due to the thermal mass as a function of time
(t) is defined by (1) where Q is the heat flow, Cp is the specific
heat of the mass of material, m is the material mass, and T is
the temperature. The considered specific heat and the density of
each material are reported in Table III.

Q (t) = mCp
dT

dt
(1)

The Fourier law presented in (2) is utilized to describe the con-
ductive heat transfer. The thermal conductivity of each material
(kcd) used in this paper is tabulated in Table III. In (2), A is the
area of material normal to the heat flow direction. This area for
each section is found using (3) where r is the considered radius
for calculation of the area and l is the axial length of each part.
The winding to stator radius, stator to housing radius, rotor to
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Fig. 5. The considered radii for calculation of the area for each part of the
machine.

bearing radius, front bearing to case radius, and rear bearing to
flange radius are shown by rw−st, rst−H , rR−b, rBF−H , rBR−F ,
respectively in Fig. 5. The material thickness between layers A
and B and the temperatures at layers A and B are shown by Th,
TA, and TB .

Q (t) = kcd
A

Th
(TA (t)− TB (t)) (2)

A = 2πrl (3)

The convection heat transfer is modelled by Newton’s law
of cooling formulated in (4). In (4), kcon is the convection
heat transfer coefficient. Note that the S is the effective area
of each motor component. For instance, the rotor area is S =
2π(r2

airgap − r2
R−b); two times the effective rotor surface is

considered because the rotor convection to the housing occurs
at both ends of the rotor. The reported kcon for air is the consid-
ered coefficient for the flange, bearing, and housing convection.
According to Taylor and Gazler [35], for Taylor numbers less
than 41, the heat transfer is only conductive in the airgap and the
Nusselt number (Nu) is equal to 2 [35], [36]. Considering this,
kcon in the airgap is found by multiplication of the air convection
coefficient and 2 (i.e., the Nusselt number).

Q (t) = kcon S (TA (t)− TB (t)) (4)

It is assumed that the ethylene glycol-water mixture flows
through the spiral cooling channel and shaft groove with a
constant flow rate. The pipe (TL) block from the MATLAB
SIMULINK library is used to model the heat transfer at the
pipe wall. This block uses the Dittus-Boelter correlation which
estimates the Nu as a function of the Reynolds (Re) and Prandt
(Pr) numbers. The laminar flow and rectangular channel equa-
tions presented in [37] are used to find the Nusselt number for
the rotor groove cooling and stator spiral cooling. The values of
the Re and Pr in calculating Nu are given in Table III.

B. Introduction of Benchmark IM

An IM with a rating of 100 kW continuous power (at current
density of 16 A/mm2 and DC-link voltage of 400 V) and 150 kW
peak power (at 50 A/mm2 current density) is considered as the
benchmark machine in this study [32], [33]. This commercial
machine has 72 stator slots and 84 copper rotor bars. The

lamination material M250-35A is used in the construction of
stator and rotor.

The stator of this machine is cooled by a 50/50 water/glycol
mixture which flows through a spiral cooling jacket. The coolant
inlet temperature is 65°C and a 6.5 l/min flow rate is used. A
spiral groove is assumed into the shaft which carries coolant at
2 l/min.

The stator loss of the benchmark design at rated power is 1.8
kW. The available outer surface of the machine cooled by the
spiral cooling is 0.094 m2. Thus, the maximum permitted loss per
outer stack for this machine 15.2 kW/m2 which will be used as
a limiting factor in the optimization study. It is assumed that the
diameter of the rotor spiral groove of the designed machines in
this paper is equal to the benchmark groove diameter (15 mm).
So, the active length of the rotor which is in contact with the
cooling system plays an important role to successfully remove
the heat from the rotor. As the axial stack length (Lst) of the
benchmark design is 0.12 m, 3.3 kW/m is considered as the
allowable loss per length for the rotor.

The benchmark machine was designed for operation in a
vehicle with a 1960 kg weight. The motor transfers power to
the wheels through a single-speed gearbox with a 9.6 gear ratio
(gr). The wheel radius for the drivetrain is rw = 0.35m. Thus,
for the linear speed of ν meter per second, the motor angular
speed is obtained by (5) in rpm. This equation is considered to
convert the given linear speed of the driving cycle to the motor
operating speed in this paper.

ωm =
ν

rw
× gr × 60

2π
(5)

C. Validation of the Thermal Model

The thermal model is validated through a transient thermal
analysis. It is assumed that the benchmark machine is operated
over the UDDC [38]. The performance parameters of the ma-
chine are calculated using the Motor-CAD software.

The Motor-CAD transient thermal analysis module is utilized
to predict the machine temperature variation over the UDDC
operating points. The obtained losses over the driving cycle are
considered as the input for the introduced thermal model. The
predicted results shown in Fig. 6 shows an acceptable agreement
between Motor-CAD and the developed model results.

V. PROBLEM DEFINITION

A sequential process is introduced for optimal design of
IMs with and without consideration of OL in a multi-physics
environment. The proposed procedure benefits from the fast
calculation speed and accuracy of both the SDM and thermal
model. The results of the optimization study provide a good
understanding of the differences in the optimal IM design with
respect to different types of driving cycles.

Electric machine design problems are complex because of
their inherent non-linear nature. As such, a large solution space
should be defined to find the optimum results. Metaheuristic
algorithms can efficiently search a wide solution space and iden-
tify near-optimal solutions that traditional optimisation methods
cannot. The stochastic nature of PSO helps to converge to
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Fig. 6. Transient thermal analysis results for the developed lumped-circuit
model versus the Motor-CAD predictions for the benchmark IM over the UDDC:
(a) Stator hotspot temperature, (b) corresponding error, (c) rotor temperature,
(d) corresponding error.

the global optima by selection of a sufficiently large solution
population in the search space. The literature shows successful
performance of the PSO in optimal design of electrical machines
[39], [40], [41]. Hence, PSO is the proposed metaheuristic
optimization algorithm in this study.

A. PSO Algorithm

PSO is a population-based optimization which iteratively
updates a population of potential solutions (called particles)
based on their best solution and the swarm’s global best solution
[42]. In each iteration, a velocity vector is calculated using the
previous velocity and position of pbest and gbest, and then used
to direct the particles as they move through the search space. The
global best solution is found after a stopping criterion such as a
minimum error or maximum number of iterations.

Due to the stochastic nature of PSO, it may converge to
local optimal solutions instead of finding the global optima. The
literature shows PSO has a good convergence rate when the
number of particles is equal to about thirty times of the number
of parameters (variables) [43]. This study considers 12 variables
in the optimization problem definition. So, a population size of
360 is selected for this problem.

The inertia weight is commonly a value between 0.4 to 0.9.
In this problem, 0.9 is selected because the exploration rate is
higher at larger values of inertia weight. The selected population
size and damping factor allows better exploration of the search
space. So, a small damping factor of 0.3 is used to enhance
exploitation in the considered search space. The individual and
social co-speeds of particles can be a number in the range of 1
to 2.5 [44]. An equal value of 1.6 is selected for the individual

TABLE IV
THE SELECTED PSO PARAMETERS IN THIS STUDY

Fig. 7. Torque speed curve of a sample machine showing the CT and FW
regions as well as the NCT and NFW points in a driving cycle.

and social co-speeds to a have a slower convergence rate with
more exploitation.

The problem is defined for a certain number of iterations
(itmax) and a value of 50 is chosen to enable the algorithm to
converge to the optimal solution after the slow exploration and
exploitation explained in the above. Table IV lists the selected
PSO parameters for optimization problems in this study.

B. Definition of Optimization Problem Without Consideration
of Overload Condition

This section describes an optimization procedure to find an
optimal design without consideration of transient performance.
The designed machine should be able to operate continuously at
each single operating point (all blue stars presented in Fig. 7).

The flowchart of the defined optimization problem including
the detailed steps have been presented in Fig. 8. The fast speed
of calculation of the SDM allows selecting large number of
variables in a wide search space. Number of turns, number of
rotor bars, rotor slot width, stator slot width, rotor slot height,
stator slot height, stator back-iron, rotor back-iron, end ring
width, end ring height, stack length, stator slot opening are
twelve considered variables for the optimization.

As shown in Fig. 8, the initial variables are randomly gener-
ated, and the problem is solved to provide the initial solution for
the first iteration. Then, the problem is solved for the considered
Npop in each iteration. In each loop, the particles’ speed and
position are updated to find the updated design dimensions for
each loop.

It should be highlighted that the number of turns and rotor
slot number must have a integer value. To apply the integer
constraints, the selected solution in each iteration for these two
values are rounded up.
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Fig. 8. The optimization study flowchart for consideration of the normal and
overload conditions.

The maximum DO of 290 mm is set as a constraint for the
targeted machine. For this reason, this constraint is checked at
the beginning of each iteration. If this constraint is not met, the
algorithm rejects the design by setting its OF value to infinity.

As the height of the rotor end ring is a maximum of 0.9 times
of the rotor bar height, this value is also checked in each iteration.
If the selected value forHer is larger thanRSh, the selectedHer

value is limited to this value.

The developed SDM is used to find the magnetic vector
potentials in each iteration. The core loss, saturation curve (i.e.,
voltage vs. current curve of the machine at no-load), and electric
equivalent circuit parameters are found using the SDM. Based
on the stator slot area in each iteration, the value of the maximum
operating current of the machine is determined from the assumed
16 A/mm2 current density.

The obtained current is set as the rated current for the machine.
Considering this current and DC-link voltage of 400 V, the
maximum efficiency control is applied to obtain the efficiency
map (EffM).

The total loss of the machine for all operating points in a
driving cycle is calculated. The maximum loss point is selected.
The winding, cage, and core losses are obtained for the max-
imum loss point. They are the inputs to the thermal model.
The thermal model is executed for entire time of the simulation.
The obtained winding temperature is used for checking the hot
spot temperature limit. If the winding temperature exceeds the
loss limits, the rated stator winding current density is reduced.
This process is repeated. Once the temperature limit is met, the
algorithm directs the analysis into the next stage.

The calculated EffM is used to find the efficiency of each of
the operating points in the considered driving cycle. The first cost
function (CF1) aims to maximize the efficiency of the operating
points. To find CF1, the average efficiency over driving cycle
(Sη) is found and then is subtracted from 100%.

In Fig. 7, the red line shows the rated torque-speed curve of
an IM. So, the machine rated torque-speed curve must cover all
operating points to achieve an optimal design without consider-
ation of transient performance.

This objective is achievable when the machine volume is
increased. If the volume is not considered as the second objective
function, the PSO will apply a large increase in volume to find the
optimum design. This large increase may result in convergence
to a local minimum in large machine volumes.

To reduce the risk of being trapped in a local minimum, the
volume is penalized in both the CT and FW regions. The CT
region includes the operating points below the rated speed of
ωCT (see Fig. 7), while the machine operating region beyond
this speed is called FW. The number of operating points located
above the CT and FW regions are separated and counted by
NCT and NFW , respectively. The regions enclosing the NCT

and NFW points are highlighted by yellow and green in Fig. 7.
The volume of the IM which is evaluated in the current iteration
is shown by V olm, which is the summation of the volumes of
the rotor, stator and end winding. The considered penalty for the
NCT points is calculated by (6).

PCT = NCT × V olm (6)

The compensation of the torque at the field weakening (FW)
region by increasing the current is limited due to the voltage
limit. Hence, the penalty volume (PFW ) for the NFW points is
applied by a larger volume factor. According to (7), two times
of NFW is applied to the volume penalty.

PFW = 2NFW × V olm (7)
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To make the second cost function the V olm is summed
up with the obtained penalties applied to volume (CF2 =
V olm + PFW + PCF ). The objective function is defined by the
multiplication of theCF1 andCF2 (i.e.,OF = CF1 × CF2).
Finally, the optimum solution which gives the minimum objec-
tive function is chose as the best solution at the end of each
iteration. The described optimization process is summarized and
modeled as follows:

Minimize :OF = CF1 × CF2

Subject to

{
DO ≤ 290mm

θW,max ≤ 155 oC
(8)

As Class F insulation is assumed for the stator winding,
155 oC is considered as the maximum permitted temperature
for the winding hotspot.

C. Consideration of Overload Capability During Optimization

In a given driving cycle, there are many operating points where
the machine torque is low that provides time for cooling. This
allows increasing the loss limit of the machine in the transient
operation over the driving cycle. According to Fig. 8, the process
of the consideration of the OL capability follows a different step
compared to the normal design based on maximum power.

In the OL consideration procedure, a similar current density
as the benchmark IM (i.e., 50 A/mm2) is assumed at the first
step. The rotor loss, stator winding loss, and stator core loss
maps and EffM of a machine in each iteration are calculated.

The transient loss estimation is feasible if all operating points
of the driving cycle are covered by the EffM. Thus, if NCT

or NFW are non-zero, the IM is rejected by setting its OF to
infinity. This criterion, summarized in (9), is defined as a problem
constraint.{

NCT = NFW = 0 → accept design

NCT �=0 or NFW �= 0 → reject design (i.e., OF = ∞)

(9)
The transient loss variation of each part of the machine over a

driving cycle is extracted from the loss map. The proposed ther-
mal model is used to predict the machine temperature variation
using the transient loss data. If the maximum temperature of the
design meets the Class F insolation temperature standard (i.e.,
θW, max ≤ 155◦C), then the design is accepted.

The algorithm continues its process to find CF1 and CF2
using the same procedure as the normal design described in
the previous section. Thus, the optimization process with OL
consideration is modelled as follows:

Minimize :OF = CF1 × CF2

Subject to

⎧⎪⎨
⎪⎩
DO ≤ 290 mm

NCT = NFW = 0

θW, max ≤ 155◦C
(10)

VI. OPTIMIZATION RESULTS AND DISCUSSION

Three driving cycles including HFET, UDDC, and NYCC
are considered for the optimization study [45]. The maximum

Fig. 9. The variation of the efficiency over driving cycle and the active part of
the at each iteration of the optimization. (a) HFET; (b) UDDC; (c) NYCC.

operating speed for the considered driving cycles is 7,000 rpm.
Considering a 6-pole design based on the benchmark machine,
the operating frequency of the designed machines is 350 Hz.
Increasing the frequency reduces the effective copper area due
to the skin effect which leads to a winding resistance increase
[31]. To address this issue, a stranded winding which includes
parallel paths is considered.

As formulated in (11), the skin depth depends on the resis-
tivity and permeability of a conductor as well as the operating
frequency.

δ =

√
2ρ

2πfeffμrμ0
(11)

If 17.7 nΩ/m and 1 are considered for the copper resistivity
and relative permeability, then for a frequency of 350 Hz, the skin
depth is 3.6 mm. It is reasonable to select one third of the skin
depth for the copper diameter to minimize the skin effect. To be
consistent with the benchmark design 1.01 mm wire diameter is
selected [32], [33] for the optimization study. This consideration
allows to calculate the winding resistance using (11) in [25].

A. Normal Optimization

The normal optimization approach for the design of the IMs
over the three driving cycles is executed to find the optimal IMs.
The variables and their selected ranges in the solution space are
reported in Table V.

The trend of the variation of the average efficiency over
the driving cycle against volume during the optimization is
presented in Fig. 9. According to this figure, the higher efficiency
is achieved by increasing the volume. It is expected because with
larger volumes the airgap area is larger which allows generating
more torque with smaller currents. The reduction of the current
decreases the ohmic losses which are a large portion of the
losses in IMs. Thus, the efficiency will generally be increased
by increasing the volume.

The gray rows in Table V shows the obtained dimensions
of the optimal designs for each driving cycle. The stator inner
and outer diameters (Di and DO) which are indirectly obtained
from the optimization solutions are also reported in this table. It
is seen that the optimization process tends to maximize the outer
diameter which is expected as this allows reducing the ohmic
losses due to the larger airgap area.

The designed machines are also simulated by the electric
machine analysis Motor-CAD package to validate the accuracy
of the SDM using FEA results. Fig. 10 shows the difference
between the EffM of the designs calculated by the SDM with
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TABLE V
THE OPTIMIZATION VARIABLE RANGES AND OPTIMAL SOLUTIONS

Fig. 10. (a), (b), and (c) the difference between the obtained EffMs from the analytical model and the Motor-CAD software results. The red dotted lines show
the capability based on the rated current determined by the normal optimization study. The cyan points are the considered driving cycle points.

Fig. 11. The full load 2-D FEA results of the stator loss (in green) and rotor
loss (in yellow) densities for the designed machines and benchmark.

the EffM obtained from FEA. It is observed that the largest
difference between the predicted efficiency is less than 5%.

Fig. 11 shows that the thermal limits (i.e., total loss per outer
stack area and rotor loss per rotor length) are considered during
the optimization study and these values are approximately equal
to the benchmark design.

The reliability of the design for operation with regards to
temperature limits is another point which is studied in this
section. A thermal analysis is executed on the designed machines
in Motor-CAD. The results of the analysis shown in Fig. 12
demonstrate that the optimization produces the optimum design
with acceptable temperature limits.

Fig. 12 shows the rotor of the designed IM for the HFET oper-
ates at a higher temperature at full load. This figure demonstrates
that the rotor is the hottest part of all three designs. It shows the
importance of the proper selection of the cooling system for the
IM rotor.

The EffMs of the designs are calculated without considering
mechanical losses and are presented in the third column of

Fig. 12. It is seen that the designed machines offer an efficiency
larger than 90% in most of the driving cycle points in all designs.
As increasing the current density leads to the increase of the
ohmic losses, the optimization algorithm tries to keep the current
density of these designs at moderate values (see Table V).

According to Fig. 12, the maximum torque of the designed
machines is higher than the maximum torque of the driving
cycle. However, this high current is required to generate the
required torque in the field weakening region.

B. Overload Consideration

The proposed design process with consideration of the OL
capability is employed in this section. The optimal solutions of
the optimization study over the three considered driving cycles
are tabulated in Table V. The results demonstrate a smaller depth
of the rotor and stator slots compared to the normal optimization
results dimensions. The smaller back-iron and Lst are other
factors which can be seen as the results of the consideration
of the OL capability (see the axial views in Fig. 12).

The EffM of the designed machines over each investigated
driving cycle are shown in Fig. 12. The rated current and maxi-
mum current to cover all the operating points of the considered
driving cycles is highlighted in each presented EffM. It is seen
that the maximum current of these designs is almost three times
the rated value.

C. Comparison of the Designed IMs

Although the consideration of the OL operation for the de-
signed electric machines for EVs is investigated in literature, a
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Fig. 12. Comparison of the six optimised designs. Steady-state 3-D FEA results of thermal analysis at the rated current (1st and 2nd columns) and EffMs (3rd

column). The axial view is shown to scale to indicate the comparative size of the six machines.
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Fig. 13. Motor-CAD and lumped model results of the transient thermal analysis of the stator winding hotspot of the designed machines with and without
consideration of OL (a) HFET, (b) UDDC, (c) NYCC.

Fig. 14. Comparison of (a) weight of active materials (ignoring shaft weight) and (b) power density of the optimal designs with and without consideration of the
overload during optimization against benchmark. (c) The total consumed energy in the six design and the energy consumption percentage by consideration of OL.

TABLE VI
THE MASS OF THE ACTIVE MATERIALS IN THE OPTIMAL DESIGNS

comparison between the differences with and without consid-
eration of OL has not been explicitly reported. In this section,
a comparison between the optimal designs with and without
consideration of the OL condition is carried out to highlight
their differences.

A transient thermal analysis during operation in the driving
cycles is executed to check the reliability of the designs based on
the suggested design process. The results of the transient thermal
analysis are presented in Fig. 13. The class F insulation permits
a hotspot temperature of 155°C for the winding. As shown in
Fig. 10, all the designs operate within the temperature constraint
of the Class F insulation. This figure shows the designed ma-
chines without consideration of OL have peak temperatures of
less than about 80°C which is quite low. When larger torques
are required in the driving cycle, the temperature of the machine

significantly increases because of the higher currents which flow
through the rotor bars and windings.

The results of the proposed thermal model used during the
optimization has been compared with the Motor-CAD transient
thermal analysis results in Fig. 13. These results show the
success of the thermal model in prediction of the temperature.

Table VI shows the weight of the active materials consisting
of the iron parts and copper in both the stator and rotor in
the optimal designs. The designs using the OL capability are
much lighter than their counterparts. Fig. 14(a) compares the
weight of the active materials including end-winding of the
designed IMs using the normal optimization and OL consider-
ation optimization. It demonstrates the weight of designed IMs
for HFET, UDDC, and NYCC using normal optimization are
respectively about 3.8, 5.1, and 4.4 times of the designed IMs
with consideration of OL. This reduction of the weight leads to
the increase of the power density which is reported in Fig. 14(b).
The consideration of OL allows to reach about 4 to 5 times larger
power density for the designed IMs for the HFET, UDDC, and
NYCC driving cycles.

It should be noted that while using the overload capa-
bility of the machines can significantly reduce the machine
size for a given driving cycle, there are likely other practi-
cal constraints like gradeability and continuous power require-
ments which may limit the ability to implement this fully in
practice.
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Fig. 15. Comparison of the loss breakdown and efficiency at the maximum power point operation of the optimal normal designs against OL designs for (a) HFET
at 42.5kW, (b) UDDC at 47.2kW, and (c) NYCC at 46.4kW.

TABLE VII
EQUIVALENT CIRCUIT PARAMETERS OF THE OPTIMAL DESIGNS

Fig. 14(c) shows the efficiency drop when the IM designs
based on OL are utilized in the EV instead of the normal optimal
designs. It is seen that the energy consumption for the HFET
is about four percent higher while for the UDDC and NYCC
designs this is increased by 28% and 31%. This is because
there are more operating points in the UDDC and NYCC which
require larger torque than the rated power of the designs. As
shown in the EffM of the OL-based design, the efficiency is
substantially lower (e.g., 5-20%). Hence, in those driving cycles
in which the EV requires large torque, the energy consumption
increases significantly.

Table VII reports the electrical equivalent circuit parameters
to show the difference and similarities of the designed IMs.
It is seen that the leakage inductances of the IMs designed
based on the normal optimization process and OL consideration
procedure are close to each other for all three driving cycles.
However, there is a large difference between the rotor and stator
resistances with and without consideration of OL

The reported current values in the third column of Fig. 12
showed that the current increase can be a reason for the efficiency
drop.

The higher resistance value of the OL considered designs
against the normal designs is another reason for the efficiency
reduction in the OL based designs (see Table VII). The maximum
power in the torque-speed plane of each design is considered for
the loss shown in Fig. 15. This figure shows at the considered
operating point the amount of the loss in the OL considered
designs is at least three times of the IMs designed without
considered of OL.

D. Performance of the Designs in a Driving Cycle

This section describes the performance comparison for the
designed motors for a specific vehicle driving cycle giving an

Fig. 16. Artemis urban driving cycle operating points.

Fig. 17. The temperature variation during operation of the designed machines
over operation in Artemis urban driving cycle.

indication on the range of torque requirements. It investigates
the performance of the designed machines based on the OL
consideration in the Artemis urban driving cycle [46]. For the
considered gearbox system, the maximum motor speed for this
driving cycle is 4,230 rpm and the maximum torque is 110 Nm
(see Fig. 16). So, the designed machines can operate in this range
from the electromagnetic perspective.

The temperature variation graph presented in Fig. 17 demon-
strates the inability of HFET-based designed machine to operate
over the Artemis urban driving cycle within the temperature
limit. This is expected because this machine is designed based
on HFET which is a highway-based driving cycle. Ignoring the
thermal limit, not only the energy consumption of HFET-based
design is largest compared to the other two driving cycles, but
also it offers minimum efficiency (see Fig. 18).

The comparison of the energy consumption and efficiency
of UDDC- and NYCC- based designs shows the lower energy
consumption and higher efficiency of NYCC-based design. The
maximum operating speed of the NYCC is close to the Artemis
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Fig. 18. The energy consumption and average efficiency of the OL-considered
designs over the Artemis urban driving cycle.

urban driving cycle. This similarity leads to the better perfor-
mance of this design.

E. Computation Time Comparison

The proposed optimization procedure utilizes a SDM model
and a thermal model in each iteration. For a certain design, the
required time for the SDM model to calculate the EffM is 23
seconds using a Core i9-7900X (3.30 GHz) computer with 128
GB RAM. The estimated driving cycle loss data are the inputs
for thermal model. These data are extracted in 1 second from
the output data of the SDM model. The thermal model predicts
the temperature variation over a driving cycle in 28 seconds.
Thus, the total required time for the proposed model to predict
the electromagnetic and thermal behavior of a certain design is
less than one minute.

On the same computer, FEA modeling in Motor-CAD requires
140, 180, 63, and 154 seconds for the saturation modelling, core
loss modelling, efficiency map estimation, and driving cycle
data extraction, respectively. The transient thermal analysis takes
about 14 minutes to be completed in Motor-CAD. Thus, the total
required time for analysis of an induction machine over driving
cycle and estimation of its temperature variation is about 22
minutes for a certain design in Motor-CAD.

In the optimization procedure, around 3000 designs are an-
alyzed for each driving cycle. Therefore, the total time of the
simulation using the proposed analytical model is about 43
hours. On the other hand, Motor-CAD needs about 1100 hours
for such an optimization study which is about 26 times of the
proposed analytical model. Thus, the proposed analytical model
is a computationally-efficient technique for the optimization of
induction machines for traction applications.

VII. CONCLUSION

This paper discussed the optimization of induction motors
over three specific vehicle driving cycles. An accurate multi-
physics model was developed for performance parameter and
temperature estimation of the IMs. The performance parameters
were calculated using a subdomain model with capability of
the prediction of saturation level at different operating points.
The temperature variation was predicted using a lumped-circuit
thermal model.

The main objective of the paper was to show the application
of the proposed fast and accurate multi-physics model for the
optimal design of IMs over a given driving cycle. Two sets of
optimizations were executed. Firstly, the IMs were optimized
for maximum efficiency in the minimum possible volume. Sec-
ondly, the IMs were optimized only for minimum volume while
meeting the thermal limitations during the driving cycle. This
resulted in increasing the power density by up to four times but
also reduced the machine efficiency and increased the driving
cycle energy consumption by about 30% for some cases. Note
that the capability to use this approach to reduce the motor
size will likely be limited by other vehicle constraints such as
gradeability.

Although the OL performance is considered in the design of
the electric motors in industrial applications, there is limited re-
ported data on investigation of the OL effect in the literature. The
presented results in this paper show that the energy consumption
increases by consideration of OL in highway driving cycles (i.e.,
HFET) is only about 2.5% larger than the normal design. So, it
is more reasonable to consider the minimum volume objective
function for the EVs which are designed for highway applica-
tions. Although the results showed it is possible to achieve 4
times higher power density in the IMs designed for operation
in urban area, the 30% increase in energy consumption is a
limit to design for minimum volume. The energy consumption
constraint can be added to the problem to cover this trade-off.

The experimental validation of the thermal model can be the
subject of the study in future. Furthermore, the consideration of
joint optimization to find the optimal designs with and without
consideration of OL in parallel with each other can be the subject
of future studies to speed up the design and comparison process.
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